
ar
X

iv
:h

ep
-p

h/
05

07
19

1v
2 

 1
1 

Ju
l 2

00
7

Light Mesons and Muon Radiative Decays and

Photon Polarization Asymmetry

Emidio Gabriellia and Luca Trentadueb

aHelsinki Institute of Physics, P.O.B. 64, 00014 University of Helsinki, Finland
bDipartimento di Fisica, Universitá di Parma,
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Abstract

We systematically compute and discuss meson and muon polarized radiative

decays. Doubly differential distributions in terms of momenta and helicities of the

final lepton and photon are explicitly computed. The undergoing dynamics giving

rise to lepton and photon polarizations is examined and analyzed in the soft and hard

region of momenta. The particular configurations made by right-handed leptons

with accompanying photons are investigated and interpreted as a manifestation of

the axial anomaly. The photon polarization asymmetry is evaluated. Finiteness of

polarized amplitudes against infrared and collinear singularities is shown to take

place with mechanisms distinguishing between right handed and left handed final

leptons. We propose a possible test using photon polarization to clarify a recently

observed discrepancy in radiative meson decays.
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1 Introduction

Radiative decays of light mesons and leptons have been widely studied both experimen-

tally and theoretically. They represent an excellent source of information on the experi-

mental side as well as a benchmark for theoretical speculations. Extensive comparisons

have been carried on in the past between experiments and theoretical predictions for me-

son radiative decays (see for example Ref.[1]). A while ago, radiative polarized leptonic

decays of mesons [2, 3] and muons [4, 5] have also been considered. Recently special at-

tention has been given to the role played by the final lepton mass ml in the threshold

region of the decay and to the ml → 0 limit concerning the helicity amplitudes for mesons

[3] and leptons Refs.[4, 5]. The O(α) radiative corrections generate an helicity flip of the

final lepton even in the zero mass limit [6] provided the lepton mass is kept from the

beginning into account. Following the interpretation due to Dolgov and Zakharov [7] of

the axial anomaly the final states with opposite helicity can be interpreted [3, 8, 9], as a

manifestation of the axial anomaly giving rise to a peculiar mass-singularity cancellation

for the right-handed polarized final lepton amplitudes.

We consider in this work the case of polarized radiative decays of the pion and kaon

meson and of the muon more extensively by taking into account polarizations of final

lepton and photon degrees of freedom. Contrary to the previous case [2], in meson decays

we consider the polarization states of both lepton and photon final states.

This approach, containing a complete description of the final momenta and helicities,

may give further and more detailed information on the final state with respect to the

inclusively polarized and unpolarized cases. Furthermore, the agreement with the more

inclusive results previously obtained in the literature can be easily recovered by summing

over the emitted final states polarizations. It is worth noticing that this approach allows

to describe more closely the interplay between several peculiar features of the dynamics

involved. As, for instance, to pinpoint the role played by angular momentum conservation

and its connection with hard and soft photon momenta, and to consider the role played by

the parity conservation in weak decays. All these aspects related to angular momentum

dynamics may be effectively described in terms of the photon polarization asymmetry.

Here we emphasize that the knowledge of the helicity amplitudes of the final leptons

and photons, in addition to an explicit test of the angular momentum conservation, shows

the relative rates of the partial helicity amplitudes. Indeed, in the total rate, different

helicity amplitudes, depending on the range of momenta, enter with varying weights.

Therefore, this behavior gives the opportunity to isolate peculiar polarized configurations

in order to maximize or minimize them according to favorable intervals of momenta. As

far as phenomenological applications are concerned, this may be, as will be discussed

later, an effective way to compare theory and experiment on a new basis. The case of

the photon polarization asymmetry, proposed in this work, allows, in this respect, a new

approach to inspect interaction dynamics via a finite and universal quantity which is also
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directly associated to parity violation. Moreover, the photon polarization asymmetry is

very sensitive, in radiative meson decays, to the hadronic structure, allowing for a more

precise determination of the electromagnetic form factors with respect to the one obtained

so far.

Some of the results achieved in this paper can be shortly listed: we explicitly calculate

amplitudes and final distributions in terms of lepton and photon momenta at fixed final

lepton and photon helicities. Double differential expressions in terms of lepton and photon

momenta are also provided together with the partial helicity amplitudes for the meson

and muon cases respectively. Moreover, we analyze how the cancellation pattern of mass

singularities works on polarized processes. In the inclusive quantities this is a sensible test

of the consistency of the results. Once inclusive distributions are obtained by integrating

over final momenta, we observe the cancellation of all mass singularities both infrared

and collinear. In particular, a peculiar pattern of mass singularity cancellation is shown

to take place, which differs for the left-handed helicity final lepton states with respect to

the right-handed ones. The same behavior can be observed for the meson as well as for

the muon case.

Finally, we discuss a possible interpretation in terms of tensorial coupling of the results

obtained recently at the PIBETA experiment [10] for the radiative pion decay in electron

channel. It is argued that polarized radiative processes may constitute a sensible test to

resolve the controversial issue of tensorial couplings in radiative pion decay, allowing also

for a sensitive test in the corresponding kaon decays as well.

The paper is organized as follows: In Section 2 we consider the case of the meson

polarized radiative decay. We discuss the contributing amplitudes and the underlying

theoretical tools. We also define the gauge invariant set of matrix elements together with

the definition of the Lorentz invariant quantities. Allowed and forbidden helicities con-

figurations are here analyzed as well. In Section 3 the polarized radiative muon decay

is discussed. In Section 4 we define distributions of branching ratios in the photon and

electron energies and the photon polarization asymmetry. Numerical results for the dis-

tributions of branching ratios and polarization asymmetries are provided in subsections

4.1, 4.2, and 4.3 for the cases of pion, kaon, and muon decays respectively. Results for the

polarized electron energy spectra are presented in Section 5. In Section 6 the dependence

of the photon polarization asymmetry, induced by tensorial couplings, is discussed in the

radiative pion and kaon decays. The peculiar pattern of mass singularities cancellation

in polarized radiative decays is described in Section 7, while conclusions are presented

in Section 8. General results and the corresponding formulae for the polarized radiative

meson and muon decays are collected in Appendix A and B respectively.
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Figure 1: Feynman diagrams for (π+,K+) → νll
+γ decay, where l = e, µ

2 The polarized radiative meson decay

We start this section with the calculation of the polarized amplitude for the process

M+(p) → νl(pν) l
+(pl, λl) γ(k, λγ) , (1)

where M+ = π+ (K+) and l = e (µ) stand for pion (kaon) and electron (muon) respec-

tively, with νl=e,µ the corresponding neutrinos. The four momenta p, pν , pl correspond

to meson M , neutrino, and charged lepton, while λl, λγ indicate the charged lepton and

photon helicity, respectively. The neutrino is assumed massless and therefore is a pure

left-handed polarized state. The Feynman diagrams at tree-level for this process are

shown in Fig.1, where the green bubble just indicates the Fermi interaction. The first

two diagrams Figs.1a-b correspond to the so-called inner bremsstrahlung (IB) diagrams,

where the photon is emitted from external lines and the meson behaves as a point-like

scalar particle. The third diagram Fig.1c is the so-called structure-dependent (SD) dia-

gram, where the photon is emitted from an intermediate hadronic state and the matrix

element will depend on the vectorial (V) and axial (A) meson form factors. The total

amplitude for this process can be split in two gauge invariant contributions

M(λl,λγ) = M
(λl,λγ)
IB + M

(λl,λγ)
SD , (2)

where MIB and MSD correspond to the IB and SD part of the amplitude. The IB ampli-

tude is given by [11, 12]

M
(λl,λγ)
IB =

ieGF√
2
mlfMVuq ǫ

⋆
µ(k, λγ)

[

ū(pν)

(

pµ

(p · k) −
/kγµ + 2pµ

l

2 (pl · k)

)

(1 + γ5) v(pl, λl)

]

, (3)

where /k = γαkα, ǫµ(k, λγ) stands for the photon polarization vector of momentum k and

helicity λγ , while ū(pν) and v(pl, λl) are the bispinors of final neutrino and charged lepton

respectively. Explanations of other symbols appearing above are in order. The GF is the

Fermi constant, ml is the charged lepton mass, fM is the meson decay constant, where
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fπ ≃ 131 MeV and fK ≃ 161 MeV, and Vuq is the Cabibbo-Kobayashi-Maskawa matrix

element corresponding to u → q = d and u → q = s quark transitions for pion and kaon

decays respectively.

The SD part of the amplitude contains vectorial (V ) and axial (A) form factors, that

clearly depend on the kind of initial meson, but not on the lepton final states. Indeed,

they are connected to the matrix elements of the electromagnetic hadron current V µ
em and

the axial and vectorial weak currents Aµ and V µ respectively, as

(V,A)µν(p, k) ≡
∫

d4xeikx〈0| TV µ
em(x)(V (0), A(0))ν |M+(p)〉 . (4)

Using Lorentz covariance and electromagnetic gauge invariance, it follows that:

Vµν(p, k) = i
V

mM
ǫµναβkαpβ

Aµν(p, k) = (p · k) A

mM

(

ηµν − pµkν

(p · k)

)

− fM

(

ηµν +
pµ (pν − kν)

(p · k)

)

, (5)

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric, and ǫµναβ is the totally anti-

symmetric tensor 1. Finally, the SD part of the amplitude is given by [11, 12]

M
(λl,λγ)
SD = −ieGF√

2
Vuq ǫ

⋆
µ(k, λγ)

{

(p · k) A

mM

(

−ηµν +
pµkν

(p · k)

)

+ iǫµναβ V

mM

kαpβ

}

×
[

ū(pν)γν (1 − γ5) v(pl, λl)
]

, (6)

where mM stands for the meson mass, while V and A are the meson vectorial and axial

form factors respectively. Notice that both the terms MIB and MSD are separately gauge

invariant, as can be easily checked by making the substitution ǫ⋆µ(k, λγ) → ǫ⋆µ(k, λγ) + kµ

in Eqs.(3) and (6).

Now we provide the corresponding expressions for the polarized amplitude in the

center of mass (c.m.) frame of the fermion pair (neutrino and charged lepton), namely

~pl + ~pν = 0. We choose a frame where the 3-momenta of neutrino and photon have the

following components in polar coordinates

~pν = Eν (sin θ cosϕ, sin θ sinϕ, cos θ) , ~pl = −~pν , ~k = Eγ (0, 0, 1) , (7)

where Eν and Eγ are the neutrino and photon energies respectively and θ, ϕ are the usual

polar angles. For the photon polarization vectors we choose helicity eigenstates (ǫ(k, λ)),

which in this frame are given by

ǫµ(k, λγ) =
1√
2

(0, 1, iλγ, 0) (8)

1In our notation, the ǫµναβ is defined as ǫ0123 = 1 and ǫ0123 = −1, when generic four-vectors vµ are

vµ = (v0, ~v) and vµ = (p0,−~v).
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whose helicity eigenvalues correspond to λγ = −1 left-handed (L) and λγ = 1 right-handed

(R) circular polarizations. Photon polarization vectors satisfy the transversality condition

kµǫµ(k, λγ) = 0. Regarding the polarization vectors of fermions, it is convenient to use

the solution of the Dirac equation for the particle (u) and antiparticle (v) bispinors in the

momentum space [13]. In the standard basis 2 we have:

u(p, λ) =

( √
E +m ωλ(~n)√

E −m (~σ · ~n)ωλ(~n)

)

v(p,−λ) =

( √
E −m (~σ · ~n)ωλ(~n)√

E +m ωλ(~n)

)

, (9)

where the 2-component spinors ωλ(~n) (with helicity λ = ±1) are the eigenstates of the

helicity operator (~σ · ~n)ωλ(~n) = λωλ(~n), and σi are the Pauli matrices. Here, ~n ≡ ~p/|~p|,
where ~p is the 3-momentum and E =

√

|~p|2 +m2 is the corresponding energy. If ~p =

|~p| (sin θ cosϕ, sin θ sinϕ, cos θ), then in polar coordinates, ωλ(~n) can be expressed as

ω+1(~n) =

(

e−i ϕ
2 cos θ

2

ei ϕ

2 sin θ
2

)

, ω−1(~n) =

(

−e−i ϕ
2 sin θ

2

ei ϕ

2 cos θ
2

)

. (10)

At this point it is convenient to introduce the following Lorentz invariant quantities

x ≡ 2p · k
m2

M

, y ≡ 2p · pl

m2
M

, z ≡ 2pl · k
m2

M

= y − 1 + x− rl (11)

where in the meson rest frame, x and y are just proportional to the photon and charged

lepton energies respectively and rl = m2
l /m

2
M . Finally, after a straightforward algebra,

the IB and SD contributions to the polarized amplitude in the fermion pair c.m. frame

are given by

M
(λl,λγ)
IB = eGFmlfMVuq

2

z

{

δλl,−1

(

δλγ ,−1 Êγ + Êν

)

R+ sin θ

+ δλl,+1 δλγ ,−1 ÊγR− (1 − cos θ)
}

eiλγϕ

M
(λl,λγ)
SD± = eGFm

2
MVuq

(V ± A)

2
δλγ ,±1 x

{

∓ δλl,−1 R− sin θ

± δλl,+1R+ (cos θ ± 1)
}

eiλγϕ , (12)

where the structure dependent part is given by M
(λl,λγ)
SD = M

(λl ,λγ)
SD+ + M

(λl,λγ)
SD− and the

symbol R± ≡
√

Êν

(

√

Êl +
√
rl ±

√

Êl −
√
rl

)

, with Êi ≡ Ei/mM and El is the energy

of the final charged lepton. In this frame, the energies normalized to the meson mass are

given by

Êγ =
x

2
√

1 − x
, Êν =

1 − x− rl

2
√

1 − x
, Êl =

1 − x+ rl

2
√

1 − x
,

cos θ =
(x− 2)(1 − x+ rl) + 2y(1− x)

x(1 − rl − x)
(13)

2In the standard basis representation, γ0 = Diag(1,−1), and ~γ =

(

0 ~σ

−~σ 0

)

, and γ5 =

(

0 1

1 0

)

,

where 1 = Diag(1, 1) and ~σ are as usual the Pauli matrices.
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and

R+ =
√

1 − rl − x, R− =

√

rl
1 − rl − x

1 − x
. (14)

Notice that, as expected from general arguments, the azimuthal angle ϕ factorizes in the

overall phase of the amplitude. At this point it is important to stress that the SD terms

in the amplitude, proportional to V +A and V −A, correspond to pure right-handed and

left-handed photon polarizations respectively, while the IB one is a mixture of both. In

particular, the terms proportional to pure left-handed photon polarizations in the MIB,

come only from the tensorial structure in Eq.(3), namely from terms proportional to

[ūν σµν(1 + γ5) vl], while scalar contributions of type [ūν (1 + γ5) vl] do not select any

specific photon polarization. We will return on this point in the following when anomalous

tensorial coupling in radiative pion, and kaon decays will be discussed.

