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Abstract
We describe a calculation of the fully differential cross section for Higgs boson production in

the gluon fusion channel through next-to-next-to-leading order (NNLO) in perturbative QCD. The

decay of the Higgs boson into two photons is included. Technical aspects of the computation are

discussed in detail. The implementation of the calculation into a numerical code, called FEHiP,

is described. The NNLO K-factors for completely realistic photon acceptances and isolation cuts,

including those employed by the ATLAS and CMS collaborations, are computed. We study various

distributions of the photons from Higgs decay through NNLO.
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I. INTRODUCTION

Perturbative calculations in quantum field theory have been performed since the birth
of QED in the 1930s. Enormous progress has been made since this early era, and the tools
used to obtain these results have improved dramatically. Much of this progress has been
spurred by the constantly increasing demands of the high energy experimental program.
Future experiments such as the LHC and the Next Linear Collider are now demanding
perturbative calculations to next-to-next-to-leading order (NNLO) in the relevant coupling
constants. These results must also be directly applicable to experimental measurements,
which requires calculational algorithms flexible enough to allow arbitrary constraints on the
final state of reactions.

For a long time, virtual corrections hindered the progress of perturbative calculations.
With the advent of computer algebra and the realization that loop integrals satisfy simple
identities that follow from their generalized hypergeometric nature [1], virtual corrections
for processes with a small number of kinematic invariants became relatively straightforward
[2, 3, 4, 5]. However, physical results require the inclusion of real emission corrections, in
which additional massless partons are emitted into the final state. It was recognized early in
the history of perturbative calculations, first in QED and then in QCD, that such emissions
lead to infrared and collinear singularities when the initial or final state configurations
become degenerate. The Bloch-Nordsieck and Kinoshita-Lee-Nauenberg theorems [6, 7, 8]
show that both virtual corrections and real emissions must be included to obtain a physically
meaningful result, because divergences only cancel when these components are combined.
The methods cited above rely upon special features of loop integrals. They can be used to
obtain virtual corrections, or inclusive cross sections related to virtual corrections through
the optical theorem, such as the total hadroproduction cross section in e+e− collisions.
Recently, these methods have also been extended to phase-space integrals for total cross
sections and simple kinematic distributions [9, 10, 11, 12, 13, 14, 15]. However, observables
where the phase space is non-trivially constrained cannot be obtained using these techniques.
Unfortunately, these are exactly the quantities required by experiment; because of final-state
cuts, inclusive results are of limited use.

Virtual corrections possess a simple mathematical structure, and the extraction of their
singularities proceeds in an observable-independent fashion. With real corrections, different
kinematic cuts are imposed on the final state for different observables. Since we would like to
perform calculations valid for arbitrary cuts, the extraction of singularities from real emission
corrections should be performed in the presence of an unspecified “measurement function”.
The factorization of soft and collinear emissions renders such an extraction possible. The
resulting cancellation of singularities requires that the measurement function allows only
“infrared safe” observables that can be computed in perturbation theory [16].

An efficient algorithm for extracting singularities at NLO in perturbative QCD was con-
structed in [17, 18], advancing earlier work on the subject [19]. This “dipole-subtraction”
algorithm identifies universal soft and collinear counterterms, called dipoles, that can be
subtracted from the real emission contribution to an arbitrary process to make it finite.
The dipoles can then be analytically integrated over the restricted phase space, since the
measurement function for infrared safe observables collapses to a measurement function of
lower multiplicity in the soft and collinear limits. After integration, the dipoles cancel the
infrared divergences in the virtual corrections, leading to a finite result.

For processes where the perturbative corrections are large, or control of the theoretical
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error is crucial, perturbative calculations must be extended to NNLO. Either an extension
of the dipole formalism to NNLO or the development of an alternative approach is needed
to enable these computations. Significant effort has been devoted to a generalization of the
dipole subtraction method [20, 21, 22, 23, 24, 25, 26, 27, 28]. This extension has remained
elusive. Although the infrared behavior of loop amplitudes [29, 30] and the infrared limits of
real emission corrections are universal at NNLO [31], it becomes much more difficult to dis-
entangle the singularities of two unresolved emissions, and to construct process-independent
counterterms.

We have recently developed an alternative approach to the problem of real radiation
at NNLO [32]. Our method differs conceptually from the dipole subtraction approach in
two important ways: the finding of singular phase-space regions is completely automated;
the cancellation of the 1/ǫ poles which describe divergences in dimensional regularization is
performed numerically, and no analytic integrations are required. These features guarantee
that it can be used to extract and cancel singularities at any order in perturbation theory, at
least in principle. The primary complication that occurs at higher orders is the presence of
overlapping singularities. These can be disentangled using sector decomposition [33, 34, 35].
Existing symbolic manipulation programs, such as MAPLE or MATHEMATICA, provide
a suitable framework in which to program the algorithm. The extraction and cancella-
tion of singularities is thus achieved in a completely automated fashion, with little human
intervention.

We have used this approach to perform two fully differential calculations through NNLO
in QCD: the O(α2

s) correction to e+e− → 2 jets [32, 36], and the Higgs boson hadroproduc-
tion cross section through gluon fusion [37]. Both calculations permit arbitrary cuts on the
final states and can easily be extended to include decays of the final state particles. These
successful applications demonstrate the vitality of our approach and its potential relevance
for other problems of phenomenological importance; we therefore believe it is important to
describe it in a simple, pedagogical fashion. We attempt to do so in this manuscript. Our
discussion will be centered around the calculation of the Higgs hadroproduction cross section
completed recently [37]. We will extend this result to include the decay of the Higgs through
the channel H → γγ. We therefore pursue two goals in this paper: a thorough discussion
of the analytic aspects of our calculation and its implementation into a numerical code, and
a presentation of phenomenological results for pp → H + X → γγ + X through NNLO in
QCD.

This paper is organized as follows. In the next Section we describe phenomenological
issues relevant for Higgs boson hadroproduction. In Section III we introduce our notation,
and describe the basic setup of our calculation. In Section IV we discuss Higgs production
in association with up to one parton. Section V is devoted to the calculation of the collinear
counterterms. The phase-space parameterization is a crucial element of our approach; we
describe details regarding the choice of parameterizations for Higgs hadroproduction in Sec-
tion VI. We discuss how to handle the various forms of singularities which appear in NNLO
computations in the following Section. In Section VIII we discuss how the matrix ele-
ments that appear in the double real emission contribution for Higgs hadroproduction are
treated in our calculation. We then present phenomenological results for pp → H + X and
pp → H + X → γγ + X through NNLO in perturbative QCD. We next describe the imple-
mentation of our results into the numerical code FEHiP. We conclude with a discussion of
the advantages and disadvantages of our approach, and identify directions for future work.
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II. HIGGS BOSON PRODUCTION AT HADRON COLLIDERS

We describe here the aspects of Higgs phenomenology at the LHC needed for our calcu-
lation. There are several mechanisms for Higgs production at hadron colliders (see [38] for
a review). For most Higgs masses, gluon fusion through a top quark loop, gg → H , is the
dominant production mechanism. For Higgs masses in the range preferred by the global fit
to the precision electroweak data [39], mh ≈ 110 − 130 GeV, the gluon fusion cross section
is approximately 60 pb. The Higgs branching fraction into two photons is larger than 10−3

in this mass range [40, 41]. The search strategy [42] for the Higgs signal is then to look for
events with two isolated photons and reconstruct the mass of the Higgs boson by studying
their invariant mass distribution. The photons are required to have transverse momenta

p
(1)
⊥

≥ 40 GeV and p
(2)
⊥

≥ 25 GeV; they must also be produced in the central rapidity region
|η| < 2.5 [42]. The major irreducible background to two photon events is direct (prompt)
di-photon production in hadronic collisions [43]; a 1% photon energy resolution is needed
to distinguish the H → γγ signal over the background. Typically, an isolation cut is also
imposed upon the photons; this suppresses photons from the decays of large p⊥ hadrons,
such as π0 → γγ, and from the poorly known fragmentation production of prompt photons.
Several possible isolation cuts have been proposed [42, 44, 45, 46]. The simplest possibility
is to require that a photon candidate does not have additional transverse energy ET,min de-

posited within the region Ris =
√

(η − ηγ)2 + (φ − φγ)2 in the (η, φ) plane. Typical values

used in previous studies are ET,min = 4 − 15 GeV and Ris = 0.4.
The Higgs production cross section receives large perturbative corrections and depends

strongly on the renormalization and factorization scales. For example, for mh = 100 −
130 GeV, the cross section for pp → H + X at

√
s = 14 TeV increases by a factor 1.5 − 1.7

when the NLO QCD corrections are included [47, 48]. The residual scale dependence at NLO
is approximately thirty percent. This peculiar behavior of the perturbative series motivated
several NNLO calculations of the inclusive Higgs production cross section [9, 49, 50, 51, 52].
These studies found no breakdown of the perturbative expansion; while the NNLO effects
are sizable, they are smaller than the NLO ones. The NNLO cross section is also much more
stable against variations of the renormalization and the factorization scales. These results
were confirmed [53] in the framework of threshold resummation, which exploits the fact that
because of the large value of the gluon density at small Bjorken x, the Higgs production cross
section at the LHC is dominated by the partonic threshold, i.e., the z → 1 region, where
z = m2

h/spart. The terms that are singular in this limit can be systematically resummed
to all orders in αs, and the results compared to the complete NNLO calculation. The two
approaches agree well, indicating that the uncalculated higher order effects are likely to be
within the uncertainty assigned to the NNLO result.

Much is also known about less inclusive quantities for Higgs boson production. The NLO
p⊥ and rapidity distributions for Higgs boson production at high p⊥ are computed in [54]. In
addition, the rapidity distribution of the Higgs boson has been computed through NLO [11,
46]. The p⊥ distribution of the Higgs boson has been investigated using various resummation
formalisms by different groups [55, 56, 57, 58]. Monte Carlo event generators accurate
through NLO for the Higgs + jet process have been published [59, 60]. Higgs production
is also included in existing shower Monte Carlo event generators, such as PYTHIA and
HERWIG, and in the MC@NLO event generator that correctly combines single hard gluon
emissions with the HERWIG parton shower [61]. The di-photon invariant mass distribution
in pp collisions, including both the signal pp → H + X → γγ + X and the prompt photon
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background pp → γγ, can be found in [45, 46, 62]. Ref. [45] presents the partonic level event
generator DIPHOX, where both direct and fragmentation components of the prompt photon
production are computed through NLO in perturbative QCD. In [46], the QCD corrections
to the gg → γγ channel of diphoton production are computed; combined with DIPHOX, this
presents the most up-to-date analysis of the two photon background to Higgs production
and enables a careful analysis of the signal-to-background ratio as a function of the isolation
cuts. In [62], the interference between the signal and background is shown to be negligible.

Clearly, a substantial amount is known about Higgs hadroproduction; unfortunately, only
the inclusive cross section is known through NNLO. Since the NNLO corrections are large,
it is desirable to also know differential quantities to this order. This is necessary to compute
the K-factor, KNNLO = σNNLO/σLO, that corresponds to realistic experimental acceptances
with cuts on the photons and jets in the final state. Although the kinematics of the H → γγ
decay is not altered by higher order QCD effects1, the QCD corrections to the production
process change the kinematics of the produced Higgs boson and lead to modifications in the
kinematics of the produced photons. In order to compute the relevant acceptance through
NNLO, the Higgs boson production cross section must be known at the differential level.
We begin our description of this calculation in the following Section.

III. NOTATION AND SETUP

We study the production of a Higgs boson with momentum ph in the collision of two
hadrons, h1, h2, carrying momenta P1, P2:

h1(P1) + h2(P2) → H(ph) + X. (1)

Within the framework of QCD factorization, the cross section for this process can be written
as an integral over hard scattering cross sections σij for the production of the Higgs boson
from the quarks and gluons, multiplied by parton densities describing the distribution of
these partons inside the colliding hadrons:

σ =
∑

ij

∫ 1

0
dx1dx2f

(h1)
i (x1)f

(h2)
j (x2)σij→H+X(x1, x2). (2)

The sum is over the parton flavors i, j in the hadrons h1, h2, and f
(h1)
i , f

(h2)
j are the cor-

responding parton densities. The initial-state partons i, j for the hard scattering partonic
process carry momenta p1 = x1P1 and p2 = x2P2. The partonic cross sections for the pro-
cesses i + j → H + X, can be calculated perturbatively; here, we compute them through
O(α4

s) in the strong coupling expansion:

σij→H+X = α2
s

[

σ
(0)
ij +

αs

π
σ

(1)
ij +

(

αs

π

)2

σ
(2)
ij

]

+ O(α5
s). (3)

The partonic cross sections σij contain divergences arising from intial-state collinear ra-
diation; these are removed by recasting the parton-densities in the MS-factorization scheme.

1 Note that this statement is violated by the decay of the Higgs boson into two gluons and two photons,

H → ggγγ.
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The hadronic cross section of Eq. 2 is computed in terms of finite parton densities f̃ and
finite partonic cross sections σ̂,

σ =
∑

ij

∫ 1

0
dx1dx2f̃

(h1)
i (x1)f̃

(h2)
j (x2)σ̂ij→H+X(x1, x2). (4)

The finite and “bare” parton densities are related via

f̃
(h)
i =

∑

j

f
(h)
j ⊗ Γij , (5)

where we have introduced the convolution integral

(f ⊗ g)(x) =
∫ 1

0
dydzf(y)g(z)δ(x− yz). (6)

The functions Γij are given in the MS scheme by

Γij(x) = δijδ(1 − x) − αs

π

P
(0)
ij

ǫ

+
(

αs

π

)2
{

1

2ǫ2

[

∑

k

(

P
(0)
ik ⊗ P

(0)
kj

)

(x) + β0P
(0)
ij

]

− 1

2ǫ
P

(1)
ij (x)

}

+ O
(

α3
s

)

(7)

where the Altarelli-Parisi kernels P
(n)
ij can be found in [63, 64]. We note that the complete

NNLO corrections to these kernels have recently been computed [65]. ǫ = (4 − d)/2 is
the usual dimensional regularization parameter; all calculations in this paper are performed
using this regularization scheme. Substituting Eq. (6) into Eq. (4) and comparing with
Eq. (2) we find

σij =
∑

kl

∫ 1

0
dy1dy2Γik(y1)Γjl(y2)σ̂kl(x1y1, x2y2). (8)

We compute the finite partonic cross sections σ̂ij by expanding

σ̂ij = α2
s

[

σ̂
(0)
ij +

αs

π
σ̂

(1)
ij +

(

αs

π

)2

σ̂
(2)
ij

]

+ O(α5
s), (9)

and solving Eq. (8) in terms of the coefficients σ̂
(n)
ij order-by-order in the strong coupling

expansion. In this procedure, we need to consider the convolution integrals of the partonic
cross sections with the Altarelli-Parisi kernels at each order in the perturbative expansion;
this will be discussed in detail in a later Section.

We now discuss the Lagrangian which describes Higgs boson production. As mentioned
in the previous Section, we consider the gluon fusion mechanism for Higgs production.
The Higgs coupling to two gluons is induced by a top quark loop [40]; if there are other
heavy quark doublets that acquire mass from the Higgs mechanism, they might also give a
substantial contribution to the effective Hgg coupling. We focus here on a light Standard
Model Higgs boson whose mass is smaller than twice the mass of the top quark: mh ≤
2mt ≈ 350 GeV. The interaction of the Higgs boson with two gluons can then be described
by a point-like vertex [40]; this is formalized by introducing the effective Lagrangian

L =
1

4v
C1Z1G

a
µνG

aµνH, (10)
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where Ga
µν is the gluon field strength tensor, H is the Higgs field, and v ≃ 246 GeV is the

Higgs boson vacuum expectation value. The Wilson coefficient C1 and the renormalization
factor Z1, defined in the MS scheme, are [66]

C1 = − 1

3π

{

1 +
11

4

αs

π
+
(

αs

π

)2 [2777

288
+

19

16
Lt + nf

(

−67

96
+

1

3
Lt

)]

+ O
(

α3
s

)

}

,

Z1 = 1 − αs

π

β0

ǫ
+
(

αs

π

)2
[

β2
0

ǫ2
− β1

ǫ

]

+ O
(

α3
s

)

, (11)

where αs = αs(µ) is the QCD MS coupling constant, defined in the theory with nf = 5
flavors, and

Lt = log

(

µ2

m2
top

)

, β0 =
11

4
− nf

6
, β1 =

51

8
− 19

24
nf . (12)

The Feynman rules for the ggH vertex follow from the effective Lagrangian in Eq.(10). The
Higgs boson couplings to light fermions are neglected. The leading order partonic process
is then gg → H ; at higher orders in perturbation theory, other partonic processes also
contribute.

