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1. Introduction

In [1] it was shown how rescattering of the final state pions in K+ → π+π0π0 produces

a prominent cusp1 in the total energy spectrum of the π0π0 pair, whose amplitude is

proportional to the a0 − a2 combination of the ππ S-wave scattering lengths.

The combination a0−a2 is a very interesting quantity: a benchmark observable to de-

termine the structure of the QCD vacuum and one of the few non-perturbative parameters

which can be predicted with excellent accuracy from first principles. Recent calculations [4],

that combine Chiral Perturbation Theory (CHPT) [3] with Roy equations [5, 6], lead to the

precise prediction (a0− a2)mπ+ = 0.265± 0.004. So far, this high theoretical precision has
not been matched by a similar experimental accuracy. The best direct information on ππ

scattering lengths is the one extracted from Ke4 decays by the BNL-E865 experiment [7],

which is affected by a sizable (∼ 6%) statistical error. Given the intrinsic statistical limita-
tion of Ke4 decays with respect to the dominant K → 3π modes, and the different nature of

1The existence of this cusp was first discussed in [2].
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systematical errors (including the theoretical ones) involved the extraction of ππ scattering

lengths in the two cases, it is definitely worth to explore in more detail the proposal of

reference [1].

The NA48 runs of 2003 and 2004 have produced ≈ 108 K+ → π+π0π0 decays, of

which a few millions are in the π+π−threshold region with excellent sππ resolution. Since

the cusp induced by the ππ rescattering is a ≈ 10% effect on the π0π0 spectrum, at a pure
statistical level it should be possible to determine its amplitude with ≈ 1 − 2% accuracy.
In order to extract from this measurement a value for a0 − a2 with a similar precision, it

is necessary to reduce the theoretical uncertainties of the simple analysis proposed in [1].

The present paper is a first step in this direction.

As already noted in [1], the procedure presented there was incomplete for three main

reasons:

1. It did not take into account the effect of radiative corrections.

2. It omitted higher terms in v, e.g. v3 terms in the imaginary part of the amplitude.

3. It omitted contributions from higher order rescattering effects.

The effect of radiative corrections to the K+ → π+π0π0 decay in general, and to the

amplitude of the cusp in the π0π0 spectrum, will not be discussed here. The radiative

corrections to K → 3π decays have been evaluated (see e.g. reference [8]) to be of the few

percent level, and dominated by Coulomb corrections. We expect radiative corrections to

the cusp amplitude to be not larger than this.

The second omission is minor, as the value of a0−a2 is given by the term proportional

to v, while the term in v3 can be introduced as a free parameter in the experimental fit,

and its possible prediction in CHPT is of lesser importance than that of the scattering

lengths. The evaluation presented here includes these effects.

In this paper we will concentrate on correcting the third omission. We will show how

the unitarity and analyticity of the S matrix elements can lead to a systematic expansion of

the K+ → π+π0π0 and K+ → π+π+π−amplitudes in powers of the ππ scattering lengths.

The usefulness of this expansion derives from the relative weakness of ππ scattering that,

in turn, is a general consequence of the pseudo-Goldstone-boson nature of the pions and

of the smallness of light-quark masses (or, in one word, a general consequence of CHPT).

Rescattering effects in K → 3π decays have already been widely discussed in the literature

in the framework of CHPT (see e.g. reference [9, 10, 11]). However, most of these analyses

have been performed only up to the first non-trivial order in the chiral expansion (with

the exception of reference [10], where the imaginary parts of the amplitudes are analysed

up to the next-to-leading order) and ignoring isospin-breaking effects (with the exception

of reference [11]). The approach presented in this paper differs from these previous works

being more focused on the cusp effect and, in this respect, being more general than ordinary

CHPT calculations: we shall use the effective field theory only for an explicit estimate of

the irreducible 3π → 3π rescattering (that turns out to be negligible). For completeness,

we shall also present a general parameterization of rescattering effects and cusp amplitudes

in KL → 3π decays.
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The paper is organized as follows: in section 2 we shall introduce the definition of ππ

scattering lengths used in the rest of this work, and we shall recall some basic properties

of the S matrix. Section 3 is devoted to analyse the consequences of unitarity and analyt-

icity on the structure of various ππ → ππ amplitudes. In section 4 we shall present the

systematic expansion of K → 3π amplitudes in powers of the ππ scattering lengths up to

O(a2i ), we shall also briefly discuss possible strategies for the data analysis. The results are

summarized in the conclusions.

2. ππ Scattering

2.1 Two pion states

Consider the S matrix element:

〈c, ~pc; d, ~pd|S|a, ~pa; b, ~pb〉 = 〈c, ~pc; d, ~pd|a, ~pa; b, ~pb〉+ iδ4(Pf − Pi)
Mfi

√

∏

2Ei

(2.1)

The normalization of the states is chosen as

〈c, ~pc; d, ~pd|a, ~pa; b, ~pb〉 = δca δdb δ
3(~pc− ~pa)δ

3(~pd− ~pb) + δcbδda δ
3(~pc− ~pb)δ

3(~pd− ~pa) . (2.2)

This normalization is compatible with the field theoretical definition:

|a, ~pa; b, ~pb〉 = a†a(~pa)a
†
b(~pb)|Ω〉 (2.3)

[

aa(~pa), a
†
b(~pb)

]

= δabδ
3(~pb − ~pa) . (2.4)

If we change variables to total and relative four-momentum,

P = pa + pb ; k =
(pa − pb)

2
P ′ = pc + pd ; k′ =

(pc − pd)

2
(2.5)

δ3(~pc − ~pa) δ
3(~pd − ~pb) = δ3(~P ′ − ~P ) δ3(~k′ − ~k) (2.6)

δ3(~pc − ~pb) δ
3(~pd − ~pa) = δ3(~P ′ − ~P ) δ3(~k′ + ~k) (2.7)

we can define the S-wave state in the center of mass, ~P = 0

|~P , q, a, b〉 = 1√
4πq

∫

d3~kδ(q − |~k|)|~P ,~k, a, b〉 (2.8)

and verify that the normalization is

〈~P ′, q′, c, d|~P , q, a, b〉 = δ3(~P ′ − ~P )δ(q′ − q) (δcaδdb + δcbδda) . (2.9)

2.2 Isospin states

We will adopt a phase convention, inspired by a field theoretical treatment, where

I−|π+〉 = −
√
2|π0〉 ; I−|π0〉 =

√
2|π−〉 (2.10)
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We note that this convention is different from that used in early I-spin analysis of K → 3π

decays, e.g. in ref. [12] and [13], but coincides with the one adopted in CHPT studies of

these decays, e.g. ref. [14]. For I3 = 0 we then find the three states

|2, 0〉 = |π+π−〉+ |π−π+〉 − 2|π0π0〉√
6

(2.11)

|1, 0〉 = |π+π−〉 − |π−π+〉√
2

(2.12)

|0, 0〉 = |π+π−〉+ |π−π+〉+ |π0π0〉√
3

(2.13)

And for I3 = 1,

|2, 1〉 = |π+π0〉+ |π0π+〉√
2

(2.14)

|1, 1〉 = |π+π0〉 − |π0π+〉√
2

(2.15)

These states are normalized as (see eq. 2.2, but note that the I = 1 states vanish for

S-waves)

〈~P ′, q′, I ′, I ′3|~P , q, I, I3〉 = 2δI′I δI′3I3 δ
3(~P ′ − ~P ) δ(q′ − q) (2.16)