By using Eqs.(12) and (13), it is now straightforward to evaluate the square modulus

of the amplitude. Below we will provide its expression summed over the charged lepton

polarizations, as a function of the photon helicities. After integrating over the phase

space, we obtain for the photon polarized decay rate Γλγ , the following result:

d2Γ(λγ)

dx dλ
=

mM

256π3

∑

λl=±1

|M(λl,λγ)|2 = ρ(λγ)(x, λ) . (15)

Here mM stands for the generic meson mass mM=π,K , and λ ≡ z/x. The Dalitz plot

densities ρλγ (x, λ) for the polarized decay are Lorentz invariant functions, and are given

by

ρ(−1)(x, λ) = AIB fL
IB

(x, λ) + ASD

1

2
(V −A)2fL

SD
(x, λ) + AINT (V −A)fL

INT
(x, λ) (16)

ρ(+1)(x, λ) = AIB fR
IB

(x, λ) + ASD

1

2
(V + A)2fR

SD
(x, λ) + AINT (V + A)fR

INT
(x, λ) , (17)

where

AIB = 2 rl

(

fM

mM

)2

ASD, AINT = 2 rl
fM

mM

ASD

ASD =
α

32π2
G2

F m
5
M |Vuq|2 . (18)

In the following, for later convenience, we will introduce the labels R and L corresponding

to photon helicities λγ = 1 and λγ = −1 respectively. The functions fL,R
IB

(x, λ), fL,R
SD

(x, λ),

and fL,R
INT

(x, λ) are given by

fL
IB

(x, λ) =
1 − λ

xλ

(

1 + rl (x− 1) − rl

λ
(1 + x− rl)

)

6



fR
IB

(x, λ) =
1 − λ

xλ

(

x− 1 +
rl

λ

)

(x− 1 + rl)

fR
SD

(x, λ) = x2λ ((1 − x) (xλ + rl) − rl)

fL
SD

(x, λ) = x2 (1 − λ) ((x− 1) (rl + x (λ− 1)) + rl)

fR
INT

(x, λ) =
1 − λ

λ
((x− 1) (xλ+ rl) + rl)

fL
INT

(x, λ) =
1 − λ

λ

(

x2 + (1 − x) (xλ+ rl) − rl

)

. (19)

The function fL
IB

(x, λ) + fR
IB

(x, λ) coincides with the corresponding IB function fIB(x, λ)

for the unpolarized case provided in [11, 12, 14], as well as fSD(x, λ) = fL
SD

(x, λ)+fR
SD

(x, λ)

and fINT (x, λ) = fL
INT

(x, λ) + fR
INT

(x, λ). More general results for the complete polarized

radiative decay rate, including also the charged lepton helicity in the pion rest frame, are

provided in appendix A.

In order to obtain the differential branching ratio (BR) it is convenient to rewrite the

term ASD in Eq.(18) as

ASD =
α

4π

1

rl (1 − rl)
2

(

mM

fM

)2

Γ0 (20)

where Γ0 = Γ(M → lνl) is Born contribution to the total width of non radiative decay

M → lνl, in particular

Γ0(M
+(p) → νl + l+) =

G2
F f

2
M mM

8π
|Vuq]

2rl (1 − rl)
2 . (21)

Then

d2BR

dx dλ
= BR(M → lνl)

1

Γ0

d2Γ

dx dλ
, (22)

where BR(M → lνl) is the total branching ratio of the corresponding non radiative

decay. Finally, the total branching ratio BR is obtained by integrating Eq.(22) in the full

kinematical range as follows

BR =
∫

dx
∫

dλ
d2BR

dx dλ
(23)

0 ≤ x ≤ 1 − rl,
rl

1 − x
≤ λ ≤ 1 . (24)

In case in which kinematical cuts (xmin, and λmin) should be applied, the minima of

integrations should be replaced as

xmin ≤ x ≤ 1 − rl, max
{

λmin,
rl

1 − x

}

≤ λ ≤ 1 . (25)

7
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Figure 2: Allowed helicity (in red) configurations of γ, ν and e+ for π+ → e+νeγ decay in π+ rest

frame, figures (a), (b), (c), when all momenta (in blue) are aligned on the same axis. Direction

of photon momentum is fixed by convention. Figure (d) corresponds to the non radiative decay

π+ → e+νe. Analogous spin configurations hold for the corresponding K+ decays as well.

Let us now consider the positron decay mode, where, as a good approximation, the

lepton mass can be neglected in comparison to the pion one. A remarkable aspect of the

results in Eq.(19), is that in the limit in which λ → 0 and x → 1, which corresponds

to the emission of low energy positron and hard photons at relative small angles in the

meson rest frame, the contribution proportional to fL
IB

(x, λ) and to fL
INT

(x, λ) distributions

dominates in the decay rate. In other words, hard photons will be mainly produced with

left-handed polarizations. This behavior, as will be shown in more details in section 4, is

just a consequence of the V-A nature of weak interactions and of the angular momentum

conservation. This can be easily understood as follows. In the π+ rest frame, neglecting

the lepton mass, we have x = 2Eγ/mM , and λ = Ee/mM(1 − cos θγe), where θγe is the

angle between positron and photon momenta. Let us consider the kinematical region in

which λ → 0, which corresponds to Ee → 0 and/or θγe → 0. Due to the conservation

of total momentum, and to the fact that |~pe|/mM ≪ 1 and θγe → 0, the neutrino must

be emitted in this region almost backward with respect to the photon direction, therefore

final momenta are almost aligned on the same axis. This configuration is shown in Fig.2a,

where all momenta are chosen to be aligned on the same axis. One then could easily check

the conservation of the spin (SX) along the direction of the photon momentum which in

Fig.2 is set by convention on the negative X-axis. Since neutrino is a purely left-handed

state, its spin projection along X-axis would be SX(νl) = +1/2. As a consequence of

the angular momentum conservation (SX(π) = 0 for pion), the photon must also be

left-handed polarized giving SX(γ) = −1. In this case the positron, whose momentum

is parallel to the one of the photon, must be right-handed in order to satisfy the total

sum SX(γ) + SX(νe) + SX(e+) = 0. Notice that, in this particular kinematical limit

8



λ→ 0, photons with right-handed polarization would be suppressed, since the total sum

of spins along X-axis would give in that case SX(γ) + SX(νl) = 3/2 thus spoiling angular

momentum conservation. It is worth noticing that also in the case of π+ → µ+νγ decay

mode, where the muon mass cannot be neglected in comparison to the one of the pion,

the left-handed photon amplitude still dominates for high energy photons. This fact can

be explained as follows. When the photon energy approaches its maximum value, being

neutrino massless, in order to conserve total momentum, the production of the µ+ at rest

it is favored. In this case the momentum of the neutrino should be opposite to one of the

photon. As explained above, for this kinematical configuration, the photon is therefore

favored to be produced as left-handed in order to conserve total angular momentum.

Same considerations apply to the corresponding kaon decays as well.

Another interesting case is the one in which the photon energy tends to zero, namely

x → 0. In this singular kinematical region, one should expect soft photons to behave as

scalar particles, carrying no spin. Then in this limit both the left-handed or right-handed

distributions should tend to the same value, as indeed can be verified by performing the

limit x → 0 on the density distributions in Eq.(19). In the following we will show how

this property could be relevant in order to define an observable which is free from infrared

(Eγ → 0) singularity, namely the photon polarization asymmetry.

3 The polarized radiative muon decay

Here we analyze the radiative muon decay

µ−(p) → νµ(q1) ν̄e(q2) e
−(pe) γ(k) (26)

in which both photon and electron final states are polarized. The corresponding Feynman

diagrams for this process are shown in Fig.3, where p, pe, q1,2, k are the corresponding

momenta. This decay is obtained from the non radiative one µ− → νµ ν̄e e
−, by simply

attaching the photon to the muon and electron external lines. Due to the V-A nature of

weak interactions and a simple Fierz rearrangement, the square modulus of the polarized

amplitude can be factorized as follows [4, 5, 15]

|M (λγ ,λe)|2 =
G2

F

2

[

M (λγ ,λe)†
α M

(λγ ,λe)
β

] [

Nα†Nβ
]

, (27)

where Mα(λe, λγ) corresponds to the O(α) amplitude in which photon is either radiated

off the electron or off the muon, and Nα to the neutrino amplitude respectively

Mα(λγ, λe) = e ūe(pe, λe)

(

γδ /pe + /k +me

(pe + k)2 −m2
e

γα
L + γα

L

/p− /k +mµ

(pµ − k)2 −m2
µ

γδ

)

uµ(p) ǫ⋆δ(k, λγ)

Nα = ūν(q1) γ
α
Lvν(q2) , (28)
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Figure 3: Feynman diagrams for µ− → νµν̄ee
−γ decay.

where uµ(p), ue(pe, λe), uν(q1,2) correspond to the muon, electron, and neutrinos four-

spinors in momentum space respectively, with λγ,e and λγ the corresponding helicities,

and γα
L/R ≡ (1 ∓ γ5) γ

α. Due to the factorization property of the amplitude in Eq.(27),

one can easily calculate the sum over spins and the integral in phase space of neutrinos.

At this purpose it is convenient to introduce the following tensor Nαβ

Nαβ ≡
∫

d3 q1
2E1

d3 q2
2E2

δ4(p− pe − k − q1 − q2)
∑

spins

Nα†Nβ . (29)

By making use of Lorentz covariance, one easily gets [15]

Nαβ =
4π

3

(

(p− pe − k)α(p− pe − k)β − gαβ(p− pe − k)2
)

. (30)

where E1,2 are the neutrinos energies. In order to describe the kinematic of muon radiative

decay, we introduce the following independent variables

x =
2p · k
m2

µ

, y =
2p · pe

m2
µ

, z =
2k · pe

m2
µ

, (31)

where mµ is the muon mass. In terms of these variables, the differential decay width,

normalized to its tree-level non-radiative decay Γ0, is given by

1

Γ0

dΓ(λγ , λe)

dx dy dz
= − α

2π

{M (λγ ,λe)†
α M

(λγ ,λe)
β Nαβ

4m2
µ

}

. (32)

Now we provide the expressions for the differential decay width in the rest frame of the

muon, at fixed helicities of electron (λe) and photon (λγ), where as in previous section L

and R symbols correspond to λe,γ = −1 and λe,γ = 1 respectively. In particular, in the

muon rest frame one has

x =
2Eγ

mµ

, y =
2Ee

mµ

, z =
x

2
(y − Ae cos θ) , (33)
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where Ee, Eγ are the energies of electron and photon, cos θ the angle between their 3-

momenta, and Ae ≡
√
y2 − 4r, with r ≡ m2

e/m
2
µ. The allowed kinematical ranges for the

above variables are

0 ≤ x ≤ 2

(

1 + r − y

2 − y + Ae cos θ

)

, 2
√
r ≤ y ≤ 1 + r , (34)

while −1 ≤ cos θ ≤ 1. Notice that the upper limit of x depends on cos θ. It is therefore not

possible to perform the integration on cos θ first. After the x-integration the dependence

on cos θ it is also quite complicated. In the present analysis we are mainly interested in

analyzing the structure of the leading logarithmic terms absorbing the regularized infrared

and collinear singularities as well as the one of the finite terms for the right-handed electron

rate in the me → 0 limit. For this purpose it is convenient to choose a particular region

of the phase space where the analytical calculations are further simplified provided that,

on the same time, all the leading logarithmic terms are preserved. As shown in Ref.[5], a

suitable choice consists in taking the upper limit of x evaluated at cos θ = 1, corresponding

to its minimum value, as follows

0 ≤ x ≤ 2

(

1 + r − y

2 − y + Ae

)

, 2
√
r ≤ y ≤ 1 + r , (35)

or equivalently

2
√
r ≤ y ≤ r + (1 − x)2

1 − x
, 0 ≤ x ≤ 1 −

√
r . (36)

In this way, the integrals on x and cos θ can be exchanged, giving a consistent simplification

of the analytical integrations.

