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The extremely high rate of events that will be produced in the future Large Hadron Collider requires the

triggering mechanism to take precise decisions in a few nano-seconds. We present a study which used an artificial

neural network triggering algorithm and compared it to the performance of a dedicated electronic muon triggering

system. Relatively simple architecture was used to solve a complicated inverse problem. A comparison with a

realistic example of the ATLAS first level trigger simulation was in favour of the neural network. A similar archi-

tecture trained after the simulation of the electronics first trigger stage showed a further background rejection.

1. INTRODUCTION

The Large Hadron Collider (LHC) is currently
being built at the European Organization for
Nuclear Physics (CERN), Geneva. It will col-
lide beams of protons at center of mass ener-
gies of 14 TeV with a bunch crossing rate of
40 MHz. The design luminosity of the accel-
erator is 1034cm−2s−1. At this luminosity an
average of 23 proton proton interactions will be
produced at each of the bunch crossing. A se-
lective fast triggering mechanism is required in
order to efficiently select the relevant data and
eliminate the large amount of background arising
in these conditions. The challenge faced at the
LHC is to reduce the event rate from an interac-
tion rate of about 1 GHz by about seven orders
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of magnitude to an event rate of O(100) Hz. A
three layer trigger system was designed for the
ATLAS detector[1,2] in order to reach this goal.
The designed trigger system relies on the concept
of searching for physics objects. The selection
criteria is mostly based on a single and di-object
high PT trigger, where high PT refers to objects
such as charged leptons or jets with large trans-
verse momenta (typically above O(10) GeV/C).
These objects are crudely reconstructed at the
first level of the trigger (LVL1), where the next
stages refine the reconstruction, reject fake se-
lected objects and improve the selection and re-
construction precision. We present an artificial
neural network (ANN) algorithm which is used to
trigger events and is based on the reconstruction
of the PT of muons reaching the ATLAS endcap.
We compare the ANN performance to the simu-
lated ATLAS LVL1 endcap muon trigger system.
A similar ANN is trained on events that pass the
LVL1 simulation and we show that without addi-
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tional information the ANN can further improve
the selection by rejecting fake objects with mini-
mal effect on the acceptance.

2. THE TRIGGER SYSTEM

The ATLAS experiment LVL1 trigger[1] makes
an initial selection based on reduced granularity
data from a subset of detectors. It uses calorime-
try and muon detectors information separately.
High PT muons are identified using dedicated
fast trigger chambers: Resistive Plate Chambers
(RPC) in the barrel region and Thin Gap Cham-
bers (TGC)[3] in the endcap region (1.05 < η <
2.7). The TGCs are trapezoid shapeed units with
area of 1−10 m2 arranged in the two ATLAS end-
caps in four disks at distances of 7, 13, 14.5 and
15 meters from the interaction point (IP) (see fig-
ure 1). The two furthermost disks ’M3’ and ’M2’
are made of “doublet units” which contain two
anode wire layers laid in the azimuthal direction
which provide the r coordinate and two orthog-
onal cathode strips which measure the φ coor-
dinate. The third disk ’M1’ consists of “triplet
units” which also have two layers of strips but
three layers of wires. The trigger decision is based
on the small deflection of high PT muons. Dedi-
cated electronic boards calculate the deviation of
the muon hits from a straight line drawn between
the IP and the hits in the ’M3’ station. Low PT

trigger is derived between the last two disks ’M3’
and ’M2’. For High PT muon the triggers adds
the hits information from layer ’M1’. As a re-
sult of the steeply-falling muon-PT spectrum, the
measured rate of muons above a given PT thresh-
old depends strongly on the reconstruction reso-
lution.

The material through which a muon passes on
its way to the TGCs makes this task more diffi-
cult. The material in front of the trigger cham-
bers is that of the the magnetic toroids, the in-
ner detector and the hadronic and electromag-
netic calorimeters. The total material between
the IP and TGCs varies between 10 to 15 absorp-
tion lengths with somewhat more material in the
region of |η| ∼ 1.5. The ATLAS magnet system[4]
consists of three air-core superconducting toroids.
The magnetic field provides typical power of three

2000

4000

6000

8000

10000

12000

6000 8000 10000 12000 14000 16000

I

M1

M2  M3

S
L

=2.70

=1.05

=2.40

=1.92

Z (mm)

R
 (m

m
)

low PT

hi PT

pivot plane

end-cap

forward

S L

DL-LL01V01

Figure 1. Longitudinal view of the TGC system.
Low PT trigger is derived from hits in ’M2’ and
’M3’ doublet layers, where high PT adds hits in
’M1’ triplet layer.

Tm in the barrel and six Tm in the endcap re-
gion. Owing to the finite number of coils the field
configuration is not perfectly toroidal. This in-
homogeneity which is enhanced in the transition
region between the barrel and the endcap, signifi-
cantly impacts upon the resolution of momentum
measurements.