2.3 Low energy scattering and scattering lengths

S-wave scattering means that the Mfi defined in (2.1) does not depend on the direction

of the relative momentum ~k, but at most is a function of the CM energy E or momentum

q. We than find easily that, working in the C.M. frame ( ~P = 0),

〈~P ′, q′, f |(S− 1)| ~P , q, i〉 = 4πiqq′δ(E′ −E)δ3(~P ′ − ~P )
Mfi

√
∏

2Ei

(2.17)

= 4πi
q E′1E

′
2

(E′1 +E′2)
δ(q′ − q∗)δ3(~P ′ − ~P )

Mfi
√

∏

2Ei

(2.18)

= πi
q

(E′1 +E′2)
δ(q′ − q∗)δ3(~P ′ − ~P )Mfi (2.19)

with q∗ the C.M. momentum required by energy conservation. In the non relativistic limit,

〈~P ′, q′, f |(S− 1)| ~P , q, i〉 = 4π iq µ δ(q′ − q∗)δ3(~P ′ − ~P )
Mfi

√
∏

2Ei

(2.20)

= π
iq

2mπ
δ(q′ − q∗)δ3(~P ′ − ~P )Mfi (2.21)

Neglecting π+π0 mass differences, µ = mπ+/2. For exact I-spin (that only makes sense in

the limit of equal masses) we must have near threshold:

S|P, q, I, I3〉 = exp(2iqaI)|P, q, I, I3〉 (2.22)

so that

〈~P ′, q′, I ′, I ′3|(S− 1)| ~P , q, I, I3〉 ≈ 4iqaIδI′IδI′3I3δ
3(~P ′ − ~P )δ(q′ − q) +O(q2) . (2.23)
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Comparing now (2.21) and (2.23) we find that near threshold

MI I ≈
8aImπ

π
. (2.24)

Identifying mπ with mπ+ we will thus define:

π0π0 → π0π0 ReM00 =
8a00mπ+

π
(π+π−threshold) a00

I-spin−→ a0 + 2a2
3

(2.25)

π+π0 → π+π0 ReM+0 =
8a+0mπ+

π
(π+π0 threshold) a+0

I-spin−→ a2
2

(2.26)

π+π− → π0π0 ReMx =
8axmπ+

π
(π+π−threshold) ax

I-spin−→ a0 − a2
3

(2.27)

π+π− → π+π− ReM+− =
8a+−mπ+

π
(π+π−threshold) a+−

I-spin−→ 2a0 + a2
6

(2.28)

π+π+ → π+π+ ReM++ =
8a++mπ+

π
(π+π+threshold) a++

I-spin−→ a2 (2.29)

For each process we have noted the threshold at which the scattering length is defined, and

the value it would have in the limit of exact I-spin symmetry.

The problem that must at some time be faced in comparing the result of cusp stud-

ies to the CHPT prediction for a0 − a2 is that of taking into account radiative correc-

tions. Note that the threshold region is one where I-spin is maximally broken. We will

take the point of view that the quantity ax introduced in eq. (2.27) should be taken as

a definition of the effective scattering-length combination measured from the cusp effect.

The experimentally determined value for this quantity should be compared with a CHPT

prediction which includes the effects of radiative corrections and I-spin breaking due to

mu 6= md. The evaluation of these subleading effects can be subdivided into two sepa-

rate tasks: computing their impact on the CHPT predictions of the various ππ → ππ

amplitudes in eqs. (2.25)–(2.29), and determining how they would affect the decomposi-

tion of the K → 3π amplitude presented in this paper. The first point has already been

partially addressed in the literature [15, 16] — it turns out to be only a few percent cor-

rection in the case of ax [16] — and can be easily implemented in our decomposition.

However, at the moment we are lacking of a consistent description of the second point, or

the evaluation of I-spin breaking effects in the relation between ππ → ππ and K → 3π

amplitudes.

In the following we will proceed using eqs. (2.25)–(2.29) as a definition of the different

scattering length combinations. We shall use their expressions in terms of a0, a2 only as a

first approximation, pending a consistent evaluation of all the I-spin breaking effects. Note

the use of mπ+ in these definitions, and of the π+π−threshold2 in (2.25).

In the case where the scattering occurs well above threshold, eqs. (2.25)–(2.29) should

be modified to take into account the non trivial kinematical dependence ofMfi. Expanding

up to linear terms in the kinematical variables s, t and u, we can neglect all higher modes

2At this threshold the cusp correction to the π0π0 → π0π0 scattering amplitude vanishes.
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but the P wave. The generic matrix element takes the form3

ReMij =
8mπ+aij(s)

π
+
6mπ+aPij

π

(t− u)

m2
π+

(2.30)

with

aij(s) = aij

[

1 + rij
(s− sthreshold)

4m2
π+

]

(2.31)

The aij are the combinations of constant S-wave scattering lengths defined in eqs. (2.25)–

(2.29), while the rij define the corresponding effective ranges. In the isospin limit, we can

express the rij in terms of the effective ranges of a0 and a2, following the isospin decom-

position reported in eqs. (2.25)–(2.29). According to the detailed analysis of reference [4],

these are given by r0 = 1.25 ± 0.04 and r2 = 1.81 ± 0.05, values which are consistent with
those recently reported in reference [17] and also not too far from the lowest-order CHPT

predictions r
(2)
0 = 8/7 and r

(2)
2 = 2.

The only two channels with non vanishing aPij are the π
+π− → π+π− and π+π0 → π+π0

ones. In the I-spin limit

aP+− = aP+0 =
a1
2
, (2.32)

while the lowest-order CHPT prediction is a
(2)
1 = m2

π/(12πf
2
π).

2.4 Cluster decomposition and the operator notation.

The S-matrix elements can in general be cluster-decomposed4 into the sum of a connected

part (in perturbation theory this is the sum of the connected diagrams), and one or more

terms that are the product of connected terms, and correspond to the separate interaction

of non overlapping subsets of the initial particles to yield non overlapping subsets of the

final particles. Among the disconnected terms there may be some where one or more of

the initial particles propagate without interacting at all.

It will be convenient to express the S and T operators in terms of creation and

annihilation operators for asymptotic states, so that we can write T as a sum of operators:

S = 1+ iT ; T =
∑

m,n

Tm,n . (2.33)

Each of these operators can be expressed as:

Tm,n =
1

m!n!

∑

f i

∫

∏

[

d3p
]

δ4(Pf − Pi)a
+
f1
. . . a+fmai1 . . . ain

Mfi
√

∏

2Ei

(2.34)

where the sum is over particle types and the integral is over the three-momenta of the initial

and final particles. We note that each Tm,n can contribute to an n → m transition, but

also to an n+ k → m+ k transition, with k particles passing through without interacting

3This expression does not include the effects of threshold singularities, whose structure will be discussed

in section 3.
4For a discussion of cluster decomposition, see e.g. [18, 19], and [20, Vol I, Ch. 3].
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with the others. In general the Tm,n term will contain a connected part, TC
m,n, where

the corresponding Tfi contains a single δ
4(Pf − Pi) factor, and other terms with two or

more such momentum conservation factors, and can be expressed as well ordered products

(annihilation operators on the right) of “smaller”TC
m′,n′ . For instance in the casem = n = 4

we would find

iT4,4 = iTC
4,4+ : (iT2,2)

2 : (2.35)

In the case we will be interested in, the K+ → π+π0π0 and K+ → π+π+π−decays, we

will be working with Tm,n terms that coincide with their connected parts. We do not thus

need to explore the disconnected parts of Tm,n in more detail here.