For comparison, we will also provide the analytical expressions for the y-distributions

and the total rates obtained by integrating over the full phase-space, but in the approx-

imation of neglecting terms of O(r). The corresponding analytical results at any order

in r, will be presented elsewhere [16]. Regarding the corresponding numerical results, as

shown in section 4, these are obtained by integrating the exact expression of the matrix

density (given in Appendix B) at any order in r and over the full phase space.

In the muon rest frame, the differential decay width is given by

1

Γ0

dΓ(λγ , λe)

dx dy d cos θ
=

α

8π

1

x z2

[

Ae (g0 + λγ ḡ0) + λe (g1 + λγ ḡ1)
]

, (37)

where the exact expressions at any order in r of the functions g0,1 and ḡ0,1, which depend

on x, y, z, are provided in Appendix B.

Notice that the r independent terms in the functions g0,1 and ḡ0,1 are proportional to

z, partly compensating the 1/z2 in front of the right hand side of Eq.(37). This is not

true, however, for the r dependent terms which leave the distribution to be proportional

11



to 1/z2. These terms generate a singular behavior in the r → 0 limit for the distribution

rate of the right-handed polarized electron, as it is in the analogous case of pion decay.

Indeed, if the me → 0 limit is taken after integrating over cos θ, due to the property that
∫

d cos θ 1
z2 ∝ 1/r, terms proportional to r/z2 lead to a non-vanishing contribution in

the integrated width. By taking into account the electron mass effects, the (polarized)

integrated rate distributions (Γ(λγ , λe)
res ) on the restricted range in Eq.(35) are given by

1

Γ0

dΓ(λγ , λe)
res

dx dy
=

α

24π

1

Ae x

[

G0 + λγ Ḡ0 + λe (G1 + λγ Ḡ1)
]

, (38)

where the expressions for the functions G0,1 and Ḡ0,1 depending on x, y and r variables,

are reported in Appendix B.

The same phenomenon appearing in the meson decay for the right-handed electron

[3], it is also manifest here as a discontinuity in the electron mass. In particular, for right-

handed electrons, the integrated rate in cos θ does not vanish in the me → 0 limit, as

one should expect from the massless theory. This discontinuity, firstly noticed in Ref.[6],

can be associated to the axial anomaly [3, 8, 9] according to the interpretation of the axial

anomaly given by Dolgov and Zakharov [7]. This anomalous behavior can be easily seen

from the r → 0 limit of the functions G0 +G1 and Ḡ0 + Ḡ1 reported in Appendix B. For

this purpose, we will provide below the expressions for the polarized differential decay

width in the me → 0 limit, in particular:

lim
r→0

1

Γ0

dΓ(R,L)
res

dx dy
=

α

3π

y2

x

{

− 3 (x− 3)
(

x2 − 2
)

+ (12 + x (9 + x (2 x− 5))) y

+ (2 x+ 2 y − 3) (3 log(r) − 6 log(y))
}

lim
r→0

1

Γ0

dΓ(R,R)
res

dx dy
= 0

lim
r→0

1

Γ0

dΓ(L,L)
res

dx dy
=

α

2π

1

x

{

4 x3
(

1 + log(r) + y
)

+ 2 x (y − 1) y
(

12 + 6 log(r) + y
)

+ 2 (2 + log(r)) y2 (2 y − 3) + x2
(

6 log(r) (2 y − 1)

+ y (16 + 5 y)− 6
)

− 4 (x+ y)2 (2 x+ 2 y − 3) log(y)
}

lim
r→0

1

Γ0

dΓ(L,R)
res

dx dy
=

α

π
x (3 − 2 x− 2 y) , (39)

where the log(r) terms are retained in order to regularize the collinear divergences.

The lepton is intrinsically left-handed, due to the nature of the coupling and parity

violation. However, a final right-handed electron can also be produced with a sizeable

rate in the limit r → 0 [5, 8]. As we can see from Eqs.(39), in the r → 0 limit the photon is

purely left-handed polarized when final electron is right-handed, as expected from angular

momentum conservation.
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QED obeys parity conservation and, therefore, the photon polarization is a ”mea-

sure” of parity violation. In the limit x → 0 however the photon should behave as if its

wavelength does not any longer resolve the process itself, leaving to a spin decoupling

phenomenon as already observed in the radiative meson decay. Therefore, in this case,

the soft photon does not take part to the angular momentum conservation of the whole

process. Then, as in the meson case, in the x → 0 limit the partial amplitudes corre-

sponding to the distributions RL and LL, first and third above, tend to the same limit

as well as the RR and LR ones. This property again shows the soft photon decoupling

from any spin-related process.

Now we provide the analytical results for the differential distribution in the electron

energy, in the approximation of neglecting terms of O(r), obtained after integrating over x

the distributions in Eq.(39). Since the total integral in x contains the well known infrared

divergence when x→ 0, due to the emission of soft photons, we should provide integrated

results by fixing a cut in the photon energy, namely x0, corresponding to the experimental

energy resolution of photon detector. Then, in the r → 0 limit, the kinematical range of

x is x0 < x < 1− y. After integrating over the x range, and by retaining only the leading

terms in x0 and r, the result is

1

Γ0

dΓ(R,L)
res

dy
=

α

π
y2
{[

log(x0) − log(1 − y)
]

(3 − 2 y) (2 + log(r) − 2 log(y))

+
1

18
(1 − y)

(

57 + 36 log(r) + 28 y + y2 + 4 y3 − 72 log(y)
)}

1

Γ0

dΓ(R,R)
res

dy
= 0

1

Γ0

dΓ(L,L)
res

dy
=

α

π

{[

log(x0) − log(1 − y)
]

y2 (3 − 2 y) (2 + log(r) − 2 log(y))

− 1

12
(y − 1)2

(

10 + 96 y + 5 y2 + 2 log(r) (5 + 22 y)

− 4 (5 + 22 y) log(y)
)}

1

Γ0

dΓ(L,R)
res

dy
=

α

6π
(1 − y)2 (5 − 2y) . (40)

Notice that the coefficient of the term proportional to log(x0) in Eqs.(40), should cancel

the same term appearing in the one-loop corrections to the non-radiative Born decay,

as shown in section 7. Here we would like to stress that the coefficients of the terms

proportional to log(x0), appearing only in the expressions of (R,L) and (L,L) in Eqs.(40),

are the same for both Left- and Right-handed photon contributions. This, again, shows

the property that the photon spin must decouple in the infrared limit.

In the zero lepton mass limit, the kinematical range of y are now 0 < y < 1 − x0 and

13



it is easy to check that the electron energy distribution vanishes at the end points. As

a cross check of our results we integrate over y the non-vanishing expressions above and

obtain

Γ(R,L)
res

Γ0
=

α

π

{

log(r)
(

1

2
log(x0) +

23

24

)

+
17

12
log(x0) −

π2

6
+

10399

2520

}

,

Γ(L,L)
res

Γ0
=

α

π

{

log(r)
(

1

2
log(x0) +

5

24

)

+
17

12
log(x0) −

π2

6
+

17

18

}

,

Γ(L,R)
res

Γ0
=

α

4π
. (41)

Finally, the total width for the radiative muon decay, integrated over the restricted phase

space in Eq.(35), summed over all polarizations is

Γres

Γ0

=
α

π

{

log(r)
(

log(x0) +
7

6

)

+
17

6
log(x0) −

π2

3
+

13409

2520

}

, (42)

where terms of order O(r) and O(x0) were neglected 3.

For comparison, we report below the y-distributions integrated over the full phase

space. As in Eqs.(40), we use the approximation of neglecting terms of order O(r) and

O(x0). In particular, for the polarized differential rates in the electron energy, we have

1

Γ0

dΓ(λγ ,λe)

dy
=

1

Γ0

dΓ(λγ ,λe)
res

dy
+
α

π
∆(λγ ,λe) , (43)

where the additional terms ∆(λγ ,λe), arising from the extra phase-space integration, are

given by

∆(R,L) =
1

18

{

− 30 y + 3 y2 (7 + 3 L3(y)) − y3 (37 + 6 L3(y)) + 27 y4 − 3 y5 + 4 y6
}

+
1

3
log(1 − y)

{

−5 + 6 y + 3 y2 (−3 + 2 y) log(y) − y3
}

,

∆(R,R) = 0 ,

∆(L,L) =
1

12

{

32 y − (95 − 6L3) y
2 + (46 − 4L3(y)) y

3 + 5 y4
}

+
1

3

{

log(1 − y)
(

5 − 24 y + 30 y2 − 11 y3 − 3 y2 (3 − 2 y) log(y)
)}

,

∆(L,R) = 0 (44)

3Here we would like to stress that this expression agrees with the corresponding one reported in

Ref.[5], but differs from the old results in Refs.[17, 18]. We remind here that the total width calculated

in Refs.[17, 18] is obtained by integrating over the full phase space. Therefore, the coefficients of the

logarithmic terms coincide with the corresponding ones in Refs.[17, 18], as expected since both infrared

and collinear singularities are included in the phase space region of Eq.(35), Therefore, the total width in

Refs.[17, 18] will differ with respect to Eq.(42) by finite non logarithmic terms in the x0 → 0 and r → 0

limits.
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with L3(y) ≡ π2 − 6 Li2(1 − y). As shown in Eqs.(44), only the LL and RL distributions

get an extra contribution which is non-vanishing in the r → 0 limit, while for the cor-

responding RL and RR ones this is of order O(r). This is due to the fact that in the

radiative muon decay the right-handed electron is mainly produced at θ ≃ 0. Hence,

regarding the right-handed-electron production, the maximum of the x range integration

can be well approximated by xmax(cos θ) ≃ xmax(cos θ = 1). This approximation, adopted

in Ref.[5], corresponds to consider the restricted phase space in Eq.(35).

Finally, by integrating the distributions in Eqs.(44) over the full range 0 ≤ y ≤ 1, we

obtain

Γ(R,L)

Γ0
=

α

π

{

log(r)
(

1

2
log(x0) +

23

24

)

+
17

12
log(x0) −

π2

12
+

997

288

}

,

Γ(L,L)

Γ0
=

α

π

{

log(r)
(

1

2
log(x0) +

5

24

)

+
17

12
log(x0) −

π2

12
+

133

288

}

,

Γ(L,R)

Γ0
=

α

4π
. (45)

Then, the total rate summed over all polarizations is given by

Γ

Γ0
=

α

π

{

log(r)
(

log(x0) +
7

6

)

+
17

6
log(x0) −

π2

6
+

601

144

}

. (46)

which is in agreement with the previous result obtained in [17–19]. We would like to

stress here that the structure of the leading logarithmic terms is also preserved in the

polarized rates when the restricted phase-space-integration is considered, as can be seen

by comparing Eqs.(41) and (45).

4 Distributions and polarization asymmetries

In this section we present the numerical results for the distributions of branching ratios in

the photon and electron energies. In both cases we will sum over the fermion polarizations,

leaving fixed only the photon polarizations. For this purpose, it is very useful to introduce

also an observable which provides a direct measurement of the amount of parity violation

in the weak decays, namely the distribution of photon polarization asymmetry Aγ , defined

as follows

dAγ

dξ
≡ dξ(BRL) − dξ(BRR)

dξ(BRL) + dξ(BRR)
(47)

where dξ(BRL,R) ≡ d BRL,R

dξ
stands for the differential branching ratio (BR) in ξ = {x, y},

where x = 2Eγ/M and y = 2El/M in the rest frame of the decaying particle of mass M .

Labels L and R indicate left- and right-handed photon polarizations respectively. Here we
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would like to stress that dAγ

dξ
is a finite quantity, free from infrared divergences. Indeed,

when the photon energy goes to zero, the distribution dAγ

dx
tends to zero, since

lim
x→0

{ρL(x, y) − ρR(x, y)} → O(x) and lim
x→0

{ρL(x, y) + ρR(x, y)} → log(x) ,(48)

where ρL,R(x, y) indicates a generic Dalitz plot distribution for the polarized decay with

left- (L) or right-handed (R) photons. Therefore, the total integral of Eq.(47) is a finite

and universal quantity. It does not depend on the photon energy resolution of the detector,

and provides a direct measure of parity violation. Moreover, being Aγ quite sensitive to

the hadronic structure of radiative meson decays, it is also an useful tool for accurate

measurements of V and A form factors.

In the following sections 4.1, 4.2, and 4.3, we will show our results separately for the

case of pion, kaon, and muon decays respectively. Let us start with pion decay.

4.1 Radiative π+ decays

Here we report the numerical results obtained for the distributions of BRs and asymme-

tries for the case of radiative pion decays π+ → e+νe γ and π+ → µ+νµ γ. As shown in

section 2, the corresponding amplitudes contain only two free parameters which enter in

the hadronic structure dependent terms (SD), that is V and A form factors. However,

being V and A non-perturbative hadronic quantities, they cannot be evaluated in QCD

perturbation theory. An alternative approach like the one of effective field theories as, for

instance, Chiral Perturbation Theory (ChPT), or the lattice QCD, should be employed.

