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Abstract

We study Lorentz-violating models of massive gravity which preserve rotations and are invariant

under time-dependent shifts of the spatial coordinates. In the linear approximation the Newtonian

potential in these models has an extra “confining” term proportional to the distance from the

source. We argue that during cosmological expansion the Universe may be driven to an attractor

point with larger symmetry which includes particular simultaneous dilatations of time and space

coordinates. The confining term in the potential vanishes as one approaches the attractor. In the

vicinity of the attractor the extra contribution is present in the Friedmann equation which, in a

certain range of parameters, gives rise to the cosmic acceleration.
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I. INTRODUCTION

Recently it has been realized [1–3] that models of modified gravity which contain Lorentz-

violating graviton mass terms may avoid all known problems of massive gravity such as the

van Dam-Veltman-Zakharov (vDVZ) discontinuity [4, 5], ghost instabilities [6] and strong

quantum effects at the unacceptably low energy scale [7]1. In the most general sense by

massive gravity we understand any theory described by the following action

S = −M2
P l

∫

d4x
√
−gR +

∫

d4x
√
−gF , (1)

where the first term is a usual Einstein–Hilbert term and F is, generally speaking, an

arbitrary (non-covariant) function of metric components and their derivatives. Matter fields

are assumed to be covariantly coupled to the metric. A systematic study of the rotationally

invariant theories of massive gravity was performed in Ref. [3]. A particularly interesting

class of models found there is characterized by a residual reparametrization symmetry

xi → xi + ξi(t) , (2)

where xi are the spatial coordinates. This class of models is singled out by the following

two properties. First, in the vicinity of the Minkowski background these models represent

consistent low-energy effective theories valid up to the energy scale Λ ∼
√

mMpl, where m is

a graviton mass. The absence of ghosts and classical instabilities is ensured by the symmetry

requirements alone without need for any extra fine-tuning. The second important property is

that already the lowest-dimension operators (graviton mass terms) lead to the modification

of gravity, in particular gravitational waves are massive. An example of a theory which

shares the first but not the second property is the ghost condensate model [1] which, at the

lowest derivative level, is equivalent to the gauge-fixed Einstein theory. Another class of

theories with this property is discussed in Refs. [11, 12]. In what follows by massive gravity

we understand gravity theories (1) obeying symmetry (2).

The phenomenological consequences of the massive gravity models obeying symmetry

(2) were first studied in Ref. [13]. One of the unexpected properties found there is that

massive gravitational waves may coexist with the long-range potential between the sources.

1 It is worth mentioning that another intriguing route to solve these problems may be to take into account

the effects of local curvature [8–10].
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In general, the gravitational potential in these models contains an extra “confining” piece

which grows linearly with the distance from the source,

Φ = GNM

(

−1

r
+ µ2r

)

, (3)

where µ2 is a combination of the graviton masses (see Sect. II) proportional to their overall

scale. The analysis of Ref. [13] was focused mainly on the case µ2 = 0 when the additional

dilatation symmetry ensures that the long-range potential is identical to that of the Einstein

theory. This relaxes the constraints coming from the Solar system and Cavendish-type ex-

periments, and opens up a possibility for the graviton mass to be as large as ∼ (10−15cm)−1

without contradiction to the existing experimental data. The relic gravitational waves pro-

duced at inflation may constitute today the cold dark matter in the Universe and would give

a unique monochromatic signal in the gravitational wave detectors [13].

The purpose of the present paper is to study cosmological solutions in the massive gravity.

We address the question of whether such solutions are phenomenologically acceptable, and

what are their generic properties. We do not assume that parameters are tuned so that

µ2 = 0 from the very beginning. It turns out, however, that for a large class of functions F

in Eq. (1) the cosmological evolution naturally drives the system to the point µ2 = 0 where

there are no corrections to the Newtonian potential. In other words, this point is an attractor

in the solution space (it corresponds to the restoration of an additional dilatation symmetry).

At this point the graviton mass has a finite non-zero value, while the modification of the

Friedmann equation has a form of an extra term which behaves like a dark energy with the

equation of state depending on the parameters of the model (properties of the function F ).

The paper is organized as follows. We begin in Sect. II by analyzing linear perturbations

about the flat background and, in particular, derive Eq. (3). In Sect. III we study general

properties of the cosmological solutions in massive gravity. We then consider in Sect. IV

the stability of the curved solutions against perturbations of high momenta (the Boulware-

Deser instability) and argue that the stability is achieved without fine-tuning of parameters

at least for backgrounds close to the Minkowski space. In particular, cosmological solutions

found in Sect. III are stable in the vicinity of the attractor point. In the concluding Sect. V

we discuss possible phenomenological applications and some future directions in the studies

of the massive gravity.
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II. LINEARIZED THEORY NEAR MINKOWSKI BACKGROUND

As has been argued in Ref. [3], a convenient way to describe the Lorentz-violating models

of massive gravity is to introduce the set of four scalar “Goldstone” fields φ0, φi, which have

a particular derivative couplings to gravity. In terms of the metric and the Goldstone fields,

the action has a generally-covariant form. The spontaneous breaking of the covariance is

achieved by assuming non-zero vacuum expectation values of the derivatives of the Goldstone

fields. The Goldstone fields can be eliminated from the action by a suitable coordinate

transformation; in such a “unitary gauge” the action only depends on the metric components.

A class of Lorentz-violating gravity models which possess the symmetry (2) and rotational

invariance is represented by the action

S =

∫

d4x
√−g

[

−M2
P lR + Λ4F (X,W ij, . . . )

]

, (4)

where

X = gµν∂µφ
0∂νφ

0,

W ij = gµν∂µφ
i∂νφ

j − gµν∂µφ
0∂νφ

i · gλρ∂λφ
0∂ρφ

j

X
, (5)

dots stand for higher derivative terms, and Λ is a parameter which determines the cutoff

scale of the theory. The indices i, j are converted using δij . Low energy modification of

gravity takes place at the scale m ∼ Λ2/MP l. The function F is arbitrary apart from

the constraints following from the requirement that the model is free of ghosts and strong-

coupling problems [3]; we assume that it depends on a single scale Λ. The coefficient in front

of the Einstein-Hilbert action is chosen for convenience.

