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Abstract

We gauge the impact of soft-gluon resummation on quark distributions by per-
forming a simple fit of Deep Inelastic Scattering structure function data using next-
to-leading order (NLO) and next-to-leading-logarithmic (NLL)-resummed coeffi-
cient functions. We make use of NuTeV charged-current data, as well as New Muon
Collaboration (NMC) and Bologna–CERN–Dubna–Munich–Saclay (BCDMS)
neutral-current results, which probe large values of x. Our results suggest that
the inclusion of resummation effects in global fits of parton distributions is both
feasible and desirable, in order to achieve at large x the accuracy goals of the LHC
physics program.
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1 Introduction

A precise knowledge of parton distribution functions (PDF) in the proton is going to
be one of the cornerstones of the physics analysis of LHC data [1], as well as a key
ingredient for studies at other high energy accelerators. In hadron collisions, in fact,
all high-p⊥ final states are produced through the hard scattering of partons, thus both
potential new physics signals and Standard Model backgrounds are affected in shape
and normalization by parton distributions.

PDF’s are currently determined by several groups [2–4] through fits to different sets
of high-energy data. All current fits are performed at least at next-to-leading order
(NLO) in perturbative QCD, while the remarkable recent calculation of the three-loop
Altarelli–Parisi splitting functions [5,6] has made it possible to perform consistent next-
to-next-to-leading order (NNLO) fits, by restricting the data set to cross sections for
which the theoretical calculation has been performed to that order.

It is well known, on the other hand, that finite-order QCD calculations are limited
in their range of applicability by the occurrence of large logarithms near the boundaries
of phase space, both at large and at small values of x. These logarithms must be
resummed, in order to enlarge the region in which perturbation theory can be trusted.
Large-x logarithms, in particular, are known to be related to soft and collinear gluon
emission, and their resummation (threshold resummation) is well understood [7,8], and
applied to a wide range of hard QCD processes (see, for example, [9]).

In this paper we shall address the possibility of including the effect of threshold
resummations in parton fits, and we shall gauge the impact of these effects on large-x
quark distributions, by performing a simple analysis of Deep Inelastic Scattering (DIS)
data.

We believe that including resummations would be useful in several respects. From
a phenomenological viewpoint, making use of resummed predictions would allow for
the inclusion of more large-x data points in parton fits. In DIS, for example, data
corresponding to values of W 2 = Q2(1 − x)/x smaller than about 15 GeV2 are typi-
cally excluded from the fits [10], since they cannot be accounted for by making use of
NLO perturbative results. Including resummations should lower this bound consider-
ably [11]. Resummations are also known to reduce the theoretical uncertainty of QCD
predictions [12], which would correspondingly decrease one of the sources of error for
PDF’s. Finally, it should be emphasized that, although soft-gluon resummations modify
hard cross sections only near partonic threshold, they can affect parton distributions at
smaller values of x through sum rules as well as evolution.

Taking a more formal viewpoint, including resummation effects would bring about
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significant progress in the process of giving a precise definition of a fitted leading twist

PDF. Resummations, in fact, are inevitably entangled with power corrections, which
become increasingly important near the edges of phase space. This, however, should
not be understood as an extra source of ambiguity: on the contrary, the inclusion of
resummations highlights an inherent ambiguity, which is always present when finite-
order perturbative predictions are used to extract from data the values of operator
matrix elements. In general, it is not consistent to attribute a fixed twist to quantities
evaluated at finite perturbative orders in a mass-independent regularization scheme,
such as dimensional regularization. In such a scheme, one must first give a precise
definition of the perturbative contribution to all orders, which entails a definition of
power-suppressed contributions. Such a definition can only be given when all-order
contributions have been computed, at least in the region of phase space where power
corrections are expected to become dominant. This somewhat formal issue could become
practical when a sufficiently precise comparison between PDF’s obtained by fitting data
and PDF’s obtained from the lattice becomes possible.