On the other hand, V and A could be directly measured by experiments [10, 20–22].

These form factors are not constant over the allowed phase space. Nevertheless, in

radiative pion decays, the momentum dependence in V (W 2) and A(W 2), parametrized by

W 2 ≡ (1−x)m2
π , is expected to be very small, not exceeding a few per cent of the allowed

phase space. This expectation is also supported by ChPT, since at the leading order in

ChPT V and A are constant. Recent calculations at next-to-leading order in ChPT [23],

which included terms up to O(p6), where p indicates a generic momentum involved in the

decay, show a mild dependence on momenta, confirming the above expectations. In our

analysis, we will assume V and A to be constant in the full kinematical range4. Now we

summarize the present status of form factors determination in pion decay.

The vectorial form factor V can be extracted in a model independent way from π0 →
γγ. By using the conservation of vectorial current (CVC) hypothesis, one can relate the

4Taking into account the effect of momentum dependence in the form factors goes beyond the purpose

of the present work, since we are mainly interested in analyzing the dependence of photon polarization

asymmetries by the photon and electron energies. For more accurate predictions of BRs and asymmetries,

these effects should be included, especially in the kaon decay where they are expected to be sizeable.

16



vectorial form factor to the lifetime of the neutral pion [24]

|V | =
1

α

√

2Γ(π0 → γγ)

πmπ0

= 0.0259 ± 0.0005 , (49)

where Γ(π0 → γγ) is the total width of π0 → γγ decay and V is assumed constant. On the

other hand, the axial A form factor can be measured via the ratio γ = V/A. In previous

experiments [20], using the stopped pion technique, the radiative pion decay has been

measured in a limited phase space region where V + A contributions dominate, leaving

to an ambiguity on the sign of γ. In more recent experiments [21, 22], the investigated

larger portion of the phase space allowed to determine the sign of γ as well, which has

also been confirmed by the π+ → e+νe+e− measurement [25].

The most recent measurements of radiative pion decay, using the stopped pion tech-

nique, has been performed by the PIBETA collaboration with a good accuracy [10]. There,

the CVC hypothesis has been used for the determination of γ. The preliminary results

of PIBETA experiment indicate a deficit of events in the observed π → eνγ decay [10],

suggesting for a new tensorial four-fermion interaction beyond the V-A theory. An analo-

gous effect was first observed in a previous experiment at ISTRA facility in early 90s [22],

in which pion decays where studied in flight. We will return on this point in section 6,

where the potential role of new tensorial couplings, suggested in order to accommodate

experimental data, will be discussed.

The results contained in this section have been obtained by using for γ the central

value of the best CVC fit reported by the PIBETA experiment, namely

γ = 0.443 ± 0.015, with V ≡ 0.0259 (50)

which is also consistent with predictions in ChPT.

In Fig.4 we show the distributions of BR for pion decay in electron channel. In par-

ticular, dBR/dx and dBR/dy are reported in the “top” and “bottom” plots respectively5.

In the plots we have integrated the phase space over λ and x respectively. Results are

obtained by imposing kinematial cuts on λ or x, as indicated in the plots. Looking at the

dBR/dx distributions in Fig.4, the general behavior emerging from these results is the

following. When cuts on λ are relaxed, the left-handed photon polarizations dominate in

all range of values of x > 0.2, corresponding to photon energies Eγ > 14 MeV. On the

other hand, the contribution of right-handed photons can be increased by imposing larger

cuts on λ, as can be seen by comparing left-top and right-top plots in Fig.4. For example,

by requiring that λ > 0.3, right-handed polarizations could dominate in the region of

hard photons 0.6 < x < 0.9. These results can be explained by using angular momen-

tum conservation. When cuts on λ are relaxed, the main contribution to the integral in

5In the following, in all the plots involving the distributions of BRs, green and red curves correspond

to left- (L) and right-handed (R) photon polarizations respectively, as also indicated in each curve.

Unpolarized decays are drawn as blue curves, with L+R label associated to them.
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Figure 4: The photon energy spectrum
dBRγ

dx versus x (top plots) and electron energy spectrum
dBRγ

dy versus y (bottom plots), for pion decay π+ → νee
+γ. The labels L and R attached

to the curves indicate pure left-handed and right-handed photon polarizations contributions

respectively, while L + R correspond to the sum. Kinematical cuts λ > 0.1 (top-left), λ > 0.3

(top-right) and x > 0.3 (bottom-left), x > 0.6 (bottom-right) are applied respectively.
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dλ comes from the region of low λ, where the IB effects dominate with respect to SD

terms. Low values of λ should correspond to small angles between photons and e+, but

could also correspond to low positron energies. In the former case, neutrinos are likely

to be produced with opposite direction with respect to the photon momentum, in order

to compensate for the missing momentum in the pion rest frame. Since neutrinos are

always left-handed polarized, photons must be left-handed as well, as required by angular

momentum conservation. The spin configuration for this case is shown in Fig.2a. On the

other hand, small values of λ could also correspond, in the latter case, to the spin con-

figuration shown in Fig.2c, where positron and photon are backward. There, the photon

should be mainly emitted from the π+ line, leaving positron and photon both left-handed

polarized. As we will show in section 5, after integrating over x with cuts x > 0.3, the

dominant effect will be given by this last configuration.

On the contrary, when cuts on λ are very large, IB effects are reduced and SD terms

become sizeable. In this case, the positron is mainly produced right-handed, due to the

fact that SD terms are not chiral suppressed, neutrino momentum is favored to be directed

forward with respect to the photon one, leading to a right-handed photon as shown in

Fig.2b. However, as we can see from the top plots in Fig.4, there is a region of large x

where left-handed photon contributions are also sizeable, in particular for 0.9 < x < 1.

This peculiar behavior in the end point region of photon energy can be explained as

follows. When photon energy approaches its maximum, positrons start to be produced

almost at rest, if λ is small. Then, in order to conserve the total momentum, neutrino

should be mainly emitted backward with respect to the photon direction, see Figs.2a

and 2c, leading to left-handed photon polarizations as required by angular momentum

conservation. However, we should stress that, depending on the cuts on λ, the right-

handed photon polarization could dominate even near the end-point region of photon

energy.6

In the bottom plots of Fig.4, we report the BRs distributions on positron energy versus

y, for two representative choices of cuts, namely x > 0.3 (left-plot) and x > 0.6 (right-

plot). As we can see from these results, the left-handed photon polarizations dominate

in the region y < 0.5, while the gap between left-handed and right-handed contributions

increases by using stronger cuts on the photon energies. This behavior can be roughly

understood as follows. At fixed positron energy, the larger the photon energy is the

more the neutrinos are produced parallel and backward to the photon direction, in order

to conserve total momentum. Therefore, as explained above, conservation of angular

momentum favors in this case the left-handed photon polarizations. However, at the end

point of positron energy, when cuts on x > 0.3 and x > 0.6 are imposed, the scenario

could be reversed. As a consequence of the strong cuts on x, the IB contribution can be

6Even if it is not shown in the plot, at the end point x = 1 − re the L curves (as well as R and L+R

ones ) corresponding to the dBR/dx distributions in Fig.4 vanish. However, the L curves go to zero more

slowly than the corresponding R ones.
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Figure 5: As in Fig. 4, but for pion decay π+ → νµµ+γ, and with kinematical cuts λ > 0.6

(top-left), λ > 0.8 (top-right) and x > 0.1 (bottom-left), x > 0.2 (bottom-right).

made very small, and near the region of y = ymax, the SD terms should dominate favoring

the production of a right-handed positron. Clearly, when photon and positron are both

very energetic they tend to be emitted with opposite direction in order to conserve total

momentum, approaching, in the case of a right-handed positron, to the spin configuration

in Fig.2b. Therefore, due to angular momentum conservation, photons are mainly right-

handed in the region y > 0.8 and x > 0.3. Here we would like to stress that the relative

gap between left- and right-handed contributions of hard photons, near the region y > 0.8,

should be very sensitive to the values of hadronic form factors.

In Fig.5 we show the corresponding results for the pion decay in the muon channel.

In this case we can see that the left-handed photon polarizations always dominate over

the entire phase space, while right-handed ones are quite suppressed. Notice that, being

the muon mass very close to the pion one, the IB contribution is not chiral suppressed as

in the electron channel and it is larger than the SD one almost over all the allowed phase
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space. This implies that µ+ is mainly produced with left-handed polarization. Moreover,

due to the fact that here the minimum allowed value of λ (for x > 2) is λmin ≃ 0.7,

the µ+ and photons are mainly produced at large angles. Then, if left-handed µ+ tends

to be produced backward with respect to photon momentum, this last one must be also

left-handed in order to conserve total angular momentum, as shown in Fig.2c.

Finally, in Fig.4, we present our results for the x- and y-distributions of the photon

polarization asymmetry, as defined in Eq.(47). In particular, in the top and bottom plots

we report the results for the dAγ/dx and dAγ/dy respectively for several kinematical

cuts, while the left and right plots correspond to the electron and muon channel decays

respectively. A general property of these results is that the x- and y-distributions of

asymmetry vanish at x = 0 and y = 1 + rl respectively. This is a consequence of the fact

that when the photon energy is approaching to zero, the polarized photon densities of

Dalitz plot tend to the same limit, due to the spin-decoupling property of soft photons, as

discussed in section 2. A remarkable aspect of these results is that, in the electron decay

channel, the dAγ/dx distribution becomes negative for some particular choices of cuts.

Analogously, the same effect can be achieved on the y-distribution by increasing cuts on

the photon energy. On the contrary, in the muon channel, the corresponding asymmetry

is always positive, as can be seen in the plots to the right in Fig.6. In conclusion, we

would like to emphasize that the position of the zeros of photon polarization asymmetry

is particularly sensitive to the effects of the SD terms. This property could suggest a new

experimental way for obtaining more precise measurements of form factors.

4.2 Radiative K+ decays

In analogy with the radiative pion decays, we analyze here the corresponding ones in the

kaon sector, in particular K+ → e+νe γ and K+ → µ+νµ γ. The expressions of amplitudes

in terms of decay constants, masses and form factors remain formally the same as in the

pion decay. However, the kaon electromagnetic form factors, as well as the decay constant

fK , and the ratios re, rµ between leptons and kaon mass, are quite different from the pion

case. As we will see in the following, these differences will sizeably affect the shape of

distributions and asymmetries with respect to the corresponding pion decay.

The most recent measurements of V and A form factors have been performed by

the E787 collaboration [26] through radiative K+ decay K+ → µ+νµ γ. In particular, the

absolute value of V +A has been determined finding |V +A| = 0.165±0.007±0.011, while a

limit on −0.24 < V −A < 0.04 has been set at 90% C.L. These results have been obtained

by assuming constant form factors. The |V+A| measurements are consistent with previous

results on K → e+νeγ, but they disagree by almost 2 standard deviations with respect

to predictions from leading order in ChPT [12]. We recall here that the evaluation of

form factors starts at one loop in ChPT expansion, that is at O(p4). At this order

the chiral prediction, as for the pion case, gives constant form factors. The momentum
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Figure 6: The differential asymmetry
dAγ

dx versus x (top) and
dAγ

dy versus y (bottom), with

kinematical cuts λ > 0, 0.1, 0.2, 0.3 (top-left), λ > 0, 0.8 (top-right) and y > 0, 0.2, 0.4, 0.6

(bottom-left), y > 0, 0.1, 0.2, 0.3 (bottom-right) respectively.
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dependence of the form factors starts then at the next-to-leading order, that is O(p6), and

it is expected to be larger than in pion case, due to sizeable effects of resonances exchange

[27]. In particular, by considering only a particular class of diagrams where vector and

axial-vector resonances are exchanged, the form factors can be parametrized as

V (W 2) =
V

1 −W 2/m2
K⋆

, A(W 2) =
A

1 −W 2/m2
K1

, (51)

where W 2 = m2
K(1 − x), and the masses m2

K⋆ and m2
K1

correspond to vector and axial-

vector resonances. Then, in order to minimize the effects of resonance exchange, large

x-regions should be considered since W 2 → 0 when x → 1, while low x-regions may

be used to explore the W 2 dependence of V and A. The O(p6) contributions, based on

SU(3) × SU(3) symmetry in ChPT, has been recently calculated in Ref.[28]. Significant

deviations of order of 10-20 % have been found on V and A with respect to the leading

order calculation. Moreover, while the vectorial form factor is quite sensitive to photon

energies, the axial one shows only a modest effect [28].

As for the pion decay, in order to simplify our analysis, we will not take into account

the momentum dependence in V and A. Then, consistently, we will take the V,A pre-

dictions at the leading order in ChPT, re-absorbing the missing NLO contributions in

the theoretical uncertainty. In particular, our results are obtained by using the following

values [12]

V + A = −0.137, V − A = −0.052 . (52)

In Fig.7 we show the x− (top) and y− (bottom) distributions for the K+ → e+νe γ

decay. The general trend emerging from these results is that in kaon decay, contrary to

the pion case, the right-handed photon production dominates over the lef-handed one,

already for moderate cuts λ > 0.1, as can be checked by comparing results between Figs.4

and 7 with the same cuts on x and λ. This result can be roughly understood as follows.