We assume that the model (4) possesses the solution which corresponds to the Minkowski

space,

gµν = ηµν ,

φ0 = αΛ2t,

φi = βΛ2xi. (6)

Here α and β are some constants which have to be chosen in such a way that the energy-

momentum tensor of the Goldstone fields is zero. This requirement reduces to two equations

(58) and (59), shown in the Appendix A. Consequently, this choice is possible for a generic

function F .
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Our current goal is to study linear perturbations about the vacuum (6). It is convenient

to work in the “unitary gauge” where the Goldstone fields are set to their vacuum values

(6). In this gauge the remaining perturbations are those of the metric, δgµν ,

gµν = ηµν + δgµν . (7)

Following the notations of Ref. [14], we parameterize δgµν as follows,

δg00 = 2ϕ;

δg0i = Si − ∂iB;

δgij = −hij − ∂iFj − ∂jFi + 2(ψδij − ∂i∂jE),

where hij are the transverse and traceless tensor perturbations, Si and Fi are the transverse

vector perturbations, while ϕ, ψ, B and E are the scalar perturbations. The potential ϕ is

not to be confused with the Goldstone fields φ0 and φi.

The quadratic Lagrangian for perturbations has the form

L = LEH + Lm + Ls, (8)

where the three contributions are the Einstein-Hilbert term, the mass term and the source

term, respectively. The quadratic part of the Einstein-Hilbert Lagrangian is

LEH = M2
P l

{

−1

4
hij(∂

2
0 − ∂2

i )hij −
1

2
(Si + ∂0Fi)∂

2
j (Si + ∂0Fi)

+4(ϕ+ ∂0B − ∂2
0E)∂2

i ψ + 6ψ∂2
0ψ − 2ψ∂2

i ψ
}

. (9)

The mass term originates from the second term in Eq. (4). We parameterize the mass

parameters according to the notations of Ref. [2],

Lm =
M2

P l

4

{

m2
0δg

2
00 + 2m2

1δg
2
0i −m2

2δg
2
ij +m2

3δg
2
ii − 2m2

4δg00δgii

}

. (10)

The contribution proportional to m2
1 is absent in our model. This is guaranteed by the

symmetry (2). In terms of tensor, vector and scalar perturbations these mass terms read

M2
P l

{

−1

4
m2

2h
2
ij −

1

2
m2

2(∂iFj)
2 +m2

0ϕ
2 +

(

m2
3 −m2

2

) (

∂2
iE

)2 −

−2(3m2
3 −m2

2)ψ∂
2
i E + 3

(

3m2
3 −m2

2

)

ψ2 + 2m2
4ϕ∂

2
i E − 6m2

4ϕψ
}

. (11)
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The masses m2
i are expressed in terms of the first and second derivatives of the function

F , the parameter Λ and the Planck mass. The overall scale of masses is set by the ratio

Λ2/MP l. The explicit expressions are given in the Appendix A.

To probe the linear response of the system we add the source Tµν which is assumed to be

conserved, ∂µTµν = 0. The corresponding contribution to the Lagrangian can be written as

Ls = −T00

(

ϕ+ ∂0B − ∂2
0E

)

− Tiiψ + (Si + ∂0Fi)T0i +
1

2
hijTij.

All combinations coupled to the components of Tµν are gauge-invariant. The one multiplying

T00,

Φ ≡ ϕ+ ∂0B − ∂2
0E,

plays the role of the Newtonian potential in the non-relativistic limit.

a. Tensor sector. In the tensor sector, only the transverse traceless perturbations hij

are present. Their field equation is that of a massive field with the mass m2, in agreement

with Ref. [2]. Thus, there are two massive spin 2 propagating degrees of freedom.

b. Vector sector. In the vector sector, the field equations read

−∂2
j (Si + ∂0Fi) = −T0i, (12)

∂0∂
2
j (Si + ∂0Fi) +m2

2∂
2
jFi = ∂0T0i. (13)

Taking the time derivative of Eq. (12) and adding it to Eq. (13) gives

Fi = 0,

provided that m2
2 6= 0. Thus, the vector sector of our model behaves in the same way as in

the Einstein theory in the gauge Fi = 0. There are no propagating vector perturbations and

gravity is not modified in the vector sector unless one takes into account non-linear effects

or higher derivative terms.

c. Scalar sector. The field equations for scalar perturbations are

2∂2
i ψ +m2

0ϕ +m2
4∂

2
i E − 3m2

4ψ =
T00

2M2
P l

, (14)

2∂2
i Φ − 2∂2

i ψ + 6∂2
0ψ −

(

3m2
3 −m2

2

)

∂2
iE + 3

(

3m2
3 −m2

2

)

ψ − 3m2
4ϕ =

Tii

2M2
P l

, (15)

−2∂2
i ∂

2
0ψ +

(

m2
3 −m2

2

)

∂4
iE −

(

3m2
3 −m2

2

)

∂2
i ψ +m2

4∂
2
i ϕ = −∂

2
0T00

2M2
P l

, (16)

2∂2
i ∂0ψ =

∂0T00

2M2
P l

. (17)
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Eq. (17) implies

ψ =
1

∂2
i

T00

4M2
P l

+ ψ0(x
i), (18)

where ψ0(x
i) is some time-independent function.

From Eqs. (14) and (16) one finds

ϕ =
2m2

2m
2
4

∆
ψ +

2(m2
3 −m2

2)

∆
∂2

i ψ0, (19)

∂2
i E =

(

3 − 2m2
0m

2
2

∆

)

ψ − 2m2
4

∆
∂2

i ψ0, (20)

where

∆ = m4
4 −m2

0(m
2
3 −m2

2).

