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INTRODUCTION
1.1 The Van Hove formula
It was observed by Van Hovei) in 1966 that for small l t| , the
relation
st~ Logon® (1)
S = o

for proton-proton scattering is apparently very well satisfied experi-
mentally. He gave a derivation based on a quark model, wherein both
the strong and electromagnetic interaction amplitudes of the quarks
were assumed to be slowly varying with t compared to the variation of
the structure factors. This picture is quite analogous to the deuteron's
properties. We will refer to (1) as the Van Hove formula, to empha-
size the small mbmentum transfer spirit in which it will be regarded
in this work. 2) |

In Figure 1 we present the right and left sides of relation (1),

3)

using data for proton-proton scattering at 20 GeV/c, ~/ and the proton

magnetic form factor G 4) The agreement is very impressive for a

Ml
strong interaction dynamics result.

1.2 Regge pole residua and form factors

We wish to explore the significance of a relation such as (1)
(generalized to other hadrons, as well as nucleons) in the context of
the analysis of singularities in the angular momentum plane of high

energy scattering amplitudes. In particular suppose that a Pomeranchuk
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Regge pole, with a(0) = 1, is responsible for the high energy asympto-
tic behavior at small |t| of elastic scattering amplitudes. Then if the
Van Hove formula is to be satisfied, this pole must fxave the following
two properties:

(a) a(t) remains very close to 1 for the range of t under consider-
ation (i.e., the pole must be fixed, or nearly so);

(b) The pole residue B(t) must have factor.s proportional to the
electromagnetic form factors of the hadrons to which the
pole couples, e.g., BiZ(t) ac GEl(t) GEz(t)’

Property (a) is necessary if do /dt is to become asymptotically a

function of t only for the range of.t under consideration (e.g., | tl <
.50 GeVZ); property (b) then yields the relation (1) since

do 2a(t)-2
—_— - S
dt

S = 00

[B®)] % .

A natural question to ask is this; do all the other Regge poles
(e.g., P, w, AZ’ . « +) have residua given in such a way by the elec-
tromagnetic form factors? We will consider a model wherein this can
be answered; we will also be able to discuss corrections to the Van Hove
formula, and whether all corrections die out for large enough energy.
We also show in the model that relations such as (1) hold even if t}}ere
are singularities near a = 1 other than poles which dominate the asymp-
totic quark-quark scattering behavior.

1.3 Outline of model

We consider the known low-mass hadrons to be composed of
three quarks (baryons) or quark and antiquark (mesons). To simplify

5)

the discussion”’ we will later take a meson mass around Mww .80GeV

and baryon mass around Mzm 1.2 GeV; this will permit us to intro-
M

duce quarks of mass M slightly above __® (e.g., .42 GeV) and ulti-

mately consider a moderately weak-binding limit. 6) 'wae_ver, the

initial discussion is independent of these details.
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The Regge poles, and other singularities in the £ plane, will be
introduced as singularities in the QQ - QQ t channel.

The QQ, QQ scattering amplitudes at high energies and Q form
factors are to be input quantities from which we derive the hadron
properties using an approach which is essentially the impulse approxi-
mation generalized to the complex angular momentum plane. In prac-
tice, the QQ Regge pole reduced residua are taken as constants over the
t region of interest (|t | < .50 GeVZ), and the trajectories taken as
straight lines passing through known resonances in the J plane. The
formulation of the model relies on analyticity and unitarity rather than
nonrelativistic ideas.

Assuming the t channel in hadron-hadron scattering is dominated
by QQ states, corresponding to the picture of hadrons with a quark
structure, a coupled channel N/D formulation for amplitudes in the
t-channel at complex angular momentum is constructed, continued
when necessary to binding energies for which anomalous thresholds
appear. We will find that near each singularity £ g in the 1 plane where
the QQ or QQ scattering amplitude A1 1(1 ,t) has an infinity, the (had-

ron)j-(hadron)k scattering amplitude A, can be factored into 3 terms:

jk
T
Ajk(l ,t) = [ Dij(l s t)] A“(I , t)Dik(I & t) (2)

for £ near {4 g where the D, . contain the structure parameters of

hadron j, (The transpose not;tion refers only to spin indices, when
present.) This generalizes the Van Hove formula, which is obtained
from singularities with £ =1, as Dij(i’ t) is closely related to the
electromagnetic form factor of hadron j, the two coinciding when the

quark form factors are constants.