The IB contribution in the radiative K+ decay is more “chiral” suppressed with respect

to the corresponding π+ due to the fact that mK ≃ 4mπ. Then, for the same values of

x and λ, the IB effects in pion decay will be larger than in the corresponding kaon one.

For instance, while the IB contributions in pion decay are still sizeable after cuts λ > 0.1

and x > 2 have been imposed, in K+ decay these same cuts dramatically reduce the IB

effects in favor of SD contributions. As already explained in section 4.1, when the photon

is produced from the SD terms it is mainly right-handed polarized. In conclusion, the

dBR/dx distributions in the top-plots of Fig.7, for x > 0.1, shows the same behavior of

the corresponding one in pion decay in the region 0.6 < x < 0.9 and λ > 0.3, where

the right-handed photon contributions are enhanced. Moreover, as we can see from the

top-plots in Fig.7, these curves have a maximum (for 0.1 < x < 1 and 0.1 < λ < 0.3)

around x ≃ 0.75. In the bottom-plots of Fig.7 we report the analogous results for the

positron energy distributions. As we can see, when the y > 0.5 and x > 0.1 cuts are

imposed, the right-handed photon gives the dominant effect.
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Figure 7: As in Fig. 4, but for kaon decay in K+ → νee
+γ. Curves correspond to kinematical

cuts as reported in the figures.
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Figure 8: As in Fig. 7, but for kaon decay in K+ → νµµ+γ. Curves correspond to kinematical

cuts as indicated in the figures.
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Figure 9: Asymmetries as in Fig. 6, but for kaon decay in K+ → νµµ+γ. Numbers on the

curves correspond to kinematical cuts.

In Fig.8 results for BR distributions in x and y are shown for the K+ → µ+νµγ decay.

The hierarchy between L and R curves, and their shapes, are similar to the corresponding

ones of π+ → µ+νµγ ( see Fig.7). Notice that the available ranges of x and y are larger for

the kaon decay in the muon channel with respect to the corresponding pion decay, due to

more available phase space of the former. The same considerations regarding the shapes

of x- and y-distributions of pion decay should hold here as well. As can be seen from

these results, also in K+ → µ+νµγ decay the left-handed photon polarization gives the

dominant effect for x > 0.2 and λ > 0.3 or analogously for x > 0.3 and y > 0.4, as shown

in the bottom plots for the y distribution. Numerical results for the total contribution

L+R, are consistent with the corresponding ones in Ref.[11].

In Fig.9 we show our results for the distribution of asymmetries in the kaon decays. As

we can see from left-top plots in Fig.9, the dAγ/dx distribution for K+ → e+νeγ is always

negative in all range x > 0.1, and tends to a constant value for x > 0.3 − 0.4, depending
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Figure 10: Some helicity (in red) configurations of γ, νµ ν̄e and e− for µ− → νν ν̄ee
−γ decay in

µ− rest frame, figures (c)-(e), when all momenta (in blue) are aligned on the same axis. Figures

(a) and (b) correspond to the non-radiative decay µ− → νν ν̄e. Direction of electron momentum

in (a)-(b), as well as photon momentum in (c)-(e) diagrams, is fixed by convention.

on the applied cuts on λ. In particular, when λ > 0.6, the dAγ/dx already approaches

its minimum value for x > 0.2. By relaxing the constraints on λ, we can see that the

dAγ/dx distribution could have a zero at x ≃ 0.2, and analogously dAγ/dy at y ≃ 0.5.

On the right-plots we present the corresponding results for the K+ → µ+νµγ decay, and

for some representative choices of cuts. As we can see, the dAγ/dx is more sensitive to

cuts on λ than the corresponding one in π+ → µ+νµγ. Analogous considerations hold

for the dAγ/dy distribution as well. In conclusion, the photon polarization asymmetry

for radiative meson decays in muon channel, is always positive, vanishing only at the end

point x = 0 or analogously y = 1, due to the spin decoupling property of the soft photon.

4.3 Radiative µ− decay

In this section we will discuss the numerical results for the radiative muon decay µ− →
νµe

−ν̄eγ. As shown in section 3, this process is described by the leptonic Fermi interaction,

where the photon is attached to external legs of muon and electron, see Fig.3. Being a

pure leptonic process, its decay rate can be calculated with high accuracy in perturbation

theory. In particular, the 1-loop QED corrections have been evaluated in Ref.[15] for the

inclusive radiative muon decay, which corresponds to an accuracy of order O(α2) in the

branching ratio. However, studies of polarized radiative muon decays have been recently

published [4, 5]. Also 1-loop radiative corrections have been included in the evaluation of

the decay rate [4]. However, in these studies only the polarization of fermions has been

considered.

Our results for the polarized photon distributions of branching ratios are shown in

Fig.11. These results, as well as the corresponding ones in Figs.12 and 15, have been
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Figure 11: The photon energy (Eγ) spectrum dBRγ

dx versus x = 2Eγ/mµ (top) and electron

energy (Eγ) spectrum
dBRγ

dy versus y = 2Ee/mµ (bottom) for muon decay µ+ → ν̄µνee
+ with

left-handed (L) and right-handed (R) photon polarizations. and for kinematical cuts y > 0.2

(top-left), y > 0.6 (top-right) and x > 0.2 (bottom-left), x > 0.6 (bottom-right) respectively.

obtained by integrating over the full the phase space and by taking into account the full

r dependence. From Fig.11 we can see that the main contribution to the radiative decay

is provided by the left-handed photon polarization, while the right-handed one is quite

suppressed and decreases by increasing the photon energy. This behavior, again, can be

explained by using angular momentum conservation and parity violation. Notice that,

due to the V-A nature of weak interactions, the electron is mainly produced left-handed

polarized in the muon decay, and chirality flip effects, needed to produce a right-handed

electron, are always sub-leading, being proportional to the electron mass. Moreover, due

to the fact that we are integrating over the final phase space of neutrinos, the analysis

is strongly simplified. Indeed, after integration, the effect of neutrinos is re-absorbed

in the tensor Nαβ appearing in Eqs.(29), (30). Notice that Nαβ is just a projector for
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the four-momentum Qα ≡ −(pe + k + p)α carried by the neutrinos pair, and it can be

seen as the sum over polarization states of a massive particle of spin 1. In other words,

regarding the spin content, the neutrinos pair behave as a spin-1 particle of mass Q2,

having three polarization states. In the case of non-radiative muon decay, the allowed

spin configurations in the muon rest frame are shown in Fig.10a,b, where all momenta are

aligned on the same axis X and by convention the electron momentum is chosen along

the negative direction. As we can see, if the electron is left-handed (JX = 1/2), the spin

projection of neutrino anti-neutrino pair along the direction of their total momentum can

be JX = −1 or JX = 0, but not JX = +1, being the muon a spin 1/2 particle.

Let us now consider the radiative decay, with photon emission from the electron line.

It is known that, when hard photons are emitted parallel and forward to the electron

momentum, they can flip the electron helicity, without paying any chiral mass suppression

[3–8]. The helicity-flip mechanism is illustrated below

L
γ

e
R

R
γ

L
e

(a) (b)

e
R

e
L

for incoming left-handed eL (a) and right-handed eR (b) electron by collinear photon

bremsstrahlung. All momenta, indicated by blue arrows, are aligned on the same axis.

Red arrows stand for the corresponding helicities and an electron mass insertion is under-

stood. We remind here that the chiral suppression of the term m2
e appearing in the square

modulus of the numerator due to the chirality flip, is compensated by the singular be-

havior in ≃ 1/m2
e appearing in the square modulus of the propagator for collinear photon

emission. The corresponding spin configurations in this case are shown in Fig.10d-e for

the case of aligned momenta. However, as for the meson case, the contributions coming

from the helicity-flip transitions are always smaller with respect to the helicity conserving

ones. The largest contributions should come from the photons emitted by the muon line.

In this case the neutrinos and electron momenta are favored to be busted backward with

respect to the photon momentum, in order to compensate for the missing momentum.

The corresponding spin configuration, in the particular limit in which all momenta are

aligned on the same axis, is shown in Fig.10c. Since the favored spin of the ν+ ν̄ system is

in this case JX = 0, the photon must be necessarily left-handed polarized. This peculiar

configuration should explain why the left-handed photon contribution is always dominant

with respect to the right-handed one, leading to an increasing relative gap as the pho-

ton energy increases. This seems to be the case since, as the photon energy approaches

the soft region x → 0, the gap should decrease due to the spin decoupling property of

soft photons. Results concerning the branching ratio distributions for the production of

right-handed electron are shown in the next section.
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Figure 12: As in Fig.11, but for the asymmetry
dAγ

dx versus x (left) and
dAγ

dy versus y (right)

and for kinematical cuts y and x > {0, 0.2 , 0.4 , 0.6} for left and right plots respectively.

In Fig.12 we show in the right (left) plots the dAγ/dy (dAγ/dx) distributions asymme-

try for the radiative muon decay. We present our results for some representative choices

of cuts, in particular y > {0, 0.2, 0.4, 0.6} and x > {0, 0.2, 0.4, 0.6} for the dAγ/dx and

dAγ/dy respectively. As we can see from these results, the asymmetry in the muon case

is always positive, as a consequence of the dominant left-handed photon contribution as

discussed above. The shapes of asymmetries are quite similar to the corresponding ones

in π+ → µ+νµγ and K+ → µ+νµγ, where the IB effects are larger than the SD terms.

In particular, here the dAγ/dx is monotonically increasing with x, while analogously the

dAγ/dy is monotonically decreasing.

5 Energy spectra of the polarized positron/electron

In this section we discuss the results for the distributions of BRs in the positron energy

for the decays π+ → e+νeγ and K+ → e+νeγ, and analogously in the electron energy for

the radiative muon decay, for both lepton and photons polarizations. As seen before, due

to angular momentum conservation, the IB contributions favors a left-handed positron in

the soft photon energy region. However, in the case of an hard photon produced collinear

with e+, the IB favors a right-handed positron. This last effect is due to the helicity-flip

mechanism discussed above. However, if one imposes larger cuts on x in order to reduce

the IB effect, then the relative contribution of the SD term grows up. In particular, when

the positron is totally generated from the SD terms, it is mainly right-handed polarized

(see discussions in section 4.1), as can be seen from Eq.(75) in Appendix A, since the

photon is emitted from the hadronic vertex. From these results one can easily check

that in the region of y → 1, the LR term in Eq.(75) tends to zero and survives only
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Figure 13: The electron energy spectrum dBR
dy versus y for π+ → νee

+γ, for left-handed (left

plot) and right-handed electron polarizations (right plot), with photon energy cut x > 0.3. As

in previous figures, the labels L and R labels attached to the curves indicate pure left-handed

and right-handed photon polarizations contributions respectively, while L+R correspond to the

sum.

the RR one, corresponding to the production of both positron and photon right-handed

polarized, as required by angular momentum conservation. In particular, for a generic

meson M = K, π, we have

lim
y→1

dBR(R,R)

dy
≃ BR(M+ → l+ν)

α

2π

(V + A)2

48 rl

m2
π

f 2
π

(

1 − 4x3
cut + 3x4

cut

)

, (53)

where xcut is the cut on x, BR(π+ → e+ν) = 1.23×10−4 and BR(K+ → e+ν) = 1.55×10−5

[29]. Notice that for a right-handed electron, the contribution from the other polarizations

vanishes in the massless lepton limit rl → 0 and for y → 1.

In Fig.13 we show the plots corresponding to the dBR/dy of pion decay, where on the

left and right plots we report the case of left-handed (e+L) and right-handed (e+R) positron

polarizations respectively. These results are obtained for x > 0.3. As we can see, the

contribution of e+L is always dominant with respect to e+R one. This is because the IB effect

is still large for x > 0.3, and so a left-handed positron is favored. Moreover, a peculiar

aspect of these results is that for the e+L production, the left-handed photon polarization

dominates in all the positron energy range. On the other hand, in e+R distribution, the

right-handed photon gives the leading effect for y > 0.7, being totally induced by the SD

terms. The maximum of dBR/dy for e+R production, achieved at y ≃ 1, can be easily

checked by using the approximated expression in Eq.(53).

Analogous results for the kaon decay are shown in Fig.14. Here, the situation is

reversed with respect to the pion case. The e+R contribution gives the leading effect in

the total BR already for x > 0.3 and the right-handed photon polarization dominates
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Figure 14: As in Fig.13, but for K+ → νee
+γ.

for y > 0.5. On the other hand, in the e+L distributions (see left plot in Fig.14), the

left-handed photon contribution provides the dominant effect. As already mentioned in

section 4.2, these differences with pion case are mainly a consequence of the fact that the

IB amplitude is more chiral suppressed in K → eνeγ than in π → eνeγ.

Finally, in Fig.15 we present the electron energy distributions for the muon case. In

this case we imposed a cut x > 0.2 on the photon energy. We see that in both eR and eL

distributions, the left-handed photon contribution always provides the dominant effect,

being this configuration favored by angular momentum conservation. Moreover, in the eR

case, the right-handed photon contribution is very tiny. As we explained in the previous

section, these results are a consequence of the fact that in the radiative muon decay the

electron is naturally produced left-handed due to the V-A theory. On the other hand, the

contribution of eR is mainly generated from the helicity flip mechanism of hard photons

emitted from the electron line and it is a sub-leading effect.