Finally, substituting Eqs. (18), (19) and (20) into Eq. (15) one finds the gauge-invariant

potential Φ,

Φ =
1

∂2
i

T00 + Tii

4M2
P l

− 3
∂2

0

∂4
i

T00

4M2
P l

+

(

3 − 2m2
0m

2
2

∆

)

m2
2

∂2
i

(

1

∂2
i

T00

4M2
P l

+ ψ0

)

+

(

1 − 2m2
2m

2
4

∆

)

ψ0,

(21)

where we presented explicitly the dependence on ψ0 and Tµν . The first two terms on the

r.h.s. of Eq. (21) are the standard contributions in the Einstein theory, the first becoming

the Newtonian potential in the nonrelativistic limit. Thus, barring the ψ0-dependent terms,

the gauge-invariant potentials Φ and ψ in our model differ from their analogs in the Einstein

theory ΦE and ψE by the mass-dependent third term on the r.h.s of Eq. (21),

ψ = ψE ,

Φ = ΦE +

(

3 − 2m2
0m

2
2

∆

)

m2
2

∂4
i

T00

4M2
P l

. (22)

This term vanishes if all masses uniformly go to zero, which implies the absence of the vDVZ

discontinuity. Eq. (22) is the result presented in Ref. [13]. For a static source, Eq. (22) leads

to the modification of the Newtonian potential of a point mass M as shown in Eq. (3) with

µ2 = −1

2
m2

2

(

3 − 2m2
0m

2
2

∆

)

. (23)

This indicates the breakdown of perturbation theory at distances r & 1/(GNMµ2). Note,

that the modification of the Newtonian potential is absent if 3∆ = 2m2
0m

2
2 (and ∆ 6= 0).

We will see in Sect. III that this happens in the vicinity of the cosmological attractor, i.e.

at late times of the cosmological evolution.
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The freedom of choosing the time-independent function ψ0(x), which enters the above

gravitational potentials, indicates the presence of the scalar mode with the dispersion rela-

tion2 ω2 = 0 [3] (cf. also Sect. IV, Eq. (45) in the limit m2
1 → 0). This mode is an analogue of

the ghost condensate mode [1] and becomes dynamical with the account of higher-derivative

terms in the action (4), acquiring the dispersion relation ω2 ∝ p4 (so that ψ0 becomes a

slowly-varying function of time). The value of ψ0 is fixed by the initial conditions. In the

linear regime, the non-zero value ψ0 would mean the presence of the incoming “ghost con-

densate wave”. So, a physically reasonable choice of ψ0 is ψ0(x
i) = 0. We will discuss in

more detail a possible role of this mode in the concluding Sect. V.

Note that the kinetic term of the ghost condensate mode is proportional to the combi-

nation ∆ [3] (see also Sect. IV). Therefore, in general this combination should be non-zero

(positive), in agreement with Eqs. (19)—(22). It may happen that in some special cases

one can obtain a healthy theory even if ∆ = 0. An interesting possibility suggested recently

in Ref. [15] is to impose an additional condition m2
4 = m2

0 = 0. Then the “ghost conden-

sate” mode does not appear in the linearized theory at the lowest derivative level in flat

background. It acquires both kinetic and gradient term at a higher-derivative level, so that

an additional symmetry t → t + ξ0(t) is needed to prevent this mode from being a ghost.

The gravitational potentials are non-singular in this case despite ∆ = 0 and have the same

structure as our Eq. (22). As we discuss in Sect. IV, the stability of this model requires

further study and is more subtle than in the case ∆ 6= 0 because of new propagating modes

that appear in curved backgrounds.

III. COSMOLOGICAL SOLUTIONS

Let us discuss flat cosmological solutions in the theory defined by the action (4). The

flat cosmological ansatz is

ds2 = dt2 − a2(t)dx2
i , (24)

φ0 = φ(t) , φi = Λ2xi . (25)

2 In what follow ω denotes frequency and p denotes the absolute value of the spatial momentum.
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For this ansatz W ij = −a−2δij, so the function F in (4) depends only on X and a, F =

F (X, a). The Einstein equations reduce to the Friedmann equation (see Appendix A),

(

ȧ

a

)2

=
1

6M2
P l

{

ρm + 2Λ4XFX − Λ4F
}

≡ 1

6M2
P l

{

ρm + ρ1 + ρ2

}

, (26)

where ρm is the energy density of ordinary matter not including Goldstone fields, and the

field equation for φ0,

∂t

(

a3
√
XFX

)

= 0 . (27)

It is straightforward to solve this system of equations for any given function F (X, a). After

the integration, Eq. (27) gives an algebraic equation which determines X as a function of

the scale factor a. The dependence X(a) as found from Eq. (27) determines the behavior

of the Goldstone energy density ρ1 + ρ2 as a function of a. This makes Eq. (26) a closed

equation for the scale factor a(t).

From the point of view of cosmological applications, of particular interest are solutions

where the scale factor a(t) goes to infinity at late times. Since the graviton masses are

linear combinations of the function F (X, a) and its derivatives, one may wonder whether

they remain finite or go to zero in this limit, and whether the effective-theory description

remains valid. Indeed, Eq. (27) implies that at late times either X or FX go to zero. If

X → 0, then the expressions given in the Appendix A suggest that the graviton masses go

to zero as well. This may lower the cutoff scale of the effective theory. Similarly, some of

the masses apparently vanish if X goes to a finite value X0 such that FX(X0, a) → 0. If X

goes to infinity, this questions the validity of the low-energy effective theory by itself.

Let us show that, in spite of the naive expectations, for a wide class of functions F there

exist solutions for which graviton masses are finite in the limit a → ∞ and the effective

theory description remains valid. Assume that X(a) asymptotes to some power of a at large

a. This is not a very restrictive assumption — for instance, it is satisfied for any algebraic

function F (X, a). Then there exists such γ that the combination Xγ/a2 goes to a non-zero

constant as a → ∞. Eq. (27) implies that XFX = const ·
√
X/a3; this determines the

dependence of the energy component ρ1 on the scale factor,

ρ1 = const
1

a3−1/γ
. (28)

This relation generalizes the behavior found in the ghost condensate models where the energy

density of the ghost condensate scales like 1/a3 (in our model the latter behavior is recovered

9



at γ → ∞).

For γ > 1/3 the energy density ρ1 behaves like the dark energy component with the

the negative pressure. Its equation of state varies between that of the cold dark matter,

w = 0 (for γ = +∞), and that of the cosmological constant, w = −1 (for γ = 1
3
). For

0 < γ < 1/3 the term ρ1 grows with a. It corresponds to the energy density component

with a highly negative equation of state, w < −1. Without fine-tuning this contribution

cannot be canceled by the term ρ2, so that the Hubble rate diverges as a → ∞ leading

to the breakdown of the low-energy effective theory and suggesting the presence of rapid

instabilities. In what follows we assume that γ does not belong to this range. For γ < 0 the

energy density ρ1 corresponds to a fluid with a positive pressure.