At the LHC, the energy of hadronic collisions is much larger than the Higgs mass; it is
therefore not obvious that the approximation of a point-like Higgs coupling to two gluons
is sufficiently accurate. However, Higgs bosons with masses mh ∼ 100 GeV are predomi-
nantly produced close to the threshold of the partonic collision, with an average transverse
momentum of tens of GeV. The kinematic invariants in the partonic gg → H + X pro-
cess never become large enough to resolve the top quark loop, unless the large p⊥ region is
specifically probed. Since the contribution from this region is negligibly small, the point-like
approximation is valid.

We now discuss what partonic contributions are required to compute the differential cross
section for Higgs hadroproduction at NNLO. At the partonic level, the leading order process
is gg → H . At NLO, three other partonic processes appear: gg → Hg, qg → Hq and
qq̄ → Hg. At NNLO, we must compute: i) two-loop virtual corrections to gg → H ; ii) one-
loop virtual corrections to gg → Hg, qg → Hq and qq̄ → Hg; iii) inelastic processes with
two partons in the final state: gg → Hgg, gg → Hqq̄, qg → Hqg, qq̄ → Hgg, qq̄ → Hqq̄,
and qiqj → Hqiqj . Each of these contributions has the generic form

σ =
∫

dΠl |Mij→H+lpartons|FJ(x1, x2, p1, p2, {ql}), (13)

where dΠl denotes the integration over the Higgs phase-space and the phase-space of l
additional partons in the final space, Mij includes both the matrix elements and any required
loop integrations, and FJ describes the observable under consideration.

The loop integrations are universal for all observables, and can be performed with well
established methods. We use integration-by-parts identities and recurrence relations [1] to
calculate the virtual corrections to both the LO and NLO processes. The recurrence relations
are solved using the algorithm described in [5] and implemented in [68]. The resulting
master integrals are then evaluated directly. This is straightforward for the two-loop virtual
corrections, since the l = 0 phase-space integration just gives δ(m2

h − (p1 + p2)
2); for the

virtual corrections to the NLO processes, the resulting master integrals have to be integrated
over the l = 1 particle phase space. This can produce additional singularities. Care must
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be taken to assure that all singularities are extracted properly. However, because the two-
particle phase-space is simple, the extraction of singularities is easy and proceeds along
the lines discussed in [13]. Hence, dealing with either two- or one-loop virtual corrections
to Higgs hadroproduction is straightforward; we will discuss these briefly in the following
Section.

The situation is drastically different for the double real emission channels. As discussed
in the Introduction, efficient extraction of infrared and collinear singularities from this com-
ponent is still an open issue. It is known how to compute analytically the phase-integrals for
the total cross section [9, 51, 52], where we must set FJ = 1. It is also possible to compute
analytically simple kinematic distributions where the measurement function takes a simple
form. For example, to compute the rapidity Y distribution of the Higgs boson in the frame
of the two hadrons we must insert

FJ = δ

(

Y − 1

2
log

[

p0
h + pz

h

p0
h − pz

h

])

= δ

(

Y − 1

2
log

[

x1p2 · ph

x2p1 · ph

])

, (14)

where the z-axis is the beam axis. Phase-space integrations of this type, where the mea-
surement function can be written as a delta-function constraining a covariant quantity, can
be mapped to loop integrals and solved using the techniques discussed in the previous para-
graph [12, 13]. The rapidity distribution has been computed analytically for electroweak
gauge boson production at hadron colliders [12, 13]; these computations require similar
phase-space integrations as for Higgs boson production. However, the measurement func-
tion FJ can take very complicated forms, which are unsuitable for an analytic evaluation of
the cross section, if additional components of the Higgs boson momentum or the final-state
partonic momenta are probed, a jet finding algorithm is applied, or the decay of the Higgs
boson with all relevant experimental cuts is included.

The difficulties related to the evaluation of the double real emission components can be
summarized as follows. Naively, Eq.(13) is finite for these contributions, and the limit ǫ → 0
can be taken. However, this is only true for non-exceptional momentum configurations. If
the momenta of some particles become soft, qi → 0, or collinear, qi · qj → 0, qi,j 6= 0,
the matrix element diverges and can not be integrated in four dimensions. Computing the
contribution of the real emission graphs to the total cross section amounts to integrating
Eq.(13) over the entire phase space (Fj → 1), so that the soft and collinear regions are
included. However, for the differential cross section such an integration is not allowed, since
we want to keep the kinematics of the final state intact. The challenge is then to extract
the singularities from Eq.(13) in a way that correctly accommodates both singular and non-
singular limits, and does not require any integrations to be performed. This can be done
using the approach suggested in [32], which we explain in detail in this paper. We sketch
here its outcome. Using this method, we are able to rewrite dσreal in the following form:

dσreal =
0
∑

i=4

Ai[{ql}, Fj]

ǫi
, (15)

where Ai are functions non-singular everywhere in the phase space. No specific information
about the measurement function FJ is used in this derivation. The functions Ai contain no
residual ǫ-dependence, and can therefore be computed numerically in four dimensions. The
expression for the double real emission component of Eq.(15) is then combined with similar
expressions for the virtual corrections, and the singularities in ǫ are canceled numerically.
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⊗ ⊗ ⊗

FIG. 1: Examples of diagrams that contribute to the g + g → H cross section

After the cancellation of singularities is established, we can drop the singular terms from the
expression for the cross section and implement the finite part into a numerical code. This
is the basic strategy which we discuss in detail in the remainder of this paper.

IV. PRODUCTION OF THE HIGGS BOSON IN ASSOCIATION WITH UP TO

ONE PARTON

We start with the partonic cross sections for producing the Higgs boson and no partons
in the final state:

g(p1) + g(p2) → H(ph). (16)

The 2 → 1 phase-space is simple, because of momentum conservation. We derive

∫

dΠ0 =
∫

ddphδ
d(ph − p1 − p2)δ(p

2
h − m2

h) = δ(m2
h − s), (17)

where s = (p1 + p2)
2 is the partonic center of mass energy squared.

The most complicated part in computing the partonic channel σgg→H is the evaluation
of the virtual corrections through two-loops (see Fig. 1). Fortunately, these corrections are
known from the analytic calculation of the inclusive Higgs boson production cross section
through NNLO [9, 51, 52, 67], and we use these results in this paper.

We next study the cross sections for partonic processes with the Higgs boson and a quark
or a gluon in the final state: gg → Hg, qg → Hq, and qq̄ → Hg. For these processes,
we must compute the corresponding tree-level and one-loop amplitudes. We consider the
process g(p1)+ g(p2) → H(ph)+ g(p3) as an example. Typical diagrams are shown in Fig 2.

Consider a contribution arising from the interference of two tree-level diagrams to the
differential cross section. It can be written as:

N (s13, s23, FJ)

s13s23
, (18)

where sij = (pi − pj)
2 and FJ is the measurement function which defines the observable we

want to compute. The only information we need about the numerator in Eq.(18) is that
it is a finite function in the limits s13 → 0 and s23 → 0. The structure of the infrared
and collinear singularities is fully determined by the denominator of Eq.(18). We use this
observation to derive an expansion in ǫ for this denominator in terms of delta functions
and plus distributions. Having done that, we treat arbitrary numerators using a numerical
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FIG. 2: Examples of diagrams that contribute to the production of the Higgs boson in association

with one parton.

subroutine for FJ , and defining procedures to compute the action of delta functions and plus
distributions on integrable functions.

Therefore, the basic integral we have to consider is

Igg→Hg =
∫

ddphd
dp3δ

+
(

p2
h − m2

h

)

δ+
(

p2
3

)

δd (p1 + p2 − ph − p3)
FJ(s13, s23)

s13s23

. (19)

This integral is potentially singular for s13, s23 = 0. To extract the singularities, we pa-
rameterize the phase-space in terms of variables that range from 0 to 1 in such a way that
the singularities are mapped to the boundaries of the integration region. A convenient
parameterization is in terms of the variables λ1, λ2, where

s13 = −m2
h

λ1

1 + λ1

λ1 + λ2
(1 − λ1) , s23 = −m2

h

λ2

1 + λ2

λ1 + λ2
(1 − λ2) . (20)

In this parameterization the integral in Eq.(19) becomes

Igg→Hg =
Ωd−2

2s

∫ 1

0
dλ1dλ2δ

(

λ1λ2 −
m2

h

s

)

(1 − λ1)
−1−ǫ(1 − λ2)

−1−ǫ

1 + λ1λ2

(1 + λ1)(1 + λ2)

[

m4
h(1 + λ1)(1 + λ2)

λ1λ2(λ1 + λ2)2

]−ǫ

FJ(s13, s23). (21)

The delta function appears because of the momentum conservation s12 +s13 +s23 = m2
h, and

prevents λ1,2 from reaching 0. The singularities that occur as λ1, λ2 → 1 are in a factorized
form. To extract them, we rewrite the singular terms (1 − λ1)

−1−ǫ, (1 − λ2)
−1−ǫ using

λ−1+ǫ =
δ(λ)

ǫ
+

∞
∑

n=0

ǫn

n!

[

log(λ)n

λ

]

+

, (22)

and expand in ǫ. The result contains delta functions and plus distributions and can be
integrated numerically with the functions FJ .

Finally, we must discuss the computation of the interference terms of the one-loop and
tree-level amplitudes for Higgs boson production in association with a single parton. These
terms require the calculation of the one-loop amplitude, and integrations over the 2 → 2
phase-space variables. Using standard reduction methods, we write the one-loop amplitude
in terms of master integrals that are known analytically. The integration over the phase-
space then proceeds in a way described above.
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V. COMPUTATION OF THE COLLINEAR SUBTRACTION TERMS

In this Section we discuss the computation of the collinear subtraction terms. We remind
the reader that, by comparing the hadroproduction cross section written through “bare”
and renormalized quantities, a relation between the bare (σ) and the renormalized (σ̂)
partonic cross sections can be derived, as shown in Eq.(8). Having computed the bare cross
section, we then derive the renormalized partonic cross section σ̂ij by solving Eq.(8) order-
by-order in the expansion in αs. We must consider the convolution integrals of the partonic
cross sections with the Altarelli-Parisi kernels at each order in the perturbative expansion.
Technical aspects of this computation are discussed in this Section.

Through NNLO, we have to consider two distinct cases when σ̂ij is either the leading
order or the next-to-leading order cross section discussed in the previous Section. Consider
first the leading order cross section. Since σ(0)

gg ∼ δ(1 − z), where z = m2
h/s, the required

convolution integrals are of the form:

I =
∫ 1

z
dy1

∫ 1

z
y1

dy2Γa(y1)Γb(y2)δ(1 − z

y1y2

) = z (Γa ⊗ Γb) (z). (23)

We therefore need to consider convolutions of the splitting functions which appear in the
perturbative expansion of Γa, Γb. The splitting functions generically contain delta-functions,
plus-distributions and regular functions. The convolutions that involve delta-functions are
straightforward. The convolutions of two regular functions and the convolutions of a plus-
distribution with a regular function are performed numerically. The convolution of two
plus-distributions requires additional analytic work.

Consider the convolution of two plus-distributions:

Inm =

[

lnn(1 − x)

1 − x

]

+

⊗
[

lnm(1 − x)

1 − x

]

+

. (24)

We first apply the definition of plus-distributions in the convolution integral:

Imn =
∫ 1

0
dydz

lnn(1 − y)

1 − y

lnm(1 − z)

1 − z
{δ(x − yz) − δ(x − y) − δ(x − z) + δ(x − 1)} .(25)

Eq.(25) can not be integrated term by term because of divergences; to make such an inte-
gration possible, we introduce auxiliary regularizations:

Inm = lim
ǫ→0

lim
a,b→1

∂n

∂na

∂m

∂mb

1

ǫn+m

∫ 1

0
dydz(1 − y)−1+aǫ(1 − z)−1+bǫ

{δ(x − yz) − δ(x − y) − δ(x − z) + δ(x − 1)} . (26)

The four integrals in Eq.(26) can now be computed separately. The first term

Ia =
∫ 1

0
dydz(1 − y)−1+aǫ(1 − z)−1+bǫδ(x − zy), (27)

after integrating over y and performing the change of variables z = x + (1 − x)λ, takes the
form

Ia = (1 − x)−1+(a+b)ǫ
∫ 1

0
dλ [x + (1 − x)λ]−aǫ λ−1+aǫ(1 − λ)−1+bǫ. (28)

11



We then rewrite Eq.(28) using Eq.(22). The remaining three terms in Eq.(26) are easy to
compute. After differentiating the result with respect to a, b and taking the limit a, b → 1,
we expand in ǫ. The leading term in the ǫ expansion yields the convolution of the required
plus distributions. This solves the problem of computing the collinear factorization terms
when the leading order cross section σ(0)

gg ∼ δ(1 − z) is involved.
We now proceed to the discussion of the integrals that involve the NLO cross sections

for the production of the Higgs boson in association with one additional parton. Inserting
Eq.(21) into Eq.(8) we produce integrals of the form

∫ 1

0
dλ1dλ2dy1dy2Γ1(y1)Γ2(y2)f(λ1λ2)δ

(

y1y2λ1λ2 −
m2

h

s

)

, (29)

where f(λ1, λ2) is the integrand of Eq.(21) without the delta function and after the expansion
in ǫ. The parameterization of the phase-space in terms of the variables λ1, λ2 is convenient
for rewriting the integral Eq.(29) through successive conventional convolutions,

1
∫

0

dλ1dλ2δ

(

λ1λ2 −
m2

h

s

) 1
∫

0

dλ3dy1δ(λ1 − y1λ3)Γ1(y1)

1
∫

0

dλ4dy1δ(λ2 − y2λ4)Γ1(y2)f(λ3, λ4).

We note that since we work through the relative order O(α2
s), one of the two kernels Γ(y1,2)

in Eq.(29) is a delta function, so that the corresponding integration can easily be performed.
After that, we are left with a convolution integral that can be treated along the lines de-
scribed at the beginning of this Section. It can then be directly used in the numerical
integration with parton distribution functions.

VI. PHASE SPACE PARAMETERIZATIONS FOR DOUBLE REAL EMISSION

PROCESSES

We can now study the contributions to the NNLO cross section from processes with
double real emissions. These processes appear only at tree-level. However, the integrations
over the 2 → 3 phase-space are involved. Our aim in the following sections is to present a
detailed description of their treatment.

The first step in using the method described in [32] is to choose a parameterization of
the double real emission phase space in which the integration region is the unit hypercube.
This is required in order to use an expansion in plus distributions to extract singularities.
In principle, any parameterization that accomplishes this is acceptable. In practice, finding
a convenient one that reduces the number of sector decompositions is important for the
efficiency of the approach. We will discuss here how to choose a parameterization suitable
for the topologies which contribute to the Higgs production process.

For the double real emission corrections to Higgs production at NNLO, we must param-
eterize a 2 → 3 particle phase space, with one massive final-state particle. We consider
here g(p1) + g(p2) → H(ph) + g(p3) + g(p4) as a prototypical partonic process, although
the formulae we derive are valid for all such partonic processes. We consider a fixed energy
for the partonic collision, (p1 + p2)

2 = s. The scalar products that appear in the matrix
elements are

• sif = (pi − pf )
2, where i = 1, 2 and f = 3, 4;

12



• s34 = (p3 + p4)
2;

• sih = (pi − ph)
2, where i = 1, 2;

• shf = (pf + ph)
2, where f = 3, 4.

The invariant masses of the form shf are bounded from below by shf ≥ m2
h, and therefore do

not lead to singularities. The 2 → 3 phase space which we must map to the unit hypercube
is

dΠ =
∫

[dp3][dp4][dph]δ
(d)(p1 + p2 − ph − p3 − p4). (30)

where [dq] = dqd−1/(2q0). We will set the overall scale s = 1 in the discussions that follow;
it can be restored by dimensional arguments. We also denote a generic invariant mass by
sab; the subscripts i, f, h will be used as in the above list. Therefore, i = 1, 2 and f = 3, 4.