6 Tensorial couplings

Here we analyze the dependence of the photon polarization asymmetry, in the radiative

pion and kaon decays, induced by tensorial couplings. The aim of this study is motivated

by the recent measurements of the radiative pion decay π+ → νee
+γ [10], where a sig-

nificant discrepancy in the branching ratio, with respect to the SM predictions [10], has

been observed. This anomaly might be interpreted as the effect of a centi-weak tensorial

interaction beyond the V-A theory [14].

An analogous discrepancy was noticed long time ago at the ISTRA experiment [22],

where radiative pions decays were studied in flight. In that experiment, the π+ → νee
+γ

was investigated over a large phase space region, in particular 0.3 < x < 1 and 0.2 < λ < 1.
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Figure 15: The electron energy spectrum dBR
dy versus y for µ+ → ν̄µνee

+, for left-handed (left

plot) and right-handed electron polarizations (right plot), with photon energy cut x > 0.2. The

curve in the right plot corresponding to right-handed photon (R), has been multiplied by a

rescaling factor of 103.

The measured branching ratio Bexp
R = (1.6 ± 0.23) × 10−7 [22] was found significantly

smaller than the expected one Bth
R = (2.41 ± 0.07) × 10−7, based on the CVC hypothesis

and V-A theory of SM. The fact that the measured number of events is less than expected,

cannot be explained by a missing unknown background. This result was interpreted [14]

as a possible indication of a tensorial quark-lepton interaction with coupling of order 10−2

in unity of GF . In particular, the suggested new contribution to the effective Hamiltonian

for ∆S = 0 transitions is [14]

H∆S=0
eff =

fTGF

2
√

2
Vud [ūσµν(1 − γ5)d] [ēσµν(1 − γ5)νe] + h.c. (54)

where σµν = 1/2[γµ, γν] and fT a dimensionless coupling. Notice that tensorial interactions

are not subject to the strong constraints coming from the non radiative decay π → νe

(as, for instance, for the scalar interactions) simply because, the Lorentz covariance forces

the hadronic matrix element 〈0| [ūσµν(1 − γ5)d] |π〉 to vanish. On the other hand, H∆S=0
eff

can contribute to the amplitude (MT ) of the radiative decay π+ → νee
+γ as

MT = i
eGF√

2
Vud FT ǫ

µ⋆ qν [ēσµν(1 − γ5)νe] . (55)

The constant FT can be related to fT in Eq.(54) by using low energy theorems and PCAC

hypothesis [14], [30]

F 0
T =

2

3

χ〈µ〉
fπ

f 0
T (56)
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where 〈µ〉 = 〈0|q̄q|0〉 is the vacuum expectation for the quark condensate and χ is defined

by [31]

〈0|q̄σµνq|ǫ(k)〉 = eqχ 〈0|q̄q|0〉Fµν , (57)

with eq the quark (q) electric charge, Fµν = i(kµǫν −kνǫµ), and ǫµ(k) the photon polariza-

tion vector of momentum k. Then, the destructive interference between the SM and tenso-

rial amplitudes accounts for the correct number of “missing” events observed at ISTRA if

FT = (5.6±1.7)×10−3 [14], corresponding to a tensorial coupling fT ≃ (1.4±0.4)×10−2

[30], where 〈µ〉 = −(0.24 GeV)3 and χ = −(5.7±0.6) GeV−2 values have been used [31].

This result is consistent with the limit f 0
T < 0.095 (at 68% confidence level) coming from

beta decay [14].

Clearly, if confirmed, this effect would be a clear signal of new physics. Indeed, in the

SM, the tensorial coupling fSM
T is very small, being generated at two-loop level and chiral

suppressed. In Ref.[30] the supersymmetric (SUSY) origin of fT has been analyzed. The

leading SUSY contribution to fT , given by charginos and squarks exchanges in penguin

and box diagrams, can be larger than SM one since it is induced at one-loop. However,

present bounds on SUSY particle spectra do not allow fT to be larger than fT ≃ 10−4, too

small for the required value suggested in [14]. Moreover, there have been also criticisms

about the consistency of such large tensorial couplings. In Ref.[32] it was pointed out

that, due to QED corrections, an fT of order of O(10−2) might run in troubles. Indeed,

the operator in Eq.(54) can mix under QED radiative corrections with a scalar operator,

whose contribution is strongly constrained by π+ → e+νe [32]. In particular, an upper

bound on fT < 10−4 can be set by imposing the strong constraints on scalar interactions

coming from π+ → e+νe, which is two order of magnitude smaller than the required one

[14]. However, more accurate analyses showed that it is possible to relax or even avoid the

upper bound claimed in [32]. For instance, the simultaneous (fine-tuned) contributions

of both tensorial and scalar interactions, as suggested by lepto-quark models [33], might

relax the upper bound in [32] and thus the interpretation given in [14] cannot be regarded

yet as ruled out. There is also an alternative solution, proposed in Ref.[34], where a

modified tensorial interaction can formally avoid the mixing with scalar operator, while

solving the ISTRA discrepancy.

In Ref.[11], it was pointed out that an analogous effect might show up in the kaon

sector. In particular, if the origin of fT is flavour independent, then a tensorial interaction

of the same order is also expected in the ∆S = 1 transitions, leaving to a large anomaly

in radiative kaon decays, easily detected at present and future kaon factories [11].

Recently, the PIBETA collaboration at Paul Scherrer Institute facility, has performed

an accurate analysis of the π+ → νee
+γ decay [10] using a stopped pion beam. More than

40,000 π+ → νee
+γ events have been collected, allowing for a very precise measurement

of the branching ratio. In this experiment, a more significant discrepancy (about 8σ [35])

between data and SM predictions has been reported in the kinematical region of high-

34



energy photon/low-energy positron. A significant number of expected events are missing.

As for the ISTRA anomaly, agreement with data can be improved by adding a negative

tensor term FT ≃ −0.002, a bit smaller (in magnitude) than the corresponding one in [14].

More detailed analysis about the PIBETA experiment can be found in [36] and references

therein.

Now we analyze the impact of a tensorial coupling on the photon polarization asym-

metry dAγ/dx in radiative pion and kaon decays. In order to simplify the analysis, we

will assume an universal tensorial interaction in both ∆S = 0, 1 processes, parametrizing

all the effects in a phenomenological coupling FT as follows

MT = i
eGF√

2
FT Vuqǫ

µ⋆
L qν [ēσµν(1 − γ5)νe] , (58)

where q = d and q = s for pion and kaon decays respectively. As discussed in section

1, the photon emitted by the tensorial amplitude MT in Eq.(58) is purely left-handed.

This property can also be checked by noticing that the interference between MT and MSD

terms is proportional to the V − A combination [14]. Below we provide the additional

tensorial contributions to the (photon) polarized Dalitz plot density. In particular, the

following term ρ
(−1)
T (x, λ) should be added to ρ(−1)(x, λ) in Eq.(17)

ρ
(−1)
T (x, λ) = 2ASDFT

(

FTfTT (x, λ) + 2
√
rl
fM

mM

fIBT (x, λ) +
√
rl (V − A)fSDT(x, λ)

)

(59)

where [11]

fTT (x, λ) = λ x3(1 − λ), fIBT (x, λ) = x
(

1 + rl − λ− rl

λ

)

,

fSDT (x, λ) = x3 (1 − λ) . (60)

In Fig.16 we show the dAγ/dx asymmetry versus x, for two representative values of

FT = ±10−2 and cut λ > 0.3, for the π+ → νee
+γ (left plot) and K+ → νee

+γ (right

plot). As we can seen from these results the shape of photon asymmetry is quite sensitive

to a tensorial coupling in the range of |FT | ≃ 10−2. In particular, in the pion case,

this sensitivity is more pronounced, and the position of zeros of the asymmetry strongly

depend on FT . On the other hand, in the kaon decay, large deviations should appear

only in the region of large x, where the tensorial effect is enhanced. This difference in

the two decays can be explained due to the fact that the tensorial interference, which is

the dominant effect when FT < 10−2, is always chiral suppressed, being proportional to

me/mM . Thus, in the radiative kaon decay, this effect is more suppressed than in the pion

case, due to the larger meson mass. We have explicitly checked that, in the corresponding

pion and kaon decays in muon channel, the sensitivity of the asymmetry to FT is very

modest and we do not show the corresponding results. In conclusion, we suggest that the

possibility to measure the photon polarization in pion, or even in kaon decays, could be

very useful to clarify the controversial question of tensorial
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Figure 16: Photon polarization asymmetry dAγ/dx versus x and with λ > 0.3, for two values

of tensorial coupling FT = ±10−2. Left and right plots correspond to π+ → νee
+γ and K+ →

νee
+γ decays respectively. The dark dashed curves stand for the standard model case (FT = 0).

7 Cancellation of mass singularities

In this section we discuss the mechanism of mass singularities cancellation and the way it

takes place in meson and muon polarized radiative decays. As will be seen a new peculiar

cancellation pattern shows up in the particular case of the polarized amplitudes differently

from the well known cancellation taking place in the inclusive unpolarized amplitudes.

In a theory with massless particles a crucial test of the consistency of the computation

is represented by the absence of mass singularities in any obtained physical quantity. Mass

singularities are of two types: infrared and collinear. Infrared divergences originate from

massless particles with a vanishing momentum in the small energy soft limit. Physical

states as, for example, a single charged particle, are degenerate with states made by

the same particle accompanied by soft photons. This corresponds to the impossibility

of distinguishing a charged particle from the one accompanied by given number of soft

photons due to the finite resolution of any experimental apparatus. An infrared divergence

appears in QED when the energy Eγ of the photon goes to zero as a factor of the form:

I =
∫ 1

0

dǫ

ǫ
(61)

where ǫ = Eγ

E
is the fraction of the energy of the photon with respect to the total available

energy E for the process. The Bloch Nordsiek theorem [37] assures the cancellation of

infrared divergences in any inclusive cross section. Collinear divergences, instead, come

from massless particles having a vanishing value of the relative emission angle. In QED,

specifically, when one or more photons, in the limit of zero fermion mass, are in a collinear

configuration i.e. with emission angle θ ≃ 0. Physical states containing a massless
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charged particle are degenerate with states containing the same particle and a number

of collinear photons. Any experimental apparatus, having a finite angular resolution,

cannot distinguish between them. The angular separation of two massless particles with

momenta p and k is such that they move parallel to each other with a combined invariant

mass for θ → 0:

q2 = (p+ k)2 = 2 p0Eγ(1 − cos θ) → 0 (62)

even though neither p nor Eγ are soft. Here θ is the emission angle of a photon with

respect to the fermion. The inclusive procedure of integrating over the photon emission

angles by keeping the fermion mass finite does not give rise to any collinear singularity.

The divergence appears in the limit θ → 0 as the presence of a logarithm of the form

log(E
m

) ≃ log(θ).

For collinear singularities, as well as for infrared ones, the case for inclusive unpolar-

ized processes is well known and it is governed by the Kinoshita-Lee-Nauenberg (KLN)

theorem [38]. For the collinear singularities the KLN theorem guarantees that collinear

divergences cancel out if one performs a sum of the amplitude over all the sets of degen-

erate states order by order in the perturbative expansion. For the amplitude of a single

photon emission a combination of collinear and infrared singularities gives, for instance,

contributions of the type:

R =
α

π

∫ 1

0

dǫ

ǫ

∫ 1

0

dθ

1 − cos θ
. (63)

In order to discuss the above aspects on the cancellation of lepton mass singularity in

the polarized pion decay, we first recall the mechanism taking place in the unpolarized

case [39, 40]. In general, the decay rate is made free from mass singularities in the ordinary

way: the cancellation of divergences occurs in the total inclusive decay rate at order O(α),

namely in the pion case

Γ(incl) = Γ(π → νe) + Γ(π → νeγ) , (64)

when the full O(α) order contributions are included, i.e. those relative to real and virtual

photon emission [39, 40]. However, for a pointlike (structureless) pion, due to the chirality

flip of final charged lepton, the pion decay amplitude is always proportional to ml and

vanishes in the ml → 0 limit. In other words, in the limit ml → 0 the decay rate is made

finite from mass singularities in a trivial way. For example, as we will see later on, a term

proportional to Log(ml) will remain in the inclusive width due to the mass renormalization

of the charged lepton in the virtual contributions to Γ(π → νe). However, since it will

be multiplied by m2
l , it will give no troubles since Γ0 → 0 tends to zero at the same

time. However, as pointed out by Kinoshita in [39], the leading log(ml) terms in the IB

contribution to Γ(π → νeγ) cancel out exactly when one adds the virtual contributions.

In other words, the mass singularities in the log(ml) terms should cancel independently
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from the fact that the effective coupling in the pion decay is proportional to the charged

lepton mass or not. The cancellation mechanism of these Log terms shows a non trivial

aspect of the KLN theorem in the pion decay. For this reason, in the following discussion

we will consider the following ratios Γ(π → νeγ)/Γ0 and Γ(π → νe)/Γ0 which survives

the limit ml → 0.

