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Abstract

We examine the structure of soft supersymmetry breaking terms in KKLT
models of flux compactification with low energy supersymmetry. Moduli are
stabilized by fluxes and nonperturbative dynamics while a de Sitter vacuum
is obtained by adding supersymmetry breaking anti-branes. We discuss the
characteristic pattern of mass scales in such a set-up as well as some features
of 4D N = 1 supergravity breakdown by anti-branes. Anomaly mediation
is found to always give an important contribution and one can easily ar-
range for flavor-independent soft terms. In its most attractive realization,
the modulus mediation is comparable to the anomaly mediation, yielding
a quite distinctive sparticle spectrum. In addition, the axion component of
the modulus/dilaton superfield dynamically cancels the relative CP phase be-
tween the contributions of anomaly and modulus mediation, thereby avoiding
dangerous SUSY CP violation.



1 Introduction

In this paper, we discuss soft terms in the KKLT scenario [1] with its three
steps to achieve a supersymmetry breaking Minkowski (or de Sitter) vacuum,
while stabilizing all moduli. This is a continuation of our previous paper [2]
which discussed the stability and soft terms in flux compactification. The
KKLT set-up has been proposed specifically within Type IIB theory on a
Calabi-Yau orientifold and we will focus on this scenario here, noting that
it will be straightforward to apply our analysis to similar scenarios in other
string theories [2]. The first step of the procedure is to introduce the NS
and RR three form fluxes [3], H3 and F3, stabilizing [4] the dilaton S and all
complex structure moduli Zα. We shall assume the existence of a set of flux
vacua for which the resulting imaginary self dual G3 = H3 − iSF3 is aligned
nearly in the direction of a primitive (2, 1)-form, which allows for realization
of low-scale supersymmetry. Such fluxes might fix mS,Z rather close to the
string or Planck scale, while keeping the gravitino mass much lower than
mS,Z . Thus high scale gauge unification and weak scale supersymmetry can
be realized simultaneously. In the second step, one introduces nonperturba-
tive dynamics, e.g. gaugino condensation [5], to stabilize the Kähler modulus
T at an N = 1 supersymmetric AdS vacuum with mT = O(4π2m3/2) and
vacuum energy density VF ≃ −3m2

3/2M
2
P l. The third step amounts to adding

anti-D3 branes (D̄3) stabilized at the tip of a Klebanov-Strassler type throat
[6] which has been produced by fluxes [7]. Such D̄3 can provide a positive
contribution to the potential which would allow the fine tuning of the total
vacuum energy density to the desired positive but small value. It induces
also a SUSY breaking vacuum shift which would result in the soft terms of
visible sector fields.

In fact, the KKLT set up can be seen as a specific example of a more
general scenario (see also [8]) in which (i) most of the moduli are stabilized
by a high scale dynamics that leaves N = 1 SUSY (approximately) unbroken,
(ii) a few light moduli which were unfixed by the high scale dynamics are
stabilized by nonperturbative effects leading to an N = 1 SUSY AdS vacuum,
(iii) this SUSY AdS vacuum is uplifted to a SUSY-breaking Minkowski (or
de Sitter) vacuum by branes which break N = 1 SUSY explicitly. Many of
our results will be relevant for any of such scenarios.

The scheme, although quite general, leads to a specific pattern of mass
scales, as summarized in equation (20). The mass scales in the low energy the-
ory exhibit a moderate hierarchy characterized by the factor log(MP l/m3/2)
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that is numerically O(4π2). The F -terms of the light moduli (and, in conse-
quence, also the soft terms in the visible sector) are suppressed by this factor
with respect to the gravitino mass, while the moduli masses are enhanced
(by the same factor). This leads to interesting consequences for the pat-
tern of soft terms and the cosmological moduli problem. In particular, when
this scheme is realized in its most attractive form, the soft terms are deter-
mined by a mixed modulus-anomaly mediation yielding a sparticle spectrum
which can be clearly distinguished from those predicted by other mediation
mechanisms.

The organization of this paper is as follows. In the next section, we
briefly review the KKLT set up, mainly focusing on the pattern of mass
scales in those models that allow for low energy (weak scale) supersymmetry
together with a vanishing cosmological constant. In Section 3, we discuss
soft terms in 4D N = 1 supergravity coupled to a SUSY breaking anti-
brane, including the loop-induced anomaly mediated contributions [9] which,
in the models under consideration, turn out to be equally important as the
classical moduli mediated contributions [10]. In Section 4, we examine a
variety of 4D models which can be identified as possible low energy limits of
KKLT-type compactification. We compute vevs of the auxiliary components
of the moduli and chiral compensator fields and discuss the characteristic
pattern of the resulting soft terms for visible matter located on D3 or D7
branes. Phenomenological aspects of the scheme concerning the SUSY flavor
and CP problems and also the low energy sparticle spectrums will be briefly
addressed. Section 5 contains a critical summary and outlook.

2 Scales in flux compactification

2.1 Mass scales in type IIB string theory

In Type IIB theory compactified on CY orientifold, the 4D Planck scale MP l

and the 4D gauge coupling constant gp on Dp branes wrapping (p− 3)-cycle
are given by (see e.g. [11])

M2
P l =

2e−2φ

(2π)7α′4
VCY = 4πM2

st

(

e−φ

2π

)2

(MstR)6 ,

1

g2
p

=
e−φ

(2π)(p−2)(α′)(p−3)/2
V(p−3) =

(

e−φ

2π

)

(MstR)(p−3) , (1)
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where eφ = gst and α′ = 1/M2
st denote the string coupling and the string

tension, respectively. Here we use the approximation that the (p − 3)-cycle
volume is given by V(p−3) ≃ (2πR)(p−3) for the compactification radius R
defined by the CY volume VCY ≡ (2πR)6. For D7/D3 system [12], the 4D
dilaton/modulus chiral superfields S and T are defined as

S =
e−φ

2π
+ ic0 , T =

e−φ

2π
(MstR)4 + ic4 , (2)

where c0 and c4 are the axions from the RR 0-form and 4-form, respectively.
With the above definitions of S and T , the D7/D3 gauge kinetic functions

are given by

f7 = T , f3 = S . (3)

Then gaugino condensation in a hidden sector on D7(D3) generates the su-
perpotential

Wnp ∼ e−8π2T/b0 (e−8π2S/b0), (4)

where b0 is the beta function coefficient of the gauge group in which the
condensation occurs (b0 = Nc for a pure SYM theory with SU(Nc) gauge
group). On the other hand, the Euclidean D3 instanton wrapping the 4-
cycle of T generates

Wnp ∼ e−8π2T . (5)

thus the effect of the D3 instantons is similar to that of gaugino condensation
on D7.

