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Momentum spectra, anisotropic flow, and ideal fluids
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If the matter produced in ultrarelativistic heavy-ion collisions reaches thermal equilibrium, its
subsequent evolution follows the laws of ideal fluid dynamics. We show that general predictions can
be made on this basis alone, irrespective of the details of the hydrodynamical model. We derive
several scaling rules for momentum spectra and anisotropic flow (in particular the elliptic flow, v2,
and the hexadecupole flow, v4) of identified particles. Comparison with existing data is briefly
discussed, and qualitative predictions are made for LHC.
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An ultrarelativistic Au-Au collision at RHIC produces
a dense system of interacting particles and fields, which
then expands into the vacuum. Ideal-fluid models have
been succesful in describing this expansion [1]: they are
able, to a certain extent, to reproduce the magnitude and
the transverse momentum (pt) dependence of elliptic flow
of identified particles, together with their pt spectra, for
momenta pt

<∼ 2GeV/c.
In this Letter, we derive general properties of momen-

tum spectra of identified particles emitted by an ideal
fluid, which do not depend on the specific model used.
We shall introduce an important distinction between slow
particles, whose velocity equals the fluid velocity at some
point, and fast particles, whose velocity exceeds the max-
imum fluid velocity. We discuss in detail the implications
of ideal-fluid behaviour for both slow and fast particles.

The expansion of a plasma into a vacuum goes through
successive steps. If the particle mean free path inside the
plasma is small enough, the plasma thermalizes, leading
to a collision-dominated, isentropic expansion, which is
described by ideal (i.e., inviscid) fluid dynamics. On the
contrary, the late stage of the expansion is collision-free.
In between, a transition regime takes place. This transi-
tion regime must in principle be modelled by transport
theory, which encompasses both isentropic and collision-
free limits [2, 3].

In the context of heavy-ion collisions, however, the
transition regime is most often modelled by a simple
Ansatz, the sudden freeze-out approximation, which is
a sharp transition between the two extremes: one first
defines a space-time hypersurface Σ along the history of
the ideal fluid, on which the transition is expected to
take place. At each point of Σ, free-streaming particles
are emitted according to thermal distributions in the rest
frame of the fluid. Integrating over Σ, one obtains for a
given particle the following momentum spectrum [4]:

E
dN

d3p
= C

∫

Σ

exp

(

−pµuµ(x)

T

)

pµdσµ, (1)

where uµ(x) is the fluid 4-velocity at point x on Σ, C

is a normalization constant, and we have neglected the
effects of quantum statistics (in practice, the latter may
only be significant for pions at low pt). For simplicity, we
also assume that the fluid temperature T is everywhere
the same on Σ, but the results derived in this paper do
not rely on this assumption. The possibility has also
been raised that particles of different types [5] or with
different transverse momenta pt [6] have different freeze-
out temperatures.

Let us briefly discuss the validity of the Cooper-Frye
Ansatz, Eq. (1). This approximation is expected to be
poor when applied to observables which are sensitive to
the detailed physics at freeze-out, such as HBT radii [7].
The reason is that Eq. (1) assumes an isotropic momen-
tum distribution in the rest frame of the fluid, while
non-relativistic studies have shown that freeze-out pre-
cisely occurs when the relative difference between par-
allel and transverse components of the kinetic tempera-
ture becomes large [8]. On the other hand, the simple
freeze-out Ansatz may be a reasonable one for comput-
ing single-particle spectra, provided that collective ex-
pansion dominates over random, thermal motion. This
is known as the hypersonic approximation in the context
of non-relativistic gas dynamics [8, 9]. In the language of
heavy-ion collisions, it can be rephrased as follows: con-
sistency of the ideal-fluid picture requires that the freeze-
out temperature be much smaller than the inverse slope
parameters obtained by exponential fits to transverse-
mass spectra [10]. The best-fit value of the freeze-out
temperature at RHIC is T ∼ 100 MeV [11, 12], while the
inverse slope parameter for pions is Teff = 210 MeV [13].
The value of T is large enough to expect significant devia-
tions from ideal-fluid behaviour, i.e., viscous effects [14].
It is however interesting to study the small-T limit in
view of upcoming heavy-ion experiments at LHC, and
also to have a better grasp on viscous effects, which are
easily seen as deviations from this limit.