We denote the variables that describe the unit hypercube by λi; the partonic phase
space is spanned by four independent variables, so i = 1, . . . , 4. The singularity structure
is dictated by the invariant masses that appear in the denominator of the matrix elements.
In terms of these variables, the invariant masses can take one of the following three generic
forms, ordered from most to least desirable:

• a factorized form, in which
1

sab

=
1

λ1λ2 . . .
; (31)

• an entangled form, in which
1

sab
=

1

(λ1 + λ2) . . .
; (32)

• a “line” singularity, in which

1

sab

=
1

|λ1 − λ2| . . .
. (33)

The singularities as λ1, λ2 → 0 in the factorized form can be immediately extracted using
the expansion in plus distributions of Eq.(22). We will discuss the remaining two structures
in detail later in the text, and we only briefly describe here how they are dealt with. In order
to extract the singularity from the entangled form in Eq.(32), we must sector decompose
in the variables λ1 and λ2; this involves splitting the integration region into two sectors,
λ1 > λ2 and λ2 > λ1, remapping the integration limits to [0, 1], and then expanding the
resulting expressions in plus distributions. For the line singularity, in which the singular
region is along an entire edge of phase space rather than just a point, we must first perform
an additional variable change to remap the singular region to a point, and then typically
perform a series of sector decompositions. It is advantageous to express as many of the
singular structures in a factorized form as possible; this form gives only one sector rather
than several, which leads to smaller and typically simpler expressions. It also preserves the
kinematics of the parameterization, i.e., there is only one mapping between the sij and the
λi. In the other forms, each sector has a different kinematics.

In order to choose a convenient set of parameterizations, we must first study the double
real emission diagrams that contribute to Higgs production. There are three generic types
that must be considered:

13



1. Diagrams (C1) in which the Higgs is emitted from either an internal or final-state line,
and the singular invariant masses that can appear in the denominator are sif ;

⊗

2

1

4

3

h

⊗

2

1

4

3

h

2. Diagrams (C2) for which the potential singular denominators are s34 and sih;

⊗2

1

h

3

4

3. Diagrams (C3) in which the Higgs is emitted from an initial-state line, and the singular
invariant masses that can appear in the denominator are sif and sih;

⊗2

1

h

3

4

The matrix elements consist of interferences between these three classes of diagrams. We
can not find a phase-space parameterization in which all of the singular scalar products take
a factorized form, so it is useful to consider parameterizations tailored to each structure.
We will discuss two different parameterizations of the partonic phase space, which we refer
to as the “energy” and “rapidity” parameterizations.

In the energy parameterization, the invariant masses sif take on simple, factorized forms;
it is therefore useful for interferences within the first class of diagrams listed above. It is
named for the observation that in terms of energies and angles with respect to the initial
beam axis, sif = −2EiEf [1 − cosθif ]; the soft and collinear singularities in these scalar
products are therefore factorized. To derive the expression for the phase space in the energy
parameterization, we begin with Eq.(30), and use the momentum-conserving δ-function to
remove the [dh] integration; we obtain

dΠE =
1

4

∫

dE3dE4dΩ3dΩ4 Ed−3
3 Ed−3

4 δ [1 − z + s13 + s14 + s23 + s24 + s34] , (34)

where z = m2
h/s. It is convenient to continue the calculation in the partonic center-of-mass

(CM) frame. We introduce the CM frame parameterization

p1 =
1

2

(

1,~0, 1
)

, p2 =
1

2

(

1,~0,−1
)

,

p3 = E3 (1, sinθ3, 0, cosθ3) , p4 = E4 (1, sinθ4cosφ, sinθ4sinφ, cosθ4) . (35)

In the expressions for p3 and p4 we have suppressed the additional ǫ-dimensional components
of the momenta; they can be chosen to vanish in this frame. We use the δ-function to remove
the E4 integration, which sets

E4 =
1 − z − 2E3

2 [1 − E3(1 − ~n1 · ~n2)]
(36)
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and gives the jacobian 2 [1 − E3(1 − ~n1 · ~n2)]; in these expressions,

~n1 · ~n2 = cosθ3cosθ4 + sinθ3sinθ4cosφ. (37)

We must now consider the angular integrations dΩ3 and dΩ4. In terms of the polar angles
θ3 and θ4, and the azimuthal angle φ, they become

dΩ3 = dcosθ3

[

sin2θ3

]−ǫ
Ωd−2,

dΩ4 = dcosθ4dcosφ
[

sin2θ4

]−ǫ [

sin2φ
]−ǫ−1/2

Ωd−3, (38)

where Ωd is the solid angle in d-dimensions:

Ωd =
2πd/2

Γ(d/2)
. (39)

Using these expressions, we can write the phase space in the following form:

dΠE =
Ωd−2Ωd−3

8

∫

dE3dcosθ3dcosθ4dcosφ Ed−3
3 Ed−3

4

[

sin2(θ3)
]−ǫ

×
[

sin2θ4

]−ǫ [

sin2φ
]−ǫ−1/2

/ [1 − E3(1 − ~n1 · ~n2)] . (40)

The angular integrations clearly range from [−1, 1]. To derive the limits of the E3 integration,
we note that E3, E4 ≥ 0; using Eq.(36), we find that this implies

0 ≤ E3 ≤
1 − z

2
= E+

3 . (41)

We are now ready to map the integration region into the unit hypercube. Performing the
variable changes

E3 = λ1E
+
3 , cosθ3 = −1 + 2λ2,

cosθ4 = −1 + 2λ3, cosφ = −1 + 2λ4, (42)

we derive the final expression for the partonic phase space in the energy parameterization:

dΠE = N

1
∫

0

dλ1dλ2dλ3dλ4[λ1(1 − λ1)]
1−2ǫ[λ2(1 − λ2)]

−ǫ[λ3(1 − λ3)]
−ǫ

×[λ4(1 − λ4)]
−ǫ−1/2D2−d, (43)

with

N = Ωd−2Ωd−3(1 − z)3−4ǫ/24+2ǫ,

D = 1 − (1 − z)λ1 (1 − ~n1 · ~n2) /2,

1 − ~n1 · ~n2 = 2
[

λ2 + λ3 − 2λ2λ3 + 2(1 − 2λ4)
√

λ2(1 − λ2)λ3(1 − λ3)
]

. (44)

We note that the factor D which appears in the phase space is bounded from below by D ≥ z,
and does not contribute to the singularity structure. All limits λi → 0, 1 are separated and
regulated by ǫ, as required for the extraction of singularities shown in Eq.(22).
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We now discuss the singularity structure of the scalar products in this paramterization.
As desired, the invariant masses sif take on simple, factorized forms:

s13 = −(1 − z)λ1(1 − λ2), s23 = −(1 − z)λ1λ2,

s14 = −(1 − z)(1 − λ1)(1 − λ3)/D, s24 = −(1 − z)(1 − λ1)λ3/D. (45)

The other invariant masses have more complex singular structures. We find

s34 = (1 − z)2λ1(1 − λ1) (1 − ~n1 · ~n2) /2/D,

s1h = −(1 − z) {λ1λ2 + λ3(1 − λ1) − (1 − z)λ1 [1 − λ1(1 − λ2)] (1 − ~n1 · ~n2) /2} /D,

s2h = −(1 − z) {λ1(1 − λ2) + (1 − λ3)(1 − λ1) − (1 − z)λ1 [1 − λ1λ2] (1 − ~n1 · ~n2) /2} /D. (46)

The (1 − ~n1 · ~n2) factor in the numerator of s34 leads to a line singularity along the edge of
phase space where λ4 = 1 and λ2 = λ3; setting λ4 = 1 in Eq.(44), we can write

(1 − ~n1 · ~n2) |λ4=1 =
[

√

λ2(1 − λ3) −
√

λ3(1 − λ2)
]2

. (47)

The invariant masses s1h and s2h do not contain line singularities, but do contain several
entangled singularities; for example, s1h vanishes at the following phase-space boundaries:
(1) λ1 = 1 and λ2 = 0; (2) λ1 = 0 and λ3 = 0; (3) λ2 = 0 and λ3 = 0. These problems indicate
that the energy parameterization is not well suited for interferences between diagrams of the
second and third classes listed above.

For interferences between diagrams in the second and third classes, it is usually better to
use the rapidity parameterization. With this choice, the invariant masses s34, sih, and two
of the sif take on simple, factorized forms. This parameterization is the fully differential
extension of the one used in [13] to calculate the NNLO corrections to Drell-Yan production
of lepton pairs.

We begin by making explicit what variables we use to describe the phase space. The
four independent variables we choose are the invariant masses s34, s13, s23, and the variable
u = p1 · ph/p2 · ph. Anticipating the translation of our partonic expressions into hadronic
results, we note that u is related to the lab-frame rapidity of the Higgs boson by u =
x1e

−2Y /x2, where Y is the rapidity and x1 and x2 are the standard Bjorken x variables for
each initial-state parton. We rewrite the phase space in Eq.(30) as

dΠR =
∫

ds34 du ds13 ds23

∫

[dp3][dp4][dh]δ(s34 − 2p3 · p4) δ(u − p1 · ph/p2 · ph)

×δ(s13 + 2p1 · p3) δ(s23 + 2p2 · p3) δ(d)(p1 + p2 − ph − p3 − p4). (48)

It is useful to view the production of the final-state particles p3, p4, and ph as an iterative
process; first, ph and the massive “particle” Q34 = p3 + p4 are produced; then, Q34 decays
into p3 and p4. This motivates the following nested decomposition of the phase space:

dΠR =
∫

ds34 du ds13 ds23 dΠ1dΠ2, (49)

with

dΠ1 =
∫

[dh]ddQ34δ(Q
2
34 − s34) δ(u − p1 · ph/p2 · ph) δ(d)(p1 + p2 − ph − Q34),

dΠ2 =
∫

[dp3][dp4]δ(s13 + 2p1 · p3) δ(s23 + 2p2 · p3) δ(d)(Q34 − p3 − p4). (50)
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We evaluate dΠ1 in the CM frame of the p1 + p2 system. The δ-functions remove all
integrations except for those describing the azimuthal angles, which give only an overall
solid angle factor. We arrive at

dΠ1 =
Ωd−2(1 + z − s34)

4(1 + u)2

[

us2
34 − 2u(1 + z)s34 + (u − z)(1 − uz)

(1 + u)2

]−ǫ

. (51)

The ǫ-dependent factor will be needed to regulate singularities in u, z, and s34, as shown
in Eq.(22); however, the singular structures of these variables are entangled, and must be
separated. To do so, note that the bracketed term in Eq.(51) can be written as

u(s+
34 − s34)(s

−

34 − s34)

(1 + u)2
, (52)

with s±34 = (r ± t)(1± rt)/r, r =
√

u, and t =
√

z. Eq.(52) is the p2
⊥

of the Higgs, and must
be positive definite. We must therefore demand 0 ≤ s34 ≤ s−34. We set s34 = λ1s

−

34, where
λ1 is in the range [0,1], and derive

dΠ1 =
Ωd−2(1 + z)

4(1 + u)2

{

1 − λ1Km

r(1 + z)

}[

(u − z)(1 − uz)(1 − λ1)(1 − λ1Km/Kp)

(1 + u)2

]−ǫ

, (53)

where Kp,m = (r ± t)(1 ± rt). The factor Km/Kp < 1, and the expression in the curly
brackets does not vanish, so the λ1 → 1 limit has been separated from u, z. However, the
limits u → z, 1/z and z → 1 have not been separated, as is clear from the (u − z) and
(1 − uz) factors in Eq.(53); these will appear in the denominator and lead to singularities,
so they must be dealt with. We first note that to keep p2

⊥
≥ 0 we must have z ≤ u ≤ 1/z.

We then follow [13, 69] and set

y =
u − z

(1 − z)(1 + u)
, (54)

with y in the range [0, 1]. The phase space becomes

dΠ1 =
Ωd−2(1 + z)

4(1 + u)2

{

1 − λ1Km

r(1 + z)

}

[

y(1 − y)(1 − z)2(1 − λ1)(1 − λ1Km/Kp)
]−ǫ

; (55)

the limits u → z, 1/z have been separated from z → 1 and moved to y → 0, 1.
Having discussed dΠ1, we now consider dΠ2. It is again convenient to work in the CM

frame of the p1 + p2 system. The momenta can be written as

p1 =
1

2

(

1,~0, 1
)

, p2 =
1

2

(

1,~0,−1
)

,

p3 = (E, p⊥sinθ, p⊥cosθ, pz) , (56)

where we have again suppressed the ǫ-dimensional components of the momenta. The δ-
functions present in dΠ2 constrain E, pz, p⊥, and θ. Using these to remove the integrations,
we arrive at

dΠ2 =
Ωd−3(1 + u)

8
√

u(s+
34 − s34)(s

−

34 − s34)

[

p2
⊥
sin2θ

]−ǫ−1/2
. (57)
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To express p⊥sinθ through the variables s34, s23, s13, and u, we must first define the auxiliary
variables

s±13 =
s34(1 + u)[s23(1 + u) + s34 + u − z] − us23(s

+
34 − s34)(s

−

34 − s34) ±
√

D2

(s−23)
2(1 + u)2

,

D2 = −16u(1 + u)2s23s34(s
+
34 − s34)(s

−

34 − s34)(s
−

23 + s23),

s−23 = y(1 − z)

{

1 +
λ1(1 − rt)

r(r + t)

}

. (58)

In terms of these variables, we have

p2
⊥
sin2θ =

−(s−23)
2(1 + u)2(s+

13 + s13)(s
−

13 + s13)

4u(s+
34 − s34)(s

−

34 − s34)
. (59)

There are several consistency conditions that we must apply to these expressions; these will
give us the integration limits for s13 and s23. First, to ensure the reality of s±13 in Eq.(58),
we must demand D2 ≥ 0; this implies 0 ≥ s23 ≥ −s−23. Finally, since p2

⊥
sin2(θ) ≥ 0, it is

clear from Eq.(59) that we must require −s+
13 ≥ s13 ≥ −s−13. With these limits, we can map

the s23 and s13 integrations to the region [0,1]. We set

s23 = −λ2s
−

23, s13 = −λ4(s
+
13 − s−13) − s−13, (60)

and derive the final expression for dΠ2 in terms of λ1, λ2, λ4, and y:

dΠ2 =
Ωd−32

−4−2ǫ

(1 − z)
√

y(1 − y)(1 − λ1)(1 − λ1Km/Kp)

[

y(1 − y)(1 − z)2λ1λ2(1 − λ2)λ4(1 − λ4)

r(r + t)(1 + rt)

]−ǫ−1/2

.

(61)
Finally, we must combine dΠ1 and dΠ2 as shown in Eq.(49), and include the jacobian

for the transformation
∫

ds34 du ds13 ds23 → ∫

dλ1 dλ2 dλ4 dy. This is simply done using the
variable changes given above, and we derive the following final expression for the phase space
in the rapidity parameterization:

dΠR = N

1
∫

0

dλ1dλ2dλ3dλ4 [(1 − λ1)(1 − λ1Km/Kp)]
−ǫ [λ1λ2(1 − λ2)]

−ǫ

× [λ3(1 − λ3)]
1−2ǫ [λ4(1 − λ4)]

−ǫ−1/2
[

Kpr/(1 + u)2
]−1+ǫ

[

1 − λ1Km

r(1 + z)

]

. (62)

We have changed y → λ3 in this equation for consistency of notation. All the limits λi → 0, 1
have been separated. The singular scalar products in this parameterization are

s1h = −λ3(1 − z) [1 − λ1r(1 − rt)/(r + t)] ,

s2h = −(1 − λ3)(1 − z) [1 − λ1(r − t)/r/(1 + rt)] ,

s23 = −λ2λ3(1 − z) [1 + λ1(1 − rt)/r/(r + t)] ,

s24 = −(1 − λ2)λ3(1 − z) [1 + λ1(1 − rt)/r/(r + t)] ,

s34 = λ1λ3(1 − λ3)(1 − z)2(1 + u)2/Kp/r,

s13 = − (1 − λ3)(1 − z)

Kpr [1 + λ1(1 − rt)/r/(r + t)]

[

A1 + A2 + 2(2λ4 − 1)
√

A1A2

]

, (63)
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where
A1 = λ1(1 − λ2)(1 + u)2, A2 = λ2(1 − λ1)r(Kp − λ1Km). (64)

We have not included s14 in this list; it can be derived from the other invariant masses (see
Eq.(34)), and we will see later that the parameterization can always be chosen so that it
never appears in the denominator. As claimed above, the invariant masses s1h, s2h, s23,
s24, and s34 are all in factorized forms; none of the expressions in square brackets for these
invariant masses in Eq.(63) vanish. However, s13 clearly has a line singularity when λ4 = 0
and A1 = A2; in terms of the λi,

A1 = A2 ⇒ λs
2 =

λ1(1 + u)2

λ1(1 + u)2 + (1 − λ1)r(Kp − λ1Km)
≤ 1, (65)

so this singularity occurs in the physical region.
Before concluding our presentation of the phase space parameterizations, and beginning

our discussion of how to handle the entangled scalar products and line singularities, we
must discuss what happens to the variable z when we use our results to derive the hadronic
cross section. When we convolute the partonic cross sections with the parton distribution
functions to form the hadronic cross section, the variable z scales as z → m2

h/(x1x2shad),
where shad is the hadronic center-of-mass energy squared, and the xi are the fractions of the
hadronic momenta carried into the hard scattering process. It is clear from the invariant
masses in Eqs.(45,46,63) that the matrix elements will contain singularities as z → 1. How-
ever, it can also be seen from these equations that this singularity is always in a factorized
form. The normalization factor N in Eq.(44) contains the factor (1− z)−4ǫ, which regulates
this limit for both parameterizations. Singularities in z and λi can therefore be treated
identically.

