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Abstract

The uncertainty of the theoretical prediction of the B — X, branching ratio at
NLL level is dominated by the charm mass renormalization scheme ambiguity. In
this paper we calculate those NNLL terms which are related to the renormalization
of m., in order to get an estimate of the corresponding uncertainty at the NNLL
level. We find that these terms significantly reduce (by typically a factor of two) the
error on BR(B — X,v) induced by the definition of m,. Taking into account the
experimental accuracy of around 10% and the future prospects of the B factories, we
conclude that a NNLL calculation would increase the sensitivity of the observable
B — X7 to possible new degrees of freedom beyond the SM significantly.
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1 Introduction

The branching ratio of B — X, is a very sensitive probe for new degrees of freedom be-
yond the standard model (SM) (for a review, see [1]). Within supersymmetric extensions
of the SM for example, one can derive stringent bounds on the parameter space of these
models [2-8]. Clearly, such bounds will be most valuable when the general nature of the
new physics beyond the SM will be identified at the forthcoming LHC experiments.

Because of the heavy mass expansion that is valid for inclusive decay modes, the
decay rate of B — X,v is dominated by the perturbatively calculable partonic decay rate
I'(b — Xsy). QCD corrections to the latter, due to hard-gluon exchange, are the most
important perturbative contributions; they were calculated in the past up to the next-to-
leading logarithmic (NLL) level [9-18]. Subsequently, also electroweak corrections were
calculated [19-22]. After completion of these computations, it was generally believed that
the theoretical uncertainty of the branching ratio is below 10%.

However, as first pointed out in 2001 in [23], there is an additional uncertainty in the
NLL results for I'(b — X7y) which is related to the definition (renormalization scheme)
of the charm quark mass. Technically, the charm quark mass depencence enters through
the matrix elements (sy|O;2|b) which in the context of a NLL have to be calculated up
to O(as). As these matrix elements vanish at the lowest order, the charm quark m, only
enters (through the ratio m./m;) at O(as). As a consequence, the charm quark mass
does not get renormalized in a NLL calculation, which means that the symbol m,. can
be identified with mpoe or with the MS mass m.(p.) at some scale p, or with some
other definition of m.. Formally, all these assignements are equivalent, as they lead to
differences which are of order a?.

Note that in contrast to the c-quark mass the b-quark mass does get renormalized in
a NLL calculation and we choose to express all the following results in terms of mp poje-
In this respect we do not follow ref. [23], where the my, ;5 mass was used. Unless stated
otherwise, the symbol my, stands for mj, pole in all the formulas in this paper. Numerically,
we use m, = 4.8 GeV throughout.

Numerically, it turns out that the NLL result for I'(b — X,v) strongly depends on
which mass definition of the charm quark mass is used in the NLL expressions. To
illustrate this, we first identify m, with m. pole as it was done in all analyses before the
paper of Gambino and Misiak [23]. Numerically, we use m. pole/ppole = 0.29 which is
based on the mass difference 1y pole — Mepole = 3.4 GeV fixed through the heavy mass
expansion of mp and mp and mp poe = 4.8 GeV. The corresponding branching ratio then
reads [23]

BR[B — X5, 5my20 = 3.35 x 107%. (1)

As the charm quarks which are propagating in a loop have a typical virtuality of m;/2,
the authors of Ref. [23] suggested to use m.(u.) with p. € [m., mp] instead of m,poe. A
typical value for the corresponding ratio is m.(p.)/mppole = 0.22. Using this value, the
branching ratio gets increased w.r.t. () by about 11% [23]:

BR[B — XV|p,5my20 = 3.73x107%. (2)

In a recent theoretical update of the NLL prediction of this branching ratio, the uncer-
tainty related to the definition of m. was taken into account by varying m./m; in the
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conservative range 0.18 < m./m;, < 0.31 which covers both, the pole mass (with its
numerical error) value and the running mass m.(p.) value with p. € [me, mp) [24]:

BR[B — X,7] = (3.70 £ 0.35|,n, /m, £ 0.02|crnt £ 0.25]param. & 0.15/scale) x 1074 (3)

There exists a large number of measurements of the inclusive decay B — X, [25-30]
and the present experimental accuracy has reached the 10% level [31]:

BR[B — X,v] = (3.5240.30) x 107*. (4)