It is convenient to express the ratios MP l/Mst and Mst/MKK (MKK ≡
1/R is the compactificaton scale of the CY manifold) in compactified string
theory in terms of S and T [13, 14]. For the Type IIB theory under consid-
eration, one easily finds

MP l

Mst
= 4π(Re(S))1/4(Re(T ))3/4,

Mst

MKK

=

(

Re(T )

Re(S)

)1/4

. (6)

As we can read off from equation (6), the ratios are determined by the vacuum
expectation value of the T and S moduli. In concrete mechanisms of moduli
stabilization, a possible range of these vevs is usually constrained. We now
investigate this issue in the set-up proposed by KKLT.
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2.2 Mass scales in the KKLT scheme

In the leading approximation, the Kähler potential of the closed string mod-
uli, i.e. S, T and the complex structure moduli Zα, is given by

K = − ln(S + S∗) − 3 ln(T + T ∗) − ln i
∫

Ω ∧ Ω∗, (7)

where Ω is the holomorphic (3, 0)-form of CY. The quantized NS and RR
fluxes over 3-cycles,

M2
st

∫

C3

H3 = 4π2n, M2
st

∫

C3

F3 = 4π2m, (8)

give rise [15] to the superpotential1

Wflux = M2
st

∫

G3 ∧ Ω , (9)

where G3 = F3 − iSH3. Although the fluxes generate warped geometry, the
warping is not significant in most of the region of CY except for a small
region containing the Klebanov-Strassler throat. Then the dynamics of bulk
degrees of freedom such as the moduli are not affected significantly by the
warping.

The resulting supergravity equations of motion for S and Zα, DZWflux =
DSWflux = 0, generically fix S and Zα at a value of order unity. The result-
ing G3 is imaginary self-dual on CY, G3 = i∗G3, and can be decomposed into
two components: 〈G3〉 = G(0,3) + G(2,1), where 〈Wflux〉 = M2

st

∫

G(0,3) ∧ Ω.
In order to have weak scale supersymmetry without invoking to a large com-
pactification radius (which, as we explain later, is not available in the KKLT
set up) one needs to choose a flux configuration yielding G3 almost aligned
to the (2, 1)-direction:

G(0,3)

G(2,1)

≪ 1. (10)

Then the resulting flux-induced gravitino mass is suppressed as

(m3/2)flux = MP le
K/2Wflux = O

(

eφ

M2
stR3

G(0,3)

G(2,1)

)

, (11)

1In this paper we use the convention that the Kähler potential K and the superpo-

tential W are dimensionless. These correspond to K/M2

Pl
and W/M3

Pl
for the standard

dimensionful Kähler potential and superpotential of 4D SUGRA.
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Still the masses of Zα and S might receive a contribution from the unsup-
pressed G(2,1), thus

mZ ∼ MP le
K/2∂2

ZWflux

∂Z∂Z∗K
= O

(

eφ

M2
stR3

)

, (12)

and a similar expression holds for mS with ∂2
ZWflux → ∂Z∂SWflux.

The condition (10) requires a fine tuning, where the fluxes quantized in
units of the string scale conspire to give only a tiny supersymmetry breaking
effect. A study of the landscape of flux vacua suggests that the number of flux
vacua with small G(0,3)/G(2,1) scales as [16] Nvac(G(0,3)/G(2,1) ≤ ǫ) ∼ ǫ2NTOT ,
where NTOT denotes the total number of flux vacua. Since NTOT can be
argued to be as large as 10300 for a typical CY orientifold, there could still
be a large number of flux vacua for which G(0,3)/G(2,1) ∼ 10−13 and hence
m3/2 is in a TeV range. Thus, although this might not be easy to achieve
in a specific model, the KKLT set-up might be able to accomodate the weak
scale SUSY by fine-tuning the flux configuration in an appropriate manner.

The 3-form fluxes do not generate a potential for the Kähler modulus T
which corresponds to the size of a 4-cycle C4. To fix T , one needs to introduce
additional dynamics depending on the volume of C4. As discussed earlier,
gaugino condensation on D7 branes wrapping C4 and/or the Euclidean D3
instantons wrapping C4 induce a nonperturbative superpotential of the form

Wnp = C e−a T , (13)

where C depends on Zα in general, while a is a real positive constant of
O(4π2) (in our normalization of T ).

For the flux configuration with G(0,3)/G(2,1) ∼ 10−13 yielding mZ,S =
O(MP l) and m3/2 = O(1) TeV, the stabilization of T and also the SUSY
breaking can be described by an effective SUGRA theory which is obtained
after integrating out S and Zα. This is tacitly assumed in the original set-
up of KKLT [1]. It requires a certain decoupling between the heavy fields
Z, S on one side and the light modulus T on the other. In some cases (e.g.
when ∂Z∂SWflux ≪ ∂2

ZWflux), such a decoupling might not be possible [2]
and a second modulus (e.g. S) might be light and remain in the low-energy
effective theory. We shall later give examples of both of these situations, but
stick to the simplest case in the following discussion.

The effective N = 1 SUGRA thus contains the T -modulus as well as the
SM gauge and chiral matter fields originating from D7/D3 branes. Although
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the whole set-up includes also SUSY breaking D̄3 branes, the VEV of T is
mainly determined by the N = 1 SUSY sector described by the following
effective Kähler and superpotential:

K0 = −3 ln(T + T ∗),

W0 = w0 − Ce−aT , (14)

where w0 = 〈Wflux〉 = O(G(0,3)/G(2,1)) and C = O(1) are constants in the
effective theory. This effective theory successfully stabilizes T as it has a
unique SUSY AdS vacuum yielding

〈a ReT 〉 ≃ ln(Mst/m3/2) = O(4π2),

m3/2 = 〈MP le
KW0〉 ≃

MP lw0

(2Re T )3/2
,

〈VN=1〉 = −3m2
3/2M

2
P l , (15)

where VN=1 is the standard N = 1 SUGRA potential for the Kähler and
superpotential of (14). Note that in the KKLT set-up the large weak/string
scale hierarchy results in the appearance of a moderately large parame-
ter a ReT . This parameter will enter the expressions for SUSY breaking
order parameters, leading to a moderate hierararchy between various soft
masses. Another observation is that, since a = O(1) ÷ O(4π2), we also ob-
tain Re T = O(4π2) ÷O(1). Larger values of ReT are not available within
this stabilization scheme. In consequence, the resulting values of gst and
MstR are rather close to unity, and both Mst and MKK are not far away
from the Planck scale.