. TRIPLE FACTORIZATION AT SINGULARITIES

Consider the elastic scattering of hadron j on hadron k, in a sys-
tem composed of hadrons and quarks. We define a suitably normalized

scattering amplitude Ajk(l ,t), whose relation to differential cross-
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sections will be specified later, to be obtained from an N/D formalism

(with proper threshold and analytic properties built in) as:

ALt =N, oR e, (3)
where D has only a right hand (unitarity) cut in t and )N has only left
hand or anomalous cuts. Let channel 1 be Qa, and let pj(I , t) be the
phase space for channel j with appropriate threshold factors. We fol-
low to a great extent the approach of Blankenbecler, Cook and Goldber-

ger, 7

who treated Regge poles in a coupled channel formalism includ-
ing composite particles. The unitarity condition, keeping many
coupled two-body channels, imposes the relation

0

1 dt!
B0 =33 [ e oo e, ) )

where p is the diagonal matrix of phase space factors; 4M2 is the
lowest normal threshold, (The lower limit will be extended to the
anomalous threshold when the continuation is performed to obtain weak
binding. )

The input quantities for this formalism can be taken as,‘E(l , t),
the left hand or '"dynamical" contributions to the amplitude, represent-
ing a generalization of the Born approximation for processes such as
j+ ? - k + k in the t channel. The N function satisfies a linear integral
equation whose kernel and inhomogeneous term are determined by B,
The hadron structure information is contained in the B1j's in a way
well-known from deuteron theory. 8) These functions arise from the

partial wave projection of the following graphs:

Q
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These contain the wave function of hadron Hj as a composite of quark
Q with state Zj. In the meson case we take Z to be Q, whence for

mesons

I (u) ,
J
where u is the square of the invariant momentum transfer between Q
and Mj.
The vertex functions I"J.(u) now are essentially the wave function
[ of Mj as a bound state of Qﬁ] in momentum space divided by a factor
representing the bound state pole. 8)
In accordance with the idea that hadron reactions at high energy
are mediated by Q interactions, we postulate Bjk
k = 1 (absence of '"direct'" hadron-hadron potentials). However, B11 is

= 0 unless either j or

assumed arbitrarily strong. Now we make the following observations:
(4) If the vertex Fj refers to bound state wave functions which

vanish rapidly enough at small distances, B, . will drop off rapidly with

1j
increasing t.

B) Since the hadron masses are assumed appreciably larger than

the quark mass M, 4M2 is the lowest normal threshold. [ In the weak
binding configuration the anomalous threshold will be t0< 4M2. ] Thus
the thresholds tk(k > 1) which define the support of p K will be high,
and presumably in a region of t where Bij is small,

(C) We assume the singularities in B, , are at high mass (short

11
range QQ forces).

As a consequence of (A), (B) and (C), we can (for j, k # 1)

approximate N j by B, .; and further, Dj and (Djk-i) for j, k # 1 will

1 15’
have magnitudes much less than D

1

15 so we can ignore the former two

classes of terms in computing D'i. We obtain an upper-triangular
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form for D, with only the top row and diagonal elements nonzero, and
all terms but D1 ¢ on the diagonal are unity. This yields a determinant
equal to the determinant of the (1, 1) channel only, i.e., quark-antiquark
dynamics determine the pole positions (zeros of det D). ‘The form of

D-1 is the same as the form of D, with (D'i)11 = (D“)'i, and (D-1)1j=
-1

-(Dyg) Dy

The meson-meson scattering amplitude, computed using these

expressions, can be written in the form:

Ak = ’(N1j)TD1k+ (Dij)TAlile (5)
where the transpose notation refers only to possible spin indices in the
channels specified by the explicit subscript notation. [ In obtaining this
expression it is necessary to use the proof of Bjorken and Nauenberg9)
that a symmetric input B (as we assume) necessarily yields a symmet-
ric. ] At any singularity of the quark-antiquark scattering amplitude
.A“, e.g., poles (or branch points yielding an infinity) in the £ plane,
the second term dominates yielding equation (2).