In the near future, more precise data on this mode are expected from the B factories.
Thus, it is mandatory to reduce the present theoretical uncertainty accordingly. A sys-
tematic improvement certainly consists in performing a complete NNLL calculation . This
is, however, a very complicated task (for discussion and some results see [32-35]) and a
certain motivation is needed to enter such an enterprise. In the present paper we try to
give such a motivation: By calculating those NNLL terms which are induced by renormal-
izing the charm quark mass in the NLL expressions, i.e. those terms which are sensitive
to the definition of the charm quark mass, we show that the large error at the NLL level
related to the m, definition gets significantly reduced. As this error is the dominant one
at the NLL level (see eq. (@), we conclude that a complete NNLL calculation will drasti-
cally improve the theoretical prediction of the branching ratio. We stress here that in the
present paper we only make a statement about the reduction of the error at the NNLL
level, and not about the central value of the branching ratio; this remains the topic of a
complete NNLL calculation!

The remainder of this paper is organized as follows. In section ] we discuss in some
detail how to calculate the NNLL terms induced by renormalizing m, in the NLL results.
In order to make the paper self-contained, we first list in section Bl the structure of the
NNL results and then we present the analytical results for the new terms discussed in
section Pl Finally, in section @l we numerically investigate by how much the error related
to the definition of m, gets reduced at the NNLL level.

2 NNLL terms related to m, renormalization

As already explained in the introduction, the matrix elements My5*(m.) = (s7]O1,2(1s)[b)
only start at order O(al), or, in other words at the NLL order?. As a consequence, the
definition of m, is not fixed at this order, because m, does not get renormalized. This is
also true for the bremsstrahlung contributions MP5™ (m.) = (s7g|O12(w)|b), which are
needed up to O(gs) for a NLL calculation. In this section we concentrate on the virtual
terms My%*(m.), as the extension to the bremsstrahlung contributions Mp5™s(m.) is

straightforward.

2In the present paper we use the operator basis as first introduced in ref. [11]. u;, denotes the renor-
malization scale of O(my).
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Figure 1: Left frame: Typical dm, insertion diagram (see text). Right frame: Typical
diagram with a charm quark self-energy insertion (see text).

When going to NNLL precision, the matrix elements My5*(m.) are needed to O(a?).
At this level, there are — among many other diagrams — counterterm contributions to
these matrix elements, induced by the renormalization of m, (see the left frame of Fig.
[M). The complete set of such diagrams is generated by inserting the operator —idmet. v,
in the O(a) diagrams of Oy 5 in all possible ways. The sum 0, virt(e ( ¢)-0m, of all these
insertions can be obtained by replacing m. — m.+ dm, in the O( 1) results M), virt(e) (me),
followed by expanding in dm, up to linear order:

MVlrt(e)( M, + 5mc) MVlrt(e)( c) + 5M¥gt(5) (mc) . 5mc —+ O(((Smc)2) . (5)

As dm,. is ultrav1olet divergent, the matrix elements M)’ Vi) (m,) are needed in our appli-

cation up to order €', as indicated by the notation in eq @).

The explicit shift 0m,. depends of course on the renormalization scheme. When aiming

at expressing the results for M), VI (m,) in terms of me(uy), the shift reads (Cp = 4/3)
s 3 _
() = 2 0 3 ).
7r

On the other hand, when the result is expressed in terms of m. o, the shift reads

. 3
SMepote = _ﬁﬁ@(7< +31Wl+4>mwm.

The infinities induced by the 1/¢ terms in dm,. get cancelled in a full NNLL calculation,
in particular by self-energy diagrams depicted in the right frame of Fig. [ As we do not
perform a full NNLL calculation, we suggest to consider self-energy insertions, where the
self-energy 3(p?) is replaced by ¥ (p* = m?).

The ¥;-part of the self-energy ¥ (p?) is defined through the decomposition of the full
unrenormalized self-energy Y(p?) as

S(p*) = S ()¢ — mc) + Za(p%)- (6)
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At the one-loop level, the corresponding pieces ¥ and X of the renormalized self-energy
are

55 (") = Bo(p®) + 02, T'(p7) = Tu(p?) + dme, (7)

where Z, = 1 + 0Z,. denotes the wave function renormalization constant of the charm
quark. Eq. (@) implies that the sigularities in 6.M7 "9 (m,) - ém. cancel when combined
with the diagrams with ¥;(p?) insertions. However, for general p? the function ¥;(p?)
depends on the gauge parameter &:

-] -5 (- ()

As for p* = m? the self—energy piece X (p? = m?) is gauge-independent, we add X, (p?

