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Abstract
This manuscript is the outcome of the subgroup ‘PDFs, shadowing and pA
collisions’ from the CERN workshop ‘Hard Probes in Heavy Ion Collisions
at the LHC’. In addition to the experimental parameters for pA collisions at
the LHC, the issues discussed are factorization in nuclear collisions, nuclear
parton distribution functions (nPDFs), hard probes as the benchmark tests of
factorization in pA collisions at the LHC, and semi-hard probes as observables
with potentially large nuclear effects. Also, novel QCD phenomena in pA
collisions at the LHC are considered. The importance of the pA programme at
the LHC is emphasized.

1. WHY pA COLLISIONS: INTRODUCTION AND SUMMARY

K.J. Eskola, W. Geist and J.W. Qiu

Hard probes [1, 2] are high-energy probes of the quark–gluon plasma (QGP) which are produced
in the primary partonic collisions. The production of hard probes involves a large transfer of energy-
momentum at a scale

��� �����	�
. Such hard probes include the production of Drell–Yan dileptons,

massive gauge bosons, heavy quarks, prompt photons, and high-� � partons observed as jets and high-� �
hadrons. In pp collisions, it is well established that the inclusive cross sections of these hard processes
can be computed through collinear factorization, i.e. using short-distance cross sections of parton–parton
scatterings and well-defined universal parton distribution functions (PDFs). While the partonic sub-
cross sections and the scale evolution of the PDFs are calculable in perturbative QCD (pQCD), the
PDFs contain nonperturbative information, which must be extracted from the measured cross sections of
various hard processes.

Provided that leading-power collinear factorization is applicable also in AA collisions, the cross
sections of hard probes can be used as benchmark cross sections against which the signals and properties
of the QGP can be extracted. Therefore, it is of extreme importance that the applicability of factorization
be tested in pA interactions, especially at the LHC where truly hard probes will finally become available
for nuclear collisions.

In this document, we divide the hard probes into two classes according to their scales: hard probes
and semi-hard probes. The hard probes refer to observables with hard partonic subprocesses of energy
exchange

�
greater than several tens of GeV, up to 100 GeV and higher. For these hard probes, the

process-dependent nuclear effects (i.e. power corrections) should remain negligible. The semi-hard
probes correspond to probes at moderate scales,

�
of few GeV up to 10–20 GeV, where the process-

dependent nuclear effects may already be sizeable in pA collisions and even larger in AA collisions.
This document mainly addresses the hard and semi-hard probes in pA collisions from the factorization
(large-scale) point of view but we also discuss (Section 7) other interesting new physics which can be
explored in pA collisions at the LHC.

Section 2 summarizes the main machine parameters for the pA runs at the LHC as well as the
acceptance regions of the ALICE, CMS and ATLAS detectors. In addition to protons, the LHC machine
can accelerate light beams as dilute as the deuteron and as compact as the helium nucleus. The machine
can also accelerate a variety of heavier nuclei ranging from oxygen to lead. All three complementary
detectors, ALICE, CMS and ATLAS, have wide rapidity coverage for multiplicity measurements, the
capability of precision centrality determination in pA collisions and excellent jet reconstruction efficiency
for a range of transverse momentum, � � , and pseudorapidity, � .

Experimental data become more valuable and powerful when there are theoretical calculations to
compare with. Because of the nature of the strong interactions, our ability to do calculations and to make
predictions for hard probes in hadronic collisions completely relies on factorization in QCD perturbation
theory. For the hard probes, the benchmark tests, factorization can be expected to hold in pp, pA and
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AA collisions. For the semi-hard probes, which are sensitive to the properties of nuclear matter via
multiple parton scatterings, there is, however, a critical difference between pA and AA collisions: while
factorization may be valid for such semi-hard observables in pA collisions, it can fail in AA collisions.
Factorization in nuclear collisions is summarized in Section 3.

Nuclear parton distribution functions (nPDFs) are an essential ingredient in understanding the
magnitude of the nuclear effects on the factorized hard probe cross sections. While AA collisions typi-
cally are too complex for detailed verification of the nPDF effects on the semi-hard probe cross sections,
pA collisions provide a much cleaner environment for studies of the nPDFs. The pA collisions can also
probe the spatial dependence of the nPDFs – an important issue in the studies of hard probes in different
AA centrality classes as well as in understanding the origin of the nuclear effects (shadowing) on the
nPDFs. We devote Section 4 to discussion of several aspects of the nPDFs, ranging from global DGLAP
fits to studies of the origin of shadowing and diffractive phenomena, and PDFs in the gluon saturation
region at small values of � and

�
.

Section 5, ‘The Benchmark Tests in pA’, deals with hard probes for which the nonfactorizable
nuclear effects, i.e. process-dependent power corrections, should remain negligible. For these large-

�

processes, the factorizable nuclear effects (nuclear effects on the parton distributions) also remain small.
We emphasize that it is very important to measure these processes in pA collisions at the LHC: universal
nuclear effects that are internal to the nucleus would, if observed, confirm the practical applicability of
factorization in hard nuclear processes and would establish a reliable reference baseline for AA. It would
be especially important to verify at what scale the observed nuclear dependence becomes universal and
is completely determined by that of the nPDFs. On the other hand, observation of any significant nuclear
effects in pA would be a truly interesting and important signal of sizeable power corrections in the cross
sections and thereby also of new multiple collision dynamics of QCD.

For nuclear collisions, the very large-scale processes with
���� 100 GeV are in practice only avail-

able at the LHC, the ultimate hard probe machine. As shown in Table 1.1, due to the high cms-energy
and luminosity – higher than in AA – the counting rates of the hard probes at the scale

���
100 GeV

in pA collisions will be large enough to give sufficient statistics for reliable measurements of the nu-
clear effects. For example, in a month (assumed to be 10



s) we expect about 3.3 � 10

�
jets with



� �
100 GeV and � ���
	 2.5 to be collected in pPb collisions at � � = 8.8 GeV with the maximum

machine luminosity 1.4 � 10 �
� cm 
 � s 
 � and 2.6 � 10
�

jets with the maximum ALICE luminosity
1.1 � 10

�
�
cm 
 � s 
 � (for the luminosities, see Section 2.1). About half of these jets fall into the interval

100 GeV 	 
 � 	 120 GeV. The corresponding number of � � bosons at � ������	 2.4 is 6.8 � 10



in a
month with the maximum machine luminosity and 5.4 � 10

	
with the maximum ALICE luminosity.