Let us now consider the case of radiative polarized decays within the soft and collinear

region for the radiated photon. We will investigate in this section the mechanism which

will assure the finiteness of the lepton distribution against the appearance of infrared and

collinear singularities on the above ratios of widths. Let us start by the inclusive distribu-

tions in terms of the final lepton energy y as listed in Eq.(71). The Inner Bremsstrahlung

contribution contained in Eq.(74) in the rl → 0 limit is composed by the four expressions

corresponding to the various polarization states of the final photon and lepton respec-

tively. The last, RR polarized term is identically zero. The remaining three are related

to the left-handed ( first and third ) and right-handed ( second ) lepton respectively.

The logarithms L1, L2 do correspond to collinear contributions. By integrating the

double-inclusive distribution of Eq.(68) one gets in the expression of Eq.(72) for the IB

case that the expressions for F
(λγ ,λl)
i (y) depend on the logarithms L1 and L2 respectively

L1 = log

(

y + Al − 2 rl

y − Al − 2 rl

)

, L2 = log

(

y + Al − 2

y − Al − 2

)

These terms do give rise to two kinds of “collinear” logarithms:

L1 = log
El

ml
, L2 = log

El +
√

E2
l +m2

l −mM

E −
√

E2
l +m2

l −mM

.

The first logarithm represents the case of the photon being parallel to the lepton, the

second collinear logarithm for ml → 0 and mM → 0 corresponds to the case where the

photon is parallel to the decaying meson [3]. Clearly, it is only L1 which is affected by

the true collinear divergence in the limit ml → 0.

With respect to the unpolarized inclusive case some differences are worth to be noticed

here:

• Different polarization amplitudes do represent independent observables in the decay.

Therefore if we consider the two cases of a right-handed and left-handed lepton they

have to be also separately finite.

• At zero order in the pion decay the angular momentum conservation imposes to the

lepton to be left-handed. By radiating a photon a total zero angular momentum is

assigned to the final state even if a right-handed lepton emits a left-handed polarized

photon. This contribution is represented by the second term in Eq.(74).
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• For y → 1 only the second term in Eq.(74), corresponding to the LR polarization,

contribution is finite, i.e. it is zero:

lim
rl→0 y→1

1

Γ0

dΓ
(L,R)
IB

dy
=

α

2π

(

1 − y
)

= 0 .

This fact shows that the LR term, corresponding to the anomalous term [41], it is finite by

itself without the need of any cancellation mechanism in the infrared y → 1 and collinear

limit rl → 0. A detailed discussion of the undergoing dynamics can be found in Ref.[3]

Analogous conclusions, regarding the finiteness of the right-handed lepton contribution

in the rl → 0 , y → 1 limits to the structure dependent terms |SD|2 and the IB × SD,

see Eqs.(75) and (76) respectively, hold there as well.

Let us now consider the contributions of the type LL and RL giving rise to a left

handed lepton. Manifestly the first and third term of Eq.(74) are divergent in the rl →
0 , y → 1 limits. The expression obtained by adding first and third contributions in

Eq.(74) is:

1

Γ0

[dΓ
(L,L)
IB

dy
+
dΓ

(R,L)
IB

dy

]

=
α

2π

1

y − 1

[(

1 + y − L̂1 − L̂2

)

+
(

y (y + 1) − L̂1 y
2 + L̂2 (1 − 2 y)

)]

which is divergent both in the collinear and in the infrared limit. The coefficients of the

collinear logarithms remain different from zero as rl → 0 and y → 1, leaving to a divergent

expression. As for the unpolarized case for the left-handed lepton contributions one needs

to consider the additional virtual contributions in order to cancel infrared singularities

[39].

The case of the left-handed lepton includes also the diagram of the virtual photon i.e.

the one with a photon line connecting meson and charged lepton. This diagram does not

add any angular momentum to the zeroth order term since a virtual particle does not add

angular momentum to the final state. The amplitude containing the virtual photon gives

rise, therefore, to a lepton neutrino final state having the same helicities as the ones of

the tree level amplitude. The combination of real and virtual contributions should, in the

left-handed lepton channel, add among each other to give a finite result. This mechanism

is the same taking place for the cancellation of singularities for the inclusive, unpolarized

amplitudes as we will discuss in more details below.

According to [39] the total width for the unpolarized IB contribution to Γ(π → νeγ)

is given by

ΓIB(x0)

Γ0
=

α

π

{

b(rl)
(

log
x0

2
− log(1 − rl) −

1

4
log(rl) +

3

4

)

− rl (10 − 7rl)

4 (1 − rl)
2 log(rl) +

2 (1 + rl)

1 − rl

L(1 − rl) +
15 − 21rl

7(1 − rl)

}

, (65)

where x0 is the minimum photon energy which regularizes the infrared divergence in the

photon mass, the function b(x) = 1+x
(1−x)

log(x) + 2, and L(x) =
∫ x
0 log(1 − t)dt/t. For a
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generalization of the result in Eq.(65) to the inclusion of the leading logarithmic terms to

all orders in perturbation theory see Ref.[42–44].

For the virtual 1-loop contribution one has to consider the radiative corrections to the

operator gm0
lQ, where Q = ψ̄l(1− γ5)ψνϕπ, with ϕπ is the pion field and m0

l is the ‘bare’

mass of the charged lepton. These corrections split in two separate contributions: Γ(1)

given by the correction to the operator Q and Γ(2) arising when one try to express the

bare mass m0
l in terms of the renormalized lepton mass ml, namely m0

l = ml − δml with

δml = 3α
2π
ml

(

log(Λ/ml) + 1
4

)

[40]. For Γ(1), one has [39]

Γ(1)

Γ0

=
α

π

{

−b(rl)
(

log(
x0

2
) − 1

4
log(rl) +

3

4

)

+
rl

2(1 − rl)
log(r) +

1

2

}

+
3α

2π
log(

Λ

mπ

) (66)

Notice that the last term, containing the ultraviolet cut-off Λ needed to regularize the UV

divergency, can in principle be absorbed in a re-definition of fπ at order α, see Ref.[40]

for more details.

As can be seen by comparing the results in Eqs.(65) and (66), the log rl terms surviving

the limit rl → 0 cancel out in the sum of virtual and real emission contributions as a

consequence of the KNL theorem. Finally, for the total contribution to the unpolarized

inclusive decay rate at order α, including the contribution of Γ(2), one gets [39, 40]:

Γ(incl)

Γ0
= 1 +

α

π

{3

2
log(rl) +

13

8
− π2

3

}

, (67)

where we retained only the leading terms in me → 0 limit. As previously mentioned, the

appearance of the log rl term in (67) is due to the renormalization of the charged lepton

mass which does not follow the same pattern of collinear mass singularities discussed

above [39]. For simplicity, we omitted in (67) the term containing a log(Λ/mπ), since it

can be absorbed into a re-definition of fπ at order α inside Γ0.

As stated above, in the right-handed case, on the contrary, the mass singularities

cancellation occurs with a different mechanism. Infrared and collinear limits in the ratio

Γ
(LR)
IB /Γ0 give separately a finite result. In particular, the coefficient of the collinear

logarithms for the right handed lepton case is the lepton mass, instead of the usual

correction factor coming from the soft and the virtual photon contributions.

The particular cancellation mechanism occurring in the right-handed radiative decay

is originated by the combined constraints of the angular momentum conservation in the

pion vertex and the one of the helicity flip in the photon-lepton vertex [3].

Let us now consider the case of the muon decay. As shown in Eq.(40) as for the

meson case also in the muon decay lepton distribution we see that the LR-photon-lepton

polarized distribution is free from collinear and infrared singularities and goes to zero

in the infrared limit y → 1. The remaining RL and LL distributions, apart from the

identically zero RR term, do give a finite contributions in the y → 1 limit, provided that

the same x0 cut-off is also set free to go to the soft kinematical limit i.e. x0 → 0. In the

muon case the pattern of singularities cancellation repeats itself as for the meson case.
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8 Conclusions

We have computed polarized distributions in radiative meson and muon decays, by tak-

ing into account final lepton and photon helicity degrees of freedom. The definition of

photon polarization asymmetry has been introduced, allowing a new approach to investi-

gate interaction dynamics via a finite and universal quantity directly associated to parity

violation. Analytical and numerical results for the polarized distributions and branching

ratios, as well as for the photon polarization asymmetry, have been explicitly derived.

The main results of the photon polarization analysis in meson decays, inclusive in the

spin degrees of freedom of the final lepton, can be summarized as follows. In the pion

case, the production of hard photons in association with soft positrons, are mainly favored

to be left-handed polarized. However, when the positron energy increases, the relative

gap between left-and right-handed photons decreases, due to the increasing contributions

of hadronic structure dependent terms. Remarkably, in the kaon decay, when energy cuts

Eγ >∼ 25 MeV and Ee+ >∼ 120 MeV are imposed, both photon and positron are mainly

right-handed polarized and a large and negative photon polarization asymmetry is ex-

pected. Regarding the corresponding meson decays in muon channel, the left-handed

photon production always gives the leading effect. The same behavior is observed in the

radiative muon decay µ− → νµe
−ν̄e γ. All these results can be easily explained in terms

of angular momentum conservation and parity violation.

We have also systematically analyzed the mechanisms of cancellation of infrared and

collinear divergences in polarized meson and muon decays. It has been shown that the

finiteness of the polarized amplitudes takes place in a different way for left- with respect

to right-handed final leptons when inclusive results in the photon polarization degrees of

freedom are taken into account.

Finally, we propose a possible test using photon polarization in order to solve the

controversial issue of large tensorial couplings in lepton-quark interactions, as suggested

by the recent observed anomaly at the PIBETA experiment. In particular, it is argued

that the measurement of the photon polarization asymmetry may constitute a sensible

test to resolve such controversial issue in radiative pion decay, providing a sensitive probe

to hadronic form factors as well as to new physics effects in meson radiative decays.

We believe that all these new results could open a more extended perspective into

the physics of the semileptonic weak decays. In particular, the less inclusive approach to

the polarized processes, by explicitly taking into account lepton and photon polarization

degrees of freedom, could allow, when the experimental conditions make it compatible,

a new quantitative approach and a more detailed inspection of meson and muon decays.

Moreover, we are confident that Standard Model physics as well as signals of physics

beyond the Standard Model could be put under scrutiny and more closely investigated

by using tests involving polarized quantities.
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Appendix A

Here we provide the most general results for the polarized meson radiative decay in the

meson rest frame, as a function of x, y variables defined in Eq.(11), and for both charged

lepton l = e, µ and photon helicities λl and λγ respectively. For later convenience, we will

use the same notation adopted in section 2, where the symbols L and R are associated

to particle helicities λ = −1 and λ = 1 respectively. In particular, for the differential

radiative decay rate normalized to its non radiative one, we obtain

1

Γ0

d2Γ(λγ ,λl)

dx dy
=

α

2π

1

(1 − rl)2
ρ(λγ ,λl)(x, y) (68)

where

ρ(L,λl)(x, y) = f (L,λl)
IB

(x, y) +
m2

M

f 2
M

(V − A)2

4 rl
f (L,λl)

SD
(x, y) +

mM

fM
(V −A) f (L,λl)

INT
(x, y)

ρ(R,λl)(x, y) = f (R,λl)
IB

(x, y) +
m2

M

f 2
M

(V + A)2

4 rl

f (R,λl)
SD

(x, y) +
mM

fM

(V + A) f (R,λl)
INT

(x, y)

where the functions f
(λγ ,λl)
IB (x, y), f

(λγ ,λl)
SD (x, y), and f

(λγ ,λl)
INT (x, y) are given by7

f (L,λl)
IB

(x, y) =
1 − y + rl

2 Al x2 z2

{

Al

(

x+ y − 1 + rl (−3x− y + x y) + r2
l

)

− λl

[

y (x+ y − 1) + rl

(

4 − 6 x− 6 y + 3 x y + y2 − x y2
)

+ r2
l (4 + 2 x− y)

] }

f (R,λl)
IB

(x, y) =
1 − y + rl

2 Al x2 z2

{

Al (x− 1 + rl) − λl

[

(x− 1) y − rl (2 x+ y − 4)
]}

×
{

(x− 1) (x+ y − 1) + rl

}

f (L,λl)
SD

(x, y) =
1 − y + rl

2Al

{

Al ((x− 1) (y − 1) + rl)

− λl

[

y (x+ y − 1 − x y) + rl (2 x− y)
]}

f (R,λl)
SD

(x, y) =
(x− 1)(x+ y − 1) + rl

2Al

{

Al (1 − x− y + rl)

− λl

[

y (x+ y − 1) − rl (2x+ y)
]}

f (L,λl)
INT

(x, y) =
1 − y + rl

2 Al xz

{

Al (1 − 2 x− y + x y + rl)

7The symbol Al =
√

y2 − 4r2

l appearing below should not be confused with the axial form factor A.
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− λl

[

2 − 2 x− 3 y + 2 x y + y2 − x y2 + rl (2 + 2 x− y)
]}

f (R,λl)
INT

(x, y) =
1 − y + rl

2 Al xz

{

Al + λl

[

2 x+ y − 2
]} {

(1 − x) (x+ y − 1) − rl

}

(69)

where λl = 1 and λl = −1 correspond to right- (R) and left-handed (L) fermion polariza-

tion respectively, and symbols Γ0 = Γ(M+ → νll
+), z = x+y−1−rl, and Al =

√
y2 − 4rl.