For later reference, the amplitude for t channel annihilation of
mesons into quark and antiquark is given by:

AiijijiAilDij (6)

The second term in (5), which gives the contributions for QQ

scattering singularities, is generated by diagrams of the following

form:
Mk Mj
Mk = M,
J
Note that these diagrams are exactly those given by Van Hove“ in his

derivation. N
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The first term in (5) can be shown to be generated by the box
diagrams (since the imaginary part of this term is N+p N, which is the
imaginary part of the box):

M
My =Y

Mk MJ
A similar explanation can be attached to the two terms in (6); the sec-
ond involves QQ scattering, while the first is just the Born term.

For our particular case involving QQ states with spinvl/Z
quarks, it can be shown that the first term in (5) contributes an asymp-
totic term in the meson-meson s channel scattering amplitude of order
s"1 compared to the Pomeranchuk singularity, and can always be ig-
nored asymptotically.

The expression (2) now exhibits a form of relativistic impulse

approximation, since D, . is calculated directly from the wave functions

1j
of the hadrons through Fj.

. FORM FACTORS

Let Gj be the jth hadron form factor (set of Zsj + 1 form factors,
if hadron j has spin Sj)' Then using coupled channel unitarity, writing

G as a column matrix with elements Gj’

ImG(t) = AT(1,t)p (1, t)G(t) | (7)

We assume only QQ states aominate the absorptive parts in the
t channel for all processes, as in scattering. In addition, unsubtracted
dispersion relations é.re assumed for the form factors. Using the
expressions (6) for the relevant amplitudes in (7), and noting that
ImD = -p N, we can obtain

T
Gj(t) = [Dlj(l,t)] G, (t) (8)
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exhibiting the factorization of the jth hadron form factor into products
of quark form factor [ presumably dominated by vector meson poles,
where det D(i,t) = 0] and structure factor Dij(i’ t).

Now (8) together with (2) imply the Van Hove formula if G1 and
the residua of A11 are constant; but a correction is obtained to the VH
formula in general which depends on the relative t dependence of the
strong and electromagnetic properties of the quark. This faithfully
reflects the physical assumptions implicit in the simple derivations
given originally. 1 The empirical data on high energy scattering shown
in Figure 1, together with the form factor data, suggeét that this cor-
rection must be unimportant in fact.

The relation (8) has another consequence. If the normalization
appropriate to charge. conseryation is chosen, then GiE(o) = Gj(O) =1
(here, E denotes the quark electric form factor).

Taking j to be a meson, the condition Dlj(l, 0) = 1 implied by
these relations can be interpreted as imposing a condition on the mag-
nitude of the wave function normalizations, or I'" functions. It can be
shown that in the extreme weak binding limit this condition is identical

0)

to that of the zero-range model of Freund and Predazzi, ! and thus
our model contains theirs as a special case.

The condition that Dik(l, 0) is a universal constant for all had-
rons guarantees the retention of universality and symmetry properties
as in a nonrelativistic bound-state quark model, but (strictly speaking)
only for singularities near £ = 1 such as the Pomeranchuk singularity.

Now our theory of Regge residua in general can be stated as
follows: Let the vertex function I"j (related to wave functions of hadron
j) be parametrized with any number of parameters; e.g., a sum of
poles (cf. Gourdin et al., Ref. 8), leading to a sum of Legendre func-
tions for.Blj. These parameters can be determined (in principle) by
accurate enough measurements of the electromagnetic form factor

Dlj(i, t). Then the expression for B, . exhibits explicitly the dependence

1j
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on £, from which we obtain D, .(£ ,t) at the position of Regge poles (or

’ 1j
cuts) in QQ scattering amplitudes A“(l ,t). The meson-meson residua
then are obtained from equation (2).

We will explore the consequences in detail of a zero-range

approximation for I' which contains only one parameter: the binding

energy of the QQ pair constituting the meson.

. STRUCTURE FACTORS AND CONTINUATIONS

4,1 D functions (structure factors) for meson residua

The reaction MM =QQ for spinless mesons and spin 1/2 quarks
can be described with two invariant amplitudes, A and B, as in 77 -
NN. The latter reaction has been discussed extensively by Frazer and

|

Fulco“) and by Singh; 2) starting with the normal-threshold (tight
binding) case we can carry over their kinematics directly to MM - QQ.
If A is the absolute value of the sum of quark and antiquark helicities
(A =0or1), Bi/}»are the appropriate parital wave projections (with
threshold factors extracted), and assuming A = 0 [ as we have only a
positive parity spin 1/2 pole as in 7T - NN] , from ref. (12) one
obtains:

0 -4 .

