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ABSTRACT

The POINT-AGAPE collaboration surveyed M31 with the primary goal of

optical detection of microlensing events, yet its data catalogue is also a prime

source of lightcurves of variable and transient objects, including classical novae

(CNe). A reliable means of identification, combined with a thorough survey of the

variable objects in M31, provides an excellent opportunity to locate and study

an entire galactic population of CNe. This paper presents a set of 440 neural

networks, working in 44 committees, designed specifically to identify fast CNe.

The networks are developed using training sets consisting of simulated novae and
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POINT-AGAPE lightcurves in a novel variation on K-fold cross-validation, and

use the binned, normalised power spectra of the lightcurves as input units. The

networks successfully identify 9 of the 13 previously identified M31 CNe within

their optimal working range (and 11 out of 13 if the network error bars are taken

into account). The networks provide a catalogue of 19 new candidate fast CNe,

of which 4 are strongly favoured.

Subject headings: stars: variables: novae – stars: variables: others – galaxies:

individual: M31

1. Introduction

One of the greatest advances of modern experimental astrophysics is the automation of

photometric surveys, which allow massive amounts of data to be gathered systematically,

efficiently and with the minimum need for human intervention. Such surveys scour large

regions of the sky, carefully searching for a wide variety of rare objects and phenomena such

as microlensing events (surveys like OGLE, MACHO and EROS), gamma-ray burst optical

counterparts (ROTSE), extra-solar planetary transits (SuperWASP) and near-Earth objects

(NEAT). These surveys have provided the scientific community with invaluable information

and resulted in many new discoveries, yet they have also left us with a new (and very

welcome) problem: how can we sort through the vast data catalogues to reliably filter out

objects of interest?

The raw data produced by these surveys are simply collections of the lightcurves of the

objects found in the survey’s field of detection. Transient objects hold particular interest

for a long list of fields, including cosmology (SNe Ia), single and binary stellar evolution

(SNe and cataclysmic variables, respectively), and dark matter studies (microlensing). They

are generally rare and have short lifetimes, so must be identified and studied quickly. The

sheer size of such datasets means that such transient objects are inevitably present in the

catalogues; however there is still a pressing need to detect objects swiftly and reliably for

further study or follow-up. A number of researchers have argued that neural networks may

provide a viable solution to this problem (Wozniak et al. 2001; Belokurov et al. 2003, 2004;

Brett et al. 2004). Neural networks have already been proven to be useful pattern-recognition

tools in astrophysical applications such as galaxy (Lahav 1996) and stellar spectra (Bailer-

Jones 1997) classification. They are highly adaptable, easy and quick to use, but perhaps

their most relevant asset in this application is their ability to attach a probability to their

classification of an object, thus allowing the user to prioritise their further study.
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The contribution of this paper is to provide working neural networks for the detection

of classical novae (CNe). These are close interacting binary stars, consisting of a white

dwarf primary and a cool red dwarf secondary. The secondary star overflows its Roche

lobe and loses mass to the primary. Very occasionally, runaway thermonuclear burning of

the degenerate layer of hydrogen accreted by the white dwarf can cause a nova outburst.

The nova’s brightness rises rapidly to an absolute magnitude of between −6 and −9 before

slowly fading back to quiescence. Much remains unknown concerning the abundance and

distribution of nova in galaxies due to the lack of systematic surveys. So, there is a need for

fully automated, and less subjective, selection of candidate CNe so that more soundly based

conclusions concerning the nova rate and distributions can be drawn. Darnley et al. (2004)

have already devised one possible systematic algorithm. Here, we provide an alternative to

the method of Darnley et al. using a novel application of neural networks.

The paper is organised as follows. In §2, the dataset through which we search for CNe

lightcurves is described. This is derived from the POINT-AGAPE microlensing experiment

towards M31. Although the primary aim of this experiment is to find microlensing events, the

dataset of varying lightcurves is a rich resource for the study of variable stars towards M31

(An et al. 2004). §3 discusses the properties of nova lightcurves and summarises previous

work to find CNe in M31. Next, §4 provides a short introduction to neural networks for the

astronomical user. §5 describes the pre-processing and the architecture of neural networks

to identify CNe, while §6 describes the computations. The nova catalogue obtained by the

networks is presented in §7.

2. The Lightcurve Data Set

The data used in this paper was gathered by the POINT-AGAPE collaboration working

with the Wide Field Camera (WFC) mounted on the 2.5m Isaac Newton telescope (INT) on

La Palma. The collaboration took images of the Andromeda Galaxy (M31) over the course of

three observing seasons (1999-2001), searching for evidence of microlensing events (Aurière

et al. 2001; Paulin-Henriksson et al. 2002, 2003; Belokurov et al. 2005). For one hour of

each observing night, the WFC was used to take images of M31 over two fields, to the north

and south of M31’s central bulge, with each field-image formed using the four 4100×2048

CCDs that make up the WFC (see Figure 1 of An et al. (2004)). The raw data produced

by the POINT-AGAPE collaboration then consisted of light curves generated from the flux

gathered in three pass-bands by individual pixels in each field-image. The pass-bands used

were denoted g, r and i, and are similar to those used by the Sloan Digital Sky Survey. The

M31 fields are mainly composed of unresolved stars, and the effects of seeing from epoch to
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epoch are substantial. In order to build lightcurves, we use the superpixel method to ensure

the same fraction of flux falls within the window function, irrespective of seeing (Melchior et

al. 1999; Ansari et al. 1999; Le Du 2000). This provides superpixel lightcurves (7×7 pixels in

size). Each pixel is 0.′′33 on a side, so the 7× 7 superpixel is 2.′′1 on a side. This matches the

typically worst seeing at the INT site, which is about 2′′. The superpixel lightcurves are then

cleaned (for details, see Irwin & Lewis (2001) and An et al. (2004)): a mask of the known

CCD defects was constructed, together with regions around all resolved stars detected in the

reference frame. After masking, 44635 variable superpixel r band lightcurves remained, and

this is the catalogue through which we search for nova-like lightcurves.