We therefore investigate systematically the properties
of momentum spectra in the limit of small T . The general
idea is that the integral over Σ in Eq. (1) can then be
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FIG. 1: (Color online) Schematic representation of the dis-
tribution of the fluid transverse 4-velocity. The x-axis is the
impact-parameter direction. The short (resp. long) arrow in-
dicates the four-velocity of a slow (resp. fast) particle. The
most probable values of the fluid four-velocity for this particle
are marked as darker (red) areas.

performed by means of a saddle-point integration. 1 In
physical terms, it means that the dominant contribution
comes from the points where the energy of the particle
in the fluid frame, pµuµ, is minimum. For a given pµ,
pµuµ is a function of the space components of the fluid 4-
velocity, u (the fourth one being related to them through
u0 =

√
1 + u2), which themselves depend on the point x

on Σ. Since pµuµ is the energy of the particle in the fluid
rest frame, its absolute minimum is the particle mass m.
This minimum is reached when the particle is at rest with
respect to the fluid, i.e., when its velocity p/p0 equals the
fluid velocity u/u0 (or, equivalently, if u = p/m).

This absolute minimum, however, occurs only if there
exists a point on Σ where this value of the fluid velocity
is reached. This leads us to a qualitative discussion of the
values taken by u at freeze-out. The longitudinal fluid ve-
locity is expected to span almost the whole range from −1
to 1 in ultrarelativistic collisions, and the simple Bjorken
picture uz/u0 = z/t [16] shows, at least qualitatively,
how it is related to space-time coordinates. The radial
fluid velocity spans a more limited range. The reason is
that transverse collective flow is not initially present in
the system but builds up progressively. For a given fluid
rapidity yf = 1

2
ln((u0 +uz)/(u0−uz)), the transverse 4-

velocity,
√

u2
x + u2

y, extends up to some maximum value

umax, which may depend on yf , and on the azimuthal
angle φf for non-central collisions. As shown schemati-
cally in Fig. 1, umax(yf , φf ) is largest at φf = 0, along
the direction of impact parameter. This is due to larger
pressure gradients in this direction [17], which explain the
large in-plane elliptic flow observed at RHIC [18]. Typi-

1 The same method was used earlier to predict the 1/
√

mt be-
haviour of longitudinal HBT radii [15].

cal values of umax are of order 1 at RHIC (umax = sinh ρ0

in the notations of [11], with the best-fit value ρ0 ≃ 0.9).

From now on, we make a distinction between “slow”
and “fast” particles as follows: a particle of mass m, with
rapidity y and transverse momentum pt, is defined as
slow if pt/m < umax(y, φ) for all φ (that is, actually, for
φ = π/2, where the minimum occurs). Conversely, a fast
particle is defined by pt/m > umax(y, φ) for all φ (that
is, for φ = 0, where the velocity is maximal). Between
both regimes, there is a small intermediate region, which
will not be considered in this Letter.

For a slow particle, there is a point on Σ such that the
fluid velocity equals the particle velocity, and the mini-
mum pµuµ = m is reached. (Our results are unchanged if
there are two or more such points.) If T is small enough,
the dominant contribution to the integral (1) comes from
the neighbourhood of this point (see Fig. 1). The integral
can then be evaluated approximately by expanding the
exponent to second order around the minimum of pµuµ.
What remains is a Gaussian integral. For a given veloc-
ity, pµ is proportional to the particle mass m. Hence, the
width of the Gaussian varies with m like 1/

√
m, and the

integral over Σ in Eq. (1) is m−3/2 times a function of the
particle velocity. This means that the mass dependence
is only a global factor for slow particles:

E
dN

d3p
≡ dN

pt dpt dφ dy
= c(m)f

(pt

m
, y, φ

)

, (2)

where f is the same for all particles. As a result, trans-
verse momentum and rapidity spectra (integrated over φ)
of identified slow particles coincide, up to a normalization
factor, when they are plotted as a function of pt/m and
y. The coefficients quantifying azimuthal anisotropies
vn = 〈cosnφ〉, which are independent of the total yield,
should coincide for different identified slow particles at
the same pt/m and y. This property holds for directed
flow v1 as well as for elliptic flow v2 and the higher har-
monics. The behaviour is qualitatively correct for v2 at
RHIC, which rises more slowly with pt for heavier parti-
cles [19, 20].

The condition under which the saddle-point approxi-
mation is good for slow particles can be roughly stated
as T ≪ m for a relativistic fluid, for dimensional rea-
sons: the larger m, the smaller the width of the Gaussian,
and the better the approximation. A detailed calculation
gives the condition

T ≪ mv2

max (3)

with vmax ≡ umax/u0
max and u0

max =
√

1 + u2
max; this

condition amounts to assuming that collective motion
dominates over thermal motion. At RHIC, we expect
the approximation to be poor for pions (furthermore, the
pion spectrum is contaminated at low pt by secondary de-
cays, and may also be sensitive to Bose–Einstein statis-
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tics), but it might be a reasonable one for kaons and
heavier hadrons with pt < m/c.

