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Abstract

We have identified a few technical errors in our recent
paper on the electron-proton instability [1]. Although the
overall qualitative results in the original paper are still cor-
rect, an error in Eq. (42) does cause some minor changes
in the quantitative results including three figures and alter-
nations in several equations. The most significant change
is the required frequency spread for stability given in
Eq. (68), which is now found to be twice that given in the
original paper. This revision and related changes have been
published in a recent Erratum [2]. This note summarizes
the main results of the original paper and the highlight of
the main changes made in the Erratum.

INTRODUCTION

In our recent paper on the study of the transverse
electron-proton (e-p) instability in a long proton bunch [1],
a few errors have been found. Although the overall qualita-
tive results in the paper are still correct, an error in Eq. (42)
does cause some minor changes in the quantitative results
including three figures and alternations in several equa-
tions. Revisions and changes have been published in a re-
cent Erratum [2].

The purpose of this note is two-fold. First, we review
the main results in the original paper and summarize the
major changes made in the Erratum. Second, to supplement
the original paper and the Erratum, we include qualitative
explanations and discussions of some of the results and the
physical basis of the approach taken in the original paper
for exploring the e-p instability.

In order to make it convenient for cross-checking, the
equations here are numbered the same as they are in the
original paper [1]. The summaries are arranged to be rel-
atively self-contained. For readers not intending to go
through the details in the original paper and the Erratum,
this note can be read as a stand-alone paper.

REVIEW OF EARLIER RESULTS

In Ref. 1, we derived the equations of motion for the cen-
troids of the proton bunch and the electron cloud by aver-
aging the linearized equations of the single particle motion
over the frequencies of the transverse motion. Damping
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effects are incorporated consistently as a result of the aver-
aging process. In the model studied, we neglected the syn-
chrotron oscillation of the protons, and the axial motion of
the electrons, as well as the impedance of the surrounding
structure. We showed that the damping exponent is linear
in time for a Lorentzian distribution and quadratic in time
for a Gaussian distribution.

The stability analysis of the e-p interaction was focused
on the frequency spreads of a Lorentzian distribution. In
the laboratory frame, the equations of centroid motion are(
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where Yq = Yq(z, t) is the transverse centroid displace-
ment at the axial position z and time t, the subscripts
q stands for p (protons) or e (electrons), v is the ax-
ial speed of the protons, ∆q characterizes the spread of
transverse oscillation frequency of the particles, ωβ is
the averaged angular betatron frequency of the protons,
Ω(z) = (c/a)

√
2re[λp(z) − λe(z)] ≈ (c/a)

√
2reλp(z)

is the electron bounce frequency inside the proton bunch, c
is the speed of light, a is the proton beam radius, rq is the
classical particle radius, λq(z) is the line density of parti-
cles, G(z) = 2rpc

2λe(z)/(a2ω2
βγ), γ = (1 − v2/c2)−1/2,

and the minus sign is used in the terms containing ∂/∂z
because the proton bunch is assumed to propagate in the
negative z direction.

Our interest is to investigate the general characteristics of
the e-p instability from the asymptotic solution of Eqs. (18)
and (19) instead of examining the evolution of any specific
initial perturbation. A result “colored” by the initial con-
ditions is not regarded to be a general or an intrinsic char-
acteristics of the e-p instability. For example, the larger
growth rate in the tail of the proton bunch due to a larger
initial perturbation in the middle of the bunch that happens
during the early development of the instability is not con-
sidered to be a general characteristic of the e-p instability.
We therefore formulated an analytical approach to derive
an approximation to the time-domain asymptotic solution
of Eqs. (18) and (19) for a proton bunch of nonuniform
line density propagating through a stationary electron back-
ground (the one pass interaction). This approximate solu-
tion of Eqs. (18) and (19), referred to as the “e-p mode”,



has a wavelength proportional to the electron bounce fre-
quency. For small initial perturbations such as sinusoidal
or noisy initial conditions, the “e-p mode” solution should
be a good approximation to the asymptotic state which oc-
curs when t � τ and z′ � v/fe, where τ is the instability
e-folding time, z′ is the distance from the head of the pro-
ton bunch, and fe is the typical electron bounce frequency
inside the proton bunch. In fact, this property has been ob-
served in many numerical solutions of Eqs. (18) and (19).

Following the general formalism, the discussions in the
original paper [1] were concentrated on the growth rate of
the “e-p mode” and the instability threshold inferred from
it. We also derived a dispersion relation for the case of
a uniform density electron background for the frequency-
domain studies. We found that the threshold and the ini-
tial growth rate depend strongly on the initial conditions.
For “non-e-p modes”, the threshold and the initial growth
rate can be quite different from those presented in the pa-
per. It was also found that in the beam frame the elec-
tron oscillation frequency spread causes spatial damping
but no temporal damping. Furthermore, the asymptotic am-
plitude ratio between the proton oscillation and the elec-
tron oscillation is independent of the frequency spread. For
a Lorentzian distribution of transverse oscillation frequen-
cies, the instability eventually damps for sufficiently long
times [t > (z′/v)+ωβJ (z′)/(2∆2

p)], where J (z′) charac-
terizes the coupling between the protons and the electrons,
and is defined by

J (z′) ≈ i

(vωβ)2W

∫ z′

0

Ω2(x)G(x)Φ(x)Ψ(x)dx , (44)

where i =
√
−1, W is the Wronskian of Φ(x) and Ψ(x);

Φ(x) = R(x)eiΘ(x) and Ψ(x) = R(x)e−iΘ(x) are the two
linear independent solutions of Eq. (19) under the condi-
tions ∆e = 0 and Yp = 0.