Finally, it should be noted that resummed predictions exist for most of the cross
sections used in global PDF fits, although with a varying degree of accuracy. The gold-
plated process remains inclusive DIS, where, remarkably, we now have a full next-to-
next-to-next-to-leading order (NNNLO) QCD prediction [13], as well as next-to-next-to-
leading logarithmic (NNLL) soft-gluon resummation [14], and refined QCD-motivated
models of the leading power corrections [15]; even a class of non-logarithmic terms
has been shown to exponentiate [16]. The Drell–Yan cross section is understood with
almost the same degree of accuracy [14, 16], with the added feature of a recent NNLO
computation of the vector boson rapidity distribution [17]. This is interesting because it
has recently been shown [18] that reasonably competitive parton fits can be obtained on
the basis of these two processes only. If one wishes to rely upon a wider data set, next-
to-leading logarithmic (NLL) resummed predictions exist also for the prompt-photon
production cross section [19]; there, however, phenomenological problems remain, partly
associated with a possible inconsistency of different data sets, and possibly related to
the need to perform a more refined resummation [20] and to include consistently power-
suppressed corrections [21]. Jet production in hadron collisions is more problematic: in
fact, although the theoretical tools to perform NLL resummation have been available
for some time [22] and a phenomenological study has been performed in [23], it has
recently been pointed out that, for most jet definitions, jet cross sections are plagued
by nonglobal logarithms [24], starting at NLL level. Pushing the accuracy of soft-gluon
resummation beyond leading logarithms (LL) for these cross sections will thus require
more work.

It seems fair to conclude that enough resummation technology exists to perform a
resummed global PDF fit. Including only DIS and Drell-Yan data, such a fit could
actually be consistently performed at NNLO/NNLL level; in order to further constrain
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combinations of partons, which are hard to determine using these data only, one might
then decide to trade some logarithmic accuracy in exchange for more data coverage.

In order to assess the impact that the inclusion of resummations might have on parton
distributions, and more specifically on large-x quark distributions, in the following we
shall perform a fit of large-x DIS data, using both NLO and NLL-resummed coefficient
functions. It should not be regarded as an attempt to a global fit (see, e.g., Ref. [25] for
an analysis of large-x PDF’s in the context of a global fit), since we shall clearly be forced
to make several approximations in order to extract partons from such a comparatively
small data set. Rather, it should be seen as a toy model of a resummed fit, providing a
rough quantitative assessment of the impact of resummations. We find that soft-gluon
effects typically suppress quark distributions by amounts ranging from a few percent to
about 15− 20% at large but not extreme values of x, 0.55 ≤ x ≤ 0.75, for moderate Q2.
Sum rules also force a compensating enhancement in the distribution at smaller values
of x, which, however, cannot be reliably determined within our current approximations.
These effects would indeed warrant a more detailed investigation, if the current goal for
PDF-related uncertainties (a few percent) were to be enforced also at these relatively
large values of x.

2 Data and parametrizations

Large-x DIS data come predominantly from fixed-target experiments. In order to have
at our disposal different linear combinations of large-x partons, we shall consider here
charged-current (CC) data from neutrino-iron DIS, collected by the NuTeV collabora-
tion [26, 27], and neutral-current (NC) data from muon scattering from the NMC [28]
and BCDMS [29,30] collaborations.

For our purposes, it will be sufficient to examine data at fixed values of Q2, which
we shall pick not too small so as to minimize the impact of power corrections, which are
enhanced at the boundaries of phase space. We also require good data coverage for all
the three experiments considered. We shall use Q2 = 31.62 GeV2 and Q2 = 12.59 GeV2,
which corresponds to a cut in W 2 between 4 and 5 GeV2, given the measured values
of x. We shall check at the end that our results at the two selected values of Q2 are
compatible with NLO perturbative evolution. Since threshold resummation naturally
takes place in Mellin moment space, our procedure will be to construct parametrizations
of the data at the chosen values of Q2, compute Mellin moments of the parametrizations,
and then use them to extract moments of the corresponding PDF’s, with and without
resummation. The difference between resummed and unresummed moments of PDF’s is
per se a useful and solid result, since any QCD analysis can in principle be reformulated
in Mellin space. In any case, we will also provide a simple x-space parametrization in
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order to illustrate the impact of the results in a more conventional manner. Studies of
DIS structure functions in moment space were also performed in [31], by making use of
data from the CLAS detector at Jefferson Laboratory; the corresponding values of Q2

are however too small for a perturbative study like the present one.