B,.(£,t)= (pq)” [duzQ,(Z)disc_B(u,t)

1j . f3 u ’
. (9)
B! (£,t) = -1-(pq)-1 f du[Q (2)-Q, ,(Z)]disc_B(u,t)
10 2 : , £ +1 1 -1 T u ’

and
2 2
Z(u)= (u+p +q)/2pq;

2.1/2

p=(t/a-pd)2 ) q= (/e -MH2.

Now if the zero-range approximation for the wave function is used
(T" constant), the discontinuity is concentrated only at u = MZ and we

obtain 0 2 1

(10)

J
Bl (0,0 =T2pa) ' [Q,  (2)-Q, (z)]/2
S AL 1 +1'%07 T =1-1'%0
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where Zo _ (MZ . pz . qz)/zpq .

In the general case we can parametrize I‘2 by a sum of poles, 8)
and the resulting B's will be sums of terms of the form (10). The
continuation in angular momentum (in the normal threshold case) is
now simple, since the Q functions are analytic in £ and damp out at
infinity sufficiently rapidly to insure uniqueness via Carlson's theorem.

For practical applications, instead of using a multi-pole form
for I" which naturally damps out at high t we will use a zero-range
approximation as given in (10), and after the D functions are expressed
in terms of these B's, the masses continued to the weak binding region
and the dominant anomalous threshold contribution exhibited, the t

3)

region above the normal threshold will be dropped. t The explicit
form of the elements of the channel 1 phase space matrix, chosen to
take into account the normal threshold behavior of the partial waves in
the t channel and the analytic properties at t = 0 of the helicity ampli-

tudes, are:

24 +1
+ _2[q(t)]
24 +1
- [t 2[ q(t)]
Pyl )= {— Nt

4M

Finally, the result of the above continuation (keeping only the anomalous

region) is:

+ 2 2 am° dt'q’ 2
Dj(l,t)=I‘J_- T 't[ mzo(t')%[zo(t'ﬂ (q'/p")
0
2 (11)

4
s w2 1 dt'q’ , ,
Py,e=Ty- 5 t{ ety o1l - Py 412401}

x (q'/p')t (¢'/4M2y |

where Z
t, = ”2 am? - p?).
M

[ The notation (+) has been introduced instead of A= (0,1). ]
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For M = . 425 GeV and p = .80 GeV, t_ = .29 GeV; this gives

roughly the same binding energy as Freund an(c)i Predazziio) obtain to
fit the coupling constants. With this set of masses we obtain (assum-
ing a constant quark form factor) a satisfactory fit to the pion form
factor Fﬂ (t), as shown in Figure 2, taking F“IT from the VH formula and
high energy 7 p scattering data. (Also shown in Fig. 2 is the empirical
proton form factor GMp’ which drops off somewhat more rapidly, illus-
trating a probable difference in structure between proton and pion. )

With the same masses, putting { = a, (t) >~ .5+ 1.0t, we find
D+(1 ,t) from (11) to be comparatively flat for l ti < .50 GeVz, and D~
remains small compared to D+. These D's, for P exchange (e.g., in
charge exchange reactions), are shown in Figure 3. (The relative
normalization between Figs. 2 and 3 is significant, but not the absolute
normalization. ) If the binding energy is much smaller, one obtains
similar behavior for the form factors and the residua. This is illus-
trated in Figure 4, where the value M = .41 GeV is used and the p*
calculated both for £ =1 and £ = ap(t) (arbitrary absolute normaliza-
tion).

The qualitative behavior of these functions can be seen from the

expressions (11), For very smallt_, the integrands are sharply peaked

o,
-1/2
at the lower limit from the (t!) / factor. At the lower limit, however,
Z0 = 1 and there is no variation of the PI factor as £ changes. Near

t' = 0 the factor (q'/p')l becomes (M/p )1 , which changes by only 40%
when £ varies over the range 0<{ <0.5 [ as ap(t) does for Ift| <.50],
and is significant only for precise symmetry considerations. The D's
therefore differ only slightly for £ = ap(t) compared to £ = 1. At the
same time, we find ID-I << I D+| since the integrand of D  vanishes
at the lower limit. As the binding energy is increased, the contribution
of higher t' becomes more important; the £ dependence becomes sig-
nificant, and D+ does not dominate so much over D .