In order to see that the graviton masses remain finite and the effective field theory

description is valid in the limit a→ ∞, it is convenient to replace X by a new variable Z =

Xγ/a2. The function F (X, a) becomes the function of Z and a, F̃ (Z, a) = F (Z1/γa2/γ , a).

Note that it satisfies the relation γZF̃Z = XFX , where F̃Z = ∂F̃ /∂Z. In these notations

Eq. (27) reads

γa3− 1

γZ1− 1

2γ F̃Z(Z, a) = A, (29)

where A is an integration constant. This equation determines Z as a function of a. By

construction, this dependence is such that Z(a→ ∞) = Z0, where Z0 is some constant.

If one assumes further that the function F̃ (Z, a) is regular at a→ ∞, then at late times

one has

F (X, a) = F̃ (Z, a) → F0(Z). (30)

In terms of the original variables this means that in the limit a→ ∞ the function F (X,W ij)

depends only on the combination XγW ij. This corresponds to the following dilatation

symmetry of the Goldstone action,

φ0 → λφ0,

φi → λ−γφi. (31)

In this case one has

ρ2 = −Λ4F0(Z0),

which behaves like a cosmological constant (assuming F0(Z0) 6= 0). Likewise, at a→ ∞ the

masses given by Eqs. (61)–(65) become functions of Z0 and in general remain finite.
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In models with this kind of behavior of X(a) the effective field theory description remains

valid even at X ≫ Λ4 provided the value of Z is small. This is guaranteed by the dilata-

tion symmetry (31) which relates configurations with different values of X. Thus, there

exists a wide class of functions F for which indefinitely expanding cosmological solutions are

compatible with constant graviton masses and allow for the effective field theory description.

Our assumptions about the function F can be summarized in the following expansion,

F (Z,W ) = F0(Z) +
∑

ν>0

ǫνW νFν(Z) , (32)

where ν takes positive (not necessarily integer) values, Fν(Z) are some regular functions of

Z (for shortness we have suppressed the indices i, j) and ǫ is a formal expansion parameter.

Eq. (29) implies that an attractor point Z0 is determined by the condition F ′
0(Z0) = 0, where

prime denotes d/dZ. Note that the expansion (32) does not need to hold for arbitrary values

of Z and W ; it is sufficient if it is satisfied in some finite region around the attractor point.

One may wonder whether the class of functions of the form (32) is stable under quantum

corrections. To see that this is generically the case note that the action (32) is formally

invariant under the symmetry (31) provided one treats ǫ as a spurion field transforming as

ǫ→ λ−2ǫ .

Let us assume ǫ to be somewhat smaller than unity, so that one can perform perturbation

theory in this parameter. Then the general form (32) of the action is invariant under

quantum corrections whenever expansions in ǫ works (i.e., no terms proportional to negative

powers of ǫ appear due to quantum corrections).

The models with the function F obeying Eq. (30) have an interesting feature which is a

consequence of the symmetry (31). It is straightforward to check that Eq. (31) implies the

following relations among graviton masses in the Minkowski space,

m2
0 = −3γm2

4, γ(m2
2 − 3m2

3) = m2
4. (33)

These relations ensure that the parameter µ2 defined by Eq. (23) is zero, i.e., the correction

to the Newtonian potential (the last term in Eq. (22)) vanishes. Thus, barring the effects

of the higher derivative terms, at late times the only modification of gravity at the linear

level is the non-zero mass of the two polarizations of the graviton. This suggests that the

confining term in the Newtonian potential is unlikely to have any effect at present epoch.
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Indeed, the expressions for the graviton masses given in the Appendix A imply that the

correction to the Newtonian potential goes to zero as 1/a2νm, where νm is a minimal value

of ν in Eq. (32). This parameter has to be fine-tuned to an extremely small value to allow

for a substantial value of µ2 at present.

A particularly simple case occurs when the function F depends only on the combination

Z = XγW ij. If γ > 1/3 or γ < 0, the evolution drives the system to the point F̃Z = 0, in

full similarity with the ghost condensate model. In the case 0 < γ < 1/3 and regular F̃ , Z

has to diverge at large a. This breaks the validity of the low energy effective theory.

There are three boundary values of γ, which are somewhat special, namely γ = 1/3, 0,∞.

If γ = 1/3 then Z is constant during cosmological evolution and both ρ1 and ρ2 behave like a

cosmological constant. An interesting property of this model is that a (constant) acceleration

rate of the cosmological expansion is determined by the initial conditions in the Goldstone

sector (the value of Z) rather than by the parameters of the action.

If γ = 0 then F (X,W ) does not depend on X at all. In this case Eq. (27) is satisfied

automatically, and the only unconventional component in the Friedmann equation (26) is

the last term ρ2. This term may describe arbitrary equation of state depending on the choice

of the function F0(W ). For functions F regular when W goes to zero, this term becomes a

cosmological constant as before.

In the case γ = ∞ the function F depends on the scalar quantities X, TrW 2/(TrW )2 and

TrW 3/(TrW )3. Flat cosmological solutions in such a theory have the same properties as in

the ghost condensate model where the F is a function of X only. These theories, however,

differ from the ghost condensate model in that they describe massive gravitons, and have

different solutions in a non-flat case.

It is worth commenting on the role of the regular Minkowski vacua which are the points in

the (X,W ) space at finite (non-zero) values of X and W where the energy-momentum tensor

of matter and Goldstone fields is zero and thus the Minkowski metric solves the Einstein

equations. In the absence of matter, ρm = 0, these points are determined by Eqs. (58) and

(59). There may exist solutions to Eqs. (26) and (27) which asymptotically approach these

points. These solutions correspond to the scale factor going to a finite limit, so they do not

describe the current phase of the cosmological expansion.

To conclude this section we would like to stress that our analysis may not exhaust all

viable cosmological solutions in the model with the action (4). For instance, the combination
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Xγ/a2 may be proportional to some power of log a at late times, which is the case not covered

above. Another possibility is to consider more general cosmological ansatz than that given

by Eq. (24). Namely, one may consider the time-dependent configuration3 of the fields φi,

φi = Λ2C(t)xi,

where C(t) is an arbitrary function of time. Due to the symmetry (2) this ansatz is still

homogeneous as the constant shift of the spatial coordinates xi can be compensated by the

φ0-dependent shift of the fields φi. The equations of motion on this ansatz reduce to two

equations: the Friedmann equation (26) which remains unchanged, and the equation for φ0,

X1/2

a3
∂t

(

a3X1/2FX

)

+ 3
Ċ

C
WFW = 0. (34)

For any fixed function C(t), Eqs. (26) and (34) determine the dependence ofX and a on time.