Let us now turn to the NMC, BCDMS and NuTeV data sets we are considering. An
efficient and convenient parametrization of NMC and BCDMS data for the NC structure
function F2, for proton, deuteron, and separately for the nonsinglet combination, has
been provided in Ref. [32], and was recently upgraded for protons with the inclusion
of HERA data in Ref. [33]. The parametrization was constructed by first generating a
large set of Monte Carlo copies of the original data, including all information on errors
and correlations; subsequently, a neural network was trained on each copy of the data,
yielding a set of parametrizations which, taken together, give a faithful and unbiased
representation of the probability distribution in the space of structure functions.

In principle, the neural parametrization can be used for any values of x and Q2. In
practice, errors will become increasingly large when one moves away from the region
of the data. We use values of Q2 which are well inside the measured region, with
data coverage up to x = 0.75. Specifically, we will be interested in the nonsinglet
structure function F ns

2 (x, Q2), which is unaffected by the gluon contribution and provides
a combination of quark distributions, essentially u − d, which is linearly independent
from the ones sampled by NuTeV data. The neural parametrization of F ns

2 (x, Q2) was
previously used [34] in conjunction with the technique of truncated Mellin moments [35]
for a determination of αs, which is unaffected by parametrization biases.

To illustrate the quality of the data, we show in Fig. 1 the nonsinglet structure
function F ns

2 (x, Q2), computed with the neural parametrization at our chosen values of
Q2, and for x = n/40, n = 1, . . . , 39. The central values are given by the averages of the
results obtained with the one thousand neural networks of the NNPDF collaboration,
and error bars are the corresponding standard deviations. Error bars are relatively large,
because F ns

2 (x, Q2) is the difference between proton and deuteron structure functions,
which entails a loss of precision. Central values and errors for the moments are similarly
obtained by computing the moments with each neural network, and then taking averages
and standard deviations.

NuTeV provides data for the CC structure functions F2 and F3. Since data are taken
on an iron target, they need to be rescaled to include nuclear corrections, which were
computed in [36] by fitting the ratio F Fe

2 /FD
2 . The required smearing factor is given by

N(x) = 1.10 − 0.36 x− 0.28 exp(−21.94 x) + 2.77 x14.41 . (2.1)

We consider first the charged-current structure function F3 and its parton content. One
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Figure 1: A sampling of the neural parametrization of NMC and BCDMS data for
F ns

2 (x, Q2) at Q2 = 12.59 GeV2 (a) and at Q2 = 31.62 GeV2 (b), from the NNPDF
Collaboration [32].

has

xF3 =
1

2
(xF ν

3 + xF ν̄
3 ) = x





∑

q,q′

|Vqq′|
2 (q − q̄) ⊗ Cq

3



 , (2.2)

where Vqq′ are the relevant Cabibbo–Kobayashi–Maskawa (CKM) matrix elements and
Cq

3 is the appropriate coefficient function. We fit the data at our chosen values of Q2

using the functional form

xF3(x) = Cx−ρ(1 − x)σ(1 + kx) . (2.3)

Eq. (2.3) is quite similar to the functional form which is used as initial condition for
parton densities in the global analyses [2,3]. We checked the stability of our fit by mod-
ifying the last factor of Eq. (2.3) with the inclusion of further powers of x or logarithmic
terms in x. We find that the parametrization (2.3), with four tunable parameters, is
reliable enough to reproduce the data with quite small errors on the best-fit parameters
and reasonable values of the χ2 per degree of freedom.

The best-fit values at Q2 = 31.62 GeV2 are C = 0.103 ± 0.012, ρ = 0.294 ± 0.034,
σ = 3.325 ± 0.089, k = 42.972 ± 4.700, corresponding to χ2/dof = 7.20/6. At Q2 =
12.59 GeV2 we find instead C = 0.054 ± 0.005, ρ = 0.245 ± 0.038, σ = 3.374 ± 0.145,
k = 99.719± 0.247, corresponding to χ2/dof = 2.06/6. The data and the best-fit curves
at the relevant values of Q2 are shown in Fig. 2.