It may be noted that expressions (10), inserted in the D integrals
before continuation, are just the lowest order (QQ intermediate states)
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expressions for the vertex functions of a spin £ elementary meson
coupling to spinless mesons, with constant vertices in the triangle
diagram.

4.2 Effect of quark properties on meson residua

In order to compute the Regge residua in meson-meson scat-
tering, given the D functions, we must assume some properties of the

channel 1 (QQ) scattering amplitudes A If we assume slowly vary-

11’
ing reduced residua in channel 1, which have similar spin-amplitude

ratios for each pole, we can relate the A, , residua to the electro-

11
magnetic properties of the quarks, e.g., magnetic moments. In this

case we can write, near each pole under consideration,

1/2 1/2

T“(l,t)s Py A“(I,t) Py =(31(t)/[£ - a(t)] (12)
A A Cami v
where a(t) is the.pole trajectory in the £ plane, and ‘[31 is essentially
4

constant. (We neglect signature here.)
Since residua factorize in helicity indices, we can express
as:
B, as

A

2
Yy YiYp

»
—
[

2
If we examine the unitarity equation (7) for the quark e. m.

form factors, near the lowest vector meson pole (assuming it dominates

the quark form factor), we find that

G, _(0) Y2
G40 v

This relation connects the magnetic moment to charge ratio of
the quark with the residue 61 appearing in hadron residua, through (2)
M.
- and (12), leaving only an overall normalization factor independent of

s or t.

If the quark is pure Dirac particle, i.e. with no anomalous

magnetic moment, then G_(O)/G+(0) = 1, We find then the contribution
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from terms involving D™ in meson-meson scattering are quantitatively
- +
unimportant because | D | <L | D I for moderately weak (~ 50 MeV)

binding; e.g., for p exchange

v

‘ + +
[Bp (1:)]jk = D, [mp (t), t] X Dk[ap (t),t ].

In particular, from Figure 3, this means the (p TT) vertex
should be slowly varying with t compared to typical electromagnetic:
form factors. If we assume a similar situation holds for the nucleon
vertex, then we find agreement with phenomenological analysis14) of
T p - Tron, wherein constant residua give a good fit for | t| < .50 GeVZ.

We remark again that the same model leads to a Pomeranchon
residue which (on the contrary) drops off sharply like the electromag-
netic form factor (cf. Fig. 2), as suggested by the Van Hove formula,
(1).

At this point it is appropriate to record the connection between

differential s-channel meson-meson cross-sections and A__,. If

22
do 1 2
(-E?Z—D = -S- I Fl , then
22 f
a; T 1 + exp(-iTa)
F (s/sy) [D"(a,t)B, Dla, t)](2a + 1) ‘: —a (13)
S =
for each pole, where we have restored the signature factor; B is the
15 —

scale factor ) appropriate for QQ scattering, presumably in the

2

neighborhood of 2M .

4.3 Baryon vertices

Since the baryons are assumed conventionally to have a three-
quark structure, the formulation of the vertex functions and their
relation to wave functions is not such a well-known procedure as with
the mesons. Consequently, we cannot rely on previous work and we
will only treat the baryons in a simplified way, which is similar to the

mesons.
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Guided by SU(6) baryon wave function symmetry with all quarks
in relative S-waves, we s’uppose that when a baryon emits a (virtual)

16)

quark the remaining part (QQ state) A has 1+ or 0+ quantum numbers
only, and the (AaB)coupling has the simplest possible, i.e., non-
derivative form. Then the kinematics for BB — QQ resemble those in
NN -YY with scalar and axial vector exchange with non-derivative
coupling. This case can now be treated with the formalism of Chan, 7
who considered exchange of Regge and elementary poles in NN - YY.
In a zero-range approximation for the (AQB) vertex, we obtain
a pole structure (similar to the meson case) for Chan's invariant ampli-

tudes F1 and F4, yielding with normal thresholds

3
[Py Bislyy=C Q0 2,(1)]