Interestingly, in the case when the function F is invariant under the additional dilatation

symmetry (31), Eq. (34) takes the form (29) irrespectively of the particular shape of C(t).

Thus, while the time dependences of X and W separately vary with the choice C(t), the

evolution of Z and the scale factor a is universal. Consequently, observable quantities such

as the expansion rate and the graviton masses do not depend on the function C(t) if the

symmetry (31) holds.

The situation is different if the dilatation symmetry is absent: in general, the expansion

rate depends on the choice of the function C(t). This ambiguity is a consequence of the

symmetry (2) and is related to the presence of modes with the dispersion relation p2
i = 0.

In order to fix this ambiguity one should specify boundary conditions for the fields φi at

spatial infinity. To see this, imagine that the space is compact. For instance, if the space is

a torus of the size L, the fields φi have to satisfy some kind of (quasi)periodicity condition,

e.g.

φi(xi) = φi(xi + L) − Λ2L.

This condition implies C = const. Other boundary conditions may lead to time-dependent

C(t). In this sense, the ambiguity in choosing different functions C(t) is analogous to the

ambiguity in choosing the vacuum state in theories with flat directions.

3 We thank S. Sibiryakov for pointing out to us this possibility.
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IV. STABILITY

Let us discuss the stability of the cosmological solutions obtained in the previous sec-

tion. One should distinguish two different types of instabilities which may occur in a theory

which is perturbatively stable about the flat background when the latter becomes curved.

The first type of instabilities has the characteristic wavelength and time-scales much longer

that the inverse cutoff scale Λ−1. They are set either by the curvature of the background,

or suppressed by the powers of Λ/MP l, if these instabilities appear due to mixing of higher

derivative terms with gravity (the latter type of instability is present, e.g., in the ghost con-

densate) . We call these the infrared (IR) instabilities. Depending on a particular situation,

the IR instabilities, if present, may be either dangerous or interesting phenomenologically

(like, e.g., the Jeans instability). Their analysis is clearly important for the conclusion on

the phenomenological viability of the model. However, even if present, the IR instabilities do

not question the applicability of the analysis based on the low-energy effective field theory.

We do not address IR stability of our models in the present paper.

The instabilities of a different type, which we refer to as ultraviolet (UV) instabilities,

are those which occur at wavelengths (and/or timescales) much shorter than that of the

background curvature, approaching the scales of order Λ−1. Such instabilities do affect the

structure of the theory in the ultraviolet and imply the breakdown of the effective field

theory description for scales much lower than Λ. An example of such an instability is the

Boulware–Deser instability [6] which occurs in the curved background in the Fierz–Pauli

theory of massive gravity due to the presence of the ghost mode4. We will see that the

instabilities of this type are absent in our models. A physical reason is that massive gravities

with symmetry (2) can be thought of as stable scalar theories coupled to the Einstein gravity,

which is not possible the Fierz–Pauli case.

The origin of the Boulware–Deser instability is easy to understand within the formalism

4 Note, however, that the statement [16] that rapid classical instabilities are present in the Fierz–Pauli

theory in the Minkowski background is unjustified. This claim is based on the analysis of the spatially

homogeneous solutions, while to address the issue of stability one should study dynamics of the spatially

localized excitations of finite energy. An example illustrating this point is provided, e.g., by the massless

scalar field with the negative potential V = −λφ4. From the analysis of the spatially homogeneous

solutions one might conclude that vacuum φ = 0 is perturbatively unstable in this theory, which is not

the case (see, e.g. [17]).
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of the Goldstone fields φµ. The Goldstone action which corresponds to Lorentz-invariant

massive gravity, including the Fierz-Pauli theory, is (cf. the second term in Eq. (4))

SG = Λ4

∫ √−gd4xF (P ), (35)

where P = gµνηαβ∂µφ
α∂νφ

β and ηαβ is a Minkowski metric. In the Minkowski background

(6), the quadratic action for the Goldstone perturbations δφµ ≡ ξµ takes the form

L = µ2
1(P )(∂µξ

α)2 + µ2
2(P )(∂µξ

µ)2, (36)

where the coefficients µ2
i (P ) are some functions of P = α2 − 3β2 which are expressed in

terms of the first and second derivatives of the function F (P ). The particular expressions

are irrelevant for the argument; what is important is the fact that the coefficients µ2
i (P ) do

depend on P . The Lagrangian (36) describes the ghost-free theory only in the case

µ2
1(P ) + µ2

2(P ) = 0 , (37)

when it is proportional to (∂µξν −∂νξµ)
2. In general, this condition is satisfied in an isolated

point P = P0.

To see the instability, consider now the perturbations localized in the vicinity of a given

point in the background of some non-trivial solution. In the UV limit the metric can be

approximated as flat, so the perturbations in the Goldstone sector will be described by the

Lagrangian (36). However, since Goldstone fields depend on space and time, the condition

(37) will not, in general, be satisfied (because, for instance, the value of P is time-dependent

for cosmological solutions). The Fierz-Pauli theory is therefore UV unstable in a curved

background even if this background is locally very close to the Minkowski one. This implies

that the cutoff scale of the low-energy effective theory in the curved backgrounds generically

is even less than in the Minkowski background, as it should be less than a mass of the ghost

mode. A detailed discussion of the corresponding scales in the phenomenologically relevant

backgrounds can be found in [18].

Let us now repeat the same analysis for our model and show that it is free from UV

instabilities at least for backgrounds which are close to the vacuum (6) in the UV limit. For

simplicity, consider the model obeying the dilatation symmetry (31). The Goldstone action

has the form

SG = Λ4

∫ √
−gd4xF (Z ij) , (38)
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where Z ij = XγW ij, and the quantities X and W ij are given by Eq. (5). Deep in the UV

region where the metric can be considered as flat, any Goldstone configuration of the form

(6) is a solution to the Goldstone field equations5. In this background, the variable Z ij takes

the values depending on the constants α and β. The quadratic Lagrangian for the Goldstone

perturbations ξ0 and ξi reads

L = M2
P l

{

2m2
0(∂0ξ0)

2 +m2
1(∂iξ0)

2 + 4m2
4ξ0∂0∂iξi −m2

2(∂iξj)
2 − (m2

2 − 2m2
3)(∂iξi)

2
}

, (39)

where the kinetic coefficients mi are certain functions of Z ij (and therefore, of α and β).