VII. FACTORIZING SINGULARITIES

After choosing a phase-space parameterization for a given term from the matrix ele-
ments, we must extract its singularities without actually integrating over the λi. We then
have differential distributions in the λi giving us complete control over the kinematics and
allowing us to compute arbitrary differential observables. For factorized singularities, this
is simple; the expansion in plus distributions shown in Eq.(22) extracts the singularity as a
1/ǫ pole multiplied by a δ-function which restricts the integration to the singular region of
phase space. The singularities can be cancelled numerically and then discarded, as shown
in [32, 36, 37], leaving a finite, fully differential cross section. Our goal will be to reduce all
other singularities to a factorized form.

Before discussing the detailed procedure we use to handle entangled and line singularities,
we must first explain sector decomposition [33, 34, 35]. This is our primary technique of
separating and factorizing entangled singularities. We can illustrate the main features of
sector decomposition with a simple example. Consider the integral

I =
∫ 1

0
dxdy

xǫyǫ

(x + y)2
. (66)

If we naively apply the expansion of Eq.(22), we would conclude that we can simply Taylor-
expand the numerator of the integrand, and would arrive at

Inaive =
∫ 1

0
dxdy

1

(x + y)2
{1 + O(ǫ)} . (67)
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Integrating the O(ǫ0) term over x, we obtain

Inaive =
∫ 1

0
dy

1

y(1 + y)
+ O(ǫ). (68)

This is divergent as y → 0; we have clearly missed a singularity. A simple analysis of Eq.(66)
shows that the integral diverges logarithmically in the limit x ∼ y → 0; if we attempt to
study these limits separately, as we did in Inaive, we miss this singularity. To deal with the
singular phase-space region x ∼ y ∼ 0 we use sector decomposition.

To introduce this technique, we will consider the same integral as in Eq.(66), but with an
additional function in the integrand: FJ [sab(x, y)], a measurement function, which describes
kinematic features of the process such as dependence on the parton distribution functions
and phase-space constraints. This will allow us to discuss issues that arise when sector
decomposition is used in realistic calculations. Sector decomposition proceeds in a series of
simple steps.

1. Split the integration region into two sub-regions; in the first one, x > y, and in
the second, y > x. The integral I is written accordingly as the sum of two terms,
I = I1 + I2. We have

I1 =
∫ 1

0
dx
∫ x

0
dy

xǫyǫ

(x + y)2
FJ [sab(x, y)], I2 =

∫ 1

0
dy
∫ y

0
dx

xǫyǫ

(x + y)2
FJ [sab(x, y)]. (69)

2. Remap each integration to the unit hypercube. In I1, make the change y
′

= y/x; in
I2, set x

′

= x/y. Performing these changes of variables (and rewriting x
′ → x, y

′ → y
for notational ease), we obtain

I1 =
∫ 1

0
dxdy

x−1+2ǫyǫ

(1 + y)2
FJ [sab(x, xy)], I2 =

∫ 1

0
dxdy

y−1+2ǫxǫ

(1 + x)2
FJ [sab(xy, y)]. (70)

3. The singularities in I1 and I2 are now in a factorized form, and can be extracted with
an expansion in plus distributions.

4. If a singularity appears in the x → 1 limit, as in

I =
∫ 1

0
dxdy

(1 − x)ǫyǫ

(1 − x + y)2
, (71)

make the variable change x
′

= 1− x to map the singularity to x
′

= 0, and then apply
the same steps as above.

There are several features of this process that should be noted. It is very simple to
program a computer to perform this routine. There are three operations that are performed:
first, a search for locations of possible singularities of the integrand; second, a variable
substitution of the form y → xy, as in I1; third, a factorization such as (x + xy)2 =
x2(1 + y)2 in I1 in order to find the overall power of x. These operations can be simply
performed using symbolic manipulation programs such as MAPLE or MATHEMATICA, as
can the substitution of Eq.(22) needed for the plus distribution expansion. Another feature
to notice is that the mappings between the variables λ1 and the invariant masses sab are
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different in each sector, as denoted by the different measurement functions FJ [sab(x, xy)]
and FJ [sab(xy, y)] in Eq.(70). If we build an event generator according to the probability
distribution in λi, we must account for this different kinematics in each sector. Finally,
applying this technique increases the expression size each time a decomposition is performed,
so it is best to limit the number of sectors by choosing a phase-space parameterization that
factorizes as many singularities as possible.

There are several other features that we include in our computer routine for sector de-
composition.

• It is useful to rotate the external momenta in order to change terms in the matrix
element to a factorized form. For example, in the partonic channel g(p1) + g(p2) →
H(ph) + g(p3) + g(p4), we can perform the rotations p1 ↔ p2 and p3 ↔ p4. Con-
sider a term in the matrix element of the form FJ(p1, p2, p3, p4, ph)/s13/s1h, where
we have described the measurement function arguments using the external momenta.
In the rapidity parameterization, this term has a line singularity arising from 1/s13,
as discussed below Eq.(63). However, under the rotation p1 ↔ p2, it becomes
FJ(p2, p1, p3, p4, ph)/s23/s2h, which is in a factorized form. As long as we account
for the rotation in FJ , which describes the kinematics, this is permissible.

• When an integral requires sector decomposition, and is singular in both limits λ → 0, 1,
we separate these limits by splitting the integration into the two regions [0, 1/2] and
[1/2, 1]. We then remap each region to the range [0, 1]. We find that this decreases
the analytical complexity of the result, and improves the numerical precision. As an
example, consider the integral

I =
∫ 1

0
dxdy

xǫyǫ(1 − x)−1+ǫ

(x + y)2
. (72)

We will evaluate this integral in two ways: (1) by splitting the x-integration as de-
scribed above, and (2) by directly applying the algorithm of sector decomposition.
For simplicity, we suppress the measurement function in this example. Using the first
method, we split the x-integration and derive I = I(0) + I(1), with

I(0) =
∫ 1

0
dxdy 21−ǫx

ǫyǫ(1 − x
2
)−1+ǫ

(x + 2y)2
, I(1) =

∫ 1

0
dxdy 21−ǫy

ǫx−1+ǫ(1 − x
2
)ǫ

(2 − x + 2y)2
, (73)

where we have changed x → 1−x in I(1). The first integral requires a sector decompo-
sition in the limit x → 0, y → 0, while the second one is already in a factorized form;
we obtain I = I(0)

x + I(0)
y + I(1), with

I(0)
x =

∫ 1

0
dxdy 21−ǫx

ǫy−1+2ǫ(1 − xy
2

)−1+ǫ

(2 + x)2
, I(0)

y =
∫ 1

0
dxdy 21−ǫ y

ǫx−1+2ǫ(1 − x
2
)−1+ǫ

(1 + 2y)2
.

(74)
All singularities have been separated, and the expressions can be expanded in ǫ. The
important point to notice is that except for the terms that must be expanded in
distributions (y−1+2ǫ in I(0)

x , x−1+2ǫ in I(0)
y , and x−1+ǫ in I(1)), all other terms in the

integrands are finite throughout the entire (x, y) plane. If we instead directly apply the
sector decomposition algorithm to I without first splitting the x-integration region,
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we obtain I = Ix + Iy, with

Ix =
∫ 1

0
dxdy

xǫy−1+2ǫ(1 − xy)−1+ǫ

(1 + x)2
, Iy =

∫ 1

0
dxdy

yǫx−1+2ǫ(1 − x)−1+ǫ

(1 + y)2
. (75)

In addition to the components that must be expanded in distributions, the term
(1 − xy)−1+ǫ in Ix is singular in the limit x, y → 1. Although this type of singu-
larity is integrable, we find that it can lead to numerical instabilities when combined
with parton distribution functions and phase-space constraints, particularly when this
region of the integration contributes strongly to the result. It is best to avoid these
terms using the split described above. We note that when we use this split, we can
choose to map x → 1 singularities to x

′ → 0 using the variable change x
′

= 2(1 − x)
in the [1/2, 1] region.

Now that we have discussed in detail all the elements that enter our sector decomposition
routine, we can present our algorithm for factorizing entangled singularities for a given term.

1. First, check to see if the term can be rotated into a factorized form. This can be done
by establishing a priority for each denominator structure. In the example given above,
1/s23/s2h would be given a high priority, while 1/s13/s1h would be given a low priority.
Perform all possible rotations on a given term, and check to see if any of them give
a high priority integral. If so, then we have a factorized form, and we can expand in
distributions as in Eq.(22), and go to the next term.

2. Split each λi integration into the two ranges [0, 1/2] and [1/2, 1], in order to separate
λi → 0, 1 singularities. This can either be done for all λi automatically, or for a given
denominator structure we can only split integration regions for those λi that have both
λi → 0 and λi → 1 singular limits. We will assume in the remainder of the discussion
that the first has been done, so that all singularities occur as λi → 0.

3. Pick two λ variables, e.g., λ1 and λ2, and check whether the term needs sector decom-
position in these two variables. A term needs sector decomposition if the following
conditions are met: (1) it doesn’t vanish as λ1 → 0; (2) it doesn’t vanish as λ2 → 0;
(3) it vanishes as both λ1, λ2 → 0. This is a simple check to program in symbolic
manipulation packages. It follows from the expressions for the invariant masses given
in Section II that we can restrict ourselves to singular regions where two of the λi

variables vanish; there is no need to consider triple or quadruple singular limits.

4. If a term doesn’t need sector decomposition, return to step 3 and pick another pair of
λi. If it does, then apply the technique discussed above. This gives two sectors. Pick
the first sector, and begin at step 3 for this term.

5. Eventually, a term will have no pair of variables that requires sector decomposition.
This term is then in a factorized form, and we can extract phase-space singularities
by expanding in plus distributions.

6. Repeat steps 1-5 for all terms.

We must now discuss how to handle line singularities. These arise when a singularity
is mapped to an edge of phase space rather than just a point because of a specific choice
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of parameterization. Our basic method will be to reduce them to an entangled form, and
then apply the method detailed above. These singularities appear in the more complicated
topologies, with a larger number of invariant masses in the denominator. In simpler topolo-
gies, such as the 1/s13/s1h example discussed above, they can be rotated away. It is difficult
to automate this reduction as thoroughly as the factorization of entangled singularities. We
will therefore discuss in detail the only case needed for Higgs hadroproduction, which is
the 1/s13 line singularity in the rapidity parameterization. We can avoid the 1/s34 energy
parameterization singularity, as we will show in the next section. We will discuss how to
handle the topology 1/s13/s24/s34, which is the simplest topology that can not be rotated
away from a line singularity form. For notational simplicity, we will suppress any possible
numerator and the measurement function FJ for this structure.

We begin by combining the expressions for s13, s24, and s34 in Eq.(63) with the phase
space in Eq.(62). We obtain

I =
N

(1 − z)4

∫ 1

0
dλi [(1 − λ1)(1 − λ1Km/Kp)]

−ǫ [λ1(1 − λ2)]
−1−ǫ λ−ǫ

2 [λ3(1 − λ3)]
−1−2ǫ

× [λ4(1 − λ4)]
−ǫ−1/2 Kpr

[

Kpr/(1 + u)2
]ǫ
[

1 − λ1Km

r(1 + z)

]

1

ŝ13(λ4)
, (76)

with

ŝ13(λ4) = λ4(ŝ
+
13 − ŝ−13) + ŝ−13,

ŝ±13 = A1 + A2 + ±2
√

A1A2 (77)

and A1, A2 defined in Eq.(64). We note that the line singularity occurs when λ4 = 0 and
A1 = A2. The first step is to separate these two requirements. To do so, we make use of
the freedom to map singularities nonlinearly to the unit hypercube; so far, we have only
used linear transformations such as the one used for s13: s13 = −λ4(s

+
13 − s−13) − s−13. The

nonlinear mapping is achieved by making the additional variable change

λ̂4 =
ŝ−13 × (1 − λ4)

ŝ13(λ4)
→ λ4 =

ŝ−13 × (1 − λ̂4)

ŝ13(λ̂4)
. (78)

The integral becomes

I =
N

(1 − z)4

∫ 1

0
dλi [(1 − λ1)(1 − λ1Km/Kp)]

−ǫ [λ1(1 − λ2)]
−1−ǫ λ−ǫ

2 [λ3(1 − λ3)]
−1−2ǫ

× [λ4(1 − λ4)]
−ǫ−1/2 Kpr

[

Kpr/(1 + u)2
]ǫ
[

1 − λ1Km

r(1 + z)

]

[ŝ13(λ4)]
2ǫ

×|λ1(1 − λ2)(1 + u)2 − (1 − λ1)λ2r(Kp − λ1Km)|−1−2ǫ, (79)

where we have relabeled λ̂4 → λ4 for notational simplicity. The A1 = A2 line has been made
manifest in the absolute value in the last line of this equation. As noted in Eq.(65), we can
describe this line by the parameter λs

2. If we split the λ2 integration into the two regions
[0, λs

2] and [λs
2, 1], we can force this singularity to always occur at a point on the boundary

of phase space; this will reduce it to an entangled form, amenable to sector decomposition.
We denote the integrals over these two regions by I0 and I1, so that I = I0 + I1. In I0 we
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perform the variable change λ
′

2 = λ2/λ
s
2, while in I1 we use λ

′

2 = (λ2 − λs
2)/(1 − λs

2). We
obtain (after relabeling λ

′

2 → λ2)

I0 =
N

(1 − z)4

∫ 1

0
dλi [(1 − λ1)(1 − λ1Km/Kp)]

−ǫ [λ1(1 − λ2)]
−1−2ǫ λ−ǫ

2 [λ3(1 − λ3)]
−1−2ǫ

× [λ4(1 − λ4)]
−ǫ−1/2 Kpr

[

Kpr/(1 + u)4
]ǫ
[

1 − λ1Km

r(1 + z)

]

[

A
(0)
1

]−1−ǫ

×
[

A
(0)
1 + A

(0)
2 + 2(2λ4 − 1)

√

A
(0)
1 A

(0)
2

]2ǫ

,

I1 =
N

(1 − z)4

∫ 1

0
dλi [(1 − λ1)(1 − λ1Km/Kp)]

−1−2ǫ [λ1(1 − λ2)]
−1−ǫ λ−1−2ǫ

2 [λ3(1 − λ3)]
−1−2ǫ

× [λ4(1 − λ4)]
−ǫ−1/2

[

Kpr(1 + u)2
]−ǫ

[

1 − λ1Km

r(1 + z)

]

[

A
(1)
1

]−ǫ

×
[

A
(1)
1 + A

(1)
2 + 2(2λ4 − 1)

√

A
(1)
1 A

(1)
2

]2ǫ

,

A
(0)
1 = λ1(1 − λ2)(1 + u)2 + (1 − λ1)r(Kp − λ1Km),

A
(0)
2 = (1 − λ1)λ2r(Kp − λ1Km),

A
(1)
1 = λ1(1 + u)2 + (1 − λ1)λ2r(Kp − λ1Km),

A
(1)
2 = λ1(1 − λ2)(1 + u)2. (80)

The terms with A
(i)
1 and A

(i)
2 contain singularities entangled in λ1 and λ2 that can be

extracted with sector decomposition. Although the above expressions are somewhat com-
plicated, the simple, automated algorithm described above can separate and extract all
singularities with minimal human intervention. We note that after splitting I0 and I1 into
the ranges [0, 1/2] and [1/2, 1] for λ1, λ2, λ3, and factorizing all singularities, we obtain
twenty sectors for this topology, each with a different mapping between the sab and the
λi. It is clearly advantageous to avoid line singularities by rotating them into entangled or
factorized forms when possible.