Table 1.1: Expected counting rates (in 1/s, with two significant digits) of jets with transverse energy ����� 100 GeV and

rapidity � ����� 2.5 (see Section 5.3), and heavy gauge bosons at rapidities � ����� 2.4 in pPb collisions at � � = 8.8 TeV (see

Section 5.1)

Luminosity (cm ��� s �! ) Jets/s ����� s
�#" � s

� � � s

1.1 � 10
�
�

26 0.54 0.89 0.83

1.4 � 10 �
� 330 6.8 11 11

Section 6, ‘Processes with Potentially Large Nuclear Effects’, discusses the physics of the semi-
hard probes. The theoretical reference cross sections for these processes inevitably contain some model
dependence, causing unknown theoretical uncertainties in the corresponding cross sections in AA col-
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lisions. For these semi-hard probes, it is even more important to experimentally confirm the reference
cross sections in pA collisions because of the substantial non-universal nuclear dependence. That is, the
reliable reference cross sections for semi-hard probes in AA can be obtained only if the corresponding
pA measurements are performed. A concrete example of this is the clear suppression of hadrons with

� �������� GeV recently observed at RHIC in central AuAu collisions at � ��� 200 GeV relative to the
pp data [3–5]. Only with help of the p(d)A data is it possible to verify that the origin of the suppres-
sion indeed is the strongly interacting medium and not the nuclear effects, the process-dependent power
corrections and/or nPDFs, in the production of 10–20 GeV partons. A significant suppression in p(d)A
collisions would indicate that the nuclear effects, the process-dependent power corrections in particular,
would play a major role in suppressing the hadron spectrum, especially so in AA collisions. In this case,
the observed suppression in AuAu collisions would be only partly due to the dense medium. On the other
hand, a significant enhancement (Cronin effect) in p(d)A collisions would also be a signal of sizeable nu-
clear effects which would cause an even stronger enhancement of 10–20 GeV parton production in AuAu
collisions. In this case, the suppression observed in the AuAu data would, in fact, be stronger than ex-
pected based on the pp reference data. The new data on single hadron � � distributions in dAu collisions
at � � = 200 GeV at RHIC [6–8] confirm the latter case by showing the absence of suppression or even
the appearance of a Cronin-type enhancement up to � � � 8 GeV, in contrast to the strong suppression
observed in AuAu collisions. The experience at RHIC clearly demonstrates that in order to measure the
detailed properties of the strongly interacting matter (Equation of State, degrees of freedom, degree of
thermalization, etc.) produced at the LHC, one needs precise knowledge of the absolute reference cross
sections where the nuclear effects are constrained by those measured in pA collisions.

Apart from the connection to the QGP signals, we emphasize the importance of measuring the
magnitude of the nuclear effects on hard and semi-hard probes in pA relative to pp. It is only through
these measurements, where we can separate the universal nuclear dependence of the nPDFs from the
process-dependent power corrections due to rescattering in nuclear matter, that we can differentiate the
contributions to the nuclear dependence. Then it is possible to determine when and where new QCD
phenomena, such as gluon saturation at the scale of a few GeV, set in.

Finally, in Section 7, ‘Novel QCD Phenomena in pA Collisions at the LHC’, we emphasize the fact
that pA collisions per se offer lots of new interesting QCD phenomena to explore, such as the breaking
down of the leading twist QCD for a wide range of momentum transfer due to increase of the gluon fields
at small � , related phenomena of � � broadening of the forward spectra of leading jets and hadrons, strong
quenching of the low � � hadron production in the proton fragmentation region, and coherent diffraction
into three jets.

In summary, the pA programme at the LHC serves a dual role. It is needed to calibrate the AA mea-
surements for a sounder interpretation. It also has intrinsic merits in the framework of a more profound
understanding of QCD (e.g. shadowing vs. diffraction, non-linear QCD and saturation, higher twists...).
Thus, one should foresee three key steps in this programme: (1) (pp and) pPb runs with reliable deter-
mination of centrality at the same collision energy as PbPb interactions; (2) a systematic study of pA
collisions, requiring a variety of collision energies and nuclei as well as a centrality scan; and (3) an in-
terchange of p- and A-beams for asymmetric detectors. The expected physics output from measurements
of hard and semi-hard probes in pA collisions at the LHC may be summarized as follows. We are able to

� test the predictive power of QCD perturbation theory in nuclear collisions by verifying the appli-
cability of factorization theorems and the universality of the nPDFs through the hardest probes,
only available at the LHC (Sections 3 and 5).

� measure the nuclear effects (internal to the nucleus) in the nPDFs over an unprecedented range
of � and

�
; investigate the interplay between the ‘EMC’ effect, nuclear shadowing and saturation

as well as the transverse-coordinate dependence of the nPDFs; and possibly, discover a new state
of matter, the colour glass condensate, by probing very soft gluons in heavy nuclei through the
rapidity dependence (Section 4).
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� determine the nuclear dependence of the cross sections of the semi-hard probes in pA collisions
and study QCD multiple parton scattering in nuclear matter and its corresponding dependences
beyond the universal nuclear effects included in the nPDFs (Section 6).

� extract excellent information on QCD dynamics in hadronization because normal nuclear matter
acts like a filter for colour neutralization and parton hadronization and explore potential new QCD
phenomena in pA collisions, such as diffraction into three jets, double PDFs, etc. (Section 7).

� use the hard and semi-hard probe cross sections as references for the QGP signals in AA collisions:
the hard probes set the benchmark of the applicability of factorization while the semi-hard probes
help to understand the size of the nuclear modifications not caused by the dense medium produced
in AA collisions.

2. THE EXPERIMENTAL PARAMETERS FOR pA AT THE LHC

2.1. Constraints from the LHC Machine

A. Morsch

2.1.1. pA collisions as part of the LHC ion programme

The LHC ion programme has been reviewed in a recent LHC Project Report [9]. Whereas collisions
between light ions are already part of the LHC Phase II programme, pA and pA-like collisions (i.e. pA,
dA, � A) are part of the LHC upgrade programme. Collisions between protons and ions are in princi-
ple possible since two independent RF systems are already foreseen in the LHC nominal programme.
However, pA collisions also require the availability of two independent timing systems. The necessary
cabling is already included in the baseline layout. Acquisition of the dedicated electronics remains to
be discussed.

The question whether dA collisions will be available in the LHC is still under investigation be-
cause the same source has to be used for the production of both protons and deuterons. Since proton
availability is required for other CERN programmes in parallel with the LHC pA runs, the final answer
will depend on the time required for the source to switch back and forth between proton and deuteron
operation. Production of � particles in parallel with proton operation is simpler and can be considered
as an interesting alternative to pA and dA collisions.

As an alternative, the AB Department is currently studying a new layout for Linac 3, with possibly
two sources and a switch-yard allowing simultaneous production of two different types of ions, including
deuterons and � .