Although the collaboration produced a very large amount of data and thus greatly

increased the chances of discovering new objects, there are two complicating factors which

slightly reduce the data’s quality and ease of analysis. First, the observations were carried

out over the course of three seasons. These seasons correspond to the periods in which M31

was visible from the northern hemisphere, and mean that the lightcurves are sampled in runs

of ∼150 days, with ∼200-day gaps (see Figure 1 for an illustration of the sampling). Three

other factors, the limited mounting of the WFC, the limited scheduled observing time on the

INT and the weather, result in the sampled runs consisting of well-sampled periods typically

lasting 1-2 weeks, separated by very poorly-sampled periods lasting 1-3 weeks. Secondly, the

large distance of M31 means that in most cases single stars are not resolved by the INT. This

means that the superpixel lightcurves almost always consist of flux produced by more than

one star, which could result in very exotic lightcurves, hence limiting our ability to classify

objects.

3. Classical Novae in M31

In classical novae, the cool red dwarf secondary overflows its Roche lobe and loses mass

to the primary white dwarf. This mass builds up in an accretion disc before falling onto

the surface of the white dwarf (see e.g., Bode & Evans 1989). The main feature of nova

lightcurves is a single outburst1, typically increasing the absolute magnitude of the nova to

between -6 and -9 before slowly (compared to the initial rise) fading back to the quiescent

state. These classical nova outbursts are caused by the runaway thermonuclear burning of

the degenerate layer of hydrogen accreted by the white dwarf. Once a critical amount of

hydrogen has been accreted, it begins to burn via the CNO cycle, precipitating thermonuclear

1CNe are required to have had only one major outburst in historic times. A few CNe in quiescence show

smaller outbursts, similar to those in dwarf novae, caused by changes in mass flux through the accretion disc
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Fig. 1.— Left: Lightcurve of a slow nova in M31, as identified by Darnley et al. (ID:

PACN-00-02). Note the decay fluctuations in the declining part of the lightcurve. Right:

Lightcurve of a fast nova in M31, as identified by Darnley et al. (ID: PACN-00-06) and An

et al. (ID: 77716).

runaway and resulting in the ejection of the accreted layer on the white dwarf surface. This

explosion and ejection are accompanied by an intense brightening, followed by a gradual

decay back to quiescence.

The progress of the nova outburst depends on several parameters, including the mass

accretion rate from the secondary, and the temperature and mass of the white dwarf (e.g.,

Prialnik & Kovetz 1995). The outbursts therefore vary from system to system, as shown by

the rich viety of CNe lightcurves in Sterken & Jaschek (1996). However, it is possible to divide

novae into speed classes according to the time (t2) taken to decline by two magnitudes from

maximum light, the two main classes being fast (t2 < 80 days) and slow (t2 > 80 days) novae

(e.g., Payne-Gaposchkin 1957). Fast novae rise rapidly to maximum light, taking 1 to 2 days,

and generally have relatively smooth initial decays with only small fluctuations in their early

light curves. Slow novae on the other hand can take much longer to reach maximum light and

usually have more erratic lightcurve decays, with strong fluctuations capable of producing

secondary maxima of varying strengths during initial decline. Furthermore, the maximum

absolute magnitudes of classical novae are correlated to the rate of their decline, which

coupled with their high luminosities makes classical novae potentially important standard

candles (Hubble 1929; Cohen 1985). Figure 1 shows the lightcurves of a slow and fast nova

respectively, as previously found in M31.

The lightcurves of classical novae share many features with the lightcurve peaks of
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dwarf novae and recurrent novae. The main distinguishing feature in the lightcurves of these

objects is that dwarf and recurrent novae undergo repeated outbursts. However, the periods

between outbursts and the gaps in the POINT-AGAPE sampling could lead to only one peak

of a dwarf or recurrent nova lightcurve being sampled. Hence, we may pick up some stray

dwarf or recurrent novae in our final catalogue. Dwarf nova outbursts are not be detectable

in M31. However, they may be present in the POINT-AGAPE catalogue as foreground

objects, though even this has a very low probability.

Dedicated nova searches of M31 have been carried out ever since Hubble first did so in

1929 (see Table 1 of Darnley et al. (2004) for a list of papers). Very recently, Darnley et

al. (2004) and An et al. (2004) have published CNe lightcurves from the POINT-AGAPE

catalogue. Darnley et al. (2004) used a pipeline (see Table 3 in their paper) to filter out

novae independently of any prior knowledge. This pipeline first selected only objects (defined

to be resolved structures with fluxes significantly higher than the local median) present in

five consecutive observations, to remove rapid variations. The catalogue was further pruned

by selecting against periodicity, requiring an adequately-sampled primary peak and also

requiring any secondary peak to be an acceptable size. The remaining candidates were

finally required to fit data, rate of decline, colour and colour-magnitude criteria before being

accepted as nova candidates. An et al. (2004) were primarily interested in the cataloguing

of the variable stars in the POINT-AGAPE dataset. They first constructed a catalogue of

variable objects by selecting only (suitably cleaned, masked, etc.) superpixel lightcurves

with deviations from their baseline significant enough in size and duration. Novae were then

located by looking for variable objects matching (within a 3′′ error-circle) the positions of

novae as published in IAU Circulars. Using these methods, Darnley et al. (2004) gave 20

novae and An et al. (2004) 12 novae lightcurves, with 7 novae common to both papers.