2.5 Time reversal symmetry

We will neglect the effects of time reversal and CP violation on K → 3π decays. We have

very strong experimental limits on these effects, and the theoretical expectation is even

smaller. Time reversal symmetry implies the relation

〈B|S|A〉 = 〈AT |S|BT 〉 (2.36)

where |BT 〉, |AT 〉 are the “time reversed states”, that for pseudoscalar mesons amounts to
changing the sign of all momenta, ~p→ −~p. In the case of K → 3π and ππ→ππ, that arise

in the following discussion, we can change the sign of all momenta with a combination of

Lorentz transformations and rotations, so that we have simply

〈B|S|A〉 = 〈A|S|B〉 . (2.37)

Because of parity conservation, the same condition holds for the 3π → 3π strong re-

scattering. So that, neglecting CP breaking effects, S is symmetric for all the cases of

interest for this analysis.

3. Unitarity, analyticity and the π+π−threshold

Due to the presence of the square-root singularity connected to the π+π−threshold within

the phase space for K+ → π+π0π0, we have to distinguish the two zones above and below

the π+π−threshold. We can write the amplitudeMfi above the threshold in the form:

Mfi = A+B

√

s3 − 4m2
π+

s3
s3 > 4m

2
π+ (3.1)

where both A and B are regular at the π+π−threshold. This expression can be analytically

continued below the threshold, where it becomes

Mfi = A+ iB

√

4m2
π+ − s3

s3
s3 < 4m

2
π+ . (3.2)

Applying unitarity above the threshold we can determine the imaginary parts of both A

and B. Also, unitarity below the threshold determines the real part of B. The experimental

data can then be analysed with the following procedure:

– 7 –
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1. Parametrize the real part of A as a polynomial in the three independent kinematical

variables, s1, s2, s3, as outlined in [21].

2. Parametrize the ππ scattering amplitudes in terms of the scattering lengths and

possibly additional parameters.

3. Use unitarity to derive B and the imaginary part of A.

It is best to work out the consequences of unitary in the operator formalism, where

we can express the S operator in terms of the hermitian and anti-hermitian parts of the T

operator,

S = 1+ i(R + iI) (3.3)

then unitarity implies

2I = R2 + I2 (3.4)

or, solving for I,

I = 1−
√

1−R2 (3.5)

and as a power series in R,

I =
1

2
R2 +

1

8
R4 +

1

16
R6 +

5

128
R8 · · · (3.6)

Time reversal invariance implies that S is symmetric, so that the matrix elements of

R and I correspond directly to the real and imaginary parts of T matrix elements.

The last equation allows for a systematic computation of the imaginary parts in terms

of the real parts of the scattering amplitudes. The utility of this expansion derives from

the assumed smallness of the ππ scattering lengths. In the case of K+ → π+π0π0 the first

term in the development yields terms ∝ ai and ∝ a2i , and higher, while the further terms,

starting with R4, will contribute corrections ∝ a3i and higher.

3.1 π0π0 scattering

Let us apply the ideas outlined above to π0π0 scattering. We will work in the threshold

region, so that we can neglect higher partial waves and any dependence of the amplitude

M00 on the t, u variables. We will also neglect higher (e.g. 4π) cuts, and only retain the

first term in eq. (3.6), so that we will neglect terms O(a4i ) and higher. We will also use

mπ+ as unit of energy, so that we write e.g. a00 instead of a00mπ+ .

Let us start by defining the “velocities”,

v±(s) =

√

|s− 4m2
π+ |

s
(3.7)

v00(s) =

√

|s− 4m2
π0 |

s
. (3.8)

We can then write, in analogy to eqs. (3.1), (3.2),

M00 = A00 +B00v±(s) s > 4m2
π+ (3.9)

– 8 –
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M00 = A00 + iB00v±(s) s < 4m2
π+ , (3.10)

and, for π+π− → π0π0,

Mx = Ax +Bxv±(s) s > 4m2
π+ (3.11)

where A00, B00, Ax, Bx are regular at the π+π−threshold. We can express Re(A) as a

polynomial in s. We can simply write:

Re(A00) =
8a00(s)

π
; where a00(4m

2
π+) = a00 (3.12)

and similarly for π+π− → π0π0,

Re(Ax) =
8ax(s)

π
; where ax(4m

2
π+) = ax (3.13)

The π+π−intermediate state contributes to ImM00 only above the π
+π−threshold, while

the π0π0 state contributes both above and below, so that we find

ImM00 =
π

4
v±(s) (ReMx)

2Θ(s− 4m2
π+) +

π

8
v00(s) (ReM00)

2 +O(R4) (3.14)

where O(R4) indicates the neglected higher terms in eq. (3.6). Evaluating eq. (3.14) above

the π+π−threshold, and neglecting terms O(R4), this translates into

ImA00 =
πv00
8

[

(ReA00)
2 +

s− 4m2
π+

s
(ReB00)

2

]

+
π

2
ReAxReBx

s− 4m2
π+

s
(3.15)

ImB00 =
π

4

[

(ReAx)
2 +

s− 4m2
π+

s
(ReBx)

2 + v00(s)ReA00 ReB00

]

(3.16)

and evaluating it below the π+π−threshold

ImA00 =
πv00(s)

8

[

(ReA00)
2 +

4m2
π+ − s

s
(ImB00)

2

]

(3.17)

ReB00 = −
πv00(s)

4
ReA00 ImB00 (3.18)

From eqs. (3.16), (3.18) we see that ImB00 = O(R2) and ReB00 = O(R3), so that,

comparing eqs. (3.17) and (3.15) we conclude that also ReBx is at least O(R
3). Neglecting

terms of O(R4), the final result is

ImB00 =
π

4
(ReAx)

2 =
16

π
(ax(s))

2 (3.19)

ReB00 = −
π2v00(s)

16
ReA00(ReAx)

2 = −32v00(s)
π

a00(s)(ax(s))
2 (3.20)

ReA00 = ImA00 =
πv00(s)

8
(ReA00)

2 =
8v00(s)

π
(a00(s))

2 (3.21)

ReBx = O(R3) . (3.22)
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3.2 π+π0 and π+π+scattering

In the following we will also need expressions for π+π0 and π+π+scattering. The situation

here is simpler, since at O(R2) there is only one intermediate state. However, in this

case we are interested in kinematical configurations where the amplitudes are not close to

threshold and P-wave contributions cannot be completely neglected. Expressing the latter

in terms of the I=1 scattering length in units of mπ+ (we can safely neglect I-breaking

corrections in this case), the real part of the amplitudes can be parametrized as

Re(M+0) =
8a+0(s)

π
+
3a1
π

(t− u)

m2
π+

, (3.23)

Re(M++) =
8a++(s)

π
, (3.24)

We have adopted the standard notation t = (p1 − p′1)
2 and u = (p1 − p′2)

2, where

π+(p1)π
0(p2) → π+(p′1) + π0(p′2). The imaginary parts can easily be computed, but are

not needed in the following.

3.3 π+π−scattering

In this section we will consider π+π−→π+π−scattering, that enters in rescattering correc-

tions to the K+ → π+π+π−decay amplitude. We will again work close to the threshold

region, neglecting higher partial waves and the kinematical dependence from t and u vari-

ables. Here we meet with a new problem: in the case of π0π0→π0π0 scattering we were

able to apply unitarity below the π+π−threshold, and this was used to derive a value for

ReB00, eq. (3.18), (3.20). In the present case moving below the π
+π−threshold implies an

analytic continuation to an unphysical region. We will proceed to do this by considering

a continuation in the π+ and π0 masses, a procedure that is certainly legitimate in a field

theory, such as CHPT, where the π+ − π0 mass difference can be changed by introducing

an extra mass term in the lagrangian. We will then work out the consequences of unitarity

in a situation where mπ0 > mπ+, and analytically continue the results to the situation

where the masses have their physical value.