As we have remarked, for a gaugino condensation from SU(Nc) SYM
theory, a = 8π2/Nc and thus ln(Mst/m3/2) ≈ 8π2/Ncg

2
7, where g2

7 is the 4D
gauge coupling on D7 at the compactification scale. If the SM gauge fields
originate from D7, this relation amounts to w0 ∼ e−16π2/Nc , implying that in
this case the flux fine tuning for a hierarchically small w0 ∼ G(0,3)/G(2,1) is
necessary also to get the correct value of the SM gauge coupling, unless Nc

is unusually large as O(8π2).
To obtain a phenomenologically desirable de Sitter or Minkowski vacuum,

KKLT proposed to introduce a D̄3 providing a positive potential energy. In
the presence of 3-form fluxes the geometry is warped, which can be parame-
terized as [4]

ds2 = e2A(y)(Re(T ))−3/2gE
µνdxµdxν + e−2A(y)(Re(T ))1/2g̃mndymdyn, (16)
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where gE
µν is the 4D Einstein frame metric and g̃mn is a CY metric normalized

as
∫

d6y
√

g̃ = M−6
st . Here we have ignored the fluctuation of S and Zα in the

10D metric since mZ,S = O(Mst). As long as the flux density is not strong,
the warp factor eA(y) would be of order unity over the most region of CY,
however it can be exponentially small around the small region of Klebanov-
Strassler (KS) throat. It is then a plausible assumption that the SM lives on
D7/D3 which are stabilized in the region where the warping is not significant.
On the other hand, D̄3 favors to be stabilized at the tip of the KS throat,
y = yD̄3, where the warp factor is minimal and exponentially small [4]:

eA(yD̄3
) = eAmin ∼ (Re(T ))1/4e−2πn/gstm , (17)

where n = 1
4π2 M

2
st

∫

CKS
H3 and m = 1

4π2 M
2
st

∫

C̃KS
F3 are integers for the NS

and RR fluxes over the collapsing 3-cycle CKS and its dual C̃KS of the
KS throat. Adding the D̄3 tension to the negative vacuum energy den-
sity VN=1 ≃ −3m3/2M

2
P l induced by gaugino condensation, the total vacuum

energy density would be given by VTOT ≈ VN=1 + VD̄3. Given this we see
that it might be possible to adjust the observed value of the cosmological
constant by a careful fine tuning of the parameters. A simple calculation of
the D̄3 tension in the 4D Einstein frame gives

VD̄3 ∼
(eAminMP l)

4

[Re(T )]3
∼ (e−2πn/gstmMP l)

4

[Re(T )]2
. (18)

Then the condition VTOT ≃ 0 requires that

eAmin ∼
√

m3/2/MP l . (19)

With this warping the physical cutoff scale on D̄3 will be of the order of the
intermediate scale eAminMst ∼

√

m3/2MP l and the D̄3 moduli acquire masses

of O(eAmin/M2
stR

3), also close to the intermediate scale.
As we see, only a limited class of flux vacua can give weak scale SUSY

together with vanishing cosmological constant: those with flux configurations

with G(0,3)/G(2,1) ∼ 10−13 and the warping eAmin ∼
√

G(0,3)/G(2,1) ∼ 3×10−7.
Such two step fine tunings might be a generic feature of any realistic model
which incorporates the weak scale Higgs mass and the small cosmological
constant within the string landscape whose typical mass scale is not far below
MP l.
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Below we summarize all the mass scales in KKLT set-up which realizes
weak scale SUSY together with a vanishing vacuum energy density through
the effective SUGRA (14) and the uplifting potential (18):

Mst ∼ 5 × 1017 GeV,

1/R ∼ 1017 GeV,

mZ,S ∼ 1

M2
stR3

∼ 1016 GeV ,

ΛGC = Mste
−〈aT 〉/3 ∼ 1013 GeV ,

MD̄3 ∼ eAminMst ∼ 1011 GeV ,

mT ∼ 〈aT 〉m3/2 ∼ 105 GeV ,

m3/2 ∼ 1

M2
stR3

(

G(0,3)

G(2,1)

)

∼ 104 GeV ,

msoft ∼ Mweak ∼ m3/2

〈aT 〉 ∼ 102 ÷ 103 GeV . (20)

Here ΛGC is the dynamical scale of D7 gaugino condensation, MD̄3 is the red-
shifted cutoff scale on D̄3, The expressions for mT and msoft will be derived
in Section 3. There we shall also consider examples with more than one light
modulus.

2.3 Comments on alternative schemes

So far we have considered a scenario with a TeV scale gravitino mass. Besides
weak scale supersymmetry the consequence of this approach is that both
the string scale Mst and compactification scale MKK are close to the the
Planck scale (so that the standard high scale gauge unification is possible).
An alternative [17] is to consider the fundamental string scale in Type IIB
theory at an intermediate value Mst ∼ 1010 GeV. From eq. (6), this would
require a stabilization of S and T at values satisfying

Re(S)Re(T )3 ∼ 1030 . (21)

This is difficult within the known mechanisms of moduli stabilization (but
see [18]) and is certainly not possible within the KKLT stabilization scheme.
But even if that could be achieved there is another apparent problem. For
the SUGRA approximation to be valid one needs MKK ≤ Mst, which by eq.
(6) requires Re(T ) ≥ Re(S). Then g2

7 = Re(T )−1 ≤ 3 × 10−8, which means
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that the SM cannot be embedded in the D7 sector. One might avoid this
conclusion by assuming that a 4 cycle has a volume V4 ∼ M−4

st , so g2
7 ∼ 1,

while its dual 2 cycle has a huge volume V2 ∼ 1015M−2
st .

Another scheme might involve placing the D3 and/or D7 branes at a
warped throat [19] and explain the hierarchy between the weak scale and the
Planck scale by a strong warping instead of weak scale supersymmetry. We
shall not discuss these schemes here, as we are mainly concerned with the
question of soft SUSY breaking terms.