4. An Informal Introduction to Neural Networks

This section is intended as a brief introduction to the basics of neural network structure

and use as they apply to this paper (for more details, consult Bishop (1995) and MacKay

(2003)). Neural networks are pattern-recognition tools composed of neurons (or units) ar-

ranged in layers. Neurons come in three types: input, hidden and output. The structure

of the networks used in this paper is one layer of input units, one layer of hidden units

and one layer of output units. The neurons in neighbouring layers are fully connected with

each other, and these connections have assigned to them adaptive weights which are used

to calculate the response of a specific neuron to its inputs. The input data are taken as

the values of the input units, and the value of each hidden unit is then given by the sum
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over all connections of the activation value on each input unit, weighted by the weight on

the connection. These activation values are calculated using an activation function acting

on the value of the unit. The values of the output units are calculated in a similar fashion,

except the sum is performed over all connections between the output unit in question and

the hidden units. In this paper, the activation function is chosen to be the logistic function,

which allows the outputs to be interpreted as a posteriori probabilities.

Before all this can happen, the network must be trained in order to determine the

weights. The weights are initially randomised, and the network is presented with a training

set, made up of sets of input values (called patterns) for which the desired outputs are known.

The outputs produced by the randomly-weighted net are compared to the desired values,

and the network performance on all patterns is quantified using an error function, namely

the cross-entropy error (Bishop 1995; Belokurov et al. 2004). A learning function then uses

these errors in conjunction with the values of the hidden units and the hidden-to-output layer

weights in order to update the weights and hence reduce the output errors. The errors are

also propagated back up to the input-to-hidden layer weights so as to update these weights

with the same goal in mind. This whole process, called back-propagation, is carried out a

number of times (called epochs) until the desired network performance is reached. With

most choices of learning function, it is possible for the network to become over-trained on

the training set, with the result that performance on a more general set of inputs is reduced.

In this a paper, a special learning function (see §5.4) is used to avoid this problem.

The process behind training neural networks is the minimisation of the error function

(as applied to the training set) with respect to the adaptive weights within the network.

This error function may not have just a global minimum in the multi-dimensional weight-

space, but could have a number of local minima instead or as well. In any case, networks

trained using the exact same training set for the same number of epochs, but using different

initial weights (and therefore different starting points in this space), will converge to slightly

different final weights. In the case of multiple minima, this means that networks can follow

different error-minimisation paths into entirely separate minima, some of which might classify

the general set (as opposed to the training set) much better than others. We can turn this

fact to our advantage by using network committees (see Bishop (1995), §9.6 and §10.7),

produced by training groups of networks on the same training set but with initial weights

randomly chosen from a range of values. These networks therefore sample a region (rather

than a point) of the weight-space around the error function minimum/a, and hence produce

a range of results when classifying the final test set. The results can then be averaged out

over the committee to take account of a whole range of network ‘opinions’, making sure poor

quality networks stuck in high-error minima don’t overly affect the results.
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5. Network Preparation

5.1. The Training Set

The ideal training set should contain examples of all forms of stellar variability we expect

the networks to encounter, along with as many examples of nova lightcurves as possible. The

usual process is to build the training set from a comprehensive selection of example nova

and variable star lightcurves taken from existing data catalogues. We do not do this for

two reasons. First, there are not enough well-sampled nova lightcurves in the g, r and i

bands in the standard catalogues for our purposes. Therefore, we are obliged to simulate

nova lightcurves from templates. Second, all of the other forms of variability needed for

the training set are already present in the POINT-AGAPE catalogue, and we can therefore

use the data set itself to provide the non-nova examples required to build the training set,

using a variation on a technique called K-fold cross-validation (see below and Bishop (1995)

§9.8.1).

In K-fold cross-validation, the data set is first partitioned into K separate segments. A

network is then trained using a training set containing all of the data from K − 1 segments,

before being tested on the remaining segment. This process is then repeated, each time

choosing a different segment to be left out of the training set, until all K choices for the

omitted segment have been covered. The test errors are then averaged out over all K results

to create a much more robust estimate of the network performance, hence providing one of

the two main advantages of using this technique. The second advantage is that all of the

examples in the data set are used in both training and testing, in effect creating a large

training set without the need for any ‘external’ data. The major disadvantages are that the

training process must be repeated K times, and that some or all of the training sets will

contain nova-type lightcurves present in the catalogue falsely identified as non-nova objects.

We therefore use a new variation on the technique, training networks using just one data

segment before testing the networks on the remaining K − 1 segments. We believe this is

advantageous as it reduces both processing time and the risk of training set contamination,

whilst still retaining the benefits of normal K-fold cross-validation.

The final form for the training set is 1000 simulated nova light curves, assigned desired

output probabilities of 1, and 1000 randomly-chosen POINT-AGAPE lightcurves, with de-

sired output probability 0. The decision to use exactly 1000 POINT-AGAPE lightcurves is a

compromise: 1000 POINT-AGAPE lightcurves should include a sufficient cross-section of the

forms of variability whilst greatly reducing individual training times and keeping the number
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An et al. ID Darnley et al. ID Half-width

at 5% of

Max. Light

25851 PACN-99-05 64.8

26021 PACN-00-04 59.8

26946 Not present 72.7

77324 PACN-01-06 99.6

77716 PACN-00-06 45.5

83835 Not present 42.0

Table 1: An et al. (2004) and Darnley et al. (2004) identification numbers of the template

novae, along with estimates of decay time.

of falsely-classified nova examples down to O(1) per training set.2 The main drawback to

using 1000 POINT-AGAPE lightcurves is that the training process must be repeated ∼ 40

times, and is therefore quite slow. The number of nova examples is chosen to overwhelm any

falsely-classified novae and also to create networks biased towards producing false positives

rather than false negatives. Over-representing the novae (as compared to their natural fre-

quency) in the training set increases the prior probability of finding a nova in the set, and

hence training using such sets produces networks that are much more likely to misclassify

non-novae as novae than vice-versa (see §6.2). This is exactly the trend required considering

that we are trying to locate a very rare phenomenon. Of course, the drawback to permitting

more false positives than false negatives is that an additional algorithm may be needed after

the neural network search to root out the contaminants.