Assuming now that mπ0 > mπ+ we must distinguish the case where s > 4m2
π0 , where

both π+π−and π0π0 can appear as intermediate states, and that where s < 4m2
π0 where

only the π+π−state can contribute. We can write

M+− = C± +D±v00(s) s > 4m2
π0 , (3.25)

M+− = C± + iD±v00(s) s < 4m2
π0 , (3.26)

As in the case of the π0π0 scattering we start by defining the real part of C± in terms of

the scattering length,

Re(A±) =
8a±(s)

π
; (3.27)

and applying unitarity at O(R2) we obtain:

ImM+− =
π

8
v00(s) (ReMx)

2Θ(s− 4m2
π0) +

π

4
v±(s) (ReM+−)

2 +O(R4) (3.28)
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Evaluating eq. (3.28) both above and below the π0π0 threshold, and neglecting terms

O(R4), this translates5 into

ImD± =
π

8
(ReAx)

2 =
8

π
(ax(s))

2 (3.29)

ReD± = −
π2v±(s)

16
ReA00(ReAx)

2 = −32v±(s)
π

a+−(s)(ax(s))
2 (3.30)

ImC± =
πv±(s)

4
(ReC±)

2 =
16v±(s)

π
(a+−(s))

2 . (3.31)

The continuation to the physical values of the π+ and π− masses is simply achieved by

using in the above expressions the correct masses for v±, v00 and the physical values for

the scattering lengths.

4. K → 3π decays

In the following we shall apply the results of the previous section to describe rescattering

effects in K → 3π decays. Our main interest will be on the K+ → π+π0π0 channel, where

the cusp effect is most prominent and useful for the determination of (a0−a2), but we shall
also consider the K+ → π+π+π−decay, whose amplitude is needed for the K+ → π+π0π0

analysis. Similarly, we shall discuss the KL → 3π0 decay, where smaller cusp effects —

still proportional to (a0 − a2) and related to the KL → π+π−π0 → 3π0 process — should

also be visible. As in the previous section, we shall consider rescattering effects only up to

O(a2i ) corrections to the leading amplitudes. To be more precise, we shall evaluate the full

imaginary parts of the amplitudes at O(ai) and the corresponding O(a
2
i ) corrections to the

real parts.

Similarly to the π0π0 → π0π0 case, we can decompose K+ → π+π0π0 and K+ →
π+π+π−amplitudes into a regular term and one that is singular at the π+π−threshold. We

will use the standard kinematical variables si = (pK − pπi)
2, i = 1 . . . 3, as specified in the

Particle Data Group Review [21], the index “3” referring to the odd pion (π+ or π− for

the two decays). In particular, for K+ → π+π0π0, s3 coincides with the square of the CM

energy of the π0π0 pair. We will thus write

M00+ = A00+ +B00+v±(s3) s3 > 4m
2
π+ , (4.1)

M00+ = A00+ + iB00+v±(s3) s3 < 4m
2
π+ . (4.2)

For the K+ → π+π+π−amplitude it will be convenient to separate the terms which contain

the singularity in s1, s2 associated with the π
0π0 threshold, and write:

M++− = C++− +D
(1)
++−v00(s1) +D

(2)
++−v00(s2) , (4.3)

where Bose symmetry implies that

M(i)(s1, s2, s3) =M(i)(s2, s1, s3) , (i = ++−, 00+) , (4.4)

5We omit the intermediate steps that follow the lines of the preceding section.
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that translates into

D
(1)
++−(s1, s2, s3) = D

(2)
++−(s2, s1, s3) , (4.5)

etc.

A00+, B00+, C++−, and D++− are expected to be analytic functions of s1, s2, s3 in the

physical region for the two decays, with square-root singularities at the borders associated

with different ππ thresholds.

Unitarity will allow us to express M00+ and M++− in terms of ReA00+, ReC++−

and ππ scattering lengths. In the case of ReA00+, ReC++− we adopt a parametrization

inspired by the PDG tables, namely

ReA00+(s1, s2, s3) = R0(s3) = A0

[

1 +
g0(s3 − s00)

2m2
π+

+
h̃0(s3 − s00)

2

2m4
π+

]

(4.6)

ReC++−(s1, s2, s3) = R+(s3) = A+

[

1 +
g+(s3 − s+0 )

2m2
π+

+
h̃+(s3 − s+0 )

2

2m4
π+

]

(4.7)

where
∑

i=1...3

si =

{

3s00 = m2
K + 2m

2
π0 +m2

π+ (K+ → π+π0π0)

3s+0 = m2
K + 3m

2
π+ (K+ → π+π+π−)

(4.8)

The PDG tables also include terms proportional to (s1 − s2)
2, but their coefficients are

small and compatible with zero6. They can be reintroduced, if needed for fitting a precise

data-set, and one could also introduce higher powers of (s3 − s0). We can compare this

parametrization with that adopted in the PDG if we neglect the other contributions to the

decay amplitude discussed in this paper, namely the imaginary parts of A00+, C++− and

the whole of B00+, D
1,2
++−, that give smaller contributions to the decay rates, except in the

cusp region of K+ → π+π0π0. We then obtain:

g0,+ ≈ gPDG ; h̃0,+ ≈ hPDG −
(

g0,+

2

)2

, (4.9)

and, using the PDG average values,

g0 ≈ 0.638 ± 0.020 ; h0 ≈ −0.051 ± 0.01 (4.10)

g+ ≈ −0.2154 ± 0.0065 ; h+ ≈ 0.0004 ± 0.004 (4.11)

Interestingly, the PDG values suggest a quadratic term that is vanishing small in the

K+ → π+π+π−amplitude. The small and negative value in the K+ → π+π0π0 amplitude

could simply arise from the effect on the previous fits of an undetected cusp in that decay.

In this situation it would appear that the quadratic terms in eq. (4.6) could be dropped

at least in a first analysis that takes into account the cusp effect and other absorptive

contributions.

6The coefficient of the (s1 − s2)
2 term in |M00+|

2 is known to be very small: it is listed in the PDG

tables [21] as k = 0.004± 0.007. The k coefficient for K+ → π+π+π−is also compatible with zero, but with

a slightly larger error.
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(a)

K

π
′

a

π
′

b

π
′′

a

π
′′

b

πc

πb

πa

(b)

K

π
′

a

π
′

b

π
′

c
πc

πb

πa

(c)

K

π
′

a

π
′

c

π
′

b
π
′′

b

πc

πb

πa

Figure 1: Examples of K → 3π rescattering topologies at the two-loop level: a) single-channel ππ

scattering; b) irreducible 3π → 3π contributions; c) 3π → 3π amplitude due to multi-channel ππ

scattering.

4.1 Three-pion scattering and two-pion cuts

Our final goal is the evaluation of rescattering effects — and particularly the determination

of the cusp amplitude — in the three-pion states produced by K decays. In general, in

the case of 3π states, we can distinguish two basic contributions to the unitarity relations

generated by (3.6): those arising from rescattering of a pair of pions in a given channel —

with a third spectator pion — (see e.g. figure 1a) and those due to 3π → 3π connected

diagrams. At the level of approximation we are working, it is also convenient to distinguish

between 3π → 3π one-particle-irreducible diagrams (figure 1b) and 3π → 3π reducible

amplitudes due to multiple ππ scattering in different channels (figure 1c).