The situation for the structure function F2, extracted from charged-current data, is
slightly more complicated since there is a singlet component, and thus gluon-initiated
processes also contribute. Such processes are not logarithmically enhanced at large x,
and in fact, in the region of interest for our purposes, the gluon contribution to the
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Figure 2: NuTeV data on the structure function xF3, at Q2 = 12.59 GeV2 (a) and at
Q2 = 31.62 GeV2 (b), along with the best fit curve parametrized by Eq. (2.3).

structure function is significantly suppressed. We will handle it by subtracting it from
the data point by point, using a gluon distribution determined by a global fit. The
parton content of the charged-current structure function F2 is

F2 ≡
1

2
(F ν

2 + F ν̄
2 ) = x

∑

q,q′

|Vqq′|
2 [(q + q̄) ⊗ Cq

2 + g ⊗ Cg
2 ] = F q

2 + F g
2 . (2.4)

We will proceed by fitting only F q
2 and computing the gluon-initiated contribution using

the gluon distribution from the NLO set CTEQ6M [2]. We have checked that our results
are not affected by the specific choice of gluon density, by repeating the calculation with,
e.g., the set MRST2001 [3]. As above, we pick the parametrization

F q
2 (x) = F2(x) − F g

2 (x) = A x−α(1 − x)β(1 + bx) . (2.5)

When doing the fit, we assume that we can neglect correlations among data points, as
well as the error on F g

2 with respect to the error on F2 quoted by NuTeV. At Q2 =
31.62 GeV2, the best fit values for the parameters in Eq. (2.5) are A = 0.240 ± 0.002,
α = 0.562 ± 0.020, β = 3.211 ± 0.065, b = 13.085 ± 0.767, with χ2/dof = 9.99/6. At
Q2 = 12.59 GeV2, on the other hand, we find A = 0.038 ± 0.005, α = 0.816 ± 0.021,
β = 2.697 ± 0.050, b = 66.804 ± 7.583, with χ2/dof = 9.55/6. In Fig. 3 we plot the
data points of F q

2 (x) at the chosen values of Q2, along with the curve given by Eq. (2.5),
according to the central values of the best-fit parameters.

At this point we have at our disposal parametrized expressions, including errors
and correlations for the parameters, within the stated approximations, for the structure
functions xF3, F q

2 and F ns
2 . We can thus compute moments for the specified values of

Q2, and extract the moments of the corresponding parton densities by dividing out the
appropriate coefficient functions, with and without resummations.
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Figure 3: NuTeV data on the quark-initiated contribution F q
2 to the structure function

F2, for Q2 = 12.59 GeV2 (a), and Q2 = 31.62 GeV2 (b). The solid lines are the best fit
predictions according to Eq. (2.5).

3 A simple parton fit

Having subtracted the contribution of gluon-initiated processes from the charged current
structure function F2 in Eq. (2.4), the factorization

Fi(x, Q2) = x
∫ 1

x

dξ

ξ
qi

(

ξ, µ2
F

)

Ci

(

x

ξ
,
Q2

µ2
F

, αs(µ
2
R)

)

(3.1)

applies to all the structure functions we shall be considering (Fi = {F2, xF3, F
ns
2 }). In

all cases qi is a combination of (anti)quark distributions, while Ci is the appropriate
coefficient function.

The coefficient functions Ci for quark-initiated DIS contain terms that become large
when the Bjorken variable x for the partonic process is close to x = 1, which forces
gluon radiation from the incoming quark to be soft or collinear. At O(αs), for example,
the coefficient functions can be written in the form,

CNLO
i

(

x,
Q2

µ2
F

, αs(µ
2
R)

)

= δ(1 − x) +
αs(µ

2
R)

2π
Hi

(

x,
Q2

µ2
F

)

. (3.2)

Treating all quarks as massless, the part of Hi which contains terms that are logarith-
mically enhanced as x → 1 reads:

Hi,soft

(

x,
Q2

µ2
F

)

= 2CF

{[

ln(1 − x)

1 − x

]