2.1.2. Beam properties

At the LHC, protons and ions have to travel in the same magnetic lattice and hence the two beams have
the same rigidity. This has several consequences for the physical properties of the collision system. The
condition of having the same rigidity results in beam momenta � which depend on the atomic mass

�
and charge � of the beam particles. For the nominal LHC bending field one obtains

� �������	� ���
 (1.1)

The centre-of-mass energy is given by

� � � �
� ���	�
� � � � ��

�
� � 
 (1.2)

Since, in general, the two beams have different momenta, the rest system of the colliding particles
does not coincide with the laboratory system. The rapidity of the centre-of-mass system relative to the
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laboratory is

��������� � ��	��
 � �
� �

� � � � 
 (1.3)

In Table 1.2 the properties of several collision systems of interest have been summarized together
with their geometric cross sections.

Table 1.2: Geometric cross section, maximum centre-of-mass energy and rapidity shift for several collision systems

System ��
���
 (barn) � ������� (TeV) Rapidity shift

p O 0.39 9.9 0.35

p Ar 0.72 9.4 0.40

p Pb 1.92 8.8 0.47

d O 0.66 7.0 0.00

d Ar 1.10 6.6 0.05

d Pb 2.58 6.2 0.12

� O 0.76 7.0 0.00

� Ar 1.22 6.6 0.05

� Pb 2.75 6.2 0.12

2.1.3. Luminosity considerations for pA collisions

Two processes limit the proton and ion beam lifetimes and, hence, the maximum luminosity [10]:

1 Beam–beam loss is due to hadronic interactions between the beam particles and proportional to
the geometric cross section (see Table 1.2). For asymmetric beam intensities (different intensity
proton and ion beams), the lifetime is proportional to the intensity of the higher intensity beam.

2 Intra-beam scattering increases the beam emittance during the run. Since the timescale of emit-
tance growth is proportional to

� � , it mainly affects the ion beam.

It can be shown that maximizing the beam lifetime leads to solutions with asymmetric beam
intensities (high-intensity proton beam, low-intensity ion beam). However, for the pA luminosity re-
quirements published by the ALICE collaboration [11], it is rather the source intensity than the lumi-
nosity lifetime which limits the luminosity. Since high-intensity proton beams are readily available
( �������� � ��� � � ���! 
#"�$ ) but ion sources can deliver only relatively small intensities, mainly limited
by space charge effect in the SPS, these conditions also push the realistic scenarios towards asymmet-
ric beams.

Table 1.3 shows the maximum intensities per bunch for Pb, Ar, and O. It has to be emphasized
that these maximum intensities represent rough estimates and much more detailed studies are needed to
confirm them. They are by no means to be quoted as official LHC baseline values. At these maximum
intensities the transverse emittance growth time amounts to about 35 $ . In the same table, the proton
intensities needed to obtain the luminosities requested by ALICE are shown. In all cases these intensities
are below � ������ . Hence, higher luminosities from which CMS and ATLAS could profit can be envisaged,
as shown in the last column.
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Table 1.3: Maximum ion intensity per bunch, ALICE luminosity request, the proton intensity needed to fulfil the ALICE request

and the maximum luminosity for ��� = 10
���

for three different pA systems

System � � ���� ��� Luminosity (ALICE) �
	 Max. luminosity

(10  � ) (cm � � s �! ) (10  � ) (cm ��� s �� )

p Pb 0.007 1.1 � 10
�
�

0.8 1.4 � 10 �
�

p Ar 0.055 3.0 � 10
�
�

0.27 1.1 � 10 � �

p O 0.1 5.5 � 10
�
�

0.27 2.0 � 10 � �

2.2. The ALICE Detector

M. Botje

2.2.1. Introduction

To study the properties of hadronic matter under conditions of extreme energy density the ALICE col-
laboration has designed a general purpose detector optimized to measure a large variety of observables
in heavy-ion collisions at the LHC [12]. The apparatus will detect and identify hadrons, leptons and
photons over a wide range of momenta. The requirement to study the various probes of interest in a
very high multiplicity environment, which may be as large 8000 charged particles per unit of rapidity in
central PbPb collisions, imposes severe demands on the tracking of charged particles. This requirement
has led to a design based on high granularity, but slow, drift detectors placed in a large volume solenoidal
magnetic field. Additional detectors augment the identification capabilities of the central tracking sys-
tem which covers the pseudorapidity range � � � 	 0.9. A forward muon spectrometer (2.5 � ��� 4.0)
provides measurements of the quarkonia state. Forward detectors provide global event properties by
measurements of photon and charged particle multiplicities and forward calorimetry.

In addition to running with Pb beams at the highest available energy of � � = 5.5 TeV, ALICE
will take proton–proton (pp) and pA (pPb, maybe dPb or � Pb) reference data. Note that there are
restrictions imposed on the pA programme by both the LHC machine and the ALICE detector. First, the
maximum luminosity is limited because of pile-up in the TPC to typically (10 �
� ,10

�
�
,10

� �
) cm 
 � s 
 � for

pp, pPb and PbPb collisions, respectively. Second, the energy per nucleon of ions in the LHC bending
field scales to the nominal proton beam energy (7 TeV) with the ratio � � � so that the centre-of-mass
energy per nucleon and the rapidity shift of the centre-of-mass with respect to the LHC system are
� ��
 (9, 6, 6) TeV and � ��
 (0.5, 0, 0) for pPb, dPb and � Pb collisions, respectively, as given by
Eqs. (1.2) and (1.3). A comparison of nominal pPb data with pp (14 TeV) or PbPb (5.5 TeV) therefore
needs a good understanding of the energy dependence. Furthermore, the rapidity shift of � ��
 0.5 in
pPb collisions needs a dedicated study of the ALICE acceptance. Whereas detailed simulations of PbPb
and pp collisions are already well under way, a comprehensive study of the ALICE pA acceptance is not
yet available.

In the following we will briefly describe the main components of the ALICE detector. For a recent,
more detailed review, see Ref. [13] and references therein.
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2.2.2. The ALICE detector

Fig. 1.1: Layout of the ALICE detector

The layout of the ALICE detector is shown in Fig. 1.1. The central barrel is placed inside the L3
magnet which provides a solenoidal field of up to 0.5 T. The choice of field is a compromise between
low momentum acceptance (

�
100 MeV/ � ), momentum resolution and tracking and trigger efficiency.

ALICE intends to run mostly with a higher field of 0.5 T to study high � � probes but also with a lower
field configuration of 0.2 T, which is optimal for soft hadronic physics.