5.2. Novae Templates

Six novae identified by An et al. (2004) (see Table 1) are chosen as templates. They are

selected as having well-sampled peaks with intermediate decay timescales: their half-widths

at 5% of maximum light (an indication of the total length of the decay) are all in the range

40-100 days. Three other novae (An et al. IDs 26277, 78668 and 83479) were also originally

included as templates, but their inclusion reduced the consistency (in terms of both decay

timescale and shape) of the simulated portion of the training set and resulted in poor final

network performance. Note that, due to the limited timescales covered by the templates and

2There are ∼40,000 lightcurves in the catalogue, with O(20) true nova examples present. Hence choosing

1000 POINT-AGAPE examples per training set gives ∼0.5 false nova-type lightcurves per set.



– 10 –

the differences in the lightcurves of CNe of different speed classes, we expect our networks

to suffer when asked to classify novae with much longer or shorter timescales. The template

lightcurves are fitted using a model function consisting of a flat background, a steep linear

rise and a function f(t) of the form as shown below to match the decay:

f(t) = A1 exp

(

−(t − tm)

τ1

)

+ A2 exp

(

−(t − tm)

τ2

)

+ B (1)

where Ai are the relative sizes of the exponentials, tm is the time of maximum light, τi are

the exponential decay timescales and B is the value of the background flux. Figure 2 shows

an example of such a model function.

To create the 1000 simulated novae, we repeat the following procedure. First, a random

template is selected, and its peak is shifted randomly in time within the time limits of the

POINT-AGAPE measurements. A POINT-AGAPE light curve is then chosen at random

from the catalogue, and its sampling times are used to sample the newly-shifted model

function. At this point, we require that there are at least 10 sampling times present in the

first 30 days after the peak time of the shifted model, to ensure that enough of a signal was

present.3 A small amount of Gaussian noise is then added to the sampled, shifted model in

order to create simulated novae lightcurves that are as similar in form as possible to the

original novae (see Figure 2).

5.3. Pre-Processing and Network Inputs

The computational power required to use a network grows quickly with each added

input. It is therefore usual to pre-process the lightcurves, that is, to extract a small number

of features from the data to use as inputs. In this paper, we reduce each lightcurve to its

power spectrum, before binning and suitably normalising both the individual power spectra

and the training set as a whole (Belokurov et al. 2003, 2004).

The first reason for reducing the data to their power spectra is that the features that

distinguish the nova-type light curves from the other forms of variability – i.e., the event

timescales, the singular nature of the eruptions and the shape of the nova peaks – all manifest

themselves in the power spectrum. To see this, consider a simplified nova eruption as a top-

hat function of width w. The Fourier transform of a top-hat function of width w in positive

3Without this requirement many of the simulated nova light curves have very small peaks (or none at all).

There was therefore a large constituent group of the training set whose lightcurves were dominated by the

random Gaussian fluctuations we added, and so the networks simply learned to recognise these lightcurves

instead of the nova-like lightcurves .
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Fig. 2.— Model function for template nova 26021, along with simulated lightcurve.

frequency-space is (half) a sinc function, with a central peak of half-width π/w. Hence, we

expect that the power spectra of our actual nova eruptions with decay timescales τ to be

distortions of sinc functions with central peaks of widths of the order of π/τ . From this line

of reasoning, we expect the almost singular nature of the nova eruptions to make their power

spectra sinc-like, with the individual timescales affecting the widths of the sinc peaks, and

the shapes of the outbursts distorting the power spectra as a whole. Some evidence for this

can be found in Figure 3, which shows that the nova power spectra do indeed resemble sinc

functions with roughly correct peak widths.

A further reason for choosing the power spectrum is that the features we wish to select

against, such as periodicity or random variations, should also manifest themselves in the

power spectra of the non-nova objects. The power spectrum is also invariant under time-

translation of the initial light curve. Furthermore, the power spectrum is easily binned, which

allows for the reduction in dimensionality to produce practical networks, although care must

be taken to ensure that too much information is not lost. Due to the uneven time-sampling

of the POINT-AGAPE lightcurves , we used the Lomb Periodogram (Press et al 1992) to

calculate the power spectra . The power spectra are determined in the frequency range 0

- 0.3 day−1, as this range of values contains a significant number of CNe power spectrum

features. The power spectra are all binned into 50 constant-width bins, as this results in a

manageable number of network inputs but still retains the resolution of the original power

spectra.
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Fig. 3.— Binned, normalised power spectrum (prior to full-training set normalisation) of a

nova lightcurve. Higher bin numbers correspond to higher frequencies.

The next pre-processing technique is to normalise each individual binned power spec-

trum. This has two positive effects: first, it ensures that all of the inputs are consistently

drawn from within the same range (from zero to one), and second, it reduces the chances of

the networks classifying two differently-shaped power spectra simply because they contain a

similar size peak. Normalising the individual lightcurves helps the networks classify objects

on the shapes of their power spectra, rather than the size of any peaks the power spectra

contain. An example of a binned normalised nova power spectrum as it appears at this stage

of pre-processing is shown in Figure 3.

The last pre-processing technique is to shift the first input of each pattern in the training

set by the mean of all the first inputs, and then scale it by dividing by the standard deviation

of all of the first inputs. This is repeated for each input, so that all of the networks’ inputs

are not only drawn from the same range, but also have comparable magnitudes, which forces

the networks into classifying the set using all of the inputs provided. As an illustrative

example, prior to the introduction of this technique, the nova power spectrum typically has

low-frequency bin powers a factor of 102 greater than their high-frequency bin powers (see

Figure 3). Now we would consider a 10% variation in the power in any bin to be equally
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important, but a 10% variation in a high-frequency bin would appear to the networks to

be much less important than a 10% variation in a low-frequency bin. By scaling the inputs

as described, the networks classify using the relative, and not absolute, sizes of bin-power

variations between different objects.