+

+
1

(1 − x)+

(

ln
Q2

µ2
F

−
3

4

)}

. (3.3)
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Taking a Mellin transform, the contributions proportional to αs[ln(1−x)/(1−x)]+ and
to αs[1/(1− x)]+ correspond to double (αs ln2 N) and single (αs ln N) logarithms of the
Mellin variable N . Retaining only terms that are singular at large N one finds in fact

Ĥi,soft

(

N,
Q2

µ2
F

)

= 2CF

{

1

2
ln2 N +

[

γE +
3

4
− ln

Q2

µ2
F

]

ln N

}

. (3.4)

The resummation of soft-gluon effects, responsible for this singular behaviour of
DIS structure functions, has been well understood for a long time [7, 8]: it results in
exponentiation of all singular contributions to the Mellin moments of the coefficient
functions Ci at large values of the moment variable N . In the MS factorization scheme,
soft resummation was implemented in [14, 37] in the massless approximation, and in
[38, 39] for heavy quark production. In the following, we shall consider values of Q2

much larger than the relevant quark masses, so that we can safely apply the results in
the massless approximation.

The pattern of exponentiation of logarithmic singularities is nontrivial: one finds
that Mellin moments of the coefficient functions can be written as

Ĉres
i

(

N,
Q2

µ2
F

, αs(µ
2
R)

)

= R

(

N,
Q2

µ2
F

, αs(µ
2
R)

)

∆

(

N,
Q2

µ2
F

, αs(µ
2
R)

)

, (3.5)

where R is a finite remainder, nonsingular as N → ∞, while [7, 8, 40]

ln ∆

(

N,
Q2

µ2
F

, αs(µ
2
R)

)

=
∫ 1

0
dx

xN−1 − 1

1 − x

{

∫ (1−x)Q2

µ2

F

dk2

k2
A
[

αs(k
2)
]

+ B
[

αs

(

Q2(1 − x)
)]

}

. (3.6)

In Eq. (3.6) the leading logarithms (LL), of the form αn
s lnn+1 N , are generated at each

order by the function A. Next-to-leading logarithms (NLL), on the other hand, of the
form αn

s lnn N , require the knowledge of the function B. In general, resumming NkLL to
all orders requires the knowledge of the function A to k +1 loops, and of the function B
to k loops. In the following, we will adopt the common standard of NLL resummation,
therefore we need the expansions

A(αs) =
∞
∑

n=1

(

αs

π

)n

A(n) ; B(αs) =
∞
∑

n=1

(

αs

π

)n

B(n) (3.7)

to second order for A and to first order for B. The relevant coefficients are

A(1) = CF ,

A(2) =
1

2
CF

[

CA

(

67

18
−

π2

6

)

−
5

9
nf

]

, (3.8)

B(1) = −
3

4
CF .
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Notice that in Eq. (3.6) the term containing the function A(αs) resums the contributions
of gluons that are both soft and collinear, and in fact the anomalous dimension A can be
extracted order by order from the residue of the singularity of the nonsinglet splitting
function as x → 1. The function B, on the other hand, is related to collinear emission
from the final state current jet. In the case of heavy quarks, the function B(αs) needs to
be replaced by a different function, called S(αs) in [38], which is instead characteristic
of processes with massive quarks, and includes effects of large-angle soft radiation.

Turning to our fit, we observe that, upon taking Mellin moments, the convolution
in Eq. (3.1) turns into a product, and it becomes straightforward to extract moments
of the parton combinations qi(x, Q2) at NLO, or with NLL resummation. Setting µF =
µR = Q, one simply finds

q̂NLO
i (N, Q2) =

F̂i(N − 1, Q2)

ĈNLO
i (N, 1, αs(Q2))

; q̂res
i (N, Q2) =

F̂i(N − 1, Q2)

Ĉres
i (N, 1, αs(Q2))

, (3.9)

where the resummed coefficient function has been suitably matched to NLO, in order
to avoid double counting of logarithmic contributions.