2

m?) insertions to 5]\41“2rt (mg) - dme.

These momentum independent 3, (p? = m?) insertions can be straightforwardly aborbed
into dmet insertions:

5mc pole — 21(]92 = mg) + 0mepole = 0, (8)

A _
S n) = 2 = m)+ omalpn) = 2 p (31025 44) o)

Finally, if we wish to express the matrix elements M) izrt(e)(mc) in terms of m.(u.), the
shift reads

2
Smg" (pe) = % Cr (3 In % + 4) me(fhe) - (9)

C

3 Analytical results

Before turning to the contributions induced through the renormalization of the charm
quark mass, which are NNLL terms, we first summarize the structure of the NLL result
for the branching ratio for b — Xyv. We write the decay width for b — X,y using a
photon energy cut Ey = %2(1 — §) = Epq,(1 —9) as

F(b - XS/-V)E"/ZEO = F<b - SV) + F(b - S’VQ)EWZEO ) (10)

where the two parts are defined as follows:

G% .
F(b - Sfy) 397 90,4 H/;tsv;fb|2aemmb ,pole |D|2
G 9
L(b— $v9)p,>m, = 9 — ViV 2 Cemmi 1o A,

€ S € 8 e e 16 e
D = OO ) 4 2o (Cé” g+ 30 OO () [ 77" In (ﬁﬂ s H““”) |
1=1

b

(11)
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A= (e_o‘s(“b)ln(é)mzln( Wem — )\ O (u b)|2+@ S OO () O (1) £i5(0) -

J
4,j=1,i<j

(12)

The expressions for the Wilson coefficients C;(u;) can be found in [36]. Their numerical
values we take from table 5.1 in ref. [37]. Writing the results in this specific form, the
functions f;;(0) and r; are understood to be taken from [11] and not from the original
paper [10] where the results were parametrized differently.

Following common practice, we write the branching ratio (without taking into account

non-perturbative corrections) as

(b - XS’V)E7>EO exp
Tl = Xoev) Dol (13)

BR(b — X87>EWZE0 =
where the semileptonic decay rate is given by

. G% My o ole m? m?
L(b— Xee 7) = qT“;lmng(m—g) K(m—g> . (14)

g(2) =1—-82z+82%— 2 — 1222 In(2) is the phase-space factor and the function
2a8(mb) f(Z)

K(z)=1-
with
25 239 25 4 17
f(z):—(l—z)(z—?,w 1 2)+zln( )(20+902—§z +§z3)
1 4 1
+2% In*(2) (36 + 2%) + (1 — 2%) (?7— %2—1-3722) In(1— 2)

—4(14302% + 2") In(z) In(1 — 2) — (1+ 16 22 + 2*) (6 Li(2) — %)

—32232(1 + 2) [ﬁ — 4Li(y/Z) + 4Li(—v/z) — 2In(z) In G ; é)] .

accounts for O(a) QCD corrections. We note that m,. is understood to be the pole mass
in eq. (I4).

We now turn to that part of NNLL corrections which is responsible for the reduction
of the charm quark mass renormalization scheme dependence, as explained in section

We first turn to terms dM; gt induced by m,. renormalization in the matrix elements

MY To this end, we need M5 up to oder ¢!. In [10] have calculated these matrix
elements up to terms €, using Melhn—Barnes representations for generalized propogator
to obtain analytic results in the form of the series in z = (m./ms)* and L = In(z). As in
these calculations the expansion in € was the last step, it is straightforward to calculate

Mlvgt(e) up to order €.

In order to get finite results for these matrix elements, we add counterterms related to
operator mixing as in ref. [10], adapted however, to the operator basis defined in ref. [11].
This step leads to M’ JUT which we decompose as in ref. [10]:

, 416 784
Mt <37\07|b) <g ln% — g51 2 % — 4e ln% PO 4, (0) + ré )e> . (15)
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We obtain for ry = 7‘50) + erél) (note that r; = —% To):

(0)__@_§ 48 — L2_L3 2 L(—4 2 Q 2_3/2
= -3 27( 8—3 +57° +9L( +7r)+36g(3))z+277rz
8 3 2 2 2 4 2 2 3
o (L =6 L(—2+7%) + 18+ 277) 2 -5 (9—182L+126 L + 147%) 2
8im 10 . . o, 8 \
_2_7[§+2(—15—3L—3L +7)z 42 (3L +7T)z+§(—7+3L)z}
(16)
1 _19577 184

182 2 (_ 4 ) e .
0 to™ o5 (T18180+ 75 L 432407 + 467! — 30 LA(-24 + Tr?)