VIII. TOPOLOGIES FOR HIGGS HADRO-PRODUCTION

We have discussed how to extract singularities from all terms that appear in the double
real emission corrections to Higgs production at NNLO. We must now explain what singular
structures appear in the matrix elements, what parameterizations we use to deal with them,
and how the numerator structures are handled. We consider the topologies that appear in
g(p1) + g(p2) → H(ph) + g(p3) + g(p4); all other partonic channels contain only a subset of
these topologies.

There is a certain amount of ambiguity in how to map terms in the matrix elements to
different topologies. For example, the matrix elements can contain two sets of terms with
denominators 1/s2h/s34 and 1/s1h/s23/s34. There are two possible ways of dealing with these
terms. We can treat them separately, or we can rotate p1 ↔ p2 in the first and combine
them over a common denominator. Each approach offers potential advantages. Combining
them allows us to extract singularities from only a single structure, 1/s1h/s23/s34, which
reduces both the number of singular regions in λi space, and the expression size. The first
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term is singular as λ3 → 1, while the second is singular as λ3 → 0; the combined expression
is singular only when λ3 → 0. However, combining these terms can complicate numerical
cancellations between terms in the matrix elements. As noted, to combine these terms
requires rotating p1 ↔ p2 in 1/s2h/s34, which changes the λ3 → 1 limit to λ3 → 0. Suppose
there is a numerical cancellation between the 1/s2h/s34 term and another component that
occurs locally in λi-space when λ3 → 1. After rotation, this cancellation will only occur
globally after integrating over λ3.

The point of this example is to show the types of possibilities that exist when we map the
matrix elements to topologies. It is not clear to us at the moment which way is “better”:
which leads to smaller expressions and to more numerically stable results, etc. In the dis-
cussion that follows, we focus on the parameterization- independent features of the possible
mappings.

• We will note which topologies are necessarily of an entangled or a line-singular form.

• We will indicate which topologies are “soft”, i.e. singular in the z → 1 limit. These
only occur for the partonic channels with a gg initial state: gg → ggH and gg → qq̄H .

• We will discuss the topologies with “quadratic” singularities; we will explain later in
detail what this means.

We will also try to explain what techniques we found useful in organizing our calculation,
and will attempt to discuss the possible highlights and disadvantages of different methods.

We first discuss how we deal with the numerator structures of each topology. Each term
that appears in the matrix elements has the form

N [sab(λi)]

sabscd . . .
, (81)

where the numerator N contains polynomials of the invariant masses in addition to mea-
surement functions FJ with various arguments. The denominator characterizes the topology
because it is insensitive to the exact particle content of the theory, and only depends on the
global structure of the process under consideration. Identical topologies will appear for all
2 → 3 processes with one massive particle in the final state. On the contrary, numerators
are process specific; for example, in a theory with only scalar particles, all the numerators
are equal to one. It is therefore advantageous to treat the numerators and denominators of
the matrix elements separately.

One way to deal with the numerators in a numerical program is to explicitly substitute the
expressions for the sab in terms of the λi for each topology, so that everything in our Fortran
code is written in terms of λi. However, we found that it is better to define auxiliary
functions sab(λi) to keep N written in terms of the sab in our numerical routines. We
introduce the explicit formulae for the sab only for the denominators, which is required in
order to extract singularities. To show what appears in our numerical code, consider the
topology N [sab(λ2, . . .)]/s23. This is singular as λ2 → 0, as is clear from Eq.(63), so we get
terms such as N [sab(λ2, . . .)]/[λ2]+. What we write to our code is

N [sab(λ2, . . .)] −N [sab(0, . . .)]

λ2
. (82)

The terms sab(λ2, . . .) and sab(0, . . .) are obtained numerically by calls to a Fortran function.
This drastically reduces expression sizes; for example, referring to Eq.(63), we see that if a
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term has s13 in the numerator, it is much cleaner to keep it written as s13(λi) rather than
explicitly introduce the lengthy functional form. Since all topologies depend upon a small
set of sab, optimization of the code is appreciable. As mentioned above, the denominator
structures are universal; the same ones appear in Higgs hadroproduction, electroweak gauge
boson production, bb̄ → H production in supersymmetric theories, and a host of other
phenomenologically interesting 2 → 1 processes. Structuring our numerical code by treating
the denominators and numerators of the matrix elements differently allows us to study other
processes simply.

We are now ready to discuss the topologies that appear in Higgs hadroproduction. We
first introduce some notation. We refer to a topology with four invariant masses as a
“highest-level” topology, as this is the maximum number of scalar products that can occur
in the denominator for the double real emission contributions. When we remove an invariant
mass from a topology, we refer to this as a “sub-topology” of the original term. We remind
the reader of the three classes of diagrams we introduced in the section on phase-space
parameterizations. We will refer to them as C1, C2, C3, and interferences between them as
C1 × C2, etc. Only topologies independent under rotation will be discussed; for example, if
we present 1/s13/s24, we will not consider 1/s14/s23.

• The only highest-level topology that necessarily contains a line singularity is
1/s13/s24/s34/s1h. It occurs in C2 × C3. It is also a soft topology, and therefore
begins at 1/ǫ4. We found it best to map this term into the rapidity parameterization;
with this choice, we obtain 20 sectors, as we noted in our discussion in the previous
section on line singularities. If we had chosen instead the energy parameterization,
more sectors would be required to factorize the singularities present in s1h. This is the
most difficult topology to evaluate numerically; the singular z → 1 limit creates a large
number of plus distributions at the finite level. It has a subtopology 1/s13/s24/s34 that
also has a line singularity; its remaining subtopologies do not.

• There are several highest-level topologies that necessarily contain entangled singular-
ities. The two most complicated of these are 1/s13/s23/s1h/s2h and 1/s13/s24/s1h/s2h,
which appear in C1 ×C3. They are both soft, and begin at 1/ǫ4. If we evaluate them
using the energy parameterization, we can avoid line singularities associated with s13.

• The other highest-level topology that is necessarily of entangled form is
1/s13/s23/s24/s1h (another one that requires a special discussion will be considered
later). It is not soft, and so only begins at 1/ǫ3. It appears in C1 ×C3. We can again
avoid line singularities by using the energy parameterization.

We must now discuss topologies with “quadratic” singularities. To explain this concept,
we will discuss the simplest example where quadratic singularities occur. Consider the sub-
topology 1/s23/s34/s1h in the rapidity parameterization. When we combine the expressions
in Eq.(63) with the phase space in Eq.(62), we find that this topology scales as λ−2−2ǫ

3 ;
the topology is quadratic in λ3. Singularities this strong are unphysical. If we were to
regulate them with a mass m rather than with ǫ, we would find a 1/m2 rather than a
ln(m2) singularity, which can not occur. Furthermore, the plus distribution expansion in
Eq.(22) is only valid for linear singularities. When we find quadratic singularities, we always
have a term in the numerator of the topology that renders the behavior acceptable. In
this example, we must find that the numerator scales as λ3. However, finding this scaling
requires introducing the explicit expressions for the invariant masses in terms of the λi.
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We want to do as little of this as possible in order to keep term sizes small. Topologies
with quadratic singularities in λ3 are the simplest to handle. We map all such cases to the
rapidity parameterization. Referring to Eq.(63), we observe that all the invariant masses
have a simple, overall scaling in λ3, together with a more complicated term. For example,
s1h ∼ λ3, s1h ∼ (1 − λ3) s13 ∼ (1 − λ3), etc. We find that introducing this overall factor is
sufficient to cancel quadratic singularities; the terms in brackets that appear in these scalar
products never enter the cancellation, and can be kept implicit. This allows us to keep the
term sizes small.

The remaining quadratic topologies, i.e., those with a quadratic singularity in a variable
other then λ3, require a slightly more involved procedure. There is typically a combination of
invariant masses in the numerator for which we must introduce an explicit parameterization
in order to regulate the singularity.

• In the interference C1 ×C1, we find the topology 1/s2
13/s

2
24. This is factorizable in the

energy parameterization; however, referring to Eq.(45), we observe that it scales as
(1 − λ2)

−2−ǫλ−2−ǫ
3 . The relevant numerator structure that regulates these quadratic

singularities is
(s14s23 − s34)

2 ∝ (1 − λ2)λ3(1 − z)4. (83)

The (1 − z)4 factor that appears ensures that this topology is not soft.

• Two other similar quadratic topologies that appear are 1/s2
24/s

2
1h and 1/s2

24/s13/s1h.
The first comes from C3×C3. It is factorizable in the rapidity parameterization, where
we find that it scales as (1 − λ2)

−2−ǫ. The second topology comes from C1 × C3, and
necessarily contains entangled singularities. We can avoid a line singularity in the
energy parameterization, where we find that it also scales as (1 − λ2)

−2−ǫ. They are
both regulated by the same numerator structure as above, (s14s23 − s34)

2. Neither
topology is soft.

• The final two quadratic topologies appear in C2 × C2: 1/s2
34/s

2
1h and 1/s2

34/s1h/s2h.
They are factorizable in the rapidity parameterization, where we find that they scale
as λ−2−ǫ

1 . The required numerator structure is

(zs23 − s13s1h − s23s1h − s23)
2 ∝ λ1λ

2
3(1 − λ3)

2(1 − z)4, (84)

which also ensures that the topology is not soft and that quadratic singularities in λ1

cancel.

All of the remaining topologies that are needed for Higgs hadroproduction can be mapped
directly to a factorized form in either the energy or rapidity parameterization. We find the
following highest-level topologies:

• 1/s23/s24/s
2
1h in C3 × C3, which we map to the rapidity parameterization;

• 1/s23/s34/s
2
1h in C2 × C3, which we map to the rapidity parameterization;

• 1/s23/s34/s1h/s2h in C2 × C3, which we map to the rapidity parameterization;

• 1/s13/s14/s23/s24 in C1 × C1, which we map to the energy parameterization.

Only the final two topologies in this list are soft. We can directly apply the expansion in
Eq.(22) to these terms to extract the phase-space singularities.
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IX. RESULTS

In this Section we describe phenomenological results obtained using our calculation. Our
primary goal is to illustrate the range of observables that can be studied using the approach
discussed in this paper, not to perform a comprehensive study of the Higgs boson signal at
the LHC. A state-of-the-art phenomenological analysis of the Higgs boson signal is required
for two reasons. First, it can be used to optimize cuts, which is important for enhancing the
signal-to-background ratio. Second, it is useful for exposing uncertainties in the theoretical
prediction for the Higgs boson signal, including truncation of the perturbative expansion at
NNLO, choices of the factorization and the renormalization scales, and imprecise knowledge
of parton distributions and αs(Mz). Although such a study is beyond the scope of this
paper, we hope that the examples presented below are sufficiently convincing to demonstrate
that our approach permits a computation of arbitrary observables related to the reaction
pp → H +X → Higgs decay products+X. In particular, we present below the fully realistic
NNLO cross sections for the Higgs boson signal in the di-photon decay channel, where the two
photons in the final state satisfy all the selection criteria (cuts on photon pseudorapidities,
transverse momenta, and geometric isolation from significant hadronic activity) used by the
ATLAS and CMS collaborations.

We remind the reader that we work in the limit of an infinitely heavy top quark, in which
the Higgs boson coupling to gluons is point-like. However, all the results presented in this
Section are rescaled by a factor

F (mt) =
σLO(mt)

σLO(mt = ∞)
. (85)

This rescaling accounts for the effects of the finite top mass exactly for LO cross sections,
and provides an approximate description of the top mass dependence at higher orders. For
NLO calculations, this is known to be an excellent approximation, and we expect it to work
well at NNLO also.

All the results that we present in this Section can be divided into two categories, de-
pending on whether or not the decay of the Higgs boson into two photons is considered.
We first study the simpler case, in which the Higgs boson is treated as a stable particle,
and investigate the various kinematic distributions of the Higgs. We then turn to the anal-
ysis of the Higgs signal in the di-photon channel, and present the NNLO cross sections and
the distributions in the pseudorapidity difference |ηγ,1 − ηγ,2|/2 and the average transverse
momentum (pγ,1

⊥
+ pγ,2

⊥
)/2 of the two photons.

The rapidity distribution of the Higgs boson with mass mh = 120 GeV is shown in Fig. 3
at LO, NLO, and NNLO in QCD perturbation theory. The bands are obtained by equating
the factorization and the renormalization scales µf = µr = µ, and then varying µ in the range
mh/2 ≤ µ ≤ 2mh. We use the parton distribution functions (pdfs) from the MRST2001
set [70], and employ mode 1 as the default mode for pdf evolution. Higher order QCD
corrections to the Higgs rapidity distribution exhibit behavior similar to the corrections to
the inclusive cross section; the large increase in dσ/dY from LO to NLO, is not followed by
a similar large increase from NLO to NNLO. The NNLO corrections are uniform over the
central rapidity interval |Y | < 2, and can therefore be obtained to good approximation by
re-scaling the NLO rapidity distribution by a universal, rapidity-independent factor.

For a Higgs boson heavier than ∼ 140 GeV, the decay H → W+W− becomes the dom-
inant decay mechanism, making the Higgs branching ratio into two photons quite small;
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FIG. 3: Bin-integrated Higgs boson rapidity distribution at the LHC. The bands indicate the scale

choice mh/2 ≤ µ ≤ 2mh.

consequently, the two photon signal can not be used as the primary trigger for the Higgs.
Searching for the Higgs boson in the W+W− decay mode requires the introduction of addi-
tional cuts to suppress the background due to the production and subsequent decay of a pair
of top quarks. Since the hadronic jets in top pair production have, on average, larger trans-
verse momenta than hadronic jets in Higgs hadroproduction, the significance of the Higgs
signal can be enhanced by imposing a jet veto on the recoiling hadronic system [71, 72]. In
Fig. 4 we present the rapidity distribution of the Higgs boson with mass mh = 150 GeV,
when all jets in the final state of the reaction pp → H + X are required to have transverse
momenta smaller than pjet

T,veto = 40 GeV. The jets are identified with the cone algorithm,
using a cone size R = 0.4.

FIG. 4: Bin-integrated Higgs boson rapidity distributions at the LHC with a jet veto applied.
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It is instructive to compare both the magnitude of the perturbative corrections and the
residual scale dependence of the Higgs rapidity distributions with and without the jet veto.
Although Figs. 3,4 refer to different masses of the Higgs boson, a qualitative comparison
is still possible; as is known from the NNLO computation of the inclusive cross section,
the relative magnitude of the NNLO corrections does not depend strongly on the Higgs
boson mass. From Figs. 3,4 we observe that the application of the jet veto leads to a
better perturbative stability of the rapidity distribution; the perturbative corrections are
smaller when the jet veto is applied, and there is a complete overlap of the NNLO scale
dependence band with the NLO band, for most rapidities. This comparison shows that large
and perturbatively unstable contributions to the Higgs boson hadroproduction cross section
are related to kinematic configurations where the Higgs is produced with large transverse
momentum. This feature does not imply a breakdown of the perturbative expansion; it
merely reflects the fact that for Higgs hadroproduction, the leading order partonic process
is gg → H , so that at LO the Higgs boson is produced with zero transverse momentum.
Therefore, if Higgs boson production with phiggs

⊥
6= 0 is considered, our NNLO computation

includes just two terms in the perturbative expansion in the strong coupling constant, and
is therefore a NLO computation.

The excellent convergence observed for the jet-vetoed rapidity distribution with pjet
T,veto =

40 GeV is partly accidental. This can be seen from Fig. 5, where we show the dependence
of the Higgs boson production cross section on the value of a veto on the transverse energy
of the Higgs, pT,veto. While the LO cross section obviously does not depend on pT,veto, both
the NLO and the NNLO cross sections exhibit a significant dependence on this parameter.
It is interesting to observe that the NLO cross section reaches its asymptotic value much
faster than the NNLO one; this is related to the fact that the average pT of the Higgs boson
increases from NLO to NNLO. For example, for mh = 150 GeV, the average transverse
momenta of the Higgs boson at NLO and NNLO are 〈pNLO

⊥
〉 = 37.5 GeV and 〈pNNLO

⊥
〉 =

44.6 GeV. It is clear from Fig. 5 that the choice pT,veto = 40 GeV minimizes the NNLO
QCD corrections for mh = 150 GeV. However, other choices of pT,veto also lead to only
small differences between the NLO and the NNLO cross sections, indicating an improved
convergence of the perturbative expansion for all veto choices.