Their explicit expressions are given in the Appendix B. Using these expressions one can

check that the kinetic coefficients satisfy the constraints

m2
0 = −3γm2

4, γ(m2
2 − 3m2

3) = m2
4 −

1

2
m2

1 (40)

which follow from the symmetry (2). Note that these constraints differ from Eqs. (33)

because the background we consider now does not correspond to the zero energy-momentum

tensor of the Goldstone fields. They reproduce Eqs. (33) at m2
1 = 0.

It is convenient to decompose the Goldstone perturbations into the transverse vector ξT
i

(∂iξT
i = 0) and two scalars ξL and ξ0, as defined by the following relation,

ξi = ξT
i +

1
√

−∂2
i

∂iξL.

The Lagrangian for the vector part reads

L = −M2
P lm

2
2(∂iξ

T
j )2 . (41)

Both modes in the vector sector have the dispersion relation p2
i = 0 and do not propagate,

independently of the values of α and β; this is a consequence of the symmetry (2). There

are no instabilities in this sector.

The Lagrangian for scalar perturbations ξ0 and ξL is

L = M2
P l

{

2m2
0(∂0ξ0)

2 +m2
1(∂iξ0)

2 − 4m2
4ξ0∂0

√

−∂2
i ξL − 2(m2

2 −m2
3)(∂iξL)2

}

. (42)

5 In principle, one may consider a larger class of background, e.g. those with φi = Bi
jx

j . For definiteness,

we restrict our discussion to rotationally invariant case. This choice covers, in particular, cosmological

solutions obtained above.
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In the Fourier space it can be written as

L = M2
P l · ξ†Mξ,

where ξ = (ξ0, ξL) and the 2 × 2 matrix M has the form

M =





2m2
0ω

2 +m2
1p

2 −2im2
4ωp

2im2
4ωp 2(m2

3 −m2
2)p

2



 (43)

with p =
√

p2
i . The eigenvectors of the matrix M correspond to physical excitations. The

eigenvalues can be written as

M± =
1

2

{

T ±
√
T 2 − 4D

}

,

where T = Tr(M) and D = det(M). They determine two dispersion relations ω2
±(p2) by the

implicit equations

M±(ω2, p2) = 0.

The system is classically stable if ω2
±(p2) > 0 for all relevant p2. The system has no ghosts

if near the mass shell the terms linear in ω2 are non-negative,

∂M±(ω2, p2)

∂ω2

∣

∣

∣

ω2=ω2

±
(p2)

≥ 0, (44)

for both modes.

The mode which corresponds to the eigenvalue M− has the dispersion relation p2 = 0 and

does not propagate. The inequality (44) is marginally satisfied, so this mode does not cause

the UV instability. Note that the existence of the scalar mode with the dispersion relation

p2 = 0 is guaranteed by the reparametrization symmetry (2).

It is worth mentioning a physical interpretation of the modes with the dispersion relation

p2 = 0. They can be thought of as degrees of freedom with infinite propagation velocity (un-

like the ghost condensate mode which has zero velocity at zero-derivative level and acquires

a very small velocity due to higher derivative terms). Physically, they describe sound waves

propagating through the rigid coordinate frame selected in space by the functions φi. The

rigidity of this frame is ensured by the symmetry (2) and SO(3) symmetry of the Goldstone

action that allow to move and rotate this frame only as a whole. Note that infinitely fast

propagating modes do not imply the violation of causality in the absence of Lorentz invari-

ance, but allow for instantaneous transfer of information. A recent discussion of some of the

properties of these modes in the toy QED model can be found in Refs. [15, 19].
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The mode which corresponds to the eigenvalue M+ has the dispersion relation

ω2 = v2p2,

where

v2 =
1

2

m2
1(m

2
3 −m2

2)

m4
4 −m2

0(m
2
3 −m2

2)
. (45)

The absence of classical instabilities thus requires

m2
1(m

2
3 −m2

2)

m4
4 −m2

0(m
2
3 −m2

2)
> 0. (46)

When this condition is satisfied, Eq. (44) which ensures the absence of ghosts translates into

the following inequality (see Appendix B for details),

m2
0 −

m4
4

m2
3 −m2

2

> 0, (47)

in agreement with the result of Ref. [3]. Thus, there are neither classical instabilities nor

ghosts in our model provided that both conditions (46) and (47) are satisfied. These condi-

tions are compatible with the constraints (40).

For a flat background m2
1 = 0, so one may worry about UV stability of an arbitrarily close

background with the positive value of m2
1 and, consequently, negative velocity v2 < 0. In

the vicinity of the point where v2 = 0 the higher-derivative terms in the dispersion relation

become important, so that it takes the form ω2 = v2p2 + αp4/Λ2, where α is a coefficient of

order one which we assume to be positive. It is clear now that close to the point v2 = 0 the

instability occurs only at very low momenta, i.e., in the IR region. The situation here is the

same as in the ghost condensate model. By analogy we expect that accounting for mixing

with gravity for higher derivative terms leads to the IR instability of this type already in

the flat background with m2
1 = 0.

The case γ = 0 when the Goldstone action depends only on W ij requires a separate

consideration. Using the expressions for the graviton masses given in the Appendix A,

Eqs. (61)–(65), one finds that in this case m2
0 = m2

1 = m2
4 = 0 in the Minkowski background.

Therefore, this is a theory with ∆ = 0 discussed in the end of Sect. II. At the one-derivative

level this theory possesses a symmetry φ0 → φ0 + ξ0(φ0) apart from the symmetry φi →
φi + ξi(φ0). (This symmetry should be imposed at the higher-derivative level in order to

avoid ghosts.) Naively, one may expect that the above symmetries imply that all modes

should always have the dispersion relation p2 = 0. However, the situation is more subtle.
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From Eq. (66) of Appendix B one finds that in the curved background only the mass m2
0 is

equal to zero, while m2
1 and m2

4 may be non-zero. As a result, in curved backgrounds, in

addition to two solutions with p2 = 0, ξL(t) and ξ0(t), there is also a mode with the velocity

v2 =
1

2

m2
1(m

2
3 −m2

2)

m4
4

, (48)

which is very large for backgrounds close to the Minkowski one because m2
1 ∼ m2

4 are both

very small. Of these three modes, only one (ξL(t)) is seen in the quadratic action about

flat background at the one-derivative level. We believe that further analysis is needed to

understand whether the two new modes lead to the problems like low strong coupling scale.