J

[P B3l yp = C 4251 2,10
where ZA(t) = (MZ + q2 + nz)/(an); C1 and C4 are residua;
and Le 1313] L 1313] 21 = °
where (in all the above) channel 3 refers to N—1<I, n2 =t/4 - M; where
MB is the baryon mass, and the seconii)set of subs¢ripts refers to
helicity indices as defined by GGMW.
Finally, inserting these in the expressions for [ D13] ik and

analytically continuing in baryon mass (and/or A mass) to describe

weak binding, keeping only the anomalous region, we obtain:

[Dy3lyy = CyDotst)

[Dy3]5, = C4Dost)
and

[D3]12—[D13]21 0

where

Dolt, 1) = f ﬁ_— SOEAER

The lower limit ta is that value of t which makes ZA = +1.
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Since both spin terms have the same t-dependence in this approx-
imation we see immediately that both the electric and magnetic form
factors of the nucleon have the same t-dependence, in agreement with

expefiment. Furthermore, the qualitative properties ( £ and t depen-
+

12
discussed, leads to satisfactory agreement with 7 “p charge exchange

dence) of theseABi3 are similar to those of D, , which, as previously
data, as well as yielding the Van Hove formula for TN scattering.

The residua C1 and C, can, in principle, be fixed from electro-

4
magnetic properties of nucleons. However, we see that such a proce-
dure would lead to a ratio of helicity-flip to helicity non-flip which is
independent of the trajectory; this is undesirable, since the ratio as

9) than that of the static

. . - 0 . 1
determined in T p = T n is much larger
nucleon properties, i.e., magnetic moment. This means that our
simple baryon model is not quite adequate to describe the details of

the accepted phenomenological residue fits.

CONCLUDING DISCUSSION

The central point of our model has been the generalized impulse
approximation formula (2). This equation follows from one-channel
dominance for exchange processes and one of the following assump-
tions: (a) spin 1/2 constituents and asymptotically high energies, or:
(b) dominance of singularities above £ = 0 in the £ plane (usually
relevant at high energies) in the scattering of constituents. Such a
formula is already enough to obtain the Van Hove relation (1) when
diffraction singularities (near £ = 1) dominate, and constituents' form
factors and scattering amplitudes vary weakly with t.

To draw further conclusions concerning moving Regge poles one
needs additional dynamical assumptions. In particular, if moderately
weak binding is assumed such that the anomalous region (t0<t' < 4M2)
is most important in'the D functions (equivalently, in the form factors),
our general formulation allows a connection to be made between form

factors and residua, represented by equations (8) and (13).
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This assumption is not necessary if one is willing to parametrize
with sufficient freedom the input Born terms. Thus, using the general
form (9), one can use (2) together with (8) in the normal case, a.‘nd avoid
the assumption of anomalous thresholds (weak binding) altogether. How-
ever, in such a case it would be difficult to justify the one-channel
approximation.

When we specialize to the weak-binding case we find consistency
between: (a) Diffraction (Pomeranchuk) residua falling with t (like"
electromagnetic form factors) in agreement with asymptotic Tp elastic
scattering data; (b) Residua for p exchange varying slowly with t, as
indicated by ™ "p charge-exchange data; (c) Absolute value of strong-
interaction coupling constants, as computed by Freund and Predazzi, 10)
all with a binding energy of around 50 MeV.

Finally, we find that it is not possible to use a simple ZRA.and
extrapolate from t = 0 to the vector meson poles, as one wbuld like to

do in pole models. A more detailed model for the I''s is neéessary.
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Figure 1.

Comparison of Differential Cross Section for p-p elastic scattering
as a function of t at 20 GeV/c with prediction of Van Hove relation
(Eq. 1), using magnetic Sachs form factor of proton as representa-
tive electromagnetic form factor. Data sources are given in
references 2 and 3. The straight line is to guide the eye only.
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Figure 2,

Results of calculation for structure factors DT of mesons, using zero-
range approximation with M = 425 MeV and g = 800 MeV, evaluated at
!l =1. For comparison, the pion electromagnetic form factors F

and F'rr- are shown as deduced from small-angle high-energy 1T:tp scat-
tering using the Van Hove formula. Data sources are given in refer-
ence 3. Also shown (dotted line) is proton form factor.
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Figure 3.

Calculated residue structure factors DT for the p trajectory,
ap (t)=.5+1.0 t(GeV ), with same masses as in Figure 2.
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Figure 4.

Structure factors D:t for M = 410 MeV and p = 800 MeV, both with
L =1and £ = ap(t).