One might also be interested in alternatives to the ad-hoc uplifting pro-
cedure of KKLT. In Ref. [20], it has been proposed to uplift the AdS vacuum
to a dS or Minkowski vacuum by introducing gauge field flux on a D7 brane.
Such two-form flux would induce a moduli-dependent FI term and thus a
positive D-term potential. A virtue of this scenario would be that the uplift-
ing can be described within the standard 4D N = 1 SUGRA framework, thus
the resulting SUSY breaking can be interpreted as a spontaneous breaking.

To examine the possibility of D-term uplifting, let us briefly review the F
and D-term scalar potentials in generic 4D SUGRA [21]. The scalar potential
in the Einstein frame is V = VF + VD where

VF = M4
P le

K
(

KIJ̄DIWDJ̄W ∗ − 3|W |2
)

,

VD =
1

2
M4

P lRe(fa)D
aDa =

1

2Re(fa)
M4

P l

(

iηI
a∂IK − 3ira

)2
. (22)

Here DIW = ∂IW + ∂IKW is the Kähler covariant derivative of the su-
perpotential. Furthermore, ηI

a denotes the gauge transformation of chiral
superfields under the gauge group factor Ga, δaΦ

I = ηI
a(Φ), while ra is de-

termined by the transformation properties of the superpotential under Ga,

δaW = ηI
a∂IW = −3raW . (23)

This formalism can accomodate both a field dependent FI term accompany-
ing the Green-Schwarz mechanism (when ηS = iδGS and ∂SK = −(S +S)−1)
as well as a field independent FI term occuring in the presence of gauged
R-symmetry (for ra = const 6= 0). But from (23) for W 6= 0 one easily finds
that the D-terms can be rewritten as

Da =
i

Re(fa)

1

W
ηI

aDIW . (24)

Obviously, an arbitrary supersymmetric configuration with 〈DIW 〉 = 0, if
allowed, would be a stationary solution of VF . It is clear that if VF admits
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a supersymmetric AdS vacuum, i.e. a stable solution with 〈DIW 〉 = 0 but
〈W 〉 6= 0, as in the KKLT case, this SUSY AdS solution remains a good vac-
uum solution of the complete potential V = VF +VD. So in this case uplifting
with a D-term will not work. If the absolute minimum is at 〈DIW 〉 = 0, VD

improves the stability of the SUSY AdS vacuum of VF without lifting the
vacuum energy density. Thus, if one wishes to get a (SUSY breaking) dS
or Minkowski vacuum within the standard 4D SUGRA, one needs to have a
special form of W which does not admit a SUSY AdS solution. It remains
an open question whether a viable model of this kind can be derived from
string theory (see [22] for a recent study).

3 Soft terms

3.1 N=1 supergravity coupled to anti-D3 brane

An intriguing feature of the KKLT scenario is the final step to introduce D̄3
which uplifts the SUSY AdS vacuum to a SUSY breaking Minkowski (or de
Sitter) vacuum. The N = 1 SUSY preserved by the combined dynamics of
flux and gaugino condensation is not respected on the worldvolume of D̄3,
in particular there are no light open string degrees of freedom on D̄3 which
would form a N = 1 supermultiplet. In this subsection, we discuss the 4D
effective action describing the effects of D̄3 on the low energy dynamics of
the light moduli and the SM fields in KKLT-type flux compactification.

Our main problem is to find the low energy couplings between the N = 0
sector on D̄3 and the N = 1 sector propagating in the 10D bulk or the D7/D3
worldvolumes. A full description of the couplings between a supersymmetric
bulk sector and a less supersymmetric brane sector usually requires an off-
shell formulation of the bulk supersymmetry. In our case, such couplings can
be described most conveniently by spurion operators in N = 1 superspace.
Since D7/D3 branes do not intersect with D̄3, spurion operators on the
worldvolume of D̄3 do not depend on the fields confined in D7/D3, but
generically depend on the bulk fields as well as on the fields confined in D̄3.
It is rather generic that all scalar fields on D̄3 get a mass of the order of
eAminMst ∼ 1010 GeV by the flux, thus are heavy enough to be decoupled at
TeV scale. There may exist some light fields with non-zero spin on D̄3 but
those will not affect our analysis of the soft terms. This allows us to focus
on the D̄3 spurion operators depending only on the light bulk moduli and
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4D SUGRA multiplet. As we will see, in such situation the dominant effects
of D̄3 on the other parts of the theory can be described by a single spurion
operator which corresponds to the D̄3 tension.

Let us consider the 10D action at energies below Mst of the following
form:

S10D =
∫

d10x
[

LIIB + δ2(z − zD7)LD7 + δ6(y − yD3)LD3 + δ6(y − yD̄3)LD̄3

]

,(25)

where LIIB is the 10D IIB SUGRA action, LDp denotes the worldvolume
action of Dp brane, and z and y correspond to the transverse coordinates of
D7 and D3 branes, respectively. The 4D effective action of the light fields
is of the form S4D = SN=1 + SD̄3, where SN=1 is the N = 1 SUGRA action
originating from LIIB and LD7/D3, while SD̄3 is from the non-supersymmetric
LD̄3. The N = 1 supersymmetric part can be written in the standard super-
space form:

SN=1 =
∫

d4x
√

gC

[ ∫

d4θ CC∗ (−3 exp(−Keff/3))

+
{∫

d2θ
(

1

4
faW

aαW a
α + C3Weff

)

+ h.c.
} ]

, (26)

where gC
µν = (CC∗)−1eKeff /3gE

µν for the 4D Einstein-frame metric gE
µν and the

chiral compensator superfield C = C0 + θ2F C , and the Kähler and superpo-
tential can be expanded as

− 3 exp[−Keff/3] = −3 exp[−K0(Φ
m, Φm∗)/3] + Yi(Φ

m, Φm∗)Q∗
i Qi,

Weff = W0(Φ
m) +

1

6
λijk(Φ

m)QiQjQl,

fa = fa(Φ
m), (27)

where Φm denote the gauge singlet light moduli and Qi stand for the gauge
charged matter fields. In (26), we have ignored the 4D SUGRA multiplet
other than the metric component. In this scheme, C0 is a redundant degree
of freedom, which is reflected by the invariance under the following Weyl
transformation which is a part of the super Weyl invariance in the full com-
pensator formulation:

C → e−2τC, gµν → e2(τ+τ̄ )gµν , θα → e−τ+2τ̄θα, (28)

where τ is a complex constant.