The central tracking detector covers a range of � � � � 0.9 and the full range in azimuth. It consists
of an inner tracking system (ITS) with six layers of high resolution silicon detectors located at a radial
distance from the beam axis of � = 4, 7, 15, 24, 39 and 44 cm, respectively. The ITS provides tracking
and identification of low-� � particles and improved momentum resolution for particles at higher mo-
menta which traverse the TPC. An impact parameter resolution of better than 100 � m allows for vertex
reconstruction of hyperons and heavy quarks.

A time projection chamber (TPC) of 0.9 (2.5) m inner (outer) radius provides track finding,
momentum measurement and particle identification via ��
��	��� with a resolution of better than 10%.
Hadrons are identified in the TPC and ITS in the range

�
100–550 MeV/ � and up to 900 MeV/ � for

protons. The overall efficiency of the ALICE tracking is estimated to be better than 90% independent of
� � down to 100 MeV/ � .

One of the unique features of ALICE is its particle identification capability. First of all, a transition
radiation detector (TRD) with an inner (outer) radius of 3 (3.5) m provides electron identification. The
TRD allows for the measurement of light and heavy meson resonances, the dilepton continuum and open
charm and beauty via their semileptonic decay channels. The fast tracking capability of the TRD can be
used to trigger on high-� � leptons and hadrons, providing a leading-particle trigger for jets.

Time-of-flight counters (TOF), covering the TPC geometrical acceptance, are installed at a radius
of 3.5 m and have a time resolution of better than 150 ps. This detector will be able to identify � , � and
protons in the semi-hard regime up to about 3 GeV/ � .
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A single-arm, high-resolution electromagnetic calorimeter (PHOS) is located 5 m below the in-
teraction point and covers a range of � ��� 	 0.12 in pseudorapidity and ��� = 100 � in azimuth. The
calorimeter is optimized to measure � � , � and prompt photons in the energy range of one to several
tens of GeV.

A RICH detector (HMPID) is positioned on top of the ALICE detector at about 4.5 m from the
beam axis covering a range of � � � � 0.5 and ��� = 57 � . The RICH will extend the particle identification
capabilities of the central barrel to 
 3 GeV/ � for ��� � and 
�� GeV/ � for � � � separation.

The forward muon spectrometer consists of an absorber, starting at 1 m from the vertex, followed
by a dipole magnet with 3 Tm field integral, placed outside the central magnet, and 10 planes of high
granularity tracking stations. The last section of the muon arm consists of a second absorber and two
more tracking planes for muon identification and triggering. This detector is designed to measure the
decay of heavy quark resonances ( � ��� , �	� , 
 , 
�� and 
�� � ) with sufficient mass resolution to separate the
different states. The coverage is 2.5 � � � 4 with � ��
 single muon) � 1 GeV � � .

Several smaller detector systems located at small angles will measure global event characteristics.
In particular, the FMD detectors measure the charged particle multiplicity in the ranges –5.1 � � � –1.7
and 1.7 � � � 3.4 and full azimuth. The FMD and ITS combined will then cover most of the phase space
(–5.1 � � � 3.4) for multiplicity measurements. Initial Monte Carlo studies indicate that a centrality
determination in pA collisions with a resolution of about 2 fm might be within reach from a measurement
of the total charged multiplicity.

To measure and to trigger on the impact parameter in heavy-ion collisions, the neutron and proton
spectators will be measured by zero degree calorimetry. The neutron and proton spectators are separated
in space by the first LHC dipole and measured by a pair of neutron and proton calorimeters installed at
about 90 m both left and right of the interaction region. A centrality determination in pA collisions can
be provided by measuring black (��� 250 MeV, where � is the momentum in the rest system of nucleus
A) and grey (� = 250–1000 MeV) protons and neutrons which are correlated with the impact parameter
or, equivalently, with the number of collisions [14]. Initial simulations show that the ZDC acceptance
for slow nucleons in pA collisions is quite large, see Fig. 1.2, so that such a centrality measurement in
ALICE might be feasible. More detailed studies are currently under way.

2.3. The CMS Detector

W. Geist

The CMS detector at the LHC was conceived for optimal measurements of hard processes in pp
collisions at a centre-of-mass energy � � = 14 TeV and at a very high luminosity. Among the rare and
hard processes are e.g. the production of Higgs- and SUSY-particles corresponding to mass/energy scales
beyond 100 GeV; their decays yield charged leptons, photons, and weakly interacting particles as well
as jets of hadrons. The CMS design is therefore driven by the need for

(i) a superb muon-system,

(ii) the best possible electromagnetic calorimeter (ECAL) compatible with (i), and

(iii) a high-performance tracking detector. The set-up is completed by

(iv) a large acceptance hadronic calorimeter (HCAL).

See Fig. 1.3 for a layout of the CMS detector.

Magnet. A direct consequence of these scientific goals is a strong (4 T) compact solenoid centred at
the beam crossing; it bends the trajectories of charged particles in the plane perpendicular to the beam
direction and thus facilitates the use of the position of the small-diameter beam for establishing primary
and secondary vertices. Its length makes it possible to reconstruct tracks with good momentum resolution
up to pseudorapidities � ��� 	 2.4. The field integral leads to transverse momentum resolutions � � � � � �
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Fig. 1.2: Hit distribution of slow nucleons from pPb collisions at the front face of the ZDC. The squares at 0 (–20) cm indicate

the neutron (proton) calorimeter. The Pb beam is visible inside one of the beam pipes (shown as circles) at about � = –9 cm.
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Fig. 1.3: Layout of the CMS detector
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smaller than about 15% at � � = 1 TeV � � . At the same time, particles with transverse momenta less than
about 1 GeV � � spiral close to the beam line thereby reducing detector occupancies farther away.

Tracker. The all-Si tracker system of CMS consists of 13 cylindrical layers (3 layers of pixel detectors
and 10 layers of strip-modules) as well as of forward-backward discs (2 pixel discs and 12 Si-strip discs)
perpendicular to the beams. They complete the geometric acceptance for tracks up to � � � = 2.4. The
Si-detectors are characterized by fast response and very good spatial resolution. Four Si-strip layers
are made of back-to-back (‘double-sided’) modules for quasi-3-dimensional space points. Good spatial
resolution and low occupancies ( � 1%) in pp collisions at high luminosity result in track reconstruction
efficiencies usually better than 98%, and better than 95% inside jets. The relative resolution for transverse
momenta is expected to be � � � � � � = (15 � � + 5)%, with � � in units of TeV, for � � ��	 1.6. Furthermore,
this system, in particular the pixel part, provides a reliable separation of primary vertices and secondary
vertices due to

�
-decays.