Numerical results were presented by considering proton
line densities with uniform and parabolic profiles. For the
parabolic proton line density, the “e-p modes” are parabolic
cylinder functions. We found that Eq. (68) in the original
paper overestimates the required frequency spread for sta-
bility.

SUMMARY OF REVISIONS

First, we add some comments to the procedure of ob-
taining the centroid equations [Eqs. (11) and (12)] and
the applicability of Eq. (12) in the case of nonuniform
proton line density. We note that although the centroid
equations were derived from the solutions of the homo-
geneous parts of Eqs. (3) and (4) in the original paper
[1], it is straightforward to show that these centroid equa-
tions can be deduced from the full solutions of Eqs. (3)
and (4) by using the same procedure. We also note that
only the uniform proton line density (λp) was considered
in the process of deriving Eq. (12) given in the original pa-
per. For nonuniform proton line density, the ω2

e term in
Eq. (4) is replaced by a function proportional to λp, and

ye = A(t) exp[i
∫

ωe(t)dt] + A∗(t) exp[−i
∫

ωe(t)dt]. In
this case, Eq. (12) is a good approximation for describing
the motion of the electron centroid only when ∆e � ωeo

and |A−1dA/dt| � ωe.
Next, we note that Eqs. (34), (36), (38) and (41) are ho-

mogeneous Volterra’s integral equations of the second kind
and zero would be the only solution for Ŷ if the equal sign
were used in these equations. However, we should keep
in mind that these equations were derived from Eqs. (18)
and (19) by neglecting the initial condition terms, other-
wise one would obtain inhomogeneous integral equations
(which are known to have a nonzero solution). As stated
earlier, our interest is to study the general characteristics of
the e-p instability from the asymptotic solution of Eqs. (18)
and (19) instead of examining the evolution of any specific
initial perturbation. Thus, we are actually looking for an
approximate solution of an inhomogeneous Volterra’s inte-
gral equation of the second kind at the stage where the in-
stability has grown into oscillations with amplitude much
larger than the small initial perturbation. The homogeneous
integral equations occur in the process of excluding the di-
rect contribution of initial conditions at large t/τ for easier
access to the approximate functional form of the asymp-
totic solution. Hence, in Eqs. (34), (36) and (38), the equal
sign (=) should be replaced by the approximate sign (≈) to
indicate the omission of initial conditions.

The most consequential revision is in Eq. (42) which
should read [2]

ζ(z′, ω) ≈
(

1
ω2 − ω2

β

)
exp

[
iω2

βJ (z′)
ω2 − ω2

β

]
. (42)

In the solution for ζ(z′, ω) given here, the factor 1/(ω2 −
ω2

β) before the exponential function is needed for the in-
verse Fourier transformation to yield the correct solution
for Yp(z′, t). This can be seen from the special case where
in the absence of electrons, J (z′) = 0, and Eq. (42) in the
original paper leads to an undefined solution instead of the
betatron-oscillation solution in Eq. (45).

This change in Eq. (42) causes revisions in the solutions
for Yp and Ye as well as many related equations [2]. The
correct growing parts of Yp and Ye should read

Yp(z′, t) ≈ CpMp(z′)e−∆pt

×
[
I2
0 (u) +

J 2(z′)I2
1 (u)

4u2

]1/2

cos Tp , (55)

and

Ye(z′, t) ≈ CeMe(z′)e−∆pt

×
[

I1(u)
u

− J 2(z′)I2(u)
8u2

]
cos Te , (58)

where Cp and Ce are constants, In(x) is the nth order mod-
ified Bessel function of the first kind. Here,

Mp(z′) = ξ(z′)R(z′) exp
[
(∆p − ∆e)z′/v

]
, (51)



Me(z′) = J (z′)R(z′) exp
[
(∆p − ∆e)z′/v

]
, (59)

ξ(z′) = 2rpc
2λe(z′)/(a2γω2

β) , (16)

u =
√

2ωβJ (z′)(t − z′/v) , (47)

Tp = σp + ψp − ωβ(t− z′/v) + Θ(z′)−J (z′)/4 , (52)

Te = ψe + σe − ωβ(t− z′/v) + Θ(z′)−J (z′)/4 , (60)

σp and σe are constants, ψp = cos−1{2uI0(u)[4u2I2
0 (u)+

J 2(z′)I2
1 (u)]−1/2}, and ψe = 0. The growth rate, Γp(z′, t),

inferred from the Eq. (55) is

Γp(z′, t) ≈

− ∆p +
ωβJ (z′)I1(u)

[
4u2I0(u) + J 2(z′)I2(u)

]
u
[
4u2I2

0 (u) + J 2(z′)I2
1 (u)

] .(65)

Applying the small argument expansions of Bessel func-
tions to the corrected result in Eq. (65) leads to the fol-
lowing instability threshold or the maximal ∆p needed for
stability(

∆p

ωβ

)
t

≈ Max

{
J (z′)

2

[
1 + J 2(z′)/32
1 + J 2(z′)/16

]}
, (68)

which is about twice as large as that given in the original
paper [1]. As a result, the instability threshold presented in
the numerical example should be near (∆p/ωβ)t ≈ 2.9%
instead of 1.4% obtained previously [1].

The correction in Eq. (42) also causes some revisions
in Fig. 3 - 4, as well as in Eqs. (A1), (A3), (A11)-(A13),
(A16), and (A17) in Appendix A of the original paper [1].
The Erratum [2] also includes some corrections to some
typographical errors in Eqs. (B4), (B6), (B8), and (B9).
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