Let us now discuss fast particles. Roughly speaking,
these are the particles that move faster than the fluid:
the minimum value of pµuµ is larger than m. In order to
locate this minimum, we denote by y (resp. yf ) the par-
ticle (resp. fluid) longitudinal rapidity, by u‖ the trans-
verse component of u parallel to the particle transverse
momentum pt, and by u⊥ the transverse component of
u orthogonal to pt. With these notations,

pµuµ = mt cosh(y − yf )
√

1 + u2

‖ + u2

⊥ − ptu‖, (4)

where mt ≡
√

m2 + p2
t . Minimization with respect to

yf and u⊥ gives yf = y and u⊥ = 0, i.e., the fluid
velocity is parallel to the particle velocity. The mini-
mum is then attained when u‖ is maximum, i.e, when
u‖ = umax(y, φ), where φ is the azimuthal angle of the
particle. In other words, fast particles come from regions
on Σ where the parallel velocity is close to its maximum
value (see Fig. 1). A saddle-point integration then gives 2

dN

dy d2pt
∝ 1√

pt − mtvmax

exp

(

ptumax − mtu
0
max

T

)

,

(5)
where the (y, φ) dependence is implicit. This result
was already obtained long ago for massless particles in
Ref. [21] (see also [22]).

The saddle-point approximation is valid for fast par-
ticles if pt is large enough. A more precise criterion is

T ≪ (ptu
0
max − mtumax)

2

mtu0
max − ptumax

, (6)

together with the condition pt > mumax. At RHIC,
the left-hand side (lhs) of Eq. (6) is smaller than the
right-hand side (rhs) by at least a factor of 2 as soon as
pt > 0.7 GeV/c for pions, pt > 1.2 GeV/c for kaons, and
pt > 1.8 GeV/c for (anti)protons. On the other hand,
ideal fluid dynamics is expected to break down if pt is
too high, since high pt particles have been shown to be
more sensitive to off-equilibrium (viscosity) effects [14].
Deviations from fluid-like behaviour are best seen on el-
liptic flow, for mesons above 1.5 GeV/c, and for baryons
above 2.5 GeV/c. The window in which our approxi-
mation works is likely to be narrow, which reflects the
importance of viscous effects at RHIC. Better agreement
should be reached at LHC.

The pt spectra of identified particles are directly ob-
tained from Eq. (5), neglecting the φ dependence of umax.

2 We assume that the maximum value umax is reached at an inner
point of Σ. If it occurs at the edge of the fluid, there is no square
root in the pre-exponential factor.

Radial flow results in flatter mt-spectra for heavier par-
ticles. In addition, Eq. (5) implies a breakdown of mt-
scaling: the slope of the spectrum decreases with increas-
ing mt for pions, and increases for protons, in qualitative
agreement with experimental findings [13].

For non-central collisions, we can also obtain the
anisotropic flow coefficients. We expand umax(φ) in
Fourier series, and neglect odd harmonics:

umax(φ) = umax(1+2V2 cos(2φ)+2V4 cos(4φ)+· · · ). (7)

The parameter V2 is of the order of 4 % for semi-
central Au-Au collisions at RHIC. It is related to the
parameter ρ2 of blast wave parameterizations [11, 23]
by V2 = ρ2/(2vmax). The φ distribution is obtained by
inserting Eq. (7) into (5). If T is small enough, the φ
dependence in Eq. (5) is dominated by the exponential.
Expanding the latter to first order in V2, one obtains

v2(pt) =
V2umax

T
(pt − mtvmax) . (8)

A similar equation was already obtained in Ref. [23] in
the framework of a simplified fluid model, and was shown
to fit RHIC data rather well. In particular, Eq. (8) shows
that the “mass ordering” which follows from Eq. (2) for
slow particles persists at high pt in hydro: at a given pt,
heavier particles have smaller v2.

We finally make predictions for the hexadecupole flow,
v4. We expand the exponential of Eq. (5) and look for
terms in cos(4φ). To leading order one obtains two terms:

v4(pt) =
(V2umax)

2

2T 2
(pt − mtvmax)

2

+
V4umax

T
(pt − mtvmax) . (9)

For large enough pt, the first term dominates over the
second, which gives the simple, universal relation

v4(pt) =
v2(pt)

2

2
. (10)

Let us derive the domain of validity of this approxima-
tion. If umax(φ) is a smooth function of φ, one gener-
ally expects V4 to be of order (V2)

2. The condition for
Eq. (10) is then

T ≪ umax (pt − mtvmax) . (11)

At RHIC, the lhs is smaller than the rhs by at least a
factor of 2 for pions with pt > 0.8 GeV/c. For heavier
particles, Eq. (6) supersedes Eq. (11).