Calorimeters. The electromagnetic and hadronic calorimeters surround the tracker system hermeti-
cally. They are positioned inside the coil of the magnet. Their large rapidity coverage ensures efficient
detection of ‘missing’ transverse energy in the case of weakly-interacting particle production.
� ECAL: The barrel section of ECAL covers the rapidity range up to � � � = 1.48. The forward

part extends the acceptance to � ��� � 5, where preshower detectors are also foreseen. The fine
segmentation of the PbWO � crystals in rapidity and azimuth matches the transverse shower size
from single �

�
and photons.

� HCAL: the hadronic calorimeter is also divided into a barrel part using copper-plastic tiles for
� � � 	 3 and a forward calorimeter which increases the acceptance up to � ��� = 5 and is based upon
a fibre concept.

Muon detection. The muon chambers outside the magnet coil are grouped into stations of gaseous
detector layers interleaved with the iron of the return yoke. They are protected by an absorber thickness
of 10 interaction lengths in front of the first station and an additional 10 interaction lengths before the last
station. Also, the muon system is organized into cylindrical and forward disc parts. It is a stand-alone
system, capable of determining the muon momenta to very good precision.

Trigger. The CMS triggers select rare processes from the overwhelming rate of soft reactions at very
high luminosities. The total rate of events to be transferred to a storage medium is limited to about
100 Hz. In order to cope with this low rate, the rate of individual triggers must be limited, typically by
imposing a transverse momentum/energy cutoff.

2.3.1. CMS and pA collisions

While the first detailed investigations of CMS performance with PbPb collisions have been undertaken,
this is not the case for pA collisions. However, no major problems are anticipated [15]. There are no
a priori technical obstacles to running the CMS experiment at the lower pA- and AA-luminosities (see
Section 2.1.) with e.g. lower � � /energy thresholds and/or a lower magnetic field, as long as occupancy
problems do not obstruct track reconstruction substantially. Global measurements corresponding to an
increased acceptance at lower transverse momenta are very useful, given that the pA-collision energy
will exceed that previously available by more than order of magnitude.

It should be emphasized that the TOTEM experiment will take data in conjunction with CMS.
TOTEM needs a geometrical acceptance for secondary particles up to � � � = 7. Furthermore, a ‘zero-
degree’ calorimeter covering the range of beam rapidities is considered for CMS heavy-ion runs.
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2.4. The ATLAS Detector

B. Cole, H. Takai, and S. Tapprogge

2.4.1. The ATLAS detector

The ATLAS detector is designed to study proton–proton collisions at the LHC design energy of 14 TeV
in the centre of mass. The extensive physics programme pursued by the collaboration includes the Higgs
boson search, searches for SUSY and other scenarios beyond the Standard Model, as well as precision
measurements of processes within (and possibly beyond) the Standard Model. To achieve these goals at a
full machine luminosity of 10 � � cm 
 � s 
 � , ATLAS will have a precise tracking system (inner detector) for
charged particle measurements, an as hermetic as possible calorimeter system, which has an extremely
fine grain segmentation, and a stand-alone muon system. An overview of the detector is shown in Fig. 1.4.

Fig. 1.4: The overall layout of the ATLAS detector

The inner detector is composed of a finely segmented silicon pixel detector, silicon strip detectors
[Semiconductor Tracker (SCT)], and the Transition Radiation Tracker (TRT). The segmentation is opti-
mized for proton–proton collisions at design luminosity. The inner detector system is designed to cover
a pseudorapidity of � ��� � 2.5 and is located inside a 2 T solenoid magnet.

The calorimeter system in the ATLAS detector surrounding the solenoid magnet is divided into
electromagnetic and hadronic sections and covers pseudorapidity � ��� � 4.9. The EM calorimeter is an
accordion liquid argon device and is finely segmented longitudinally and transversely for � ��� 	 3.1. The
first longitudinal segmentation has a granularity of 0.003 � 0.1 
 � � �
����� in the barrel and slightly
coarser in the endcaps. The second longitudinal segmentation is composed of � � � ��� = 0.025 � 0.025
cells and the last segment � � � ��� = 0.05 � 0.05 cells. In addition, a finely segmented (0.025 � 0.1)
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pre-sampler system is present in front of the electromagnetic (EM) calorimeter. The overall energy
resolution of the EM calorimeter determined experimentally is 10%/ � 
�� 0.5%. The calorimeter also
has good pointing resolution, 60 mrad/ � 
 for photons, and a timing resolution of better than 200 ps for
energy showers larger than 20 GeV.

The hadronic calorimeter is also segmented longitudinally and transversely. Except for the end-
caps and the forward calorimeters, the technology utilized for the calorimeter is a lead-scintillator tile
structure with a granularity of � � � ��� = 0.1 � 0.1. In the endcaps the hadronic calorimeter is imple-
mented in liquid argon technology for radiation hardness with the same granularity as the barrel hadronic
calorimeter. The energy resolution for the hadronic calorimeters is 50%/ � 
�� 2% for pions. The very
forward region, up to � = 4.9, is covered by the Forward Calorimeter implemented as an axial drift liquid
argon calorimeter. The overall performance of the calorimeter system is described in Ref. [16].

The muon spectrometer in ATLAS is located behind the calorimeters, thus shielded from hadronic
showers. The spectrometer is implemented using several technologies for tracking devices and a toroidal
magnet system which provides a 4 T field to have an independent momentum measurement outside the
calorimeter volume. Most of the volume is covered by Monitored Drift tubes (MDTs). In the forward
region, where the rate is high, Cathode Strip Chamber technology is chosen. The stand-alone muon
spectrometer momentum resolution is of the order of 2% for muons with � � in the range 10–100 GeV.
The muon spectrometer coverage is � � � � 2.7.

The trigger and data acquisition system of ATLAS is a multi-level system which has to reduce the
beam crossing rate of 40 MHz to an output rate to mass storage of O(100) Hz. The first stage (LVL1) is
a hardware based trigger, making use of coarse granularity calorimeter data and dedicated muon trigger
chambers only, to reduce the output rate to about 75 kHz, within a maximum latency of 2.5 � s.

The performance results mentioned here were obtained using a detailed full simulation of the
ATLAS detector response with GEANT and have been validated by an extensive programme of test
beam measurements of all components.

2.4.2. Expected detector performance for pA

The proton–nucleus events are asymmetric, with the central rapidity shifted by almost 0.5 units. In
proton–nucleus runs it is expected that all of the subsystems will be available for data analysis. For the
expected luminosity of 10

�
�
cm 
 � s 
 � in pPb collisions, the occupancy of the detectors will be less than

or at most comparable to the high luminosity proton–proton runs. The tracking will also benefit from not
having up to 25 collisions (as in pp interactions at the design luminosity of 10 � � cm 
 � s 
 � ) in the same
bunch crossing, but only a single event vertex. The detector acceptance for a pA run is the same as for pp
and is shown in Table 1.4 (in the detector frame, see Section 2.1. for the rapidity shifts in the cms frame
of the pA collisions).