Note, however, that unlike in the Fierz–Pauli case, the new modes are not ghosts, provided

the condition (47) holds.

We see that the situation in our models is quite different from that in the Fierz-Pauli

theory of massive gravity. Unlike the latter, our models are free of ghosts in a finite region

of coefficients m2
a in Eq. (39) (and, therefore, of constants α and β) which includes the

point corresponding to the flat background with m2
1 = 0. Thus, with a proper choice of the

function F and higher derivative terms, our models are UV stable at least for backgrounds

close to the flat one. The Boulware-Deser instability is absent.

V. DISCUSSION

In order to be more than a theoretical exercise, the theory of Lorentz-violating massive

gravity must eventually address the fundamental puzzles of modern cosmology such as the

origin of dark matter and dark energy. The class of models discussed in this paper provides

a number of possibilities in this direction.

As follows from Sect. III, the evolution of the Universe may naturally lead to the attractor

which corresponds to the theory possessing the dilatation symmetry (31). In this case,

the relations (33) among masses imply that the growing term in the Newtonian potential

vanishes. Even in this simplest version, the model has a number of features interesting from

the cosmological and observational points of view. First, the massive graviton itself is a

candidate for the dark matter particle [13]. This possibility is observationally testable, the

current limits being plotted in Fig. 1. The constraints will be improved in the near future by

the data from the Australian pulsar timing array [22]. If massive gravitons do not constitute
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FIG. 1: Limits on the gravitational wave signal in the frequency/relative graviton abundance plane.

Light shaded region is excluded by the observations of binary pulsars [20]). Dark shaded region is

excluded by the timing of the millisecond pulsars [21]. Dashed lines show the expected sensitivity

of the Australian pulsar timing array and LISA. Frequencies higher than that marked by the solid

line correspond to graviton masses large enough to allow for gravitons to cluster in galaxies. Note,

that if all of the galactic dark matter is comprised of massive gravitons then the gravitational wave

signal corresponds to graviton abundance Ωg ∼ 105.

all of the dark matter, they are still detectable in a certain range of masses because they

would produce a unique monochromatic signal in a gravitational wave detectors such as

LISA [23].

Second, the Goldstone fields give two extra contributions to the Friedmann equation (26)

which we denoted ρ1 and ρ2 in Sect. III. For 1/3 < γ < 1 the first of these contributions

ρ1 behaves like a “quintessence” with the equation of state varying from w = −1 to w =

−1/3 for different values of the parameter γ, which characterizes the dilatation symmetry

emerging in the cosmological attractor (see Eq. (31)). The second contribution ρ2 behaves

as a cosmological constant.

An interesting special situation takes place for γ = 1/3. In this case both contributions

ρ1 and ρ2 have vacuum equation of state ω = −1. As a result the acceleration rate of the

late de Sitter phase is a dynamical quantity, determined by the initial conditions in the
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Goldstone sector rather than by parameters of the action. This is similar to situation in the

unimodular gravity6 [24], where cosmological constant is also a constant of integration. This

similarity appears to be not just a coincidence. The metric determinant g is invariant under

the symmetry (2) and under the dilatation symmetry (31) with γ = 1/3, so the symmetry

group of massive gravity is a subgroup of the unimodular gravity in this case.

On the other hand there is an important difference between massive gravity with γ =

1/3 and unimodular gravity. Namely, the only difference between unimodular gravity and

the Einstein theory (at least at the classical level) is that in the former case solutions

with arbitrary values of cosmological constant are present independently of the value of the

vacuum energy. On the contrary, in massive gravity the contribution of the Goldstone sector

has the form of a cosmological constant only for flat homogeneous cosmological solutions.

In particular, the initial conditions in the Goldstone sector may vary in space resulting in

solutions with different values of the acceleration rate in different parts of the Universe. Such

solutions are absent in both general relativity and unimodular gravity. If nothing else, this

allows the application of the anthropic arguments [24]. There is a caveat, however. In order

to cancel a bare cosmological constant that is much larger than Λ4 (where Λ is the cutoff

scale of our model) one needs a fine-tuning to keep the mass of the graviton from being too

large. It is not impossible to imagine an anthropic explanation for this fine-tuning as well

— according to the estimates of Ref. [13] relic massive gravitons with masses higher than

(1015cm)−1 (upper bound from the timing of the binary pulsars [20]) are likely to overclose

Universe. Alternatively, one may hope that the unusual properties of cosmological solutions

in massive gravity may be a first step towards a dynamical solution of the dark energy

problem.

The situation may become more complicated if the model is kept away from the dilatation-

symmetric attractor by a fine-tuning of the cosmological evolution or some other mechanism

(e.g., if Xγ/a2 is proportional to some power of log a at late times, instead of being a con-

stant). Then the potential of a point-like source acquires — formally — the linearly growing

contribution, Eq. (3). There are two distance scales associated with this contribution. The

first one, l1 ∼ 1/m, determines the distances where the growing term starts to dominate over

the conventional one. The second scale is l2 = (M2
P l/Mm2); it depends on the mass M of

6 We thank John March-Russel for pointing out this similarity.
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the source. At distance l2 the potential Φ becomes of order unity indicating the breakdown

of perturbation theory and possible onset of a non-linear regime. Note that in the gauge we

are using, the metric components that become large are

h0i ∼ ni
t

l2
,

where ni is a unit vector in the direction of the source. Consequently, non-linear regime

starts at the moment of time t2 ∼ l2 rather than at a certain distance from the source.

To understand this qualitatively, recall that our choice of the integration constant

ψ0(x
i) = 0 corresponds to the initially homogeneous Universe. One can view the Gold-

stone sector as a (multi-component) fluid which is accreted by sources after they are formed.