2
49000 ¢ (3) + 120 L(—66 + 1472 + 274"(3))) z— 32 7 (=49 + 6 L 4 24 In(2)) 2%/

Ty = —

81

2
o7 (48 LP =15 L +24 L*(=3 + 7®) — 24 L(3 + 57%) 4+ 1116 + 36 °

4 2 1120 2.5/2 1 2 3 2

+407 +432((3)) 2* — TR (22705 — 2484 L 4 4536 L* — 6036 7
+6 L(—1783 + 1927%) + 8208 ((3) ) 2*

81 221
+2L77T [_T + (15 L2 6L — 4 L(~9+ 7%) + 186 — 107> — 36((3)) 2

—2(-3-6L*+3L%+27° +2L7* + 18((3)) 2’

4
+3 (=67 +66 L +9L*+ 12%2)23} (17)

In these formulas we retained all terms up to order 23, as higher order terms contribute
much less than 1%. Nevertheless, in the numerical evaluations in section H all terms up
to 25 were included.

At the level of the decay width, the implementation of the contribution coming from
renormalization of the c-quark mass in the virtual contributions is (according to eq. (H))
most easily achieved by replacing 72 in eq. (1) by 7{?2) + Ary 9, where

Aryp = dme— (r{% +erf3) . (18)

1,2
dm, ’

At the NLL order, the bremsstrahlung corrections to the decay width are encoded in
the quantities f;;(d) (see eq. (IZ)), which correspond to the interference terms (O;, O;).
In the following, we calculate the shifts Af;; to these quantities induced by the renor-
malization of the charm quark mass. In principle, we calculate the decay width using a
photon energy cut 6 = 0.9 (see eq. (). However, as all bremsstrahlung contributions
which contain charm quark loops are finite for & — 1, we can approximate these terms
by putting § = 1. Numerically the relative error is of order 107

We first calculate the shift Afy7. To this end, we shift the charm quark mass in
the matrix element of (sy¢|Os|b) as in eq. (H) and then work out the interference with
(s79|O7|b). Because of the 1/e term in dm,, the result is ultraviolet singular. In a
full NNLL calculation this singularity gets cancelled when combined with self-energy
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insertions in the charm quark lines in the matrix element of O,. We therefore do the
phase space integrations involved in the derivation of fo; (or Afy7) in d=4 dimensions.
As only the matrix element of Oy depends on m,., the shift A fy7 can be constructed by first
considering the quantity fo7 itself. Using the integral representation for the building block
for photon and gluon emission from the c-quark loop [10], one obtains after integration
over all but one of the phase space parameters

(1= TR+ g e

iy = sy +n]

for = —g (51—2)26/0[1' dy duu*(1 —u)(1 — x)y (19)

Here x,y are Feynman parameters and u is the remaining phase space parameter, 0 <
x,y,u < 1. To solve the integrals, we use the Mellin-Barnes representation for the
generalized propagator

appearing in eq. ([d). 7 denotes the integration path parallel to imaginary axes which
hits the real axes somewhere between (—1 —¢€) and 0. Closing the integration path in the
right s-half plane, one gets an expansion for fo7 in z = (m./my)? and L = In(2).

The shift Afy7 is then obained as
dz d mc ome
Afar = om, 2 D1 _ (19 4 € pat0) (20)

dm, dz mb mp

To summarize, the NNLL contributions due to renormalization of m, in the (Os, O7)

interference are taken into account by replacing for — fz(g) + Afor in eq. ([Z). Explicitly,
we find:

11
o _ 3L g o 6L 4204 (n2 - 20 — 12)2
912 "8
1 1
+ Z(_ll — 672 —4L +6L%)2° + g(—6+ 10L)2* (21)
1 1 .
+ 513+ T0L)2 + (32 + 63L)2
d(0) 811 2 2 2 2
fn” = =5 |g13 - 2m° + 10L + 2L%) +2(~1 +7* — 3L~ )2
1 2
+ Z(—37 — 1872 + 18L2)z2 + g(—7 +20L)z* (22)
5
4 274+ T0L) + (85 + 1261) 27
24 5
871
f = 5 |(165 = 527° — 4(~15 + )L — 18L* — 8L* — 72((3))

—_

+ =(2(=12+7*)L — 3L* + 4L° + 6(—5 + 47° + 6((3)))=

w
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3

— Z(_7 + 1572 + (15 + 27%) L — 15L% + 4L° + 36((3))z* (23)
— %(235 + 487% — 204L + 36L*)2*

+ ﬁ(—lOO?G — 42007 4 19425L — 3150L%)2*

+ 2i50(—3554 — 42007% + 20685L — 3150L2)2°| .