The muon spectrometer will also benefit from the low luminosity proton–nucleus mode. In the
high luminosity proton–proton runs, a large number of hits in the spectrometer comes from slow neutrons
from previous interactions. These are not present in low luminosity runs. The only expected backgrounds
are muons from � and � decays in flight. As has been shown for pp, a substantial number of these
background muons are expected to be rejected when matching the track from the stand-alone muon
system to a track in the inner detector is required.

2.4.3. The physics potential of ATLAS in pA

Measurements of proton–nucleus collisions at the LHC will not only provide essential control of the hard
and semi-hard processes in heavy-ion collisions, but these measurements can also address physics that
is, in its own right, of fundamental interest. The ATLAS detector provides an unprecedented opportunity
to study proton–nucleus collisions in a detector with both large acceptance and nearly complete coverage
of the various final states that can result from perturbative QCD processes.
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Table 1.4: ATLAS detector acceptance for pA runs

Detector system � � ���

Pixel 2.5

SCT 2.5

TRT 2.5

EM calorimeter 3.1

Hadronic calorimeter 4.9

Muon spectrometer 2.7

An important physics topic that can be addressed by proton–nucleus measurements in ATLAS is
the applicability of factorization in hard processes involving nuclei. No detector that has studied either
nuclear deep inelastic scattering or proton–nucleus collisions has been able to simultaneously study many
different hard processes to explicitly demonstrate that factorization applies. In ATLAS, we will have the
opportunity to study single jet and jet–jet events, photon–jet events, heavy quark production, � � and� �

production, Drell–Yan dilepton production, etc. and probe the physics of jet fragmentation in detail.
With the wide variety of available hard processes that all should be calculable with the same parton
distributions, we should be able to clearly demonstrate the success of factorization for the large-

� �

processes.

The ATLAS inner detector has been designed to have good tracking efficiency in the momentum
range of 1 GeV up to 1 TeV over the pseudorapidity range � � � 	 2.5. The ability to reconstruct jets in
ATLAS over a large pseudorapidity region (up to � � ��	 4.9) and over the full azimuth would probe the
onset of saturation effects in high � � jets. One aspect of saturation that is not yet well understood is the
effect on hard scattering processes for

� � � � � �
, where

� �
is the scale at which saturation sets in. It has

been suggested that the gluon � � distribution could be significantly modified well above
� �

. If so, then
ATLAS should be able to study the

� �
evolution of the saturation effects using photon–jet, ���� and jet–jet

measurements.

Detailed studies of the behaviour of jet fragmentation as a function of pseudorapidity could be
used to determine whether the jet fragmentation is modified by the presence of the nucleus or its large
number of low- � gluons. The observation or lack thereof of modifications to jet fragmentation could
provide sensitive tests of our understanding of formation time and coherence in the re-dressing of the
hard scattered parton and the longitudinal spatial spread of low- � gluons in a highly Lorentz-contracted
nucleus.

3. QCD FACTORIZATION AND RESCATTERING IN pA COLLISIONS

J.W. Qiu

Perturbative QCD has been very successful in interpreting and predicting hadronic scattering pro-
cesses in high energy collisions, even though the physics associated with an individual hadron wave
function is nonperturbative. It is the QCD factorization theorem [17] that provides prescriptions to sep-
arate long- and short-distance effects in hadronic cross sections. The leading power contributions to a
general hadronic cross section involve only one hard collision between two partons from two incoming
hadrons of momenta ��� and ��	 . The momentum scale of the hard collision is set by producing either a

14



heavy particle (like
� � � or virtual photon in Drell–Yan production) or an energetic third parton, which

fragments into a hadron � of momentum � � . The cross section can be factorized as [17]


�� ��� � 	�� ��� �	��
� � � � �
� 
������

� � ��� ��� 	 
 � � � � ��� � 
�� � 
 ��� � ����� � ��� 
 � � 
�� � ��

�� � �
� � � � 
 � � ��� � � � 	 � � �� � � (1.4)

where ! 
���� runs over all parton flavours and all scale dependence is implicit. The � 
�� � are twist-2
distributions of parton type " in hadron A, and the � � ��� are fragmentation functions for a parton of type
� to produce a hadron � . For jet production, fragmentation from a parton to a jet, suitably defined, is
calculable in perturbation theory and may be absorbed into the partonic hard part �� . For heavy particle
production, the fragmentation function is replaced by � 
 �$# � � .

The factorized formula in Eq. (1.4) illustrates the general leading power collinear factorization
theorem [17]. It consistently separates perturbatively calculable short-distance physics into �� , and iso-
lates long-distance effects into universal nonperturbative matrix elements (or distributions), such as � 
�� �
or � � ��� , associated with each observed hadron. Quantum interference between long- and short-distance
physics is power-suppressed by the large energy exchange of the collisions. Predictions of pQCD follow
when processes with different hard scatterings but the same set of parton distributions and/or fragmenta-
tion functions are compared [18].

With the vast data available, the parton distributions of a free nucleon are well determined by
QCD global analyses [19,20]. Thanks to recent efforts, sets of fragmentation functions for light hadrons
are becoming available though the precision is not as good as the parton distributions due to the lim-
ited data [21, 22].

Studies of hard processes at the LHC will cover a very large range of longitudinal momentum
fractions � of parton distributions: � � � � �	% � 
 � # � � � 
 % � with � � � �

� � � � � for inclusive jet
production in Eq. (1.4), where � and � � are the rapidity and transverse momentum of the produced jets,
respectively. For the most forward or backward jets, or low � � Drell–Yan dileptons, � can be as small
as 10 
 
 at � � = 14 TeV. The number of gluons having such small � and transverse size � �'&)( � � � �
may be so large that gluons appear more like a collective wave than individual particles, and a new
nonperturbative regime of QCD, such as gluon saturation or the colour glass condensate [23], might be
reached.

The use of heavy-ion beams allows one to enhance the coherent effects because of the larger
number of gluons. In the small � regime of hadron–nucleus collisions, a hard collision of a parton of the
projectile nucleon with a parton of the nucleus occurs coherently with all the nucleons at a given impact
parameter. The coherence length (

�
0.1/ � fm) far exceeds the nuclear size. To distinguish parton–nucleus

multiple scattering from partonic dynamics internal to the nucleus, we classify multiple scattering in
the following three categories: (a) interactions internal to the nucleus, (b) initial-state parton–nucleus
interactions (ISI), and (c) final-state parton–nucleus interactions (FSI), as shown in Fig. 1.5 [18].