Eventually, this accretion results in the onset of the non-linear regime; qualitatively, this

happens at the time of order l2 after the formation of sources. It is tempting to speculate

that this non-linear phase may result in the non-zero profile of the ghost condensate mode

ψ0 such that the linearly growing term in the potential (21) is canceled. The corresponding

non-linear dynamics is presumably similar to that of the ghost condensate model and is not

sufficiently understood at the moment (see [25–27] for some proposals in this direction). One

characteristic feature of the ghost condensate dynamics is the presence of strong retardation

effects [1, 28, 29], so one may think that the cancellation is incomplete, leading to the log-

arithmically growing potential needed to explain flat rotation curves. Note that non-linear

effects related to the ghost condensate mode are present even when linearly growing terms

in the potential are forbidden by dilatation symmetries, so understanding of these effects is

one of the most pressing questions for this kind of models.
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Appendix A

In this Appendix we calculate mass terms of the gravitational field in the Friedmann

background. The mass terms come from the expansion of the second term in the r.h.s. of

Eq. (4) in powers of the perturbation δgµν to the quadratic order about background metric

ds2 = gµν dx
µdxν = a2(η)(dη2 − dx2) . (49)

With the definitions (5) one has

√

−(g + δg) = a4 +
a2

2
(δg00 − δgii) −

1

8
δg2

00 −
1

4
δg00δgii +

1

8
δg2

ii +
1

2
δg2

0i −
1

4
δg2

ij + . . . ,

X(g + δg) = X(g)

[

1 − 1

a2
δg00 +

1

a4

(

δg2
00 − δg2

0i

)

+ . . .

]

,

W ij(g + δg) = W (g)

[

−δij −
1

a2
δgij −

1

a4
δgikδgkj + . . .

]

,

where

W ≡ − 1

3
δijW

ij . (50)

Due to the rotational symmetry, the derivatives of F up to the second order are expressed

in terms of the 6 scalar quantities FX , FW , FXX , FXW , FWW1 and FWW2 which are defined

as follows,

∂

∂X
F (X,W ij) = FX , (51)

∂

∂W ij
F (X,W ij) = FW δij , (52)

∂2

∂X2
F (X,W ij) = FXX , (53)

∂2

∂X∂W ij
F (X,W ij) = FXW δij , (54)

∂2

∂W ij∂Wmn
F (X,W ij) = FWW1δijδmn + FWW2(δimδjn + δinδjm). (55)

The derivatives on the l.h.s. of these equations are all evaluated at the point X(g), W ij(g).

With these definitions, the linear contribution to the expansion of the second term in

Eq. (4) is

a2

(

1

2
F −XFX

)

δg00 − a2

(

1

2
F +WFW

)

δgii
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The corresponding Friedmann equations are

3a′ 2

a4
= 8πG

[

Λ4 (2XFX − F ) + ρm

]

,

2a′′

a3
− a′ 2

a4
= − 8πG

[

Λ4 (2WFW + F ) + pm

]

, (56)

where ρm, pm are the energy density and pressure of matter. Combination of these two

equations gives the equation of motion for the field φ0,

a3
√
X FX = const . (57)

In the Minkowski background one has

F − 2XFX = 0, (58)

F + 2WFW = 0. (59)

For a generic function F these equations are satisfied for some X, W .

The quadratic part of the Lagrangian Eq. (4) with respect to metric perturbations about

Friedmann background is

Λ4
{1

2
X2FXX +

1

2
XFX − 1

8
F

}

δg2
00 + Λ4

{1

2
F −XFX

}

δg2
0i

+Λ4
{

XWFXW − 1

2
WFW +

1

2
XFX − 1

4
F

}

δg00δgii

+Λ4
{1

2
W 2FWW1 +

1

2
WFW +

1

8
F

}

δg2
ii + Λ4

{

W 2FWW2 −WFW − 1

4
F

}

δg2
ij, (60)

Comparing this expression to Eq. (10) one finds for the masses of the gravitational field

in the Minkowski vacuum,

m2
0 =

Λ4

M2
P l

{

XFX + 2X2FXX

}

, (61)

m2
1 = 0, (62)

m2
2 = − Λ4

M2
P l

{

2XFX + 4W 2FWW2

}

, (63)

m2
3 =

Λ4

M2
P l

{

−XFX + 2W 2FWW1

}

, (64)

m2
4 = − Λ4

M2
P l

{

XFX + 2XWFXW

}

. (65)
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Appendix B

In this Appendix we provide some intermediate formulas skipped in the section IV.

The explicit expressions for the kinetic coefficients in the action (39) are

m2
0 = − 6Λ4

M2
P l

{

γ(γ − 1

2
)FZZ − 3γ2FZZ1Z

2 − 2γ2FZZ2Z
2
}

,

m2
1 =

2Λ4

M2
P l

(3γ − 1)FZZ,

m2
2 =

2Λ4

M2
P l

{

FZZ − 2FZZ2Z
2
}

,

m2
3 =

2Λ4

M2
P l

{1

2
FZZ + FZZ1Z

2
}

,

m2
4 =

2Λ4

M2
P l

{

(γ − 1

2
)FZZ − 3γFZZ1Z

2 − 2γFZZ2Z
2
}

. (66)

Here Z ≡ −Z ijδij/3, while the scalar functions FZ , FZZ1 and FZZ2 are defined by the

following relations,

∂

∂Z ij
F (Z ij) = FZδij ,

∂2

∂Z ij∂Zmn
F (Z ij) = FZZ1δijδmn + FZZ2(δimδjn + δinδjm).

It is straightforward to check that coefficients (66) satisfy relations (40).

Calculation of the no-ghost condition (47) proceeds as follows

∂M±(ω2, p2)

∂ω2

∣

∣

∣

ω2=ω2

±
(p2)

=
1

2

(

T ′ ± TT ′ − 2D′

|T |

)

=
D′

T
, (67)

where prime denotes differentiation with respect to ω2, and in algebraic transformation we

were taking into account, that we are taking the derivative of the eigenvalue which is zero

on-shell. Plugging explicit expressions for D and T , following from Eq. (43), we obtain the

following condition for the propagating mode to be not a ghost

m2
0(m

2
3 −m2

2) −m4
4

2m2
0v

2 +m2
1 + 2(m2

3 −m2
2)
> 0 , (68)

where v2 is given by Eq. (45). Using explicit expression (45) one can check that at v2 > 0

this condition is equivalent to (47).
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