Since we are considering only three measurements, we need to introduce further
approximations in order to be able to extract individual parton distributions. We will
use isospin symmetry of the sea, so that ū = d̄ and s = s̄; further, we shall take the charm
quark distribution to vanish and, for simplicity, we will impose a simple proportionality
relation between antiquark distributions, s̄ = κ ū. In the fit shown below, we shall
assume κ = 1/2. All of these assumptions are essentially harmless at large x, where sea
quarks are negligible: they allow us, however, to solve for the valence quark distributions
u, d and, say, s. The expressions for the parton combinations qi become particularly
simple if one approximates the elements of the CKM matrix by neglecting terms of order
(sin θC)4 in |Vqq′|

2. Within the stated approximations, one finds then

q2(x, Q2) = u(x, Q2) + d(x, Q2) + 3 s(x, Q2) ,

q3(x, Q2) = u(x, Q2) + d(x, Q2) − s(x, Q2) (3.10)

qns
2 (x, Q2) =

1

6

(

u(x, Q2) − d(x, Q2)
)

,

which is easily inverted to give u, d and s. Having extracted the moments of the parton
combinations in Eq. (3.10), one easily derives moments of individual quark distributions.
In order to estimate the error on the moments, we proceed as follows. Regarding F ns

2 ,
the neural parametrization is designed to allow for a simple calculation of the error on
any functional of the data: one simply computes the standard deviation of the desired
observable over the set of neural nets. A similar procedure would also yield correlations
between different observables (in our case moments). In the present case, we shall ne-
glect correlations between moments since we do not have a sufficiently reliable method
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Figure 4: Moments of the resummed and NLO up quark distribution with statistical
errors, in the range 2 ≤ N ≤ 15, at Q2 = 12.59 GeV2.

Figure 5: As in Fig. 4, but at Q2 = 31.62 GeV2.
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to evaluate them in the case of NuTeV data. Concerning charged-current structure func-
tions, we mimick the neural method by generating a Monte Carlo set of parametrizations
of F2 and F3 at the chosen values of Q2, assuming the parameters of our fits are gaussian
distributed around their mean values with the stated errors. We then compute errors
on moments as standard deviations over the Monte Carlo set.

Our results for the moments of the valence up quark distribution are shown in Figs. 4–
5. The trend is clear, as could have been anticipated by comparing the resummed co-
efficient function with the NLO one: in the MS scheme, resummation enhances the
moments of the coefficient function, and thus suppresses the moments of quark distribu-
tions, with an effect increasing with the moment index N . The effect is unequivocal at
both values of Q2, since resummed and NLO moments differ by more than their error,
beginning with N ∼ 6. At Q2 = 31.62 GeV2 errors are somewhat smaller, however the
effect of resummation is also slightly reduced, so that errors tend to have a somewhat
larger overlap. In fact, as observed, e.g., in Ref. [38], LL and NLL terms in the Sudakov
exponent are weighted by powers of αs and the coupling constant is larger when evalu-
ated at a lower scale. The trend is, in any case, still clearly visible, and the shift in the
central values is of comparable size.

The down quark distribution is significantly smaller than the up quark distribution
at large x, thus large-N moments are suppressed. With our current, relatively small
data set, the effect of resummation on the down quark distribution is completely over-
shadowed by statistical errors, so that the values of the moments are compatible with
0 beginning at N ∼ 10. Similarly, moments of the strange quark distribution cannot
be reliably determined with these data. We shall then concentrate on the up quark
distribution for the remainder of our analysis. One may just note in passing that re-
summation does not appear to shift even the central values of the moments of d(x, Q2):
taken seriously, this would suggest that the bulk of the effect is carried by the largest
valence distribution for the chosen hadron.

In order to provide a more conventional (and possibly a more practical) parametriza-
tion of the effect of resummations, we have also performed a fit of the moments presented
in Figs. 4–5 to a simple x-space parametrization, choosing:

u(x) = D x−γ (1 − x)δ . (3.11)