11



As stressed, SD̄3 does not depend on the matter and gauge superfields
confined in D7/D3. Then at the leading order in the supercovariant derivative
expansion, SD̄3 can be written as

SD̄3 =
∫

d4x
√

gC

∫

d4θ
[

−1

2
e4AminC2C2∗θ2θ̄2P (Φm, Φm∗)

+ e3AminC3θ̄2Γ(Φm, Φm∗) + h.c.
]

, (29)

where P and Γ are model-dependent functions of Φm and Φm∗, which are
generically of order unity (in units with MP l = 1), and eAmin is the (generi-
cally moduli-dependent) warp factor on D̄3. The C-dependence of SD̄3 can
be determined by requiring invariance of the D̄3 action under the Weyl trans-
formation (28). Then the power of warp factor in each spurion operator is
determined by the C-dependence since both C0 and the warp factor corre-
spond to the conformal mode of the 4D metric.

The N = 1 SUSY appears to be explicitly broken in (29). In fact, the
N = 1 SUSY might be non-lineraly realized as suggested in [23] through
a Goldstino fermion ξα living on the worldvolume of D̄3. In this case, the
D̄3 action (29) can be extended to a manifestly supersymmetric form by
replacing the D-spurion θ2θ̄2 by a real superfield Λ2Λ̄2, and the F -spurion
by a chiral superfield (D̄2 − 8R)Λ2Λ̄2, where Λα is the Goldstino superfield
defined in [24]:

Λα = θα +
1

M2
D̄3

ξα + ... (30)

for MD̄3 ∼ eAminMst, and (D̄2 − 8R) is the chiral projection operator of 4D
SUGRA. Then the spurion operators of (29) can be obtained from the follow-
ing form of super-Weyl invariant action involving the Goldstino superfield:

SD̄3 =
∫

d4x
√

gC

∫

d4θ C̃C̃∗ LD̄3(
C̃1/2

C̃∗
Dα,

C̃∗

C̃1/2
Λα, Φm) , (31)

where C̃ = eAminC.
The coefficient function e4AminP can be easily computed for the minimal

KKLT model in which the only light modulus is the overall volume mod-
ulus T . In such model, the warp factor on D̄3 depends on T as eAmin =
(Re(T ))1/4 e−2πn/gstm [4]. Matching the D̄3 tension to (29) under the rela-
tion between the 4D Einstein frame metric gE

µν and the string frame metric
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gsµν = e2A(y) (Re(T ))−3/2 gE
µν , one finds

e4Amine2K0/3P =
D

(T + T ∗)2
, (32)

where D is a constant of order M4
P le

−8πn/gstm.

3.2 Soft terms in the presence of anti-D3 brane

In the presence of SD̄3 which breaks SUSY explicitly or realizes SUSY non-
linearly, the resulting soft terms are modified compared to the known results
in standard 4D SUGRA. Solving the equations of motion for the auxiliary
fields in S = SN=1 + SD̄3, one easily finds

F C

C0

=
1

3
∂IKeffF

I +
C∗2

0

C0

eKeff/3
(

Weff + e3AminΓ
)∗

,

F I = −C∗2
0

C0
eKeff/3KIJ̄

eff

(

DJ

(

Weff + e3AminΓ
) )∗

, (33)

where {ΦI} = {Φm, Qi}, the Kähler covariant derivative DIX = ∂IX +
(∂IKeff)X, and one can choose C0 = eKeff /6 to arrive at the Einstein metric
frame. It is then straightforward to find the following moduli potential and
the soft parameters of the canonically normalized visible fields in the Einstein
frame:

V0 = eK0

[

Kmn̄
0 Dm(W0 + e3AminΓ)

(

Dn(W0 + e3AminΓ)
)∗

−3|W0 + e3AminΓ|2
]

+ e4Amine2K0/3P,

Lsoft = −m2
i |Q̃i|2 −

(

1

2
Maλ

aλa +
1

6
AijkyijkQ̃iQ̃jQ̃k + h.c.

)

, (34)

where

Ma = F m∂m ln (Re(fa)) ,

Aijk = −F m∂m ln

(

λijk

YiYjYk

)

,

= −F m

(

∂mK0 + ∂m ln

(

λijk

ZiZjZk

))

,

m2
i =

2

3
V0 − F mF n∗∂m∂n̄ ln (Yi)

= −1

3
e4Amine2K0/3P +

(

V0 + m2
3/2 − F mF n∗∂m∂n̄ ln (Zi)

)

(35)
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for the canonically normalized Yukawa couplings

yijk =
λijk

√

YiYjYk

. (36)

Here Zi = eK0/3Yi is the Kähler metric of Qi, i.e.

Keff = K0(Φ
m, Φm∗) + Zi(Φ

m, Φm∗)QiQ
∗
i , (37)

and m3/2 is the gravitino mass containing both the standard N = 1 contri-
bution from W0 and the contribution from D̄3:

m3/2 = MP le
K0/2

(

W0 + e3AminΓ
)

. (38)

In the literature [10], Aijk and m2
i are normally expressed in terms of the

moduli Kähler potential K0 and the matter Kähler metric Zi. Our results
(35) show that it is more convenient to express those soft parameters in terms
of the superspace wavefunction coefficient Yi = e−K0/3Zi, particularly when
the effects of the SUSY breaking D̄3 are included.

Obviously, when P = Γ = 0, (33), (34) and (35) become the standard
expressions of the SUSY breaking auxiliary components, the moduli potential
and the soft terms in N = 1 SUGRA. In KKLT models, in the absence of
D̄3, W0 leads to a SUSY AdS vacuum. Generically P and Γ are of order one
for the moduli VEV of order unity, while W0 is of order m3/2/MP l. Then, as
we have noticed in sec. 2.2, in order for the AdS vacuum to be uplifted to

a Minkowski vacuum by D̄3, one needs eAmin ∼
√

m3/2/MP l. This implies
that

e3AminΓ ∼
√

m3/2/MP l W0, (39)

and thus the contribution to m3/2 from e3AminΓ is negligible compared to the
contribution from W0 induced by the flux and gaugino condensations. This
means that e3AminΓ can be safely ignored, so the effects of D̄3 on the low
energy dynamics of the moduli and visible fields can be described well by
a single coefficient function P . In such case, the SUSY breaking auxiliary
components are well approximated by the standard N = 1 expressions:

F C

C0

≃ 1

3
∂mK0F

m + MP le
K0/2W ∗

0 ,

F m ≃ −MP le
K0/2Kmn̄

0 (DnW0)
∗ ,

m3/2 ≃ MP le
K0/2W0 , (40)

14



and the moduli scalar potential is approximately given by

V0 ≃ M4
P le

K0

(

Kmn̄
0 DmW0(DnW0)

∗ − 3|W0|2
)

+ Vlift , (41)

where the uplifting potential from D̄3 is given by

Vlift = e4Amine2K0/3P . (42)

Thus once K0 and W0 for the N = 1 sector and P for D̄3 are given, one can
compute the SUSY breaking order parameters F m, F C and m3/2 using the
above approximate results [2].