5.4. Network Architecture

The networks used in this paper are all created using the Stuttgart Neural Network

Simulator4, and are made up of one layer of 50 input units, one layer of 24 hidden units and

one layer consisting of one output unit (the reasons behind this choice are given shortly).

The units in the hidden layer are fully connected to both the input and output layers, and the

value of the output unit gives the a posteriori probability that the subject lightcurve is a nova,

given the weights and the inputs calculated for the subject. Our networks use as a learning

function resilient back-propagation with adaptive weight-decay (RpropMAP). Particularly

high adaptive weights correspond to very strong pattern recognition, and therefore tend to

suggest over-fitting of the training set. During the training process, RpropMAP therefore

automatically allows the highest weights to decay intelligently so as to keep the network as

generally applicable as possible. Hence, when using RpropMAP , there is no need for the

validation process required by other learning functions (a much fuller explanation can be

found in Bishop (1995), §9 and §10).

The last choice to make is the number of units. Choosing the number of input and

output units is straightforward: these numbers are simply determined by the number of in-

puts (in our case, 50) and outputs (in our case, one) that the networks receive and produce,

respectively. However, in tasks such as this, it is impossible to choose the required number

of hidden units NH theoretically. Instead, NH must be determined experimentally, by ex-

amining the behaviour of the errors produced by networks of differing NH in classifying the

training set and a new test set (same form as the training set but totally new lightcurves).

We expect both the training and test errors to decrease at first with increasing NH .

Low NH networks are very simple, so increasing the number of hidden units increases the

network’s complexity and hence ability to map the decision boundary between the classes

of object. However, for some values of NH , we expect the behaviour of the training and

test errors to diverge, with the training error continuing to decrease but the test error either

levelling off or beginning to rise. This differing behaviour occurs because the networks have

become complex enough to start to over-train on the training set. The final number of

4See http://www-ra.informatik.uni-tuebingen.de/SNNS/
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Fig. 4.— The errors on training and test sets for a range of numbers of hidden units (SSE

stands for the sum of the squared errors of all outputs). NB: test set errors have been shifted

down by 100 to aid comparison.

hidden units is therefore chosen to be the value of NH at which the training and test error

behaviours diverge, as this gives the best general network performance.

A plot of the mean errors produced by our networks in classifying the training and test

sets against NH is shown in Figure 4. These results are produced by training committees of

ten networks for each value of NH , with each network given initial weights drawn randomly

from the range -3 to 3. The networks are trained for 1000 epochs, after which the final errors

in classifying the training set are recorded. The trained networks are then each tested using

the same test set. The training and test errors are finally averaged out over each committee,

thereby providing mean values to represent more reliably the performance of the different

size networks. The standard deviations are also computed to give some idea of the the mean

error spread.

The first feature to note in Figure 4 is that the test error values are all significantly larger

than their corresponding training errors. This is because there are likely to be numerous

lightcurves in the test set of which there are no similar examples in the training set, due to

the random selection of the POINT-AGAPE lightcurves included in each set. This increases
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the risks of mis-classification. The most important information to take from the plot is the

behaviour of the errors. For small values of NH , the behaviour of both the training and

test errors is very similar, as expected. For NH between 20 and 25, however, the behaviour

of the two errors begins to differ: the training error continues decreasing asymptotically,

whereas the test error levels out within its error bars. We therefore use 24 hidden units in

the networks to produce our final results.

6. Production of Final Results

6.1. The Network Probabilities

44 committees consisting of 10 networks, each with 50 input units, 24 hidden units and

1 output unit, are created with random initial weights. These networks are trained using

training sets as described in §5.1 for 1000 epochs, taking care to record the POINT-AGAPE

lightcurves used and the 50 input means and standard deviations (as described at the end

of §5.3) for each training set. The trained networks are then used to classify two data sets,

which are pre-processed in the same fashion as the training set but were normalised using

the input means and standard deviations specific to each committee. The first data set is the

cleaned POINT-AGAPE catalogue, and the second consisted of all of the novae identified by

An et al. (2004) and Darnley et al. (2004) missing from the catalogue, as listed in Table 2.

The initial form of the results is therefore a set of 440 probabilities for each POINT-AGAPE

object and each previously identified nova. Each object’s results are first averaged out over

the ten networks in each committee, producing 44 committee probabilities and errors for each

object, before these values are averaged over the committees. The POINT-AGAPE objects’

probabilities and errors are averaged out over only those committees in whose training sets

they did not feature, whereas the previously-identified novae’s values are averaged over all

44 committees.

6.2. Decision Boundary Determination

The final task is to set the decision boundary for classification, that is to determine

the probability value an object must exceed in order to be classified as a CN. This requires

the network’s performance to be quantified in terms of numbers of false positives (POINT-

AGAPE objects with probabilities greater than that of the decision boundary) and negatives

(simulated novae with probabilities less than that of the decision boundary) for a range of

decision boundary choices. The decision boundary is chosen so as to optimise the rates at
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Darnley et al. ID An et al. ID

PACN-99-01† 10889

PACN-99-02† 28862

PACN-99-03† 82483

PACN-99-04† 93392

PACN-99-07† 49835

PACN-00-01* 26946*

PACN-01-02* 83835*

No ID Available 26277‡

“ 26285‡

“ 78668‡

“ 79136‡

Table 2: Identification numbers of the M31 novae, as identified by Darnley et al. (†), An et

al. (‡) or both *, missing from cleaned data set.

which these false classifications occur.

First, a test set is produced using 1000 new simulated novae and the POINT-AGAPE

lightcurves used to train one network committee. The test set was then pre-processed,

classified by the other committees, and the results averaged out in the same way as the

POINT-AGAPE catalogue results in §6.1. The decision boundary probability pdb is set at

different probability values between 0 and 1, and the numbers of false positives Nfp(test) and

negatives Nfn(test) for the test set determined. The results are plotted in Figure 5.