Note that f5 in eq. (1)) is an expanded version in z of the integral expression for fy; in
ref. [11]. We further note that fos = —3 for, fir = — for, fis = 75/for; the same relations
also hold for the respective Af;; (see for instance, [38]).

Finally, we turn to the shift Afyy related to the (Os, Oy)-interference. To derive
this quantity, one has to perform the shift m. — m. + dm. only in one of the two
interfering one-loop amplitudes M™™ = (syg|Os|b). To this end, one writes integral
representations for both, MP*ms and dMPe™s /dm,. Afoy is then represented as a five
dimensional integral (4 Feynman parameters and one phase space parameter), which can
be solved by double Mellin-Barnes techniques (see for instance [39]). Omitting the detail
of this calculation, the terms induced by renormalizing m, in the (Os, O3) bremsstrahlung

terms are implemented in eq. ([Z) by replacing foo — fég) + A fa9, where

mMe O,
Afyy =2—
my

d(0) d(1)
. 24
-~ (f22 + € fa2 ) (24)

Explicity, we get:

9 0.04938272 + (16.64197 + 1.887290L — 0.4444444L* — 0.09876543L?)~
(57.92026 4 47.67037L + 1.185185L* 4 3.134737L* 4 0.05925926 ) 2>
(—93.12628 + 32.36078L — 12.95977L* + 1.777778L* — 0.2962963L*) 2>
(11.92082 — 11.21491L + 2.074074L* — 0.5925926 L*) z* (25)
(0.6482797 — 4.160089L + 0.1810700L* — 0.3292181L?%)z°

(—1.125313 — 4.320604L — 0.2444444L* — 0.3456790L%)25 |

+ o+ + + +

M0 = 18.52926 + 0.9984013L — 0.7407407L? — 0.09876543L>

(

(—247.0180 4 71.16280L — 33.54596 L% 4 4.148148L* — 0.8888889L*)2*
(36.46839 — 40.71149L + 6.518519 L — 2.370370L*) 2"

(—0.9186906 — 20.43831L — 0.08230453 L% — 1.646091L%)2*
(—11.07248 — 26.41251L — 2.503704L* — 2.074074L%) 2" ,

+ o+ + + +

d(1)
22

41.24600 — 7.794263L — 0.7525535L2 + 0.3950617L% + 0.07407407L*
4+ (234.4505 + 44.95451L — 64.68047L* — 0.5200208 L*
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163.5109 + 97.71112L + 11.77458 L% + 6.269473L* + 0.2962963L* 4- 0.1185185L°) 2



—  4.498135L* — 0.05925926L° — 0.08559671L")~

(—368.8104 + 245.2526 L — 95.81857L* + 28.84099L°* — 3.851852L* 4 0.5728395L°) 2

+

+  (—3.708986 — 93.16023L + 34.50854L* — 7.670782L" 4 1.283951L*)2*
+ (—45.10910 — 54.73258 L + 13.39517L* — 4.073160L> + 0.8779150L*)~*
4+ (—92.60340 — 74.33726 L + 10.32328 L% — 4.786008 L + 1.094650L%)2" .

We decided to give the expansion coefficients in these equations in numerical form, because
the exact results are somewhat lenghty. We note that f3, in eq. (2H) is an expanded version
in z of the integral expression for fsy in ref. [11]. We further note that f;; = %fm and
fi2 = —% fa2; the same relations also hold for the respective A f;;.

These analytical results are defined parts of the complete NNLL contribution which can
be used within a future NNLL calculation.