The 3π → 3π irreducible contribution is the only one that cannot be expressed in terms

of ππ scattering lengths, but it turns out to be safely negligible. A simple and reliable

estimate of its size can be obtained using the lowest-order CHPT lagrangian to evaluate

the 3π → 3π irreducible amplitude, and employing the non-relativistic approximation for

the 3π states. In this limit, the irreducible scattering leads to a constant imaginary part

of O(10−4). For instance in the K+ → π+π0π0 case we find

(ImA00+)3π = −
Q2m2

π+

360π2f4π
〈ReA00+〉 ≈ −4× 10−4 〈ReA00+〉 (4.12)

where Q is the Q-value of the K+ → π+π0π0 decay, fπ = 130.7 MeV is the pion decay

constant, and 〈ReA00+〉 is the average of the real part of the amplitude over the Dalitz
plot. This contribution, and others of a similar size also in the other channels, appears to

be safely negligible at the O(10−3) accuracy for the decay rates we are aiming for.

The evaluation of the single-channel ππ scattering in K → 3π decays proceeds exactly

as for theMππ amplitudes discussed in the previous section. To this purpose, it is useful

to observe that all the previous results can be recovered in a diagrammatic framework by

considering the absorptive two-pion cuts of appropriate Feynman diagrams. In particular,

the O(R3) contributions to the real part of the cusp amplitude (such as the expressions for
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Figure 2: The π+π−( π0π0) contribution to

K+ → π+π0π0.

Figure 3: The π+π−contribution: kinemat-

ics in the π0π0 CM.

ReB00 and ReD± discussed before) can be derived by considering the two s-channel cuts of

diagrams similar to the one in figure 1a (i.e. setting both the {π ′a, π′b} pair and the {π′′a , π′′b }
pair on shell). As we shall illustrate in more detail in the next section, this observation

allows us to evaluate in a simpler way also the effects of ππ scattering in different channels

(figure 1c) and, in particular, to express them in terms of the ππ scattering lengths.

4.2 Rescattering in K+ → π+π0π0

We start by considering the rescattering of the two-pion pair leading to the final π0π0 state.

In the R2 term of eq. (3.6) the contribution of intermediate π+π−states — figure 2 — is

given by

(ImM00+)π+π− =
1

2

∫

d3p1d
3p2

4E1E2
δ4(p1 + p2 − q1 − q2)ReMx

(

(q1 + q2)
2
)

×

×ReM++−

(

(q1 + q2)
2, (p2 + q3)

2, (p1 + q3)
2
)

(4.13)

This expression is directly proportional to v±(s3), so that it will contribute to the imaginary

part of B00+. In the next section we will find that the real parts of D
1
++−, D

2
++− are of the

second order in the scattering lengths, so that the contributions of these terms to ImM00+

are O(a3i ) and can be neglected. It is convenient to compute the result in the C.M. of the

π0π0 pair.

With reference to figure 3, and using eqs. (3.13), (3.22), we then find

(ImB00+)π+π− = 2ax(s3)R
+ ,

where

R+ =
1

2

∫

d cos(θ) .R+
(

(p1 + q3)
2
)

(4.15)

To a good accuracy the integrand is linear in cos(θ) — see (4.7) — so that the average is

simply the value at θ = π/2. In this approximation we can write

(ImB00+)π+π− = 2ax(s3)R
+(〈s〉3) (4.16)

where

〈s〉i =
3s00 − si
2

(4.17)
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Equation (4.16) reduces to the result in ref. [1] in the limit s3 → 4m2
π+ . We next consider

the contribution of intermediate π0π0 states (see figure 2):

(ImM00+)π0π0 =
1

4

∫

d3p1d
3p2

4E1E2
δ4(p1 + p2 − q1 − q2)ReM00

(

(q1 + q2)
2
)

×

×ReM00+

(

(p2 + q3)
2, (p1 + q3)

2, (q1 + q2)
2
)

(4.18)

We can substantially simplify the computation if we neglect the dependence of ReM00+

on s1 and s2. We thus obtain

(ImM00+)π0π0 =
πv00(s3)

8
ReM00(s3)ReM00+(s3) . (4.19)

We must distinguish the two cases, above and below the π+π−threshold. Above the thresh-

old we obtain

(ImA00+)π0π0 = v00(s3)a00(s3)R
0(s3) , (4.20)

(ImB00+)π0π0 = v00(s3)a00(s3)ReB00+(s3) (4.21)

Below the π+π−threshold the real parts ofM00+ andM00 acquire contributions from the

imaginary parts of B00+ and of B00, see eqs. (4.2) and (3.10), and these result in a O(a
2
i )

contribution to ReB00+,

(ReB00+)π0π0 = −2v00(s3)ax(s3)
[

ax(s3)R
0(s3) + a00(s3)R

+(〈s〉3)
]

(4.22)

where we have used the results of eqs. (3.19)

Figure 4: The π+π0 contribution.

and (4.16). The presence of a real part of B00+ im-

plies an extra contribution to ImB00+, eq. (4.21),

that is however of the third order in the scattering

lengths, and can be neglected at O(R2).

Figure 4 shows the two-pion rescattering in one

of the two π+π0 channels (the other is obtained by

the exchange q1 ↔ q2). Here the situation is sim-

pler since there is only one possible intermediate

state:

(ImM00+)π0π+ =
1

2

∫

d3p2d
3p3

4E2E3
δ4(p2 + p3 − q2 − q3)ReM+0

(

(q2 + q3)
2
)

×

×ReM00+

(

(q2 + q3)
2, (q1 + p3)

2, (q1 + p2)
2
)

+ (q1 ↔ q2) . (4.23)

As anticipated, to a good approximation we can neglect the quadratic terms in eq. (4.6).

In this limit we obtain

(ImA00+)π0π+ = (ImA
(1)
00+)π0π+ + (ImA

(2)
00+)π0π+

≡ (ImA
(1)
00+)π0π+ + (s1 ↔ s2) (4.24)

with

(ImA
(1)
00+)π0π+ = 2a+0(s1)v+0(s1)R

0 (〈s〉1 −∆1) + a1v
3
+0(s1)A

0g0
s1(s3 − s2)

16m4
π+

, (4.25)
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where the “velocity” v+0(s) and ∆i are defined by

v+0(s) =

(

s− (mπ+ +mπ0)2
)1/2 (

s− (mπ+ −mπ0)2
)1/2

s
(4.26)

∆i =
(m2

π+ −m2
π0)(m

2
K −m2

π0)

4si
(4.27)

Finally, we must take into account the effective 3π → 3π scattering due to reducible

diagrams of the type in figure 1c. By construction, these contributions are at least of O(a2i )

and at this level of accuracy contribute only to the real part of the amplitude. Following

the decomposition in eq. (4.1)–(4.2), the various rescattering combinations of the type

in figure 1c can be divided into two main groups: those which can be reabsorbed into a

redefinition of ReA00+ and those which affect ReB00+. We shall start from the latter, that

are more relevant for the structure of the cusp.