If, in our catalogue, the number of non-nova objects N tot
var(cat) were approximately equal

to the number of novae N tot
nov(cat), the standard procedure would be to choose the decision

boundary such that the rates of false positives and negatives are equal. In actuality, how-

ever, we expect N tot
var(cat) ≈ 44600 and N tot

nov(cat) ≈ 20. This means that if the decision

boundary were chosen to be the point at which the rates rfp(test) and rfn(test) were equal

(i.e. rfp(test) = rfn(test) ≈ 0.025), then the number of expected false positives is ∼1100:

much bigger than the number of true novae expected. The choice of decision boundary must

therefore be taken to minimise the number of false positives whilst ensuring most novae are

still detected. Accordingly, the decision boundary probability is fixed to be 0.95. At this

value, rfn(test) ≈ 0.2 from Figure 5, so we expect 20 % of the true novae to be missed.

No value for rfp(test) is available for this pdb (probably because the test set was too small

to contain any POINT-AGAPE objects with outputs as high as 0.95), however an upper

bound on the value can be found by taking the last non-zero value, which is ∼ 0.001. For

this decision boundary, we therefore expect < 45 false positives, a much more manageable



– 17 –

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

F
al

se
 P

o
si

ti
v
e 

an
d
 N

eg
at

iv
e 

R
at

es

Decision Boundary Probability

False Positive Rate
False Negative Rate

Fig. 5.— Rates of false positive and negative classifications for a range of decision boundary

probability values.

number comparable to the total number of true novae expected.

7. The Nova Catalogue

The nova catalogue, comprises 47 objects classified by the networks as having proba-

bilities greater than 0.95 of being novae, and is made up of 9 previously identified novae

(discussed in §7.1), 19 new nova candidates and 19 probable contaminants (all discussed in

§7.2).

7.1. Previously Identified Novae

The average probabilities produced for the 25 CNe previously identified by An et al. and

Darnley et al. are shown in Table 3. Also included in this table are two decay timescales: the

half-widths of the peaks at 1/e and 5% of maximum light (te and t5% respectively), chosen to

give an indication of the timescale of the initial (te) and overall decay (t5%). The networks
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Fig. 6.— The nova probability versus 5% timescale for the 25 previously-identified novae.

The region within which highest nova sensitivity is reached is indicated with a dashed line.

trained in this paper correctly identify nine of the novae (using the criterion from §6.2),

with three further novae falling within their probability errors’ distance of the classification

cut-off. A plot of the probabilities assigned to the 25 novae against their 5% timescales is

shown in Figure 6. Examination of this plot indicates two main trends in the data. The first

trend is that the novae that are classified with higher probabilities also have much smaller

probability errors than the mis-classified novae. The poorly-classified (probabilities of 0.7

and lower) novae in particular are therefore classified much better by some networks than

others, which suggests that their power spectra are being confused. The confusion could be

because the power spectra of these objects are similar to POINT-AGAPE objects present

in only some network’s training sets, or because the networks have never seen this form of

novae before.

The second trend is that novae with t5% in the range 30 to 140 days are generally

classified much better than those outside the range, apart from three exceptions in the

range (IDs 10739, 14026 and 50100 (specifically marked in Figure 6)) and one outside (ID

50081). Upon closer inspection of the exceptions within the range, reasons for their mis-
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Object’s Object’s Half-width at Half-width at Averaged Network

Darnley et al. An et al. 1/e of Max. 5% of Max. Response

ID ID Light (days) Light (days)

PACN-99-01† 10889 10.8 99.3 0.863 ± 0.061

PACN-99-02† 28862 55.9 291.1 0.253 ± 0.106

PACN-99-03† 82483 13.2 38.3 0.849 ± 0.073

PACN-99-04† 93392 24.3 267.6 0.423 ± 0.124

PACN-99-05* 25851* 7.8 64.8 0.977 ± 0.012 •

PACN-99-06† 10739 13.2 54.0 0.611 ± 0.152

PACN-99-07† 49835 28.6 178.5 0.710 ± 0.160

PACN-00-01* 26946* 19.2 72.7 0.961 ± 0.017 •

PACN-00-02† 50081 72.4 433.9 0.977 ± 0.008 •

PACN-00-03† 24225 13.6 87.8 0.963 ± 0.016 •

PACN-00-04* 26021* 26.8 59.8 0.901 ± 0.066 ◦

PACN-00-05† 50100 37.3 108.8 0.482 ± 0.170

PACN-00-06* 77716* 10.6 45.5 0.984 ± 0.008 •

PACN-00-07† 87092 25.3 135.5 0.976 ± 0.011 •

PACN-01-01* 81539* 79.5 159.7 0.394 ± 0.156

PACN-01-02* 83835* 7.7 42.0 0.993 ± 0.003 •

PACN-01-03† 14026 60.3 103.0 0.690 ± 0.153

PACN-01-04† 82840 18.1 81.7 0.917 ± 0.056 ◦

PACN-01-05† 1881 23.9 94.7 0.985 ± 0.008 •

PACN-01-06* 77324* 27.6 99.6 0.986 ± 0.008 •

No ID Available 26277‡ 13.5 93.3 0.887 ± 0.064 ◦

“ 26285‡ 5.0 5.1 0.625 ± 0.183

“ 78668‡ 10.1 336.5 0.258 ± 0.117

“ 79136‡ 0 (1-point peak) 0 0.022 ± 0.007

“ 83479‡ 3.8 16.0 0.788 ± 0.068

Table 3: Probability values assigned to novae previously located by Darnley et al. (†), An

et al. (‡) or both *. Objects definitely classified as novae by our networks are marked •.