The soft parameters in (35) correspond to the moduli-mediated tree level
contributions at the compactification scale, and do not include possible loop
effects. As we will see, in KKLT-type models, F C/C0 ≃ m3/2 is bigger than
the moduli-mediated soft masses typically by a factor ∼ 4π2. With this
little hierachy, the anomaly-mediated contributions from F C/C0 [9] will be
equally important as the moduli-mediated ones although they involve the
loop suppression factor 1/8π2. Then the dominant parts of the soft terms
at energies just below the compactification scale can be obtained by simply
adding the anomaly-mediated and also anomaly-moduli-mixed contributions
to the moduli-mediated results (35). As is well known, such loop contri-
butions are determined by the RG runnings of Yi and fa, which are given
by

∆Re(fa) = − 1

16π2

(

3Ta(Adj) −
∑

i

Ta(Qi)

)

ln

(

CC∗

µ2

)

,

∆ ln (Yi) = − 1

32π2



4
∑

a

Ca(Qi)

Re(fa)
−
∑

jk

|λijk|2
YiYjYk



 ln

(

CC∗

µ2

)

,

where Ta denotes the quadratic Casimir and µ is the renormalization point.
Then replacing fa and ln(Yi) in (35) by fa + ∆fa and ln(Yi) + ∆ ln(Yi),
and also F m∂m by F m∂m + F C∂C , we find the soft masses just below the
compactification scale

Ma = F m∂m ln (Re(fa)) +
bag

2
a

8π2

F C

C0

,

Aijk = −F m∂m ln

(

λijk

YiYjYk

)

− γi + γj + γk

16π2

F C

C0

,
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m2
i =

2

3
V0 − F mF n∗∂m∂n̄ ln (Yi) −

1

32π2

dγi

d lnµ

∣

∣

∣

∣

∣

F C

C0

∣

∣

∣

∣

∣

2

+
1

16π2

(

γi
mF m

(

F C

C0

)∗

+ h.c

)

, (43)

where ba = −3
2
Ta(Adj) + 1

2

∑

i Ta(Qi) are the one-loop beta function coef-

ficients, dga

d ln µ
= ba

8π2 g
3
a, γi = 2

∑

a g2
aCa(Qi) − 1

2

∑

jk |yijk|2 are the anoma-

lous dimension of Qi,
1

8π2 γi = d lnYi

d ln µ
, Ta and Ca are group theory factors,

Tr(T 2) = Ta(Qi),
∑

T 2 = Ca(Qi)I, and finally γi
m = ∂mγi are given by

γi
m = −1

2

∑

jk

|yijk|2∂m ln

(

λijk

YiYjYk

)

− 2
∑

a

g2
aCa(Qi)∂m ln (Re(fa)) . (44)

If there is a Higgs bilinear term HuHd either in the superpotential or in the
Kähler potential, there will arise a soft B-term with B ∼ m3/2 at tree level.
Since m3/2 ∼ 4π2Ma in our case, such B would be too large to be phenomeno-
logically acceptable. A simple way to avoid this difficulty is to assume that
the Higgs µ-term originates from a trilinear Yukawa term λNHuHd with an
additional singlet field N , which would give µ = λ〈N〉 and B = ANHuHd

.

4 Models

In the previous section, we discussed the soft terms for a general form of
4D effective action S4D = SN=1 + SD̄3 which describes the low energy limit
of KKLT flux compactification. In this section, we consider some specific
examples and compute the SUSY breaking order parameters, i.e. F C and
FΦ (Φ = moduli), as well as the resulting soft terms of visible fields.

We will examine two simple classes of models, one in which T is the only
light modulus, and the other in which both T and S appear as light moduli.
The first class of models represents a typical situation in Type IIB flux com-
pactification with low energy SUSY, in which the dilaton S and all complex
structure moduli Zα acquire superheavy masses mS,Z ∼ 1/M2

stR
3 ∼ 1016 GeV

from fluxes, while the Kähler modulus T gets mT ∼ m3/2 ln(MP l/m3/2) ∼ 106

GeV from gaugino condensation. However, as was pointed out in [2], S can
be light also in some cases. For instance, if the NS fluxes are all vanishing,
the flux-induced superpotential (9) would be independent of S and T , and
then only Zα get superheavy masses of O(1/M2

stR
3) from the RR fluxes. In
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this class of models there is no supersymmetric minimum before the uplifting.
This runaway behavior can be cured if the superpotential acquires both S
and T dependence from non-perturbative dynamics, for instance by gaugino
condensations on D3 and D7 branes yielding Wnp = Ce−aT + Λe−bS. As for
the uplifting potential Vlift = e4Amine2K0/3P (in the Einstein frame) from D̄3,
we will use D/tnt for the first class of models, and D/tntsns for the second
class of models, where T = t+ iτ , S = s+ iσ and D is a constant. As we will
see, in all KKLT type models the anomaly mediation is generically equally
or sometimes even more important than the moduli mediation.

4.1 Models with light Kähler moduli

The simplest KKLT-type model is the original one [1] described by

Model 1 : K0 = −3 ln(T + T ∗),

W0 = w0 − C1e
−aT ,

Vlift = D/tnt , (T = t + iτ) . (45)

For K0 depending only on t, the overall phase of W0 is irrelevant, and also the
relative phase between w0 and C1 can be eliminated by shifting the axion field
τ without any physical consequence. Then we can choose both ω0 and C1 to
be real and positive without loss of generality, in which case 〈τ〉 = 0. Using
the scalar potential given by (41) and also the expressions (40) for SUSY
breaking order parameters, we find the model has a stable SUSY breaking
Minkowski vacuum (when D is tuned to make 〈V0〉 = 0) with the following
vevs and masses:

F C

C0
≈ m3/2 ≈ MP l

w0

2
√

2t3/2
,

F T

(T + T ∗)
≈ nt

2a t
m3/2 ,

mt ≈ mτ ≈ 2a t m3/2 , (46)

where

at ≈ ln(C1/w0) ∼ 4π2 , (47)

and nt = 2 if Vlift is from D̄3. Note that the parameter C1 is of the order
of 1, while w0 is of the order of m3/2/MP l, and then at is of order 4π2 for
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m3/2 close to the TeV scale. Such value of at gives rise to a little hierarchy
between the moduli mass mT , the gravitino mass and the gaugino/sfermion
soft masses:

mT ∼ 4π2m3/2 ∼ (4π2)2msoft . (48)

A particularly interesting feature of the model is that

F T

(T + T ∗)
∼ 1

4π2

F C

C0
, (49)

and as a consequence the anomaly-mediation always gives a non-negligible
contribution to soft masses.