FIG. 5: The Higgs boson production cross section at the LHC as a function of pT,veto.

Another interesting feature of the NNLO result is the dependence of the jet-vetoed cross

30



section on the cone size R. At NLO, every jet is associated with a massless gluon or quark,
so there is no cone-size dependence of the cross section. At NNLO, when two partons are
close in rapidity and azimuthal angle, they are combined into a single jet. Thus, a cone-
dependence of the observable cross section appears. As can be seen from Fig. 6, the cross
section decreases when the cone size is increased over a large range of R; however, at large
values of R the cross section starts to increase again. This is a consequence of the fact
that, originally, combining two energetic partons into a single jet increases its transverse
momentum. However, after the cone size becomes so large that two partons which are back-
to-back in the transverse plane are combined to form a single jet, the momentum of such
a jet becomes smaller than the momenta of the individual partons. This effect drives an
increase in the cross section for R ≥ 2.5.

FIG. 6: The Higgs boson production cross section at the LHC with a jet-veto of pT,veto = 40 GeV,

as a function of the cone size R.

Since the rapidity of the Higgs boson is not probed, the results of Fig. 6 can also be
obtained [71] by subtracting the NLO contributions for H + 1 jet production [59, 60] from
the NNLO total cross section. We have compared our results with those in Refs. [59, 60],
and have found excellent agreement.

We now discuss the Higgs boson signal in pp → H + X → γγ + X. An interesting
observable is the total di-photon production cross section, subject to a number of cuts on the
kinematic variables of the two photons. These cuts, designed to enhance the signal over the
prompt photon background, include restrictions on the photon transverse momenta and the
rapidities, as well as isolation cuts. In particular, the photons are required to have transverse

momenta p
(1)
⊥

≥ 40 GeV and p
(2)
⊥

≥ 25 GeV; they must also be produced in the central
rapidity region |η| < 2.5 [42]. The isolation cuts are designed to reduce contamination of the
signal by the poorly known fragmentation contributions. We require that a photon candidate
does not have an additional transverse energy ET which is greater than ET,min = 15 GeV

deposited within a cone around it of radius Ris =
√

(η − ηγ)2 + (φ − φγ)2 = 0.4. We will

refer to this combination of cuts as the “standard photon cuts” in what follows.
In Table I we present the cross section for pp → H + X → γγ + X, divided by the

branching fraction of H → γγ, with the standard cuts imposed on the photons. We give
results through LO, NLO and NNLO in perturbation theory, for different Higgs boson masses
and for two choices of the renormalization and factorization scales. The NNLO results are
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σLO/Brγγ , pb σNLO/Brγγ , pb σNNLO/Brγγ , pb

mh, GeV µ = mh/2 µ = 2mh µ = mh/2 µ = 2mh µ = mh/2 µ = 2mh

110 16.10 11.67 31.33 23.12 33.53 27.68

115 15.59 11.23 29.75 21.97 31.40 26.80

120 15.02 10.76 28.30 20.93 29.51 25.67

125 14.40 10.27 26.94 19.92 28.58 24.56

130 13.79 9.79 25.52 19.03 27.92 23.29

135 13.19 9.32 24.31 17.99 26.04 22.05

TABLE I: The cross section for pp → H + X → γγ + X, divided by the branching ratio Br(H →
γγ), at

√
s = 14 TeV with the standard cuts applied to the photons, for different values of the

Higgs mass.

mh, GeV σcut
NNLO/σinc

NNLO K
(2)
cut/K

(2)
inc

110 0.590 0.981

115 0.597 0.968

120 0.603 0.953

125 0.627 0.970

130 0.656 1.00

135 0.652 0.98

TABLE II: Comparisons between the cut and inclusive cross sections for different Higgs masses.

The second column contains the ratio of the NNLO cross section with the standard cuts over the

inclusive cross section, while the third column contains the ratio of cut and inclusive results for

the K-factor K(2) = σNNLO/σNLO. We have set µ = mh/2.

accurate to 1%, while the LO and NLO numbers are accurate to 0.1%. The perturbative
corrections to the di-photon signal follow the pattern of the corrections to the inclusive
Higgs production cross section. We note the apparent convergence of the di-photon signal,
with the NNLO corrections increasing the NLO result by up to ∼ 20%, depending on the
value of µ and the Higgs boson mass. The NNLO and NLO scale dependence bands overlap
significantly, and the NNLO scale dependence is reduced by a factor of two compared to the
NLO dependence.

It is interesting that the NNLO corrections are much smaller when the scale µ = mh/2 is
chosen. This is in accord with the observation that the typical transverse momentum of the
Higgs boson is parametrically smaller than the Higgs mass mh; because of the rapid increase
of the gluon pdf at low x, the Higgs bosons are produced close to threshold. Since the
factorization scale should be chosen close to a typical transverse momentum of the Higgs,
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selecting µ = mh/2 expedites the convergence of the perturbative expansion. Fig. 7 shows
the dependence of the Higgs signal on the choice of the scale for mh = 120 GeV. As expected,
we find that the NNLO perturbative corrections are small for µ ∼ 40 − 50 GeV. We note
that the threshold resummed results for the Higgs hadroproduction cross section [53] agree
very well with the fixed order results for smaller scale choices such as µ ∼ mh/2, while
they differ from the fixed order results by up to several percent for larger scale choices. It
appears, from the stability of the perturbative series and the agreement with the resummed
result, that µ ∼ mh/2 is a better scale choice for Higgs hadroproduction.

FIG. 7: The Higgs channel pp → H +X → γγ+X with the standard cuts imposed on the photons,

as a function of scale choice.

In Table II we present several comparisons between the inclusive NNLO cross section, and
the NNLO cross section computed with the standard cuts. Our goal in doing this is two-fold:
to understand how the cross section is affected by the standard cuts, and to see how well the
realistic cut cross section can be approximated if only the inclusive NNLO result is known.
We adopt µ = mh/2 for these comparisons. These results are valid to approximately 2%. In
the second column of Table II we have presented the ratio of the NNLO cross section with
the standard cuts over the inclusive NNLO result. The reduction of the cross section caused
by the cuts ranges from 40% for mh < 120 GeV to 30% for mh > 150 GeV. We note that
most of this reduction comes from the p⊥ and η cuts; the isolation cuts decrease the ratio
by less than 3%. This is expected; there is no cross section enhancement when a parton
is emitted along the photon direction, so this phase-space region contributes minimally to
the total result. We note that the cuts become less effective at larger mh, i.e., the ratio
increases. For larger Higgs masses, the average photon p⊥ increases, and therefore more
events pass the cuts.

In the third column of Table II we present the ratio of the K-factor K(2) = σNNLO/σNLO.
This is interesting for the following reason. Suppose only the differential NLO cross sec-
tion and the inclusive NNLO result are known. The best approximation for the exact

NNLO differential result would then be dσapprox
NNLO = dσNLO ×K

(2)
inc , where K

(2)
inc is defined with

the inclusive cross sections. Calculating the cut cross section with this distribution gives

σapprox,cut
NNLO = σcut

NLO × K
(2)
inc . The ratio of this result with the exact NNLO cross section with

the standard cuts imposed is σcut
NNLO/σapprox,cut

NNLO = K
(2)
cut/K

(2)
inc ; the deviation of this ratio from

unity measures the error made by using dσapprox
NNLO to approximate the actual differential cross
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section at NNLO. We see that this deviation is less than about 5%.
In order to optimize the experimental cuts, it is desirable to have a good understanding

of the kinematic distributions of the photons, since they can provide good discriminators
between the signal and the background. While we do not discuss cut optimization in this
paper, we present two differential distributions that illustrate the range of observables that
can be studied using our calculation. In Fig. 8, the p⊥ = (pγ,1

⊥
+ pγ,2

⊥
)/2 distribution is

shown for mh = 120 GeV. We observe large perturbative corrections close to the kinematic
boundary at leading order, p⊥ < mh/2 = 60 GeV, where resummation of large logarithms
is required. However, the presence of a large peak near the LO kinematic boundary ap-
pears to be a reliable result, as it appears without drastic modification at both NLO and
NNLO. Since the background should not contain any such feature, this is potentially a useful
discriminating variable.

FIG. 8: The p⊥ = (pγ,1
⊥

+ pγ,2
⊥

)/2 distribution for the di-photon Higgs signal at the LHC.

In Fig. 9, we present the distribution of the pseudorapidity difference Ys = |ηγ,1 − ηγ,2|/2
between the two photons. This distribution is interesting since a similar distribution from the
prompt photon production background is flatter; this information can be used to enhance
the statistical significance of the Higgs signal [46]. From Fig. 9 we see that the peak at
|ηγ,1 − ηγ,2| = 0 is also present when the NNLO effects are included.

The results presented in this Section are for the di-photon Higgs signal. There are other
Higgs decay modes that are of significant interest. In particular, for moderately heavy Higgs
bosons, decays into ZZ → 4l and W+W− → l+l−νlν̄l might provide suitable channels for
discovery. Since our calculation retains all the information about the Higgs boson kinematics,
it is in principle straightforward to include Higgs decays into arbitrary final states. However,
in reality, some care must be exercised to generate the final-state decay efficiently, especially
for decays with high multiplicities and sophisticated cuts. We plan on adding additional
Higgs decay channels to our code in the future.

X. DESCRIPTION OF THE FORTRAN CODE

In this Section we describe a FORTRAN program, FEHiP, which we have written to obtain
the results described in the previous Section. As can be seen from the examples presented
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FIG. 9: The distribution in the pesudorapidity difference of the two photons, Ys = |ηγ
1 − ηγ

2 |/2.

there, FEHiP computes the cross section for Higgs boson production in hadronic collisions
through NNLO in perturbative QCD in the presence of an arbitrary measurement function.
The decays of the Higgs are treated in the narrow width approximation. At present, only the
Higgs decay into two photons is included; other decays can be added. This Section provides
instructions for using the code.

A. Download and Compile

The code can be downloaded from [73]. To compile the code, first uncompress the file
fehip.tar.gz and run the “make” script:

\home\user> tar -zxvf fehip.tar.gz

\home\user> cd FEHIP

\home\user\FEHIP> make

We have sussesfully compiled the code on Linux systems using the GNU g77 compiler. To
compile the code on other platforms the user should modify the file makefile. To run the
code, execute the program fehip:

\home\user\FEHIP> fehip

The program performs multidimensional numerical integrations using the adaptive Monte
Carlo algorithm Vegas [74]; we use its recent implementation in the CUBA library [75]. The
current version of this library, Cuba-1.0, is included in the distribution of FEHiP, and
compiles automatically with the above make script. For future updates of the Cuba library,
we refer the user to [75]; the directory FEHiP\Cuba-1.0\ and the file makefile should be
updated appropriately.

B. Basic parameters and Usage

The basic parameters that are used by FEHiP include the mass of the Higgs boson, the
type and energy of the hadron collider, the factorization and renormalization scales, and
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the order in perturbation theory through which the result is to be computed. The code
also requires the mass of the top quark and the value of the Fermi constant to compute
the normalization of the Higgs boson production cross section (cf. Eq.(85)). This input is
provided by the user in the file input.txt.

A prototype input file has the following format:

’Mass of the Higgs boson (GeV) = ’ 120d0

=============================================

’Collider (pp=0, ppbar=1) = ’ 0

’CMS collision energy (GeV) = ’ 14000d0

=============================================

’Factorization scale (GeV) = ’ 120d0

’Renormalization scale (GeV) = ’ 120d0

=============================================

’Top-quark mass (GeV) = ’ 175d0

’Fermi constant = = ’ 0.0000116639d0

=============================================

’Final-state (0=no-decay, 1=diphoton) = ’ 1

’Branching ratio = ’ 1d0

=============================================

’Perturb. Order (0=LO, 1=NLO, 2=NNLO) = ’ 1

=============================================

’Output File =’ ’result.dat’

The user should provide values for the following variables:

• The mass of the Higgs boson. This is a double precision variable that sets the
value of the Higgs boson mass mh, in GeV.

• Collider. An integer variable that defines the type of collider. For proton-proton
collisions, the value must be set to 0; for proton-antiproton collisions, the value must
be set to 1.

• Energy. A double precision variable for the energy of the collider, in GeV.

• Factorization scale. A double precision variable for the value of the factorization
scale µF , in GeV.

• Renormalization scale. A double precision variable for the value of the renormal-
ization scale µR, in GeV.

• Top-quark mass. A double precision variable for the value of the top-quark mass
mt, in GeV.

• Fermi-constant. A double precision variable for the value of the Fermi constant GF ,
in GeV−2.

• Final-state. An integer variable that determines the decay mode of the Higgs boson.
The value 0 corresponds to the “no-decay” option. In this case it is assumed that
the Higgs boson four momentum is fully reconstructed and is therefore an observable.
With the “no-decay” option, it is possible to impose cuts on the transverse momentum
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and the rapidity of the Higgs boson, and to study jet-clustering and jet-veto cuts for
the additional radiation (of up to 2 partons) in the final-state. However, no information
about the kinematics of the Higgs decay product is provided.

The value 1 corresponds to the “diphoton decay mode”. In this case, the Higgs decays
into two photons in the narrow width approximation, and the kinematics of the two
photons in the final state is fully reconstructed. Hence, arbitrary cuts on the photon
momenta can be imposed.

We note that the results for the “no-decay” mode can always be obtained from the
“decay” mode. Indeed, if no restrictions on the momenta of the individual photons
are imposed, the two options should provide identical results. However, if one is not
interested in the kinematics of the Higgs decay product, it is beneficial to declare
the “no-decay” option explicitly, since the dimensionality of the numerical integration
performed is then lowered.

Finally, we note that in the future, additional decays of the Higgs boson will be added
to the program.

• Branching ratio. A double precision variable for the value of the branching fraction
of the Higgs boson decay into the selected final state. The program computes the
Higgs production cross section in the narrow-width approximation and multiplies the
output by the ‘Branching ratio’. The value of the branching fraction for a particular
decay of the Higgs with a certain mass should be supplied by the user as an input.
Theoretical predictions for the branching fractions of the Higgs can be obtained with
the program HDECAY [76].

• Perturbative Order. An integer variable which sets the order through which the
perturbative expansion of the Higgs boson production cross section is computed. The
values 0, 1, and 2 correspond to the LO, NLO, and NNLO cross sections, respectively.

• Output File. A character string variable for the file name where the results of the
calculation are written. The output file has the following format:

proton-proton collider

CMS collision Energy = 14000.

==================================

Higgs boson mass = 120.

Factorization scale = 120.

Renormalization scale = 120.

==================================

Top-quark mass = 175.

Fermi constant = 1.16639E-05

==================================

H --> gamma gamma

Branching Ratio = 1.

==================================

NLO Cross Section

Strong coupling = 0.114230586

==================================
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=========== RESULT =================

sigma = 38.4079658 +/- 0.0362102225

chi square probability = 2.46758092E-05

=========================================

It contains a description of the input parameters and the result (sigma) for the cross
section in picobarns with the corresponding statistical error from the Vegas integration.
It also provides the χ2−probability (prob variable from the Vegas routine in CUBA),
which is an indicator of the reliability of the Monte-Carlo integration.

A number of other necessary program settings and options are not included in the user
controlled input.txt file. Some important settings can be found in the main program file
higgs.F; we have set them to values that are reasonable for practical purposes, according to
our own experience with the code. In this file, we define the parameters for Vegas, compute
the normalization of the cross section, and invoke the integration routine. For example, we
require a precision (the epsrel variable) of 1% at NNLO and of 0.1% at lower orders with
an absolute error above [10−3 × Br] pb. We note that FEHiP also writes the iteration-by-
iteration results produced by Vegas to screen, so the user can track the output; this can
easily be redirected to a separate file. This can be suppressed by modifying the appropriate
flag in higgs.F; we refer the reader to the CUBA documentation for a discussion of the
various output options.