Our result, Eq. (9), is in contradiction with the state-
ment that v4 is a sensitive probe of initial conditions [24]:
on the contrary, we find a universal result, which can be
directly used as a probe of ideal fluid behaviour , not of
initial conditions. The experimental value found by the
STAR Collaboration [25] is a factor of 2 to 3 higher than
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FIG. 2: (color online) Numerical results from ideal hydro-
dynamics with Bjorken longitudinal expansion [16]. and a
black-body equation of state. Initial conditions mimic a mid-
central (b=8 fm) Au-Au collision at RHIC. The initial den-
sity has been fixed to reproduce 〈pt〉 = 450 MeV/c, as mea-
sured for pions at RHIC [13]. Top: Solid line: dN/dyd2pt;
dash-dotted line, fit using Eq. (5). Middle: v2(pt). Bottom:
v4(pt)/v2(pt)

2.

our prediction. Deviations from ideal-fluid behaviour are
generally expected to yield higher values of v4 [26].

Our results for fast particles, Eqs. (5), (8), (10), are
compared to results from a numerical 3-d hydrodynami-
cal calculation in Fig. 2. The calculation has been pushed
to very large times, so that the small-T limit applies. The
value of v4/v2

2 does not go exactly to 0.5 at large pt but
rather to 0.63. This is due to the fact that the initial ec-
centricity is large for this value of the impact parameter,
and Eq. (10) is obtained through a leading order expan-
sion in the anisotropy. We have checked numerically that
agreement is better for lower values of b, where the ec-
centricity is smaller.

Before we come to our conclusions, let us compare our
approach with the popular blast-wave one. The blast-
wave parameterization, in its simplest form, assumes a
unique radial velocity for the fluid [27]; this framework
has recently been refined to take into account the az-
imuthal dependence of the fluid velocity [23] and of the
freeze-out surface [28] in non-central collisions, and even
a distribution of fluid velocities [11]. A few parame-
ters (typically four) are then fitted to experimental data.
Some of the results we derived above were already ob-
tained within the blast-wave approach, namely the mass-
ordering of the v2(pt) of different types. However, our
present framework is more general in the sense that we
do not assume a given fluid-velocity profile, but also more
specific in the sense that we assume that collective motion
dominates over thermal (random) motion. In addition,
blast-wave fits treat slow and fast particles on an equal
footing, ignoring the distinction between both types of
particles. Although fitting the whole spectrum with a

single formula is admittedly more convenient, it misses
an important feature of the underlying physics, since slow
and fast particles originate from different regions of the
expanding fluid. In particular, fits using our formulas for
fast particles may yield values of T and umax which dif-
fer from blast-wave fits. Finally, our formulas are signifi-
cantly simpler than blast-wave parameterizations, which
involve special functions.

We have obtained the following results for momentum
spectra and anisotropies in the framework of ideal-fluid
models using a saddle-point approximation of the mo-
mentum distribution:

• At low pt, identified particles of different masses
have the same momentum spectra and anisotropies
(up to a normalization for the spectra), when plot-
ted as a function of velocity variables y and pt/m.
This defines “slow” particles. This scaling is due
to the fact that slow particles move with the fluid:
they come from the regions where the fluid veloc-
ity equals their velocity. The scaling is expected
to be poor for pions. It is expected to break down
when pt/m exceeds umax, the maximum value of
the transverse 4-velocity of the fluid. umax may in
general depend on the rapidity y, and reflects the
underlying equation of state of the expanding mat-
ter.

• Fast particles, defined by Eq. (6), all originate
from the region where the fluid is fastest along
the direction of the particle velocity. As a result,
their transverse momentum spectra and azimuthal
anisotropies at a given rapidity are uniquely deter-
mined by three parameters umax, T , and V2, and
given by Eqs. (5), (8), (10). Comparing the v2 of
different particles should directly give the precise
value of umax, while transverse momentum spectra
yield T .

These results can be used as signatures of hydrodynamic
evolution in heavy-ion collisions, and also as consistency
checks of numerical ideal-fluid calculations. Ideal-fluid
evolution leads to different behaviours for slow and fast
particles. Some of the results obtained for fast particles
(in particular for elliptic flow) are already known from
blast-wave approaches. We have shown that they are in
fact more general. The scaling rules for slow particles,
which are evidenced here for the first time, should be
further tested on available RHIC data. We expect all
our results to be in closer agreement with data at LHC
than at RHIC. In particular, we predict that the value of
the ratio v4/(v2)

2 should be lower at LHC than at RHIC.
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