In some cases, fluxes might preserve accidently a (discrete) R-symmetry,
and thereby yield w0 = 0. Still T can be stabilized by introducing multiple
gaugino condensations. Such case can be described by

Model 2 : K0 = −3 ln(T + T ∗),

W0 = C1e
−a1T − C2e

−a2T ,

Vlift = D/tnt (T = t + iτ), (50)

where we can choose C1 and C2 to be real and positive without loss of gen-
erality and then set 〈τ〉 = 0. In order to stabilize t at a value yielding
hierarchically small m3/2/MP l, one needs to tune a1,2 as

|a1 − a2| ≈
a1 + a2

ln(MP l/m3/2)
, (51)

as in the standard racetrack model [25]. We then find

F C

C0
≈ m3/2 ≈ a2 − a1

2
√

2 a1t
3

2

MP lC2e
−a2t,

FT

(T + T ∗)
≈ 3 nt

4 a1t a2 t
m3/2,

mt ≈ mτ ≈ 4a1 t a2 t

3
m3/2, (52)

where

a1t ≈ a2t ≈ ln(MP l/m3/2) . (53)

The most important feature of this model is that FT

(T+T ∗)
∼ m3/2

(a t)2
where at ≈

4π2, and as a consequence the soft terms are dominated by the anomaly-
mediated contributions.
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4.2 Models with light dilaton and Kähler moduli

In this subsection, we examine some models in which both T and S are
stabilized by a nonperturbative superpotential. Let us first consider the
model given by

Model 3 : K0 = − ln(S + S∗) − 3 ln(T + T ∗) ,

W0 = w0 − C1e
−aT − Λe−bS ,

Vlift = D/tntsns (T = t + iτ, S = s + iσ) , (54)

where C1e
−aT is induced by the gaugino condensation on D7, while Λe−bS

is from the gaugino condensations on D3. Again we can choose w0, C1

and Λ to be real and positive with appropriate shifts of τ and σ, and then
〈τ〉 = 〈σ〉 = 0. We then find

at ≈ ln(C1/w0) ≈ ln(MP l/m3/2) ,

bs ≈ ln(Λ/w0) ≈ ln(MP l/m3/2) , (55)

and also

F C

C0
≈ m3/2 ≈ w0

4s1/2t3/2
,

F T

(T + T ∗)
≈ nt

2at
m3/2 ,

F S

(S + S∗)
≈ 3ns

2bs
m3/2 . (56)

together with the dilaton/moduli masses

mS,T ≈ m3/2 ln(MP l/m3/2) . (57)

Again the flux-induced w0 in W0 can be accidently vanishing, and T and
S can be stabilized by having multi gaugino condensations either on D7 or
on D3. In case that two gaugino condensations arise from D7 branes, one
would have

Model 4: K0 = −3 ln(T + T ∗) − ln(S + S∗) ,

W0 = C1e
−a1T − C2e

−a2T − Λe−bS ,

Vlift = D/tntsns . (58)
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For this model, we find

a1t ≈ a2t ≈ bs ≈ ln(MP l/m3/2) , (59)

and

F C

C0
≈ m3/2 ≈ bs1/2

2t3/2

Λe−bs

M2
P l

,

F T

(T + T ∗)
≈ 3nt

4a1t a2t
m3/2 ,

F S

(S + S∗)
≈ 3ns

2bs
m3/2 . (60)

The above results show that F S

(S+S∗)
∼ F C

4π2C0

, thus F S and F C can give
equally important contributions to soft terms. On the other hand, the F -
component of T stabilized by the racetrack superpotential is further sup-
pressed as F T

(T+T ∗)
∼ F C

(4π2)2C0

, thus gives negligible contribution to soft terms.
Similarly, one can consider a model with

W0 = Λ1e
−b1S − Λ2e

−b2S − Ce−aT , (61)

and then one finds F T

(T+T ∗)
∼ F C

4π2C0

and F S

(S+S∗)
∼ F C

(4π2)2C0

.

4.3 Some phenomenological features

Let us briefly discuss some phenomenological features of the soft terms in
the models considered above. For the models of sec. 4.1, the matter Kähler
metric and the holomorphic Yukawa couplings and gauge kinetic functions
would be given by

∆Keff =
1

(T + T ∗)ni
Q∗

i Qi ,

∆Weff =
1

6
λijkQiQjQk ,

fa = T la , (62)

where λijk are constants, la = 1, ni = 0 and la = 0, ni = 1 for gauge and
matter fields living on D7 and D3, respectively. In the case when matter
fields live on intersections of D7 branes ni take a value between 0 and 1 [26].
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Using the general result (43), the soft parameters of visible fields at energies
just below the compactification scale are found to be [2]

Ma = la
F T

(T + T ∗)
+

bag
2
a

2

(

F C

4π2C0

)

,

Aijk = (3 − ni − nj − nk)
F T

(T + T ∗)
− 1

4
(γi + γj + γk)

(

F C

4π2C0

)

,

m2
i = (1 − ni)

∣

∣

∣

∣

∣

F T

(T + T ∗)

∣

∣

∣

∣

∣

2

− 1

32π2

dγi

d ln µ

∣

∣

∣

∣

∣

F C

C0

∣

∣

∣

∣

∣

2

+





1

8

∑

jk

(3 − ni − nj − nk)|yijk|2 −
1

2

∑

a

laTa(Qi)g
2
a





×
(

F T

(T + T ∗)

(

F ∗C

4π2C∗
0

)

+
F ∗T

(T + T ∗)

(

F C

4π2C0

))

. (63)

For the models with the visible sector living on D3, we have la = 0 and
ni = 1, so FT does not contribute to the soft terms at tree-level. The no-scale
structure is lifted by loop corrections and dependence of the soft terms on
FT will appear at one-loop level. But, since F T

(T+T ∗)
∼ F C

4π2C0

or even smaller,
the soft terms are dominated by anomaly mediation. As is well known, pure
anomaly mediation leads to negative slepton masses squared. In view of
this point, the most attractive possibility would be the visible sector living
on D7, in particular the model 1 in which the modulus mediation and the
anomaly mediation give comparable contributions to the soft terms (for the
model 2 FT is too small to cure the negative slepton masses problem). It
turns out [27] that the low energy phenomenology of such mixed modulus-
anomaly mediation is quite different from the pure anomaly mediation [9]
and also from the pure modulus mediation [28]. In particular, since F T and
F C have the same sign, the anomaly mediation cancels the RG evolution of
the modulus-mediation, leading to a quite distinctive superparticle spectrum
at low energy scale [27].