The O(a2i ) corrections to ReB00+ arise from diagrams of the type in figure 1c with the

identification {πa, πb, πc} ≡ {π+, π0, π0} and {π′′b , π′c} ≡ {π±π∓}. We can express all these
contributions as

(ReB00+)fig. 1c = −2ax(s3)×
[

(ImC++−)π+π+(〈s〉3) + (ImC
(1)
++−)π+π−(〈s〉3) +

+ v00(〈s〉3)(ImD
(1)
++−)π0π0(〈s〉3)

]

. (4.28)

As we shall see in the next section, the three terms in the r.h.s. of eq. (4.28) correspond

to the cases where the {π′a, π′b} pair is identified with {π+, π+}, {π+, π−}, or {π0, π0}.
Summing these three terms we find

(ReB00+)fig. 1c = −2ax(s3)
[

a++(〈s〉3)v±(〈s〉3)R+(〈s〉3) + 2a+−(〈s〉3)v±(〈s〉3)R+(〈〈s〉〉3) +
+ ax(〈s〉3)v00(〈s〉3)R0(〈s〉3)

]

(4.29)

where 〈〈s〉〉3 = (3s0+ s3)/4 and, given we are already at O(a
2
i ), we have neglected the tiny

P-wave contribution and the difference between s00 and s
+
0 in the 〈s〉i variables.

Far from the Dalitz plot boundaries, the O(a2i ) corrections to ReA00+ could be ignored

since they can be reabsorbed into a redefinition of R0(s). However, the polynomial form of

R0(s) is not appropriate to describe the square-root singularities that occur at the borders

of the Dalitz plot and, particularly, at π0π0 and π+π0 thresholds. The latter are described

at O(a2i ) accuracy by the remaining diagrams of the type in figure 1c. The singularities at

the π0π0 threshold, that are obtained with the identification {π ′′b , π′c} ≡ {π0π0}, are

(δReA00+)
π0π0

fig. 1c = −a00(s3)v00(s3)×
[

(ImA
(1)
+00)π+π0(〈s〉3) + (ImA

(2)
+00)π+π0(〈s〉3)

]

= −4a00(s3)v00(s3)a+0(〈s〉3)v+0(〈s〉3)R0(〈〈s〉〉3) (4.30)

where again we have neglected the tiny P-wave contribution and the difference between π0

and π+ masses in the 〈s〉i variables. The singularities at the π+π0 thresholds, obtained
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with {π′′b , π′c} ≡ {π+π0} or {π0π+}, are

(δReA00+)
π+π0

fig. 1c = −2a+0(s1)v+0(s1)× [(ImA
(2)
+00)π+π0(〈s〉1) + (ImA+00)π0π0(〈s〉1) +

+v±(〈s〉1)(ImB+00)π+π−(〈s〉1)] + (s1 ↔ s2)

= −2a+0(s1)v+0(s1)[2a+0(〈s〉1)v+0(〈s〉1)R0(〈〈s〉〉1) +
+ a00(〈s〉1)v00(〈s〉1)R0(〈s〉1) +
+ 2ax(〈s〉1)v+−(〈s〉1)R+(〈s〉1)] + (s1 ↔ s2) (4.31)

In summary, the relevant contribution to the K+ → π+π0π0 amplitude (in addition

to ReA00+) are:

ImB00+ = 2ax(s3)R
+(〈s〉3) , (4.32)

ReB00+ = −2ax(s3)[ax(s3)v00(s3)R0(s3) + a00(s3)v00(s3)R
+(〈s〉3) +

+ a++(〈s〉3)v±(〈s〉3)R+(〈s〉3) + 2a+−(〈s〉3)v±(〈s〉3)R+(〈〈s〉〉3) +
+ ax(〈s〉3)v00(〈s〉3)R0(〈s〉3)] (4.33)

ImA00+ = a00(s3)v00(s3)R
0(s3) +

[

2a+0(s1)v+0(s1)R
0(〈s〉1 −∆1) +

+ a1v
3
+0(s1)A

0g0
s1(s3 − s2)

16m4
π+

+ (s1 ↔ s2)

]

(4.34)

In order to take into account also the O(a2i ) singularities at the Dalitz-plot boundaries,

ReA00+ must be modified with the addition of the following extra term:

ReA00+ → R0(s3) + δReA00+ (4.35)

δReA00+ = −4a00(s3)v00(s3)a+0(〈s〉3)v+0(〈s〉3)R(〈〈s〉〉3)−
−
{

2a+0(s1)v+0(s1)
[

2a+0(〈s〉1)v+0(〈s〉1)R0(〈〈s〉〉1) +

+ a00(〈s〉1)v00(〈s〉1)R0(〈s〉1) +
+ 2ax(〈s〉1)v+−(〈s〉1)R+(〈s〉1)

]

+ (s1 ↔ s2)
}

. (4.36)

4.3 Rescattering in K+ → π+π+π−

In evaluating the coefficient of the cusp for the K+ → π+π0π0 decay we need to extract

from data the real part of the K+ → π+π+π−amplitude. We thus need a suitable parame-

terization of the latter at the same level of accuracy. Since in the K+ → π+π+π−case the

physical region is always above threshold, we do not expect any correction at O(ai) in the

decay distribution. This implies that the parametrization (4.7) for ReC++− determines

the real part of the K+ → π+π+π−decay amplitude at O(ai) accuracy. Since the K
+ →

π+π+π−amplitude appears only multiplied by O(ai) coefficients in the K
+ → π+π0π0 rate,

knowing the K+ → π+π+π−amplitude at O(ai) accuracy is sufficient to the purpose of

evaluating the cusp effect in K+ → π+π0π0 at the O(a2i ) level.

However, it is worth to stress that the O(a2i ) corrections to the K
+ → π+π+π−decay

amplitude have their own interest: at the border of the Dalitz plot they give rise to
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square-root singularities that could eventually be detected. Their inclusion would there-

fore improve the quality of the K+ → π+π+π−parameterization and could even be used

to extract an additional information about the ππre-scattering. For this reason, in the

following we shall provide a complete parameterization of the re-scattering effects in the

K+ → π+π+π−amplitude to O(a2i ) accuracy.

We start from the expression in eq. (4.3) and the parametrization (4.7), where the

notation of the momenta is defined by

K+ → π+(q1) + π+(q2) + π−(q3) ; s1 = (q2 + q3)
2 , etc.

In analogy with the K+ → π+π0π0 case, we decompose the amplitude isolating explicitly

the cusp effect related to the π0π0 ↔ π+π− transition. In the physical case, where mπ+ >

mπ0 , this cusp effect is not observable; however, the corresponding amplitude is still well

defined. As discussed in section 3.3, this cusp amplitude is more conveniently analysed in

the unphysical scenario with mπ0 > mπ+. In this scenario the π0π0 threshold gives rise to

two square-root singularities, respectively in s1 and in s2. To cover the case where either

s1 or s2 are below the respective threshold, eq. (4.3) must be completed as follows:

M++− = C++− +D
(1)
++−v00(s1) +D

(2)
++−v00(s2) s1,2 > 4m

2
π0 , (4.38)

M++− = C++− + iD
(1)
++−v00(s1) +D

(2)
++−v00(s2) s1 < 4m

2
π0 , (4.39)

M++− = C++− +D
(1)
++−v00(s1) + iD

(2)
++−v00(s2) s2 < 4m

2
π0 . (4.40)

We can choose mπ0 close to mπ+ so that s1 and s2 cannot simultaneously be below the

π0π0 threshold.