The functional form (3.11) is sufficient to fit the moments of the up quark distribution
with small errors on D, γ and δ, and a low χ2/dof. We have checked that the inclusion
of other terms, for example a further factor linear in x, as in Eqs. (2.3) and (2.5) does
not significantly improve the quality of the fit. The results using the fitting function
(3.11) are shown in Figs. 6–7. The best-fit parameters at Q2 = 12.59 GeV2 are D =
3.025 ± 0.534, γ = 0.418 ± 0.101 and δ = 3.162 ± 0.116, with χ2/dof = 1.62/11, for the
NLO fit, while the resummed fit yields D = 4.647 ± 0.881, γ = 0.247 ± 0.109 and δ =
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3.614± 0.128, with χ2/dof = 0.64/11. At Q2 = 31.62 GeV2 we find D = 2.865± 0.420,
γ = 0.463 ± 0.086, δ = 3.301 ± 0.098 and χ2/dof = 1.10/11 for the NLO fit, as well as
D = 3.794 ± 0.583, γ = 0.351 ± 0.090, δ = 3.598 ± 0.104 and χ2/dof = 0.53/11 for the
resummed fit∗. The error bands in Figs. 6–7 correspond to a prediction at one-standard-
deviation confidence level. They are obtained, as above, by generating a Monte Carlo
sample of parametrizations of the stated form, assuming a gaussian distribution for the
parameters D, γ and δ with the stated errors; thus, they reflect only statistical errors
and do not take into account biases due to the simple choice of functional form.

To display more clearly the quantitative effect of the resummation, we also present
in Fig. 8 the central values for the normalized deviation of the resummed prediction
from the NLO distribution, ∆u(x) = (uNLO(x) − ures(x)) /uNLO(x), at the two chosen
values of Q2.

Figure 6: Resummed and NLO up quark distributions, at Q2 = 12.59 GeV2, recon-
structed by fitting moments with a simple functional form, u(x) = Dx−γ(1 − x)δ. The
MRST2001 NLO up quark distribution at the appropriate Q2 is included for comparison.
The plot shows the edges of a band at the one-standard-deviation confidence level.

A few comments concerning Figs. 6–8 are in order. First of all, an evident feature of
the result is the change in sign of the effect around the point x = 1/2. This is a stable
feature of all our fits, and it can be traced back to the momentum sum rule, which is
essentially unaffected by the resummation. Depletion of valence quarks at large x is
thus partly compensated by an increase at smaller values of x. The further change in
sign at values of x around 0.1, on the other hand, cannot be taken too seriously, since

∗We note that the values of χ2/dof are very small. This might be due to the fact that we are
neglecting correlations between moments.
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Figure 7: As in Fig. 6, but at Q2 = 31.62 GeV2.

it happens in a region which is dominated by extrapolation within our current data set,
so that errors are correspondingly very large. The impact of resummation is larger, as
must be expected, at the lower value of Q2.

At Q2 = 12.59 GeV2 and large x, it is to be expected that power corrections will
play a role too. We have chosen, however, not to introduce them explicitly in our
parametrization of Fi(x, Q2) since, as discussed in the introduction, their effect is in-
evitably tied to the precise treatment of the resummation. Disentangling resummations
and power corrections is best left to a more precise quantitative analysis performed in
the context of a global fit. We have, in any case, checked that target mass corrections
do not significantly influence our results.

We have verified that our fits, which are performed independently at two fixed val-
ues of Q2, are consistent with perturbative evolution. To this end, we have evolved the
moments of the up quark distribution, starting at Q2 = 31.62 GeV2, using the NLO
Altarelli–Parisi anomalous dimension, down to Q2 = 12.59 GeV2, and we have compared
the results of the evolution with the direct fits of Figs. 4–5. The comparison is shown in
Figs. 9–10. The results are fully compatible within errors, and we believe that the agree-
ment could be further improved if one included power corrections, which are relevant
especially at Q2 = 12.59 GeV2. In the evolution, we have used αs(12.59 GeV2) = 0.2394,

corresponding to αs(31.62 GeV2) = 0.2064, or to Λ
(5)
QCD = 226 MeV , with appropriate

matching at the b-quark mass threshold, set to mb = 4.5 GeV. Our choices are consistent
with Ref. [2].

From a phenomenological point of view, we see that the impact of soft-gluon re-
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Figure 8: Central value for the relative change in the up quark distribution, ∆u(x) ≡
(uNLO(x) − ures(x)) /uNLO(x), at Q2 = 12.59 (a) and 31.62 GeV2 (b).