Objects just misclassified (i.e. whose probabilities plus errors overlap the decision boundary)

are marked ◦.
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classification become apparent. The lightcurve of nova 50100 has a very significant second

peak and even some evidence for a third, as well as a confusing bump in the later part of the

lightcurve. We therefore do not expect to classify this object well. Lightcurve 14026 actually

has a much slower decay than is indicated by its t5% value (the reason behind this being its

poorly-sampled decay), and so should be located further right in the plot. Its lightcurve also

features a second bump in the early stages of its decay. Lightcurve 10739 at first appears

to be ideal for our networks, but its peak is poorly-sampled near maximum. This seems to

hinder the Lomb periodogram, as nova 10739’s power spectrum contains large amounts of

high-frequency noise. These objects therefore should either really not be found in this region

of the plot, or possess features which make them differ from the template nova lightcurves

our networks are trained to recognise.

Discarding these objects, the networks correctly identify eight out of the 13 novae found

in the preferred t5%-range (∼62% efficiency). Allowing for the error bars on the network

outputs, a further 3 novae fall above the decision boundary (∼ 92 % efficiency). Therefore,

the networks can be reliably used to recognise typical novae with timescales in the range

30 < t5% . 140 days, but not outside this range. Note that this range is actually slightly

larger than the range of timescales used in the template lightcurves (i.e. 40 < t5% < 100

days), as the networks can generalise to some extent. The rapid fall-off of the network’s

response for novae with t5% much greater than 100 days is to be expected, as slow CNe are

much more likely than fast CNe to have decay fluctuations and secondary peaks and hence

be significantly different to the template novae. The low-t5% fall-off of the network’s response

is also expected, as it corresponds to the power spectrum range becoming too small to fit

in the main features of the novae’s sinc-like power spectrum (see §5.3). These fall-offs mean

that in order to recognise novae with t5% values outside of the preferred range, we will have

to alter the pre-processing techniques.

Additionally, one further nova outside the preferred timescale range is detected. We

note that the positive classification of lightcurve 50081 is highly inconsistent with the results

for other slow novae. Its lightcurve is well-sampled, and clearly belongs to a very slow nova,

and yet its power spectrum appears to be recognisable to the neural networks. We currently

have no explanation as to why the networks should pick it up, as nothing comparable to it

appears in the training set, but as it appears in a region where little response is expected, it

is more of an added bonus than a troubling anomaly 5

5A duplicate of 50081, namely 50153, is also detected. However, it is removed from the list of new nova

candidates by human intervention.
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Object RA dec Half-width at Half-width at Network Nova

ID (hr:min:sec) (deg:min:sec) 1/e of Max. 5% of Max. Probability Features

Light (days) Light (days)

1430 00:44:36.564 41:27:24.159 47.7 91.6 0.966 ± 0.016 M

2973 00:44:30.446 41:18:13.510 9.6 ∼25 0.959 ± 0.041 D, F

6251 00:44:05.978 41:22:19.384 11.0 17.0 0.975 ± 0.012 P, F

39995 00:44:33.854 41:37:27.775 5.0 5.8 0.971 ± 0.018 P, F

42075 00:44:29.306 41:35:42.513 1.5 15.1 0.975 ± 0.012 P, F

42808 00:44:22.572 41:29:50.579 31.9 89.5 0.955 ± 0.020 M

50177 00:43:15.816 41:29:12.045 29.3 64.8 0.955 ± 0.011 M

58826 00:42:05.645 41:02:49.409 No decay No decay 0.986 ± 0.005 R

66538 00:41:46.976 40:45:28.867 “ “ 0.984 ± 0.005 R

73732 00:43:33.160 41:06:44.146 “ “ 0.954 ± 0.020 R

74935 00:43:18.538 41:09:48.496 36.7 84.4 0.954 ± 0.009 M

80951 00:42:31.148 41:14:25.462 No decay No decay 0.961 ± 0.017 R

86234 00:43:41.720 41:01:04.352 “ “ 0.989 ± 0.014 P, F

86283 00:43:44.186 41:01:48.806 6.0 6.0 0.968 ± 0.016 D, F

88205 00:43:27.490 40:57:16.057 ∼3 ∼10 0.980 ± 0.009 D, F

89701 00:43:12.483 40:54:05.979 3.0 107.8 0.953 ± 0.026 D, F

92933 00:42:48.081 40:57:20.327 No decay No decay 0.954 ± 0.023 R

93095 00:42:44.604 40:57:04.521 3.6 52.1 0.979 ± 0.008 D, F

95935 00:42:24.705 41:02:12.578 ∼3 ∼10 0.977 ± 0.015 D, F

Table 4: The IDs, right asencion and declination (J2000.0), network probabilities, decay

timescales (where possible) and nova features (M = most or all, R = rise only, D = decay

only and P = peak only) of the 19 new nova candidates. F = possible fake, as judged by

examination of the image frames.
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7.2. New Nova Candidates

The nova catalogue also contains 19 lightcurves which, upon inspection, are either recog-

nisable as novae or exhibit some nova characteristics, and hence can be classified as candi-

dates for newly discovered novae. The IDs, location and probabilities of these 19 candidates

are listed in Table 4, while their lightcurves are displayed in Figure 7. The candidates can

be roughly separated into four groups according to which nova features they exhibit. The

first group consists of 1430, 42808, 50177 and 74935. Their lightcurves contain most or all

of the desired features, and hence make excellent nova candidates.

The second group have lightcurves where only the first few measurements of a rise

towards a peak are present (IDs 58826, 66538, 73732, 80951 and 92933), with no sampling of

the decay. The third group have lightcurves with samples present which suggest some form

of decay from a peak, but no measurements of the rise or peak itself (IDs 2973, 86283, 88205,

89701, 93095 and 95935). The fourth group have lightcurves which feature prominent, sharp

peaks but not much clear evidence for the characteristic nova rise or decay (IDs 6251, 39995,

42075 and 86234), and which could therefore be very fast novae or simply instrumental

defects. It is difficult to say for certain that objects in these three groups are novae without

more data. The locations of the 19 candidates in Table 4, together with the 9 candidates in

Table 3 are shown in Figure 8, superposed on the optical isophotes of M31. These are all

the candidates with a network probability > 0.95.