As far as the two-pion scattering is concerned, we must take into account π0π0,

π+π−and π+π+intermediate states. In computing the π0π0 contribution to D
(1)
++− and

D
(2)
++− we will assume that ReA00+ is only a function of s3 as in the parametrization (4.6),

and obtain

(ImD
(1,2)
++−)π0π0 = ax(s1,2)R

0(s1,2) (4.41)

Analogously, for the π+π+intermediate state we obtain

(ImC++−)π+π+ = a++(s3)v±(s3)R
+(s3) (4.42)

We next consider the contribution of π+π−→π+π−rescattering, whose general expression is

(ImM++−)π+π− =
1

2

∫

d3p2d
3p3

4E2E3
δ4(p2 + p3 − q2 − q3)ReM+−

(

(q2 + q3)
2
)

×

×ReM++−((q2 + q3)
2, (q1 + p3)

2, (q1 + p2)
2) + (q1 ↔ q2) (4.43)

Above either of the π0π0 thresholds7 in s1 and s2, we can neglect the contributions of

the real parts of D1,2
++− to ReM++− that, as we will shortly see, are O(a

2
i ) and give a

O(a3i ) contribution to (4.43). Using the parametrization (4.7) and considering only S-wave

scattering leads to

(ImC++−)π+π− = (ImC
(1)
++−)π+π− + (ImC

(2)
++−)π+π− (4.44)

7We recall that we are considering the situation where mπ0 > mπ+ .
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with

(ImC
(1,2)
++−)π+π− = 2a+−(s1,2)v±(s1,2)R

+(〈s〉1,2) . (4.45)

Note that, although for simplicity of notations we use the same symbol adopted in eq. (4.17),

in the K+ → π+π+π−case the 〈s〉i variables are defined by

〈s〉i =
3s0+ − si
2

(4.46)

i.e. we must replace s00 with s
0
+ with respect to eq. (4.17). If we take into account also the

tiny P-wave contribution, the above result is modified as follows

(ImC
(1)
++−)π+π− = 2a+−(s1)v±(s1)R

+(〈s〉1) + a1v
3
±(s1)A

+g+
s1(s3 − s2)

16m4
π+

. (4.47)

At this point we could consider the (unphysical) case where s1 < 4m
2
π0 . Here using

eq. (4.39) we see that the real part ofM++− also receives a contribution from the imaginary

part of D
(1)
++− that, when injected in (4.43) produces a contribution to the real part of

D
(1)
++−. Another contribution to ReD

(1)
++− below the π

0π0 threshold arises from the ImD±
term in ReM+−, see eqs. (3.26) and (3.29). Both these contributions are O(a

2
i ) and lead

to

(ReD
(1)
++−)π+π− = −

4

π

∫

d3p2d
3p3

4E2E3
δ4(p2 + p3 − q2 − q3)×

×
(

R+((q1 + p2)
2)a2x(s1) +R0(s1)ax(s1)a±(s1)

)

(4.48)

= −2v±(s1)
[

R+(〈s〉1)a2x(s1) +R0(s1)ax(s1)a±(s1)
]

. (4.49)

Finally, we must take into account the effective 3π → 3π scattering due to reducible

diagrams of the type in figure 1c. As in the K+ → π+π0π0 case, these contributions are

of O(a2i ) and contribute only to the real part of the amplitude. The O(a
2
i ) corrections to

D
(1,2)
++− are

(ReD
(1)
++−)fig. 1c = −ax(s1)×

[

(ImA
(1)
00+)π0π+(〈s〉1) + (ImA

(2)
00+)π0π+(〈s〉1)

]

= −4ax(s1)a+0(〈s〉1)v+0(〈s〉1)R0 (〈〈s〉〉1) . (4.50)

While the remaining O(a2i ) corrections, that can be absorbed into a redefinition of the

ReC++−, are

(δReC++−)
π+π+

fig. 1c = −a++(s3)v±(s3)×
[

(ImC
(1)
++−)π+π−(〈s〉3) + (ImC

(2)
++−)π+π−(〈s〉3) +

+ v00(〈s〉3)(ImD
(1)
++−)π0π0(〈s〉3) +

+ v00(〈s〉3)(ImD
(2)
++−)π0π0(〈s〉3)

]

= −a++(s3)v±(s3)
[

2ax(〈s〉3)v00(〈s〉3)R0(〈s〉3) +

+ 4a+−(〈s〉3)v±(〈s〉3)R+(〈〈s〉〉3)
]

(4.51)
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and

(δReC++−)
π+π−

fig. 1c = −2a+−(s1)v±(s1)×
[

(ImC++−)π+π+(〈s〉1)+(ImC
(2)
++−)π+π−(〈s〉1) +

+ v00(〈s〉1)(ImD
(2)
++−)π+π−(〈s〉1)

]

+ (s1 ↔ s2)

= −2a+−(s1)v+−(s1)
[

2a+−(〈s〉1)v+−(〈s〉1)R+(〈s〉1) +
+ 2a+−(〈s〉1)v+−(〈s〉1)R+(〈〈s〉〉1) +
+ ax(〈s〉1)v00(〈s〉1)R0(〈s〉1)

]

+ (s1 ↔ s2) (4.52)

In summary, the relevant contributions to the K+ → π+π+π−amplitude (in addition

to ReC++−) are:

ImD
(1)
++− = ax(s1)R

0(s1) , (4.53)

ReD
(1)
++− = −2ax(s1)[v±(s1)R+(〈s〉1)ax(s1) + v±(s1)R

0(s1)a±(s1) +

+ 2v+0(〈s〉1)a+0(〈s〉1)R0 (〈〈s〉〉1)] (4.54)

ImC++− = a++(s3)v±(s3)R
+(s3) +

[

2a+−(s1)v±(s1)R
+(〈s〉1) +

+ a1v
3
±(s1)A

+g+
s1(s3 − s2)

16m4
π+

+ (s1 ↔ s2)

]

. (4.55)

4.4 The KL → 3π system

The two KL → 3π coupled channels form a system very similar to the one of the two

K+ → 3π decays. Similarly to the charged modes, we can decompose the two KL decay

amplitudes into regular terms and terms that are singular at the π+π−(π0π0) threshold:

M000 = A000 +
∑

i=1...3

B
(i)
000v±(si)

[

Θ(si − 4m2
π+) + iΘ(4m2

π+ − si)
]

, (4.56)

M+−0 = C+−0 +D++0v00(s3)
[

Θ(s3 − 4m2
π0) + iΘ(4m2

π3 − si)
]

. (4.57)

Concerning the leading amplitudes (ReA000 and ReC+−0) we shall adopt the following

phenomenological parametrization:

ReA000(s1, s2, s3) = R0
L(s1, s2, s3) = A0

L

[

1 + h̃0L
∑

i=1...3

(si − s00L)
2

3m4
π+

]

(4.58)

ReC+−0(s1, s2, s3) = R+
L (s3) = A+

L

[

1 +
g+L (s3 − s+0L)

2m2
π+

+
h̃+L (s3 − s+0L)

2

2m4
π+

]

(4.59)

where
∑

i=1...3

si =

{

3s00L = m2
K + 3m

2
π0 (KL → 3π0)

3s+0L = m2
K + 2m

2
π+ +mπ0 (KL → π+π−π0)

(4.60)

The values of the KL → π+π−π0 slopes fitted by PDG (that also includes a small term
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proportional to (s1− s2)
2) are g+L ≈ 0.678± 0.008 and h̃+L ≈ hPDG− (g+L /2)2 = 0.04± 0.01.