By integrating equations above in the photon energy x range

1 − 1

2
(y + Al) ≤ x ≤ 1 − 1

2
(y − Al)

2
√
rl ≤ y ≤ 1 + rl , (70)

we obtain

1

Γ0

dΓ(λγ ,λl)

dy
=

α

2π

1

(1 − rl)2
F (λγ ,λl)(y) (71)

where

F (L,λl)(y) =
F

(L,λl)
IB (y)

2Al (1 − y + rl)
+
m2

M

f 2
M

(V − A)2

4 rl
F (L,λl)

SD
(y) +

mM

fM
(V −A)

F
(L,λl)
INT (y)

2 Al

F (R,λl)(y) =
F

(R,λl)
IB (y)

2Al (1 − y + rl)
+
m2

M

f 2
M

(V + A)2

4 rl

F (R,λl)
SD

(y) +
mM

fM

(V + A)
F

(R,λl)
INT (y)

2 Al

where the functions F
(λγ ,λl)
i (y) are given by

F (L,λl)
IB

(y) = Al

{

(L2 + L2) (1 + r (1 − y)) + Al (y − 3 + r)
}

+ λl

{

(L1 + L2)
(

2 r2 − y + r
(

2 + y − y2
))

+ Al

(

2 + r (y − 6) − y + y2
)}

F (R,λl)
IB

(y) = Al

{

L1

(

r + r2 − 3 r y + y2
)

− (L2 (1 + r − 2 y + r y))

− Al (1 − 3 r + y)
}

+ λl

{

L1

(

2 r2 + 2 r3 + r y − 5 r2 y + 3 r y2 − y3
)

+ L2

(

y − 2 y2 − r
(

2 − 7 y + y2
)

− 2 r2
)

+ Al

(

y + y2 − 6 r + 2 r2 − r y
)}

F (L,λl)
SD

(y) =
Al

4

{

(y − 1)2 y − r
(

y + y2 − 2
)

+ 2 r2
}

+
λl

4

{

(y − 1)
(

(y − 1) y2

− r
(

4 y + y2 − 4
)

+ 4 r2
)}

F (R,λl)
SD

(y) =
Al

24

(

y3 − 2 r y (2 + y) + 8 r2
)

+
λl

24

(

y2 − 4 r
)2

F (L,λl)
INT

(y) = (1 − y + r)
{

Al

(

L2 + L1 (y − 1)
)

+ λl (L2(y − 2) + L1 ((y − 1)y − 2 r))
}
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F (R,λl)
INT

(y) = − (1 − y + r)
{

Al (Al + L2 + L1 r) + λl

(

2 Al (r − 1) + L1 r (2 r − y)

+ L2 (y − 2)
) }

(72)

where

L1 = log

(

y + Al − 2 rl

y − Al − 2 rl

)

, L2 = log

(

y + Al − 2

y − Al − 2

)

(73)

Now we expand the formulas above in the large electron energy region y ≫ √
r. By

retaining only the leading terms in rl expansion we obtain

• |IB|2 contribution

lim
rl→0

1

Γ0

dΓ
(L,L)
IB

dy
=

α

2π

1

y − 1

(

1 + y − L̂1 − L̂2

)

lim
rl→0

1

Γ0

dΓ
(L,R)
IB

dy
=

α

2π

(

1 − y
)

lim
rl→0

1

Γ0

dΓ
(R,L)
IB

dy
=

α

2π

1

y − 1

(

y (y + 1) − L̂1 y
2 + L̂2 (1 − 2 y)

)

lim
rl→0

1

Γ0

dΓ
(R,R)
IB

dy
= 0 (74)

• |SD|2 contribution

lim
rl→0

1

Γ0

dΓ
(L,L)
SD

dy
= 0

lim
rl→0

1

Γ0

dΓ
(L,R)
SD

dy
=

α

2π

m2
M

f 2
M

(V − A)2

8 rl

y2 (1 − y)2

lim
rl→0

1

Γ0

dΓ
(R,L)
SD

dy
= 0

lim
rl→0

1

Γ0

dΓ
(R,R)
SD

dy
=

α

2π

m2
M

f 2
M

(V + A)2

48 rl

y4 (75)

• IB × SD + c.c. contribution

lim
rl→0

1

Γ0

dΓ
(L,L)
INT

dy
=

α

2π

mM

fM
(V −A) L̂2

1 − y

y

lim
rl→0

1

Γ0

dΓ
(L,R)
INT

dy
= − α

2π

mM

fM
(V − A)

(

L̂2 + L̂1 y
) (1 − y)2

y

lim
rl→0

1

Γ0

dΓ
(R,L)
INT

dy
=

α

2π

mM

fM
(V + A)

(

2 L̂2 + y (2 + y)
) y − 1

2 y

lim
rl→0

1

Γ0

dΓ
(R,R)
INT

dy
=

α

2π

mM

fM
(V + A)

(

2 L̂2 (y − 1) + y (y − 2)
) y − 1

2 y
(76)
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where L̂1,2 = limrl→0 (L1,2) and so

L̂1 = 2 log y − log (1 − y) − log rl + O(r)

L̂2 = log (1 − y) + O(r) . (77)

Notice that the lepton mass inside L1 is needed in order to regularize the collinear diver-

gences. The above results in Eqs.(74)-(76) are obtained in the approximation r/y2 ≪ 1

and are not valid near the region of minimum y ≃ √
r. Nevertheless, there is always a

real infrared singularity in the photon energy spectrum, which is present in the terms

log(1 − y) when y → 1 even if the electron mass is taken into account, corresponding to

the known soft photon singularity. This divergent term for y → 1 is necessary in order to

cancel the infrared singularity appearing in the one-loop corrections of non-radiative de-

cay, as required by the KLN theorem. Details of the cancellation mechanism for polarized

decays are reported in section 7.
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Appendix B

In this appendix we provide the expressions for the basic functions g0,1, ḡ0,1, G10,1, and

Ḡ0,1 appearing in section 2 for the differential decay rates of radiative muon decay. In the

muon rest frame, the differential decay width is given in Eq.(37)

1

Γ0

dΓ(λγ , λe)

dx dy dcosθ
=

α

8π

1

x z2

[

Ae (g0 + λγ ḡ0) + λe (g1 + λγ ḡ1)
]

(78)

where z = x
2
(y − Ae cos θ), Ae =

√
y2 − 4r, and the functions g0,1 and ḡ0,1 are

g0 = z
{

− 2 x4 + x3 (3 − 6 y + 2 z) − 2 x2
(

−3 y + 4 y2 − z − 4 y z + z2
)

+ 2 z
(

−3 y + 2 y2 + 3 z − 4 y z + 2 z2
)

+ x
(

6 y2 − 4 y3 − 6 z + 2 y z + 8 y2 z

− 5 z2 − 6 y z2 + 2 z3
)}

+ r
{

4 x4 + x3 (−6 + 8 y − 5 z) + 2 z2 (4 − 3 y + 3 z)

+ 2 x2
(

−3 y + 2 y2 + 3 z − y z + z2
)

+ x z
(

−8 y + 6 y2 − 6 z − 6 y z + 3 z2
) }

+ 2 r2 x2
(

4 − 3 x− 3 y + 3 z
)

ḡ0 = z
{

2 x4 + x3 (−3 + 6 y − 2 z) + 2 z2 (1 − 2 y + 2 z)

+ x2
(

−6 y + 4 y2 − 2 z − 2 z2
)

+ x z
(

6 − 6 y + 4 y2 + z − 6 y z + 2 z2
) }

− r
{

4 x4 + x (−2 + 6 y − 3 z) z2 − 6 z3 − 2 x2 z (1 − 3 y + z)

+ x3 (−6 + 4 y + z)
}

+ 2 r2 x2 (x+ 3 z)

g1 = y z
{

2 x4 + x3 (−3 + 6 y − 2 z) + 2 x2
(

−3 y + 4 y2 − z − 4 y z + z2
)

− 2 z
(

− 3 y + 2 y2 + 3 z − 4 y z + 2 z2
)

+ x
(

−6 y2 + 4 y3 + 6 z − 2 y z − 8 y2 z + 5 z2 + 6 y z2 − 2 z3
) }

+ r
{

− 4 x5 + x4 (6 − 8 y + 4 z) + 2 z2
(

−12 + 8 y + y2 − 8 z − y z
)

+ x3
(

6 y − 8 y2 − 4 z + 7 y z − 4 z2
)

+ x z
(

24 y − 16 y2 − 2 y3 + 16 z + 18 y z

+ 2 y2 z − y z2
)

+ x2
(

6 y2 − 4 y3 − 22 y z + 6 y2 z + 6 z2 − 10 y z2 + 4 z3
) }

+ 2 r2
{

x4 + 4 x y z − 4 z2 + x3 (8 + y + 2 z)

+ x2
(

− 12 + 8 y + y2 − 8 z − y z + z2
)}

− 8 r3 x2

ḡ1 = −y z
{

2 x4 + x3 (−3 + 6 y − 2 z) + 2 z2 (1 − 2 y + 2 z)

+ x2
(

−6 y + 4 y2 − 2 z − 2 z2
)

+ x z
(

6 − 6 y + 4 y2 + z − 6 y z + 2 z2
) }

− r
{

− 4 x5 + 2 (4 + y) z3 + x4 (6 − 8 y + 4 z)
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+ x z2
(

−8 − 2 y − 2 y2 + y z
)

− 2 x2 z
(

−5 y + 5 y2 + z − 5 y z + 2 z2
)

+ x3
(

6 y − 4 y2 − 4 z − 3 y z + 4 z2
) }

− 2 r2 x2
{

3 x2 + x (−4 + 3 y − 2 z)

+ (4 + y − z) z
}

. (79)

After integrating the above distributions in cos θ, on the range −1 < cos θ < 1, we get

1

Γ0

dΓ(λγ , λe)
res

dx dy
=

α

24π

1

Ae x

[

G0 + λγ Ḡ0 + λe (G1 + λγ Ḡ1)
]

(80)

where the functions G0,1 and Ḡ0,1 are given by

G0 = −6 Ae L
(

2 x+ 2 y − 3
) (

x2 + 2 x y + 2 y2
)

+ y2
{

24 y (2 y − 3)

+ 6 x (4 + y) (4 y − 3) + x2 (36 + (33 − 10 y) y) + 2 x3 (6 + y (2 y − 3))
}

+ r
{

− 6 x (Ae L (5 x− 6) + 8 (x (3 + x) − 6)) − 12
(

− 24 + Ae L (4 + x)

+ x (26 + (11 − 2 x) x)
)

y + 4 (9 Ae L− 24 + x ((11 − 5 x) x− 42)) y2

+ 9 (x− 4) (2 + x) y3
}

+ 4 r2
{

24 (3 y − 4) + x
(

9 Ae L+ x (4 x− 9 y − 4)

+ 18 (4 + y)
)}

Ḡ0 = x
{

6 Ae L (x+ 2 y) (2 x+ 2 y − 3) + y2
(

12 (6 − x (3 + x))

− 3 (18 + x (2 x− 1)) y + 2 (6 + x (2 x− 5)) y2
)

+ r
(

48 (x (3 + x) − 6)

+ 12 (18 + x (2 x− 1)) y − 4 (x− 1) (5 x− 6) y2 + 9 (x− 2) y3

− 6 Ae L (x+ 6 y − 2)
)

+ 4 r2
(

9 Ae L+ 4 (x− 3) (2 + x) − 9 (x− 2) y
)}

G1 = Ae

{

12 (3 + r − 2 x)
(

x2 + r
(

x2 − 8
))

+ 4
[

− 3 x (x− 1) (6 + x)

+ r
(

48 + x (18 + x (4 x− 13))
)]

y − 3
(

− 24 + r (x− 4) (2 + x)

+ x (26 + (11 − 2 x) x)
)

y2 − 2 (24 + x (12 + x (2 x− 5))) y3
}

+ 6L
{

2 r2 (−4 + x) (2 x− y) + y (2 x+ 2 y − 3)
(

x2 + 2 x y + 2 y2
)

+ r
(

4 (x− 1) x2 + (24 + x (7 x− 22)) y + 2 (3 x− 8) y2 − 2 y3
)}

Ḡ1 = x
{

Ae

[

12
(

8 r + (r − 3) (1 + r) x− 2 (r − 1) x2
)

+ 4
(

3 (x− 1) (6 + x)

+ r (x− 4) (3 + 4 x)
)

y − 3
(

−18 + r (x− 2) + x− 2 x2
)

y2

− 2 (6 + x (2 x− 5)) y3
]

+ 6L
[

2 r2 (2 x− y − 4) − y (x+ 2 y) (2 x+ 2 y − 3)

+ r
(

−4 x2 + 10 (y − 1) y + x (4 + 3 y)
) ]}

, (81)
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where L = log
(

y+Ae

y−Ae

)

, and r = m2
e/m

2
µ . The above results in Eq.(80) completely agree

with the corresponding ones in Ref.[5] after summing over the photon helicities.
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