It should be stressed that the soft terms (63) have been derived within
a framework satisfying two important conditions: (i) all relevant moduli are
stabilized and (ii) the vacuum energy density is correctly tuned to be nearly
zero. Unless the condition (i) is met, additional dynamics should be intro-
duced to stabilize the unfixed moduli, and this new dynamics might change
the predictions completely. The condition (ii) is also important for reliable
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computation of soft scalar masses since any additional source of vacuum en-
ergy density generically affects the soft scalar masses [29]. To our knowledge,
this is the first example to compute soft terms in string theory framework
satisfying these two conditions simultaneously.

To examine the structure of soft terms in models with light T and S, one
can consider the following forms of the matter Kähler metric and the gauge
kinetic functions:

∆Keff =
1

(S + S∗)ki(T + T ∗)ni
Q∗

i Qi ,

∆W =
1

6
λijkQiQjQk ,

fa = κaS + laT , (64)

where (ni, ki) = (0, 1) and (ni, ki) = (1, 0) for matter fields on D7 and D3,
respectively, and (κa, la) = (0, 1) and (κa, la) = (1, 0) for gauge fields living
on D7 and D3, respectively. The resulting soft terms can be easily obtained
from (43) as in [2]. In this case a viable superparticle spectrum is obtained
also for the visible sector living on D3.

Independently of the detailed low energy phenomenology [27], the soft
parameters predicted by KKLT set-up have an attractive feature avoiding
naturally the SUSY flavor and CP problems. The soft terms preserve the
quark and lepton flavors if ni, or (ni, ki) for the models with light T and S,
are flavor-independent, which would arise automatically if the matter fields
with common gauge charges live on the same D-brane worldvolume (or their
intersection). They also preserve CP since the relative CP phase between F T

and F C/C0 could be rotated away by the shift of the axion-like field τ . Such
dynamical relaxation of the potentially dangerous SUSY CP phase can be
considered to be a consequence of an approximate nonlinear PQ symmetry
T → T + iα (α = constant) which is broken by the stabilizing superpotential
W0 [30]. A similar relaxation of SUSY CP phases can be achieved in more
general cases with multi-moduli Φm if the following conditions are met: (i)
W0 =

∑

p Cp exp(−∑m ap
mΦm) and fa =

∑

m lamΦm for real parameters ap
m

and lam, (ii) the moduli Kähler potential, matter Kähler metric, and the
uplifting potential depend only on Φm+Φ∗m, (iii) the number of independent
terms in W0 is limited as NW0

≤ NΦ + 1 where NΦ is the number of involved
moduli. In fact, these three conditions are satisfied in all models examined in
this section. Finally we remark that the little mass hierarchy driven by the
factor ln(MP l/m3/2) ∼ 4π2, i.e. mT ∼ 4π2m3/2 and m3/2 ∼ 4π2msoft, allows
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the model to be free from the cosmological moduli problem and possibly also
from the cosmological gravitino problem. It offers also an interesting scenario
to produce a correct amount of neutralino dark matter as has been studied
recently [31].

5 Conclusion

A combination of fluxes and non-perturbative effects might allow for stabi-
lization of all moduli of string theory. The KKLT set-up provides a spe-
cific suggestion how this can be achieved explicitely in the framework of the
type IIB theory. It involves three steps: (i) a breakdown of supersymmetry
through fluxes, (ii) a restoration of supersymmetry (in AdS) via nonpertur-
bative effects, followed by (iii) again a breakdown of supersymmetry in the
process of uplifting the vacuum energy to the desired value. The scheme
requires a severe fine tuning of the fluxes to get a weak scale supersymmetry
in addition to the other fine tuning for small cosmological constant. One
might hope that future research could shed some light into the question of
fine tuning and offer a more elegant description of the problem.

The study of the phenomenological properties of the scheme requires a
careful analysis of the soft supersymmetry breaking terms. It is quite easy to
compute the soft terms after the first step of the KKLT procedure, but this
does not lead to meaningful results as in the second step supersymmetry is
restored. From our analysis we can actually draw a useful lesson: it does not
make sense to compute the soft terms in a scheme that has not yet stabilized
all the moduli. The stabilization of the last modulus might (and usually
does) change the results completely. So the first condition for a reliable
computation of soft terms is to stabilize all the relevant moduli. Another
important condition is that the framework should allow the vacuum energy
density to be fine tuned to the desired small value since any additional source
of vacuum energy density generically affects the soft scalar masses. To our
knowledge, our analysis is the first attempt to compute soft terms in string
theory framework satisfying these two conditions simultaneously.

The result of our analysis turns out to be rather simple and appealing. As
we have shown, the KKLT scheme yields a unique and characteristic pattern
of mass scales and soft terms. In case of a single light modulus (stabilized by
nonperturbative effects) the result on mass scales is given in equation (20).
We see that apart from the large hierarchy between the Planck scale and
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the weak scale, there appears a little hierarchy characterized by a numerical
factor O(4π2) originating from ln(MP l/m3/2). One has mT = O(4π2m3/2) as
well as m3/2 = O(4π2msoft). The appearance of the soft terms is due to a
specific mixed modulus-anomaly mediation, yielding the results of (43) and
(63) which give a quite distinctive superparticle spectrum [27].

Independent of the details of the low energy phenomenology the soft pa-
rameters have the attractive feature of avoiding naturally the SUSY flavour
and CP problems. In addition, the rather large value of the gravitino mass
and the mass of the T -modulus could lead to interesting cosmological con-
sequences [31]. In the case of two light moduli the overall picture remains
unchanged: the appearance of these little hierachies persists and the pattern
of mass scales is quite similar.
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