3. THE NEURAL NETWORK

We present a selection mechanism which uses
an ANN trained to read the hits in the TGCs and
reconstruct the transverse momentum of muons.
The general structure of the ANN was described
elsewhere[5]. The network was trained with sim-
ulated events generated with the DICE[6] simula-
tion program. The network is a back-propagation
feed-forward ANN with two hidden layers, each
of which has ten ’tansig’ (hyperbolic tangent sig-
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moid transfer function) neurons. One endcap
octant in the range of 1.05 < η < 2.4 and
0.39 < φ < 1.18 was divided into 16 regions. A
different network was trained separately in each of
these regions. The four input parameters of the
network were the muon tracks intercept points
and the slopes of a linear fit to the hit positions
in xz and yz planes. The output layer has one
’purelin’ (linear transfer function) neuron, set as
a PT threshold cut. The simulated sample con-
tained 50,000 events where 1/3 of them were used
in a 1,000 epochs training stage.

The simplicity of the ANN structure enabled
a fast hardware realization. This was directly
demonstrated by the Pierre et Marie Curie Uni-
versity group[8] which created and tested a hard-
ware dedicated machinery that successfully im-
plemented this ANN structure.

The performance of our network was compared
to the results of ATRIG[7], a program which sim-
ulates the LVL1 electronics, algorithms and deci-
sion menus. The comparison was done separately
in each of the octant 16 regions. With a similar ef-
ficiency in all the regions the ANN selected fewer
fake events than the LVL1 simulation. Figure 2
shows a performance summary of all 16 regions.
Here it is clearly shown that the ANN, which
was tuned to select PT > 5 GeV/C events, has a
sharper rise around the tuned transverse momen-
tum. Namely it selects the signal with slightly
higher efficiency than the LVL1 simulation. Fur-
thermore, its background rejection is better.

A similar study was conducted training and
testing the ANN only on events that passed the
LVL1 muon simulation. The ANN was trained
to select muons with PT > 5 GeV/C. As ex-
pected from the first study there was only negligi-
ble effect on the selection efficiency of LVL1 sim-
ulation, however the ANN further rejected fake
events which were selected by the LVL1 algo-
rithm. The results of this study are shown in
figure 3 for all 16 regions of the tested octant.
In all 16 regions the ANN rejects almost all the
fake events with PT ∼ 4 GeV/C, about 50% of
the events with PT ∼ 5 GeV/C and has negligi-
ble imapct on events above the required selection
threshold.

Figure 4 shows a comparison between the pu-

Figure 2. A comparison between the simulated
electronics selection and the ANN. The y axis is
the selection efficiency where the x axis is the
muon’s PT . The red line is the electronic simula-
tion selection where the blue line is the ANN.

rity (the ratio between correctly selected events
and events with transverse momentum above the
required threshold) of the ANN and the LVL1
simulation as a function of the pseudo-rapidity
angle, η. One can see that both the LVL1 algo-
rithm and the ANN are less sensitive in the region
between 1.25 < η < 1.4 where they are affected
by the larger quantity of absorbing material be-
fore the TGCs and mainly by the inhomogeneous
magnetic field in that area. Nevertheless there are
certain regions mainly between 1.5 < η < 1.85 in
which the purity of the LVL1 simulation drops
close to 85%, in comparison to the purity of the
network which is mostely stable above 90%.

Another attempt was to use the ANN in order
to tune the existing electronics coincidence ma-
trix algorithm to behave similarly to the ANN se-
lection. It starts with a normal ANN of the slopes
and origins of events in the xz and yz planes.
From this data we create virtual hits in two ad-
jacent planes. These are hits a real event might
have produced. We take the new points on the
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Figure 3. The rate of events selected by the ANN
applied after LVL1 selection in the 16 regions.
The y axis is the efficiency rate, the x axis is
the muon’s PT . The blue regions are the selected
events with PT > 6 GeV/C, where the yellow
ones are the rate of fake events selected by the
ANN with respect to LVL1 fake events.

first plane and shift them in x and y to the left
and right (or up/down). For each shift we cre-
ate a new origin/slope in the xz and yz planes.
These new virtual trajectories are fed into the
ANN and the performance of the ANN is plotted
with respect to the shift, thus creating a coinci-
dence matrix.

4. SUMMARY

A relatively simple feed-forward architecture
was used to solve a complicated inverse problem
of triggering based on the transverse momentum
reconstruction. The simplicity of the network en-
ables very fast hardware realization. A similar
ANN can be used very efficiently in a classifica-
tion problem necessary for triggering purposes. A
comparison with a realistic example of first level
trigger simulation is in favor of the ANN. A sim-
ilar architecture trained after simulation of the
ATLAS LVL1 electronics trigger showed further
background rejection.

Figure 4. The purity of LVL1 simulation (red
points) and the ANN (blue points) as a function
of η
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