FEHiP uses the MRST 2001 LO, NLO, and NNLO parton distribution functions [70].
These are provided with the distribution of FEHiP. We note that it is extremely inefficient
to directly call the pdf routines. Since the factorization scale and the range of the Bjorken
variable x are fixed during each run of the program, we only need a limited amount of
information about the pdfs. To optimize the code, we adopt the following strategy. When
the code is initialized, FEHiP first calls the pdf routines for a given value of the factorization
scale and computes the pdfs for 1000 different choices of x. The distribution of these points
is not uniform; we increase their density for x values where the pdfs change rapidly. We then
use interpolation with quadratic polynomials to connect the adjacent points. Consequently,
each pdf is described by an array of coefficients of these quadratic polynomials which is kept
in memory; this speeds up the execution of FEHiP enormously. We have tested that the
approximate pdf values are accurate to better than 0.05% for all x and µF values relevant
for Higgs production.

To use a different set of pdfs, the user should replace the mrstpdfs.F file with the
appropriate set, and modify the calls to the mrstlo, mrst2001, and mrstnnlo subroutines
in the file fitpdf.F. In addition, the user should change the value of αs (MZ), which is used
as an initial condition for the LO ,NLO, and NNLO evolution of the strong coupling, to the
value which is consistent with the fitting of the new pdf set. The variables asZlo, asZnlo,
and asZnnlo in the file higgs.F correspond to the fitted values for the MRST 2001 LO,
NLO, and NNLO pdfs.

C. Experimental cuts

The most complicated user input is the definition of the experimental observable; this
requires imposing cuts on the phase-space of the final state. We describe here a double
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precision function, named constraint, in the constraint.F file, which can be used for this
purpose.

The constraint function corresponds to the observable function FJ for the final state. The
NNLO parton multiplicity is assumed:

parton1(p1) + parton2(p2) → H(ph) + parton3(p3) + parton4(p4). (86)

All final-state configurations with lower multiplicities have been mapped to this “maximal”
final state by introducing additional partons with zero momentum when needed; this allows
a uniform introduction of cuts for both real and virtual corrections.

The routine uses the following (local and global) arguments :

• the Vegas-generated variables: var;

• the dimensionality ndim of the Vegas integration;

• the squared mass of the Higgs boson, m2 = m2
h, and the CMS square energy of the

colliding hadrons scm = s;

• the Bjorken variables x1, x2 and the ratio z =
m2

h

sx1x2
;

• the variables s13,s23,s14,s24 with sif = −pi·pf

p1·p2

, i = 1, 2, f = 3, 4, and the variable

s34 = p3·p4

p1·p2
;

• the variables s1v,s2v with siv = (pi−ph)2

2p1·p2
, i = 1, 2;

• the variables s3v,s4v with svf =
(pf +ph)2

2p1·p2
, f = 3, 4.

From these variables we can reconstruct the components of the momenta of all particles in
the final state, and impose cuts which define the observable. We can also generate (using
the var array) the required additional phase-space variables for the subsequent decay of the
Higgs boson.

After the appropriate variable declarations at the beginning of the routine, we proceed
by generating phase-space variables for the two photons coming from the decay

H(ph) → γa(qa) + γb(qb), (87)

using a convenient parameterization in terms of invariant masses formed from the photon
momenta qa,b and the initial state partonic momenta p1,2. The routine, for each Vegas event,
computes the following quantities.

• The transverse energy of: (1) the Higgs boson, pT; (2) parton 3, pt3; (3) parton 4,
pt4; (4) γa, ptga; (5) γb, ptgb.

• The energy of: (1) the Higgs boson, En; (2) parton 3, En3; (3) parton 4, En4; (4) γa,
Ena; (5) γb, Enb.

• The momentum along the beam axis of: (1) the Higgs boson, pZ; (2) parton 3,
pz3; (3) parton 4, pz4; (4) γa, pza; (5) γb, pzb.

39



The above variables can be defined for all events, including the ones where unresolved
(soft/collinear) partons and photons are generated in the final state. However, the pseu-
dorapidity and relative angles of massless particles can be sensibly defined only if they are
resolved. To discriminate, we introduce a cutoff for the transverse energy of photons and par-
tons in the final state, ptbuf = 0.01GeV. We then use two flags, topflag and photonflag,
to characterize the event according to how many partons and photons have a transverse
energy above the cutoff. For every event we define:

• topflag = 0d0: two unresolved partons in the final state, pt3,pt4 < ptbuf.

• topflag = 1d0: one resolved and one unresolved parton in the final state, pt3 <

ptbuf, pt4 > ptbuf or pt4 < ptbuf, pt3 > ptbuf. For such an event we compute
the additional variables:

– the transverse energy of the resolved parton: ptr.

– the rapidity of the resolved parton: etar.

• topflag = 2d0: two resolved partons pt3,pt4 > ptbuf, and the Higgs boson with
non-zero transverse energy, pT > 0. For this event we also compute:

– the pseudo-rapidity of parton 3, eta3, and parton 4, eta4.

– the azimuthal angle between parton 3 and parton 4: phi34.

• topflag = 3d0: corresponds to the (rare) configuration with two resolved partons,
pt3,pt4 > ptbuf, and the Higgs boson with zero transverse energy, pT = 0. For this
event we also compute:

– the pseudo-rapidity of parton 3, eta3, and parton 4, eta4.

We also define:

• photonflag = 0d0: at least one unresolved photon in the final state, ptga < ptbuf

or ptgb < ptbuf.

• photonflag = 1d0: corresponds to two resolved photons ptga,ptgb > ptbuf, and
the Higgs boson with non-zero transverse energy pT > 0. For this event we also
compute:

– the pseudo-rapidity of γa, etaa, and γb, etab.

• photonflag = 2d0: two resolved photons pt3,pt4 > ptbuf, and the Higgs boson
with zero transverse energy, pT = 0. For this event we also compute:

– the pseudo-rapidity of γa, etaa, and γb, etab.

In order to study the isolation of photons, the routine computes the relative azimuthal angles
of resolved photons with resolved partons. This can be done for the following combinations
of flag values.

• photonflag = 1d0,2d0 and topflag = 2d0: The program computes the azimuthal
angles for the pairs
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– γa, parton3: angle phi3a.

– γb, parton3: angle phi3b.

– γa, parton4: angle phi4a.

– γb, parton4: angle phi4b.

• photonflag = 1d0 and topflag = 1d0: The program computes the azimuthal angles
for the pairs

– γa, resolved parton: angle phira.

– γb, resolved parton: angle phirb.

The above variables completely describe the phase-space for Higgs production and decay
into photons through NNLO, and can be used to implement standard experimental cuts.
We now describe the structure of constraint.F, and indicate how the reader modify the
file to include other cuts.

The section of constraint.F marked as STEP 1 performs the generation of the photon
phase-space. STEP 2 computes the variables we have just described. We have placed
the cuts required for the numerical results of this paper in the section labeled STEP 3:

IMPLEMENTATION OF CUTS. These are:

• the Higgs boson rapidity cut;

• the Higgs boson pT cut;

• the jet-veto;

• cuts on the pseudorapiditiy and pT of each photon;

• an isolation veto on each photon;

• a cut on the average pT of the photons;

• a cut on the pseudorapidity difference of the photons.

An event is accepted if the constraint function returns the value 1d0, and rejected when
it returns 0d0. Before any cut is applied, the value of the function is set to 1d0. Cuts are
applied successively; each cut could potentially reject the event by setting the function value
to 0d0. To control which cuts should be applied to the event, we use two flags: active,

inactive. The user can choose combinations of the above cuts by modifying the appropriate
flags, as described in constraint.F.

The cuts that are programmed in STEP 3 of the routine serve as guiding examples for
the user. When programming a new cut, some care is required for constraints on variables
which are only defined when a final state particle is resolved; the user should provide that the
constraint function returns an appropriate value for the events where the probed variable
is not defined. In the section labeled STEP 4 of the constraint.F file, we have placed a
“general” cut to guide the reader through this process. By modifying this section, it is
possible to impose any desired constraint on the final state.
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D. Other information

To summarize, the user input for FEHiP is a set of parameters in the input.txt file,
and the constraint function in the constraint.F file. To run the program, the user should
compile using the make script and execute fehip. The make script should be executed every
time that the constraint.F file is modified.

We now describe some standard running times for the observables considered in this
paper. We measure run times using the number of Vegas evaluations required to reach a
given precision; on a 3 GHz PC, 105 evaluations takes approximately 1 hour. The required
number of evaluations for observables in the “no-decay” mode is typically fairly small. To
reach 1% precision on the fully inclusive NNLO cross section at the LHC, about 1.5−2×105

evaluations are needed. To reach 1% precision on a jet-vetoed cross section, about 8 × 105

evaluations are needed. These numbers increase dramatically when the “decay” mode is
used, and the standard cuts on the photons are imposed. For 1% precision on the pp →
H + X → γγ + X cross section with pT , η, and isolation cuts imposed, 7 × 106 evaluations
are required. Computing bins for photon distributions to 2% or better precision usually
takes over 107 evaluations.

Clearly, some observables require long running times. If the program is interrupted, the
user can restart it by executing fehip. The CUBA library saves in a file the data of every
Vegas iteration; this is used to restart the program from the last completed iteration. To
force the program to restart from the first Vegas iteration, the user should type make clean

and then execute fehip.

XI. CONCLUSIONS

We have discussed the calculation of the Higgs boson production cross section in hadronic
collisions through NNLO in perturbative QCD. The kinematics of both the Higgs and the
QCD radiation is kept exactly. This allows us to consider any decay of the Higgs, and impose
arbitrary cuts on the final state. In this paper, we have focused on Higgs decays into two
photons. We stress that this calculation provides the first example of a fully realistic NNLO
calculation of the Higgs signal in the di-photon channel, where the two photons in the final
state satisfy all the selection criteria (cuts on photon pseudorapidities, transverse momenta,
and geometric isolation from significant hadronic activity) used by the ATLAS and CMS
collaborations.

To perform this calculation, we used the method of handling double real radiation de-
scribed by us in [32, 36]. We have further developed the approach in this paper, and have
described its application to Higgs hadroproduction in detail.

We have given a description of the FORTRAN code FEHiP which we used to obtain all
the numerical results presented in this paper. The code can be obtained from [73]. We
hope that FEHiP will be used when state-of-the-art knowledge of the Higgs signal at the
LHC is required. In particular, since arbitrary cuts on the two photons and accompaning
hadronic radiation are allowed, the code can be used to optimize cuts to enhance the signal-
to-background ratio.

It was possible to obtain the results reported in this paper by further developing the
approach suggested in [32, 36]. Since this computation is far more complex than those
considered in [32, 36], we believe that this is an important milestone for our approach.
However, further development of the method is desirable. We give below a discussion from
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this perspective. We indicate areas where more work is required, and describe possible
solutions to the problems of the method. We begin by listing attractive features of this
approach.

• Given a convenient parameterization of the phase-space for the real emission contri-
bution to a given process, the singularities are extracted in an automated fashion; the
human intervention required to achieve the final result is minimal. No classification
of the various singular regions is required. Similarly, the cancellation of singularities
is performed completely numerically, without the need for any analytic integrations.
In principle, this method therefore provides an algorithm for the extraction and can-
cellation of singularities through the NnLO order in perturbation theory.

• Not only “real” singularities, but also some integrable ones are written in a factorized
form. Consider the integral

I1 =

1
∫

0

dxdy xǫ

x + y
. (88)

Although the singularity at the point x ∼ y ∼ 0 in I1 is integrable, we can apply the
algorithm described in Section VII to it anyway. I1 then becomes

I1 = I
(a)
1 + I

(b)
1 , Ia

1 =

1
∫

0

dxdy xǫ

1 + y
, Ib

1 =

1
∫

0

dxdy (xy)ǫ

1 + x
. (89)

It is clear that the integrals I
(a,b)
1 are now written in forms very convenient for numerical

evaluation. In addition to extracting real singularities, our technqiue also smooths
integrable singularities, thereby improving the numerical behavior of the integrand.

• The complete kinematic information of the process is preserved. In principle, this
enables us to use this result to construct a partonic level Monte-Carlo event generator.

In spite of these attractive features, there are also some problems with this approach.

• The most important drawback of the method is that it produces large expressions,
which require long run-times for numerical evaluation and lead to difficulties with
optimizing the code. Unfortunately, this is a natural feature of the approach; as
we pointed out earlier, each time an entangled or line singularity is extracted, the
expression size increases. However, it is useful to think of ways to ameliorate this
behavior. It is instructive to recall how a somewhat similar problem was solved for
NLO calculations. It was found that squaring matrix elements for unpolarized initial
and final states is not a very practical option, since huge expressions are produced.
Very compact expressions for scattering amplitudes can be obtained by working in the
helicity basis. A similar approach can be attempted here. However, a given helicity
amplitude contains terms that belong to different topologies, in the language of this
paper. Since the separation into topologies is a crucial element of our approach, it is
not clear how to to use helicity amplitudes efficiently.

• By default, this approach might give more information than desired. All possible
contributions to the cross section are automatically obtained. For example, in the
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case of Higgs hadroproduction, we calculate H + 2 jets at LO, H + 1 jet at NLO and
H + 0 jets at NNLO. Imagine now that we want just the cross section of H + 1 jet
at NLO. Obviously, the number of entangled and line singularities we must deal with
should be smaller. However, a blind application of the algorithm in Section VII will
automatically handle all singularities, including those needed for H +0 jets at NNLO.
It should be possible to implement additional criteria in the algorithm to prevent
this from happening; for example, a check on the Higgs pT could be included, or a
counting of the number of jets could be imposed. In the calculation of e+e− → 2
jets at NNLO described in [32, 36], the e+e− → 3 jets cross section at NLO can be
obtained efficiently by including a call to the jet algorithm in the routine that handles
singularities. However, a better understanding of these restrictions is needed before
the approach can be used efficiently for processes with more complicated final states.

• Making a partonic level event generator out of our result is tedious, although possible.
Because each sector corresponds to a different mapping of the invariant masses into
λ-variables, each sector must be generated as a separate channel in a multi-channel
Monte-Carlo. Our result for the Higgs hadroproduction cross section contains approx-
imately a hundred sectors. In principle, this is not a problem, but it can definitely
become an important issue in practice. The only solution to this issue that we can see
is a better choice of phase-space parameterization, which leads to a smaller number of
sectors.

Acknowledgments. We thank T. Hahn for helpful communications regarding the nu-
merical integration package CUBA. We are grateful to Michael Peskin and Zoltan Kunszt
for their help in finding the necessary computing resources, and the SLAC IT group for
their technical support. We would like to thank John Campbell and Massimiliano Grazz-
ini for comparisons. We are grateful to Guenther Dissertori and Zoltan Kunszt for useful
suggestions and discussions. We would like to thank Michael Dittmar and Lance Dixon for
pointing out mistakes in Figs. 7 and 9 in an earlier version of the paper. This work was
started when the authors were visiting the Kavli Institute for Theoretical Physics, UC Cali-
fornia, Santa Barbara. This research was supported by the US Department of Energy under
contract DE-FG03-94ER-40833 and the Outstanding Junior Investigator Award DE-FG03-
94ER-40833, and by the National Science Foundation under contracts P420D3620414350,
P420D3620434350.

44



[1] F. V. Tkachov, Phys. Lett. B100, 65 (1981);

K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B192, 159 (1981).

[2] V. A. Smirnov, Phys. Lett. B 460, 397 (1999); J. B. Tausk, Phys. Lett. B 469, 225 (1999);

V. A. Smirnov and O. L. Veretin, Nucl. Phys. B 566, 469 (2000); C. Anastasiou, T. Gehrmann,

C. Oleari, E. Remiddi and J.B. Tausk, Nucl. Phys. B580, 577 (2000); T. Gehrmann and E.

Remiddi, Nucl. Phys. B580, 485 (2000); T. Gehrmann and E. Remiddi, Nucl. Phys. B601,

248 (2001); Nucl. Phys. B601, 287 (2001); T. Gehrmann and E. Remiddi, Nucl. Phys. B640,

379 (2002).

[3] Z. Bern, L.J. Dixon and A. Ghinculov, Phys. Rev. D63, 053007 (2001); C. Anastasiou, E.W.N.

Glover, C. Oleari and M.E. Tejeda-Yeomans, Nucl. Phys. B601, 318 (2001); Nucl. Phys. B601,

341 (2001); C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Nucl. Phys.