Interactions internal to the nucleus change the parton distributions of the nucleus, as shown in
Fig. 1.5a. As a result, the effective parton distributions of a large nucleus are different from a simple
sum of individual nucleon parton distributions. Since only a single parton from the nucleus participates
in the hard collision to leading power, the effect of the initial-state interactions internal to the nucleus
does not change the hard collisions between two incoming partons. This preserves the factorized single
scattering formula in Eq. (1.4) [24] except now the twist-2 parton distributions � 
�� � are replaced by the
corresponding effective nuclear parton distributions, which are defined in terms of the same operators
but on a nuclear state. Such effective nuclear parton distributions include the ‘EMC’ effect and other
nuclear effects so that they differ from the parton distributions of a free nucleon. However, they are still
twist-2 distribution functions by definition of the operators of the matrix elements and are still universal.

Because of the twist-2 nature of the nuclear parton distributions, their nuclear dependence can
only come from the A-dependence of the nonperturbative input parton distributions at a low momentum
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Fig. 1.5: Classification of parton multiple scattering in

nuclear medium: (a) interactions internal to the nucleus,

(b) initial-state interactions, and (c) final-state interactions

Fig. 1.6: Sketch for the scattering of an elementary particle

or a parton of momentum ��� in a large nucleus

Fig. 1.7: Soft interactions of long-range fields that might en-

hance the gluon density in nuclear medium and affect the FSI

scale
�

� and the A-dependent modifications to the DGLAP evolution equations from
�

� to
�

due to
the interactions between partons from different nucleons in the nucleus [25, 26]. The nonperturbative
nuclear dependence in the input distributions can be either parametrized with parameters fixed by fits to
experimental data [27–29] or calculated with some theoretical inputs [30, 31].

Let hard probes be those whose cross sections are dominated by the leading power contributions
in Eq. (1.4). That is, nuclear dependence of the hard probes comes entirely from that of nuclear parton
distributions and is universal. Because of the wide range of � and

�
covered, the hard probes in hadron–

nucleus collisions at the LHC directly detect the partonic dynamics internal to the nucleus and provide
excellent information on nuclear parton distributions. The knowledge of these distributions is very useful
for understanding gluon saturation, a new nonperturbative regime of QCD [31, 32].

On the other hand, the hadronic cross sections receive power-suppressed corrections to Eq. (1.4)
[33–35]. These corrections can come from several different sources, including the effect of partonic non-
collinear momentum components and effects of non-vanishing invariant mass of the fragmenting parton
� , as well as the effects of interactions involving more than one parton from each hadron, as shown
in Fig. 1.5b and 1.5c. Although such multiple coherent scattering is formally a higher-twist effect and
suppressed by powers of the large momentum scale of the hard collision, the corrections to the leading
power factorized formula in Eq. (1.4) are proportional to the density of additional scattering centers and
can be substantial due to a large density of soft gluons in the nucleus–nucleus collisions. For the ISI,
the number of gluons available at the same impact parameter of the hard collision is enhanced due to the
large nucleus, while the densities of soft partons available to the FSI can be even larger since they can
come either from the initial wave functions of the colliding nuclei or be produced in the long-range soft
parton interactions between different nucleons at the time when the hard collision took place.

Consider the scattering of an elementary particle or a parton (a quark or a physically polarized
gluon) of momentum � � in nuclear matter, as shown in Fig. 1.6. A hard scattering with momentum
transfer

�
can resolve states whose lifetimes are as short as � � � [18]. The off-shellness of the scattered

parton increases with the momentum transfer simply because the number of available states increases
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with increasing momentum. Typically, the scattered parton (say, of momentum � � ) is off-shell by ��� 	�
, where ��� is the invariant mass of the jet into which parton fragments. Further interactions of the off-

shell parton are suppressed by an overall factor of � ��� �
� � � � � �

, since the effective size of the scattered
parton decreases with momentum transfer, and by the strong coupling evaluated at scale ��� � � . Thus
rescattering in nuclear collisions is suppressed by � � 
 � � � � �

compared to single scattering.

Counting of available states ensures that ��� � ! � � � �	�
� � � � ��� �
, where ! � runs over

all hadron types in the jet and
�
� ��� is the corresponding multiplicity. On the other hand, if we are to

recognize the jet, we must have � �
� 
 � � � �
� , where 
 � is the jet energy. In the rest frame of

the nucleus, the scattered parton has a lifetime ��� � 
 
�� ����� � ����� . Thus, at high enough jet energy,
��� ��� � , the lifetime of the scattered parton will exceed the size of nuclear matter even though the
parton itself is far off mass shell. Then the interactions of the scattered off-shell parton with nuclear
matter may be treated by the formalism of pQCD [18].

In order to consistently treat the power-suppressed multiple scattering, we need a factorization
theorem for higher-twist (i.e. power suppressed) contributions to hadronic hard scattering. It was shown
in Ref. [33] that the first power-suppressed contribution to the hadronic cross section can be factorized
into the form


�� ��� � � 
��	�� ��� �	� 
� � � � �
�� 
 
 ��
 ��� � � � �	� � � 	 
 � � � � ��� � � ��� 
 � � (1.5)

� �
��� � � � � � � ��� � 
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 � � 
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 ��
 � � �

� � � � 
 �



� � � � � � 	 � � �� � �
where the partonic hard part �� � � 
� 
 
 ��
 � � � is infrared safe and depends on the identities and momentum
fractions of the incoming partons but is otherwise independent of the structure – in particular the size
– of the hadron and/or heavy-ion beams. The superscript (4) on the partonic hard part indicates the
dependence on twist-4 operators [33, 36]. The correlation functions � � 
 
 � 
 � � are defined in terms of
matrix elements of twist-4 operators made of two pairs of parton fields of flavour " and " � , respectively.
For example, a correlation function between quark and gluon in a hadron � of momentum p can be
expressed as

� ����� 
 � � 
 � � � � � � � � � �
� � � 
� ��� 
� ��� 
�


 � � � � �

 ��� ��� � %��� � ��! %��! � ��" %��" 


� �
� � �� 
 � � �

�
�$# �&% 
 � 
� � # �% 
 � 
� � � 
 � 
� � � �&� � (1.6)

with quark field � and gluon field strength # �&% .