In the KL → 3π0 case the linear term is forbidden by Bose symmetry; the normalization

of the quadratic term has been chosen such that h̃0L ≈ hPDG ≈ −(5.0 ± 1.4)× 10−3.
Here the visible cusp due to the π+π− → π0π0 rescattering is expected in theKL → 3π0

spectrum. The phenomenon is completely analog to what happens in the charged modes;

however, the relative size of the cusp is smaller because of the inverted hierarchy in the

leading amplitudes: in the isospin limit A+
L/A

0
L = 1/3, to be compared with the analogous

ratio A+/A0 = 2 of the charged modes.

The calculation of the imaginary parts of the amplitudes (and the real part of the cusp

coefficient) proceeds exactly as in the charged modes. We report here only the results. In

the interesting case of the KL → 3π0 amplitude, the imaginary parts are

(ImB
(i)
000)π+π− = 2ax(si)R

+
L (si) , (4.61)

(ImA000)π0π0 =
∑

i=1...3

a00(si)v00(si)R
0
L(si, 〈s〉i, 〈s〉i) , (4.62)

with

〈s〉i =
3s00L − si

2
, (4.63)

while the O(a2i ) corrections to the (visible) cusp amplitude are

(ReB
(i)
000)fig. 1a = −2v00(si)ax(si)

[

ax(si)R
0
L(si, 〈s〉i, 〈s〉i) + a00(si)R

+(si)
]

, (4.64)

(ReB
(i)
000)fig. 1c = −8ax(si)a+0(〈s〉i)v+0(〈s〉i)R+(〈〈s〉〉i) . (4.65)

For the auxiliary mode, KL → π+π−π0, we find

(ImD+−0)π0π0 = ax(s3)R
0
L(s3, 〈s〉3, 〈s〉3) , (4.66)

(ImC+−0)π±π0 = 2a+0(s1)v+0(s1)R
+
L (〈s〉1 +∆1L) +

+a1v
3
+0(s1)A

+
Lg

+
L

s1(s3 − s2)

16m4
π+

+ (s1 ↔ s2) , (4.67)

with

∆iL =
(m2

π+ −m2
π0)(m

2
K −m2

π+)

4si
. (4.68)

4.5 Decay rates and extraction of the scattering lengths

The aim of this paper is eminently practical. Our goal is

• to establish a parametrization of K → 3π amplitudes suitable to fit the experimental

decay distributions at the 10−3 level;

• describe the cusp effect due to the π+π− → π0π0 rescattering with a theoretical error

of a few %.

Since the cusp effect on the rate is ∼ 10%, the two requests are compatible. In this section
we shall outline the basic strategy for the extraction of the combination of scattering lengths

ax, as defined in section 2.3, from a fit to the K
+ → π+π0π0 decay distribution.
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From eqs. (4.1)–(4.2) the differential decay rate for K+ → π+π0π0 is

|M00+|2 = (ReA00+ +ReB00+v±(s3))
2 + (ImA00+ + ImB00+v±(s3))

2 s3 > 4m
2
π+

|M00+|2 = (ReA00+ − ImB00+v±(s3))
2 + (ImA00+ +ReB00+v±(s3))

2 s3 < 4m
2
π+

Expanding the various terms up to O(a2i ), we can write

|M00+|2 = (ReA00+)
2 +∆A + v±(s3)∆cusp +O(a3i ) (4.69)

where

∆A = (ImA00+)
2 + v2±(s3)(ImB00+)

2 (4.70)

∆cusp =

{

−2ReA00+ ImB00+ s3 < 4m
2
π+

2ReA00+ ReB00+ + 2 ImA00+ ImB00+ s3 > 4m
2
π+

(4.71)

The explicit expressions for the various terms are given in eqs. (4.32)–(4.34). At the same

level of accuracy, the K+ → π+π+π−decay distribution in the physical region is

|M++−|2 = (ReC++−)
2 +∆C +O(a3i ) (4.72)

with the O(a2i ) correction given by

∆C =
[

ImC++− + v00(s1) ImD
(1)
++− + v00(s2) ImD

(2)
++−

]2
+

+2ReC++−

[

v00(s1)ReD
(1)
++− + v00(s2)ReD

(2)
++−

]

(4.73)

and the explicit expressions for the various terms reported in eqs. (4.53)–(4.55).

The cusp amplitude in eq. (4.71) contains both a leading O(ai) term responsible for

the negative square-root behavior of the rate below the threshold and an O(a2i ) term that

leads to a similar (smaller) behavior also above the threshold (see figure 5). Both these

effects are proportional to ax.

The precision with which the coupling ax can be extracted from data depends on the

accuracy of our parametrization of the amplitudes and, in particular, on the theoretical

expression for ∆cusp. Since we have neglected O(a3i ) terms, a priori we should expect

relative corrections of O(a2i ) to the value of ax. Given the expected value of the scattering

lengths and the effect of the O(a2i ) terms in figure 5, a natural estimate of this error is

about 5%. A posteriori checks about the size of this error can be obtained by studying

the stability of the central value of ax obtained by means of different fitting procedures.

In particular, it would be interesting to compare the results obtained under the following

assumptions:

1. All the ai are treated as free parameters.

2. All the ai but ax are fixed to their standard values and only ax is treated as a free

parameter.

3. The fit is extended up to the border of the Dalitz Plot with the inclusion of the

δReA00+ term in (4.36).
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Figure 5: Illustration of the cusp effects in K+ → π+π0π0. Upper plot: differential decay dis-

tribution (in arbitrary units, as a function of the π0π0 invariant mass) with and without the cusp

amplitude. Lower plot: relative size of the cusp amplitude with respect to the regular term. All

plots have been obtained using the values of the scattering lengths and their effective ranges from

reference [4] (see section 2.3).

4. The expressions of R+,0(s) are modified with the inclusion of cubic terms in (s3− s0)

and/or quadratic terms in (s1 − s2).

5. One of the two ∆A,C terms (or both) is ignored [in this way the regular amplitudes

are re-defined by corrections of O(a2i ); this, in turn, implies an O(a2i ) effect on the

extraction of ax, of the same order of the terms which have not been computed].

Finally, it would certainly be quite useful to compare the value of ax extracted from K+ →
3π decays vs. the value extracted in a similar way from KL → 3π decays.

5. Conclusions

We have outlined a method that allows to systematically evaluate rescattering effects in

K → 3π decays by means of an expansion in powers of the ππ scattering lengths. This

approach is less ambitious than the ordinary loop expansion performed in effective field

theories, such as CHPT: the scope is not a dynamical calculation of the entire decay

amplitudes, but a systematical evaluation of the singular terms due to rescattering effects

only. In particular, our main goal has been a systematical description of the cusp effect

in K+ → π+π0π0 [1] in terms of the ππ scattering lengths. From this point of view, the

approach we have proposed is more efficient and substantially simpler than the ordinary

perturbative expansion of CHPT.

Using this method we have explicitly computed all the O(a2i ) corrections to the leading

cusp effect in K+ → π+π0π0, extending the results of reference [1]. As shown in figure 5,

these extra terms produce a small square-root behavior also above the π+π−singularity.
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The present work allows to reduce the theoretical error on the extraction of a0 − a2
from an experimental analysis of the K+ → π+π0π0 spectrum to about 5%. A similar level

of theoretical accuracy is also achieved in the case of the KL → 3π0 spectrum. This level

of precision is probably not sufficient to fully exploit the potentially very accurate data of

NA48, and is also quite above the error on the predictions of a0 − a2 in reference [4]. To

reach this level of precision, a complete evaluation of the O(a3i ) corrections and — at the

same time — of the effects due to radiative corrections is needed.
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