B605, 486 (2001); E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Nucl. Phys. B605,

467 (2001); Z. Bern, A. De Freitas and L.J. Dixon, JHEP 0109, 037 (2001); Z. Bern, A. De

Freitas, L.J. Dixon, A. Ghinculov and H.L. Wong, JHEP 0111, 031 (2001); C. Anastasiou,

E.W.N. Glover and M.E. Tejeda-Yeomans, Nucl. Phys. B629, 255 (2002); T. Binoth, E.W.N.

Glover, P. Marquard and J.J. van der Bij, JHEP 0205, 060 (2002); Z. Bern, A. De Freitas

and L.J. Dixon, JHEP 0306, 028 (2003); E.W.N. Glover and M.E. Tejeda-Yeomans, JHEP

0306, 033 (2003).

[4] L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis and E. Remiddi, Nucl. Phys.

B627, 107 (2002); L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis and E.

Remiddi, Nucl. Phys. B642, 227 (2002).

[5] S. Laporta, Int. J. Mod. Phys. A15, 5087 (2000).

[6] F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

[7] T. Kinoshita, J. Math. Phys. 3, 650 (1962).

[8] T. D. Lee and M. Nauenberg, Phys. Rev. 133, B1549 (1964).

[9] C. Anastasiou and K. Melnikov, Nucl. Phys. B 646, 220 (2002) [arXiv:hep-ph/0207004].

[10] C. Anastasiou and K. Melnikov, Phys. Rev. D 67, 037501 (2003) [arXiv:hep-ph/0208115].

[11] C. Anastasiou, L. J. Dixon and K. Melnikov, Nucl. Phys. Proc. Suppl. 116, 193 (2003)

[arXiv:hep-ph/0211141].

[12] C. Anastasiou, L. J. Dixon, K. Melnikov and F. Petriello, Phys. Rev. Lett. 91, 182002 (2003)

[arXiv:hep-ph/0306192].

[13] C. Anastasiou, L. Dixon, K. Melnikov and F. Petriello, Phys. Rev. D 69, 094008 (2004)

[arXiv:hep-ph/0312266].

[14] K. Melnikov and A. Mitov, Phys. Rev. D 70, 034027 (2004) [arXiv:hep-ph/0404143].

[15] A. Mitov, arXiv:hep-ph/0410205.

[16] G. Sterman and S. Weinberg, Phys. Rev. Lett. 39, 1436 (1977).

[17] S. Catani and M. H. Seymour, Nucl. Phys. B 485, 291 (1997) [Erratum-ibid. B 510, 503

(1997)] [arXiv:hep-ph/9605323].

[18] S. Catani, S. Dittmaier, M. H. Seymour and Z. Trocsanyi, Nucl. Phys. B 627, 189 (2002)

[arXiv:hep-ph/0201036].

[19] R. K. Ellis, D. A. Ross and A. E. Terrano, Nucl. Phys. B 178, 421 (1981); W. T. Giele and

E. W. N. Glover, Phys. Rev. D 46, 1980 (1992); K. Fabricius, I. Schmitt, G. Schierholz and

G. Kramer, Phys. Lett. B 97, 431 (1980); F. Gutbrod, G. Kramer and G. Schierholz, Z. Phys.

45

http://arXiv.org/abs/hep-ph/0207004
http://arXiv.org/abs/hep-ph/0208115
http://arXiv.org/abs/hep-ph/0211141
http://arXiv.org/abs/hep-ph/0306192
http://arXiv.org/abs/hep-ph/0312266
http://arXiv.org/abs/hep-ph/0404143
http://arXiv.org/abs/hep-ph/0410205
http://arXiv.org/abs/hep-ph/9605323
http://arXiv.org/abs/hep-ph/0201036


C 21, 235 (1984); Z. Kunszt, A. Signer and Z. Trocsanyi, Phys. Lett. B 336, 529 (1994);

Z. Kunszt and D. E. Soper, Phys. Rev. D 46, 192 (1992); K. Fabricius, I. Schmitt, G. Kramer

and G. Schierholz, Z. Phys. C 11, 315 (1981); G. Kramer and B. Lampe, Fortsch. Phys. 37, 161

(1989); A. Bassetto, M. Ciafaloni and G. Marchesini, Phys. Rept. 100, 201 (1983); B. Bailey,

J. F. Owens and J. Ohnemus, Phys. Rev. D 46, 2018 (1992); F. Aversa, P. Chiappetta,

M. Greco and J. P. Guillet, Nucl. Phys. B 327, 105 (1989); F. Aversa, L. Gonzales, M. Greco,

P. Chiappetta and J. P. Guillet, Z. Phys. C 49, 459 (1991); P. Chiappetta, R. Fergani and

J. P. Guillet, Z. Phys. C 69, 443 (1996); W. T. Giele, S. Keller and E. Laenen, Phys. Lett.

B 372, 141 (1996); S. D. Ellis, Z. Kunszt and D. E. Soper, Phys. Rev. D 40, 2188 (1989);

S. D. Ellis, Z. Kunszt and D. E. Soper, Phys. Rev. Lett. 69, 1496 (1992); S. Frixione, Z. Kunszt

and A. Signer, Nucl. Phys. B 467, 399 (1996).

[20] D. A. Kosower, Phys. Rev. D 67, 116003 (2003) [arXiv:hep-ph/0212097].

[21] D. A. Kosower, Phys. Rev. Lett. 91, 061602 (2003) [arXiv:hep-ph/0301069].

[22] S. Weinzierl, JHEP 0303, 062 (2003) [arXiv:hep-ph/0302180].

[23] S. Weinzierl, JHEP 0307, 052 (2003) [arXiv:hep-ph/0306248].

[24] A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Nucl. Phys. B 682, 265 (2004)

[arXiv:hep-ph/0311276].

[25] A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, Nucl. Phys. B 691, 195 (2004)

[arXiv:hep-ph/0403057].

[26] A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, hep-ph/0407023.

[27] W. B. Kilgore, Phys. Rev. D 70, 031501 (2004) [arXiv:hep-ph/0403128].

[28] S. Frixione and M. Grazzini, arXiv:hep-ph/0411399.

[29] S. Catani, Phys. Lett. B 427, 161 (1998) [arXiv:hep-ph/9802439].

[30] G. Sterman and M. E. Tejeda-Yeomans, Phys. Lett. B 552, 48 (2003) [arXiv:hep-ph/0210130].

[31] Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B 425, 217 (1994);

D. A. Kosower, Nucl. Phys. B 552, 319 (1999); D. A. Kosower and P. Uwer, Nucl. Phys. B

563, 477 (1999); Z. Bern, V. Del Duca and C. R. Schmidt, Phys. Lett. B 445, 168 (1998);

Z. Bern, V. Del Duca, W. B. Kilgore and C. R. Schmidt, Phys. Rev. D 60, 116001 (1999);

S. Catani and M. Grazzini, Nucl. Phys. B 591, 435 (2000); D. A. Kosower, Phys. Rev. D 57,

5410 (1998); F. A. Berends and W. T. Giele, Nucl. Phys. B 313, 595 (1989); J. M. Campbell

and E. W. N. Glover, Nucl. Phys. B 527, 264 (1998); S. Catani and M. Grazzini, Phys. Lett.

B 446, 143 (1999); S. Catani and M. Grazzini, Nucl. Phys. B 570, 287 (2000); V. Del Duca,

A. Frizzo and F. Maltoni, Nucl. Phys. B 568, 211 (2000).

[32] C. Anastasiou, K. Melnikov and F. Petriello, Phys. Rev. D 69, 076010 (2004)

[arXiv:hep-ph/0311311].

[33] T. Binoth and G. Heinrich, Nucl. Phys. B 585, 741 (2000).

[34] K. Hepp, Commun. Math. Phys. 2, 301 (1966).

[35] M. Roth and A. Denner, Nucl. Phys. B 479, 495 (1996) [arXiv:hep-ph/9605420].

[36] C. Anastasiou, K. Melnikov and F. Petriello, Phys. Rev. Lett. 93, 032002 (2004)

[arXiv:hep-ph/0402280].

[37] C. Anastasiou, K. Melnikov and F. Petriello, Phys. Rev. Lett., in press

[arXiv:hep-ph/0409088].

[38] M. Carena and H. E. Haber, Prog. Part. Nucl. Phys. 50, 63 (2003) [arXiv:hep-ph/0208209].

[39] G. Altarelli and M. W. Grunewald, arXiv:hep-ph/0404165.

[40] J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B106, 292 (1976);

M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Sov. J. Nucl. Phys. 30, 711

46

http://arXiv.org/abs/hep-ph/0212097
http://arXiv.org/abs/hep-ph/0301069
http://arXiv.org/abs/hep-ph/0302180
http://arXiv.org/abs/hep-ph/0306248
http://arXiv.org/abs/hep-ph/0311276
http://arXiv.org/abs/hep-ph/0403057
http://arXiv.org/abs/hep-ph/0407023
http://arXiv.org/abs/hep-ph/0403128
http://arXiv.org/abs/hep-ph/0411399
http://arXiv.org/abs/hep-ph/9802439
http://arXiv.org/abs/hep-ph/0210130
http://arXiv.org/abs/hep-ph/0311311
http://arXiv.org/abs/hep-ph/9605420
http://arXiv.org/abs/hep-ph/0402280
http://arXiv.org/abs/hep-ph/0409088
http://arXiv.org/abs/hep-ph/0208209
http://arXiv.org/abs/hep-ph/0404165


(1979).

[41] J.F. Gunion, P. Kalyniak, M. Soldate and P. Galison, Phys. Rev. D34, 101 (1986); J.F.

Gunion, G. L. Kane and J. Wudka, Nucl. Phys. B299, 231 (1988).

[42] ATLAS collaboration, “Atlas detector and physics performance; technical design report.”, vol.

2, report CERN/LHCC 99-15, ATLAS-TDR-15;

CMS collaboration. “CMS: The electromagnetic calorimeter, technical design report.”, report

CERN/LHCC 97-33, CMS-TDR-4;

V. Tisserand, Ph.D. thesis, LAL 97-01. February 1997;

M. Wielers, “Isolation of photons.”, report ATL-PHYS-2002-004;

“Summary of the CMS potential for the Higgs boson discovery”, CMS NOTE 2003/033.

[43] R. K. Ellis, I. HInchliffe, M. Soldate and J.J. van der Biij, Nucl. Phys. B297, 221 (1988).

[44] S. Frixione, arXiv:hep-ph/9809397.

[45] T. Binoth, J. P. Guillet, E. Pilon and M. Werlen, Eur. Phys. J. C 16, 311 (2000)

[arXiv:hep-ph/9911340].

[46] Z. Bern, L. J. Dixon and C. Schmidt, Phys. Rev. D 66, 074018 (2002) [arXiv:hep-ph/0206194].

[47] S. Dawson, Nucl. Phys. B359, 283 (1991).

[48] A. Djouadi, M. Spira and P.M. Zerwas, Phys. Lett. B264, 440 (1991); D. Graudenz, M. Spira

and P.M. Zerwas, Phys. Rev. Lett. 70, 1372 (1993); M. Spira, A. Djouadi, D. Graudenz and

P.M. Zerwas, Nucl. Phys. B453, 17 (1995).

[49] S. Catani, D. de Florian and M. Grazzini, JHEP 0105, 025 (2001) [arXiv:hep-ph/0102227].

[50] R. V. Harlander and W. B. Kilgore, Phys. Rev. D 64, 013015 (2001) [arXiv:hep-ph/0102241].

[51] R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002)

[arXiv:hep-ph/0201206].

[52] V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B 665, 325 (2003)

[arXiv:hep-ph/0302135].

[53] S. Catani, D. de Florian, M. Grazzini and P. Nason, JHEP 0307, 028 (2003)

[arXiv:hep-ph/0306211].

[54] V. Ravindran, J. Smith and W. L. Van Neerven, Nucl. Phys. B 634, 247 (2002)

[arXiv:hep-ph/0201114].

[55] C. Balazs and C. P. Yuan, Phys. Lett., B478, 192 (2000).

[56] G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Phys. Lett. B564, 65 (2003).

[57] A. Kulesza, G. Sterman, and W. Vogelsang, Phys. Rev. D69, 014012 (2004).

[58] E.L. Berger and J. Qiu. Phys. Rev. D67, 034026 (2003).

[59] D. de Florian, M. Grazzini and Z. Kunszt, Phys. Rev. Lett. 82, 5209 (1999)

[arXiv:hep-ph/9902483].

[60] J. M. Campbell and R. K. Ellis, Phys. Rev. D 62, 114012 (2000) [arXiv:hep-ph/0006304];

http://mcfm.fnal.gov.

[61] S. Frixione and B.R. Webber, JHEP 0206, 029 (2002);

S. Frixione, P. Nason and B.R. Webber, JHEP 0308, 007 (2003).

[62] Lance J. Dixon and M. S. Siu, Phys. Rev. Lett. 90, 252001 (2003) [arXiv:hep-ph/0302233].

[63] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).

[64] G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B 175, 27 (1980); W. Furmanski and

R. Petronzio, Phys. Lett. B 97, 437 (1980); E. G. Floratos, D. A. Ross and C. T. Sachrajda,

Nucl. Phys. B 129, 66 (1977) [Erratum-ibid. B 139, 545 (1978)], Nucl. Phys. B 152, 493

(1979).

[65] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B 688, 101 (2004)

47

http://arXiv.org/abs/hep-ph/9809397
http://arXiv.org/abs/hep-ph/9911340
http://arXiv.org/abs/hep-ph/0206194
http://arXiv.org/abs/hep-ph/0102227
http://arXiv.org/abs/hep-ph/0102241
http://arXiv.org/abs/hep-ph/0201206
http://arXiv.org/abs/hep-ph/0302135
http://arXiv.org/abs/hep-ph/0306211
http://arXiv.org/abs/hep-ph/0201114
http://arXiv.org/abs/hep-ph/9902483
http://arXiv.org/abs/hep-ph/0006304
http://mcfm.fnal.gov
http://arXiv.org/abs/hep-ph/0302233


[arXiv:hep-ph/0403192]; A. Vogt, S. Moch and J. A. M. Vermaseren, Nucl. Phys. B 691,

129 (2004) [arXiv:hep-ph/0404111].

[66] K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Phys. Rev. Lett. 79, 353 (1997); Nucl.

Phys. B510, 61 (1998); T. Inami, T. Kubota and Y. Okada; Z. Phys. C 18, 69 (1983).

[67] R. V. Harlander, Phys. Lett. B 492, 74 (2000) [arXiv:hep-ph/0007289].

[68] C. Anastasiou and A. Lazopoulos, JHEP 0407, 046 (2004) [arXiv:hep-ph/0404258].

[69] G. Altarelli, R.K. Ellis and G. Martinelli, Nucl. Phys. B157, 461 (1979).

[70] A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Phys. Lett. B531, 216 (2002).

[71] S. Catani, D. de Florian and M. Grazzini, JHEP 0201, 015 (2002).

[72] M. Dittmar and H. K. Dreiner, Phys. Rev. D 55, 167 (1997) [arXiv:hep-ph/9608317];

G. Davatz, G. Dissertori, M. Dittmar, M. Grazzini and F. Pauss, JHEP 0405, 009 (2004)

[arXiv:hep-ph/0402218].

[73] http://www.phys.hawaii.edu/~kirill/FEHiP.htm

[74] G. P. Lepage, CLNS-80/447.

[75] T. Hahn, arXiv:hep-ph/0404043.

[76] A. Djouadi, J. Kalinowski and M. Spira, Comput. Phys. Commun. 108, 56 (1998)

[arXiv:hep-ph/9704448].

48

http://arXiv.org/abs/hep-ph/0403192
http://arXiv.org/abs/hep-ph/0404111
http://arXiv.org/abs/hep-ph/0007289
http://arXiv.org/abs/hep-ph/0404258
http://arXiv.org/abs/hep-ph/9608317
http://arXiv.org/abs/hep-ph/0402218
http://arXiv.org/abs/hep-ph/0404043
http://arXiv.org/abs/hep-ph/9704448

	Introduction
	Higgs boson production at hadron colliders
	Notation and Setup
	Production of the Higgs boson in association with up to one parton
	Computation of the collinear subtraction terms
	Phase space parameterizations for double real emission processes
	Factorizing singularities
	Topologies for Higgs hadro-production
	Results
	Description of the FORTRAN code
	Download and Compile
	Basic parameters and Usage
	Experimental cuts
	Other information

	Conclusions
	References