Figure 9: Comparison of fitted moments of the NLO up quark distribution, at Q2 =
12.59 GeV2, with moments obtained via NLO evolution from Q2 = 31.62 GeV2.

summation on quark distributions can be sizeable, albeit only at values of x which are
quite large, say 0.55 < x < 0.75. More precisely, as one can verify from Fig. 8, the sup-
pression of the resummed up quark distribution with respect to the NLO one reaches
5% at x ≃ 0.58, 10% at x ≃ 0.65 and 20% at x ≃ 0.75 for Q2 = 12.59 GeV2, while
for Q2 = 31.62 GeV2 the same suppression factors are reached at x ≃ 0.61, x ≃ 0.69
and x ≃ 0.8, respectively. Such values of x can be relevant for several high energy pro-
cesses, ranging from the production of high-mass Drell–Yan pairs, to high-ET jets, to
the exchange of heavy resonances in the t-channel of hadron collisions. Considering, for
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Figure 10: As in Fig. 9, but comparing NLL-resummed moments of the up quark density.

example, the eccess of high-ET jets seen at the Tevatron Run I by CDF [41], the effect
of including resummations in a PDF fit would have been to actually enhance the dis-
crepancy between theory and experiment, since resummations suppress valence quarks
at large x, and thus would have lowered the QCD prediction. Of course, a fully consis-
tent treatment would have required making use of a resummed partonic cross section
as well, which might have had a balancing effect. Interestingly, resummation may well
be moving valence quarks from large to medium values of x, though the evidence for
that in our present fit is at best qualitative. If that were the case, one might encounter
several competing effects, depending on the partonic subprocess. For example, in Drell-
Yan production at high mass and high rapidity, the heavy vector boson is produced by
fusion of high-x and low-x partons, and one could have a depletion when the high-x
parton is a quark, or a slight enhancement (or no effect at all) when the high-x parton is
a gluon and the quark has lower momentum fraction. Finally, it should be noted that, in
a fully consistent treatment, the depletion of the cross section due to resummed PDF’s
may well compete against the enhancement of the hard partonic cross section which is
commonly found when resumming logarithms to that accuracy, resulting in a reduced
impact of soft gluons at hadron level.

4 Outlook

We have performed a first attempt to assess the impact of soft-gluon resummation on fits
of parton distribution functions. We have argued that a global fit including soft-gluon
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effects is both feasible and desirable, from a theoretical as well as phenomenological point
of view. That being said, it is useful to gauge the size of the effect that resummation
might have. To that end, we have performed a simple fit of large-x DIS data from
the NuTeV, NMC and BCDMS collaborations. Our fit is not meant to be used as a
complement or a substitute for a global fit: it is based on a small set of data, concentrated
at large x, and does not consistently include all the constraints arising from sum rules and
evolution which are properly taken into account in global fits. Our results should instead
be seen as a first semiquantitative study of the impact of soft-gluon effects, and we believe
that they might be an incentive for the dedicated collaborations performing PDF fits to
include these effects in their algorithms. We have shown that, in the MS scheme, the
main effect of soft resummation is to suppress valence quark distributions at large x, by
an amount ranging from a few percent to as much as 20%, in the range 0.55 < x < 0.75.
This suppression may be partly compensated by a weaker enhancement, of the order
of a few percent, at medium values of x, 0.1 < x < 0.5, an effect which however
falls largely inside our current statistical errors. It should be noted that a sizeable
effect of this kind at large values of x and moderate Q2 will feed through to smaller
values of x at large Q2 via evolution. We expect that including resummations should
help to lower the theoretical uncertainty in the determination of PDF’s, and more in
general in QCD cross sections, both by reducing scale uncertainties, and by allowing
for stronger constraints on large-x partons, thanks to the inclusion of more data points.
We note also that the effect of resummations on PDF’s (a suppression) may turn out to
be competing with the effect on partonic cross sections (in general, an enhancement).
Disentangling such competing effects to gain a precise quantitative understanding of
soft gluon effects on hadron-level cross sections can only be achieved with a consistent
treatment of resummations, including their effects both in PDF global fits and in hard
cross sections.
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