The difference images of all 19 candidates have been examined and the PSFs constructed.

If the PSF is not roundish with a size controlled by the seeing, then this suggests that the

candidates may be fakes. Performing this test yields the result that perhaps 10 of the

candidates are spurious (2973, 6251, 39995, 42075, 86234, 86283, 88205, 89701, 93095 and

95935).

Finally, the nova catalogue also contains 19 contaminants that appear to be true variable

objects, and are primarily made up of the lightcurves of superpixels covering periodic stars

such as Miras and Cepheids, although many lightcurves exhibit some other superposed form

of variability.

8. Conclusions

This paper has presented working neural networks for the identification of fast CNe.

The use of K-fold cross-validation and the choice of pre-processing techniques (i.e. reducing

the lightcurve to a suitably binned and normalised power spectrum) has produced a set of

neural networks capable of detecting the fast classical nova present in the POINT-AGAPE
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survey. This conclusion is borne out by the consistently high nova probabilities assigned to

the previously-identified novae with 30 < t5% . 140 days, the detection of 4 strong new nova

candidates in the POINT-AGAPE catalogue and a further 15 possible candidates. This adds

further weight to the claims by a number of authors (Wozniak et al. 2001; Belokurov et al.

2003, 2004; Brett et al. 2004) that neural networks offer a promising solution to the problem

of lightcurve identification in massive variability surveys.

The variation of K-fold cross-validation used in this paper is new and particularly well-

adapted to the search for rare objects in a large dataset. Usually, in K-fold cross-validation,

the data set is first partitioned into K separate sets. A network is then trained using a

training set containing all of the data from K − 1 segments, and tested on the remaining

data. Our variation on this technique is to train the networks using just one POINT-AGAPE

data segment before testing the networks on the remaining K−1 segments. This is beneficial

as the processing times is substantially reduced. In many circumstances, there would be a

risk of training set contamination using this variation on K-fold cross-validation. However,

CNe are very scarce in the POINT-AGAPE dataset. So, the POINT-AGAPE lightcurves

themselves can be used for the non-nova examples in the training set with little risk of

contamination. The nova examples are produced in the training set must be produced with

templates. This method therefore can be used to find any rare lightcurves in a massive

variability survey, provided suitable templates exist.

Nonetheless, the networks cannot be used in their current form to obtain a nova-rate

for M31. Very fast novae are missing because the the POINT-AGAPE sampling rate is

just not good enough to detect them. As demonstrated by Figure 6, the networks also do

not detect enough slow, bumpy novae. Furthermore, these novae are more often than not

assigned high probabilities, yet these probabilities fall below the classification cutoff because

the networks produce too many false positives. The difficulty here is that artifical templates

for slow novae are harder to construct, as they exhibit a greater morphology in the declining

part of the curve. The best way to overcome this is to use known examples of slow CNe as

part of the training set. Unfortunately, there are very few such lightcurves available in the

g, r and i passbands of the POINT-AGAPE survey. This however may become possible in

the future using transformed colours. The extension of the networks to slow novae may also

require modifications to the pre-processing technique, as the power spectra of slow novae are

different (less sinc-like) to those of fast novae.

Finally, it is worth mentioning the limiting factor for detection of fast nova is actually

the temporal sampling of the POINT-AGAPE dataset. As fast CN are the brightest CN,

they are still easy to detect even against the bright bulge of M31. Although we have not

carried out a full efficiency analysis, it is clear that the networks successfully detect the CN
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types on which the system was trained, up to the limit imposed by the temporal sampling.

VB and EJK are supported by the Particle Physics and Astronomy Research Council

of the United Kingdom, while JA is supported by the Leverhulme Trust. Work by AG

is supported by NSFgrant 02-01266. We thank all the members of the POINT-AGAPE

collaboration for access to their data.

REFERENCES

An J.H., et al. 2004, MNRAS, 351, 1071

Ansari R. et al., 1999, A&A, 344, L49

Aurière M. et al., 2001, ApJ, 553, L137

Bailer-Jones C.A.L., 1997, Publications of the Astron. Soc. of the Pacific, 109, 932

Belokurov V., Evans N.W., & Le Du, Y., 2003, MNRAS, 341, 1373

Belokurov V., Evans N.W., & Le Du Y., 2004, MNRAS, 352, 233

Belokurov V., et al., 2005, MNRAS, 357, 17

Bishop C.M., 1995, Neural Networks for Pattern Recognition, Oxford University Press, New

York

Bode M., Evans A. 1989, Classical Novae, J. Wiley, London

Brett D., West R.G. & Wheatley P.J., 2004, MNRAS, 353, 369

Cohen J.G., 1985, ApJ, 292, 90

Darnley M.J., et al. 2004, MNRAS, 353, 1071

Hubble E., 1929, ApJ, 69, 103

Irwin M. & Lewis J., 2001, New Astron. Rev., 45, 105
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Fig. 7.— Lightcurves of the 19 new nova candidates. The r band flux in ADU s−1 is plotted

against time in JD-2451392.5. The 4 strong candidates are 1430, 42808, 50177 and 74935.
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Fig. 7.— (continued). Lightcurves of the 19 new nova candidates. The r band flux in ADU

s−1 is plotted against time in JD-2451392.5. The 4 strong candidates are 1430, 42808, 50177

and 74935.
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Fig. 8.— Locations of the 19 candidates in Table 4, plus the 9 previously identified novae

from Table 3. This is the entire sample of candidates with a network probability > 0.95.