4 Numerical results

In the following analysis we show that the NNLL terms, induced through the renormal-
ization of m,, drastically reduce the error related to the definition of the charm quark
mass in BR(b — X7). To illustrate this feature as clearly as possible, we take the fixed
values shown in Table [ for the input parameters. In particular, we use the fixed ratio

| my, = 4.8 GeV | mepore/my = 0.29 [ my = 91.187 GeV |

| as(mz) = 0.119 | e = 1/137.036 | [V;iVi/Via|* = 0.95 | BRy = 10.49% |

Table 1: Input parameters used in the numerical analysis.

Me pole/ M pole = 0.29. Furthermore, we always leave the semileptonic decay width, which
enters the branching ratio for b — Xy through eq. ([[3), expressed in terms of m. pole as
given in eq. (). In this way the m,. definition dependence of the BR(b — X v) only
comes from the numerator in eq. ([3). For our studies, we neglect electroweak corrections
and non-perturbative effects. As already mentioned, in the bremsstrahlung contribution
we use d = 0.9 for the lower cut in the photon energy (see eq. (IT)).

Starting from mepoe = 0.29 - 4.8 GeV = 1.392 GeV, we first calculate m.(mcpole)s
using the one-loop expression

g (mc,pole)
T

CF] . (28)

mc(mc,pole) = M pole [1 -

To get m.(p.) for an arbitrary scale (typically between 1.25 GeV and 5 GeV), we use
two-loop running (with 5 flavours) according to

(0)

m —m as(ﬂc) WQ%O 7(7%) _ 5177(72)> O‘s(:“/c) - O‘s(ﬂO)]
=m0 (305) 7 |1+ (35 - ) % )

with g = M pole. Numerically, we get the values shown in table In Figure Pl our results
are given for three different values of u;, where p, represents the usual renormalization

9
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[70.(1.25) Jmy, = 0.257 | mo(2.5)/my, = 0.214 | m.(5.0)/m; = 0.187 |

Table 2: m.(pu.)/my for p. =1.25,2.5,5 GeV using me pole/mp = 0.29 as input.

scale of the effective field theory. We compare the branching ratio for b — X,y within
the pole and the MS scheme for the charm quark mass. Within each vertical string the
solid dot represents the branching ratio using m. pole, While the open symbols correspond
to me(pe) for pu. = 1.25 GeV (triangle), p. = 2.5 GeV (quadrangle) and p. = 5.0 GeV
(pentagon), respectively.

4 _l | | | | | | | | | | | | I_
< N ]
S 38 [ ]
X B i
R 36 -
> i ]
" 34 [ -
2 Z i
m | ]
m 3.2 — ]

3 _l | | | | | | | | | | | | | | | | I_

2 4 6 8 10
My, [GeV]

Figure 2: BR(b — X,v) for three values of p,. For each value of i, the left string shows
the NLL results for m. pe (solid dot) and for m.(u.) with p. = 1.25;2.5;5.0 GeV (open
symbols). The right strings show the corresponding NLL results supplemented by the

dm,. mass insertions and the ¥;(p* = m?) insertions (see text for more details).

For each py, the left string shows the value of the branching ratio at the NLL level,
while the right string shows the corresponding value where in addition m, mass insertions
and ¥ (p? = m?) insertions were taken into account, as explained in detail in section
Because the combination of these insertions is zero by construction for the pole scheme

(see eq. (H)), the solid dots are at the same place in the left and the right string for a
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given value of .

From Figure Bl we see that the error related to the charm quark mass definition gets
significantly reduced when taking into account NNLL terms connected with mass inser-
tions. Taking as an example the results for y, = 5 GeV, we find that at the NLL level the
branching ratio evaluated for m.(2.5 GeV) is 12.6% higher than the one based on m. poe,
in agreement with ref. [23]. Including the new contributions, these 12.6% get reduced to
5.1%.

A remark concerning the remaining NNLL terms is in order: As these terms give
contributions to the branching ratio which (up to terms of order o) do not depend on
charm quark mass definition, the error related to m. in the full NNLL result is expected
to stay essentially the same as estimated in the present paper.

However, to obtain a NNLL prediction for the central value of the branching ratio, it
is of course necessary to calculate all NNLL terms.

Summing up, we have shown that the relatively large error related to the definition
of the charm quark mass in the NLL result for BR(b — X,v) gets significantly reduced
(typically by a factor of 2) at the NNLL level. Taking into account the present experi-
mental accuracy of around 10% and the future prospects of the B factories and also of
possible Super-B factories [40,41], we conclude that a future NNLL QCD calculation of
the b — X,y branching ratio will significantly increase the sensitivity of this observable
to possible new physics.
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