Demonstrating factorization at the next-to-leading power is a starting point for a unified discussion
of the power-suppressed effects in a wide class of processes. A systematic treatment of double scattering
in a nuclear medium is an immediate application of the generalized factorization theorem [18]. Because
of the infrared safe nature of the partonic hard part �� � � 
� 
 
 � 
 � � � in Eq. (1.5), the nuclear dependence of the
double scattering comes entirely from the correlation functions of two pairs of parton fields which can
be linearly proportional to

� �
�
� (or nuclear size) [36]. Therefore, if the scattered off-shell parton has a

lifetime longer than the nuclear size, rescattering is enhanced by
� �
�
� from the medium size and gets

an overall suppression factor, � � 
 � � � �
�
�(' � � � �

, where ' has the dimension of mass and represents the
nonperturbative scale of the twist-4 correlation functions in Eq. (1.6). A semiclassical estimate gives' � � � # �&% # �% �
)+*

�
� � [36].
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For the ISI encountered by the incoming parton, ' � is proportional to the average squared trans-
verse field strength,

� # �&% # �% � , inside the nucleus, which should be more or less universal. From the
data on Drell–Yan transverse momentum broadening, it was found [37] that ' ������ 
 ' ���� � 0.01 GeV

�
.

However, the numerical value of ' � for the FSI does not have to be equal to the ' ������ due to extra soft
gluons produced by the instantaneous soft interactions of long-range fields between the beams at the
same time when the jets were produced by two hard partons, as shown in Fig. 1.7.

It was explicitly shown [38–40] that the corrections to hadronic Drell–Yan cross sections cannot be
factorized beyond the next-to-leading power. However, it can be shown using the technique developed in
Ref. [33] that the type of

� �
�
� -enhanced power corrections to hadronic cross sections in hadron–nucleus

collisions can be factorized to all powers,


�� ��� � ��� 
��	�� ��� � � 

� � � � �

�� 
 ��
 ��� �
���
	 
 � � �
	 � � ��� 
 � ��	$� � ��� 
� 
 � 
 � � 
 �



��	 
�� � �� � ��� 
� 
 � 
 � � �

� � � � 
 �



� � � � � � 	 � � �� � � (1.7)

where 	 represents convolutions in fractional momenta carried by the partons and � � ��� 
 
 � 
 � repre-
sent the correlation functions of 
 pairs of parton fields with flavours " � = 1, 2,..., n. In Eq. (1.7), no
power corrections are initiated by the higher-twist matrix elements of the incoming hadron

�
because

such contributions do not have the
� �
�
� -type enhancement in hadron–nucleus collisions. For example,

the recently proposed reaction operator approach to multiple scattering [41, 42] should fit into the type
of factorization in Eq. (1.7) with the independent-scattering-centre approximation to the � � ��� 
 
 � 
 � and
keeping the lowest order in � � to the partonic �� � ��� 
 , which can be obtained using a recursive method. To
the contrary, in nucleus–nucleus collisions, even the nuclear size enhanced power corrections cannot be
formally factorized beyond the next-to-leading power.

Let semi-hard probes in hadronic collisions be those with a large momentum exchange as well
as large power corrections. We expect that pQCD has good predictive power for semi-hard observables
in hadron–nucleus collisions but the pQCD factorization approach does not work well for semi-hard
observables in nucleus–nucleus collisions.

In conclusion, the factorized single scattering formula in Eq. (1.4) remains valid for hard probes
in nuclear collisions, except that the parton distributions are replaced by corresponding effective nuclear
parton distributions which are independent of the hard scattering and thus universal. Hard probes in
nuclear collisions at the LHC can provide excellent information on nuclear parton distributions and
detect the partonic dynamics internal to the nucleus.

However, the power-suppressed corrections to the single scattering formula can be substantial and
come from several different sources. The effect of the off-shellness of the fragmenting parton � leads to a
correction of the order 
 � � � � � � � with ��� � ! � � � ���
� � . Both the ISI and FSI double scatterings give
power-suppressed corrections proportional to � � � �

�
� ' � � �

�
� , where ' ������ is relatively small and almost

universal and ' ������ is sensitive to the number of soft partons produced by the instantaneous collisions of
long-range fields between nucleons in the incoming beams.

Beyond double scattering (or next-to-leading power corrections), pQCD calculations might not be
reliable due to the lack of factorization theorems at this level. However, pQCD factorization for the type
of
� �
�
� -enhanced power corrections in hadron–nucleus collisions is likely to be valid to all powers.
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4. NUCLEAR PARTON DISTRIBUTION FUNCTIONS (nPDFs)

4.1. Global DGLAP Fit Analyses of the nPDFs: EKS98 and HKM

K.J. Eskola, H. Honkanen, V.J. Kolhinen and C.A. Salgado

4.1.1. Introduction

Inclusive cross sections for hard processes
� � ��� � � � involving a sufficiently large scale

� � � ���	�

are computable by using collinear factorization. In the leading-twist approximation power corrections� � � � �
are neglected and

��� 
 �
� � � � � ��	���� ��� � �


�

� � � �	�� � 

�
� � � �

�
�




 � � � � �

��� 
 � # � � � � �
�
�




 � � � � �

�
� 	

	
�
� 	 � �

�
	

�

 � � � � � ��� 
 � # � 	 � � �

�
	

�

 � � � � � �
� 	 � �� 
 � � � � � � � � � 
�� ��� � � � (1.8)

where
� � �

are the colliding hadrons or nuclei containing � � and � 	 protons respectively, � is the
produced parton, � and

�
are anything, � �� 
 � � � � � � � � � 
�� ��� � � is the perturbatively calculable differential

cross section for the production of � at the scale
�

, and � � � � � � � � � are the fractional momenta of
the colliding partons " and � . The number distribution function of the parton flavour " of the protons
(neutrons) in A is denoted as � �

�
�




 � �

�
�



� , and similarly for partons � in

�
.

In the leading-twist approximation, multiple scattering of the bound nucleons does occur but all
collisions are independent, correlations between partons from the same object A are neglected, and only
one-parton densities are needed. The parton distribution functions (PDFs) � �

�
�



are universal quanti-

ties applicable in all collinearly factorizable processes. The PDFs cannot be computed by perturbative
methods and, so far, it has not been possible to compute them from first principles, either. Thus, nonper-
turbative input from data on various hard processes is needed for the extraction of the PDFs. However,
once the PDFs are known at some initial (lowest) scale

�
�
� � ��� �

, QCD perturbation theory predicts
the scale evolution of the PDFs to other (higher) values of

� �
in form of the Dokshitzer–Gribov–Lipatov–

Altarelli–Parisi (DGLAP) equations [43].

The method of extracting the PDFs from experimental data is well established in the case of the
free proton: the initial nonperturbative distributions are parametrized at some

� �
� and evolved to higher

scales according to the DGLAP equations. Comparison with the data is made in various regions of the

 � � � � � -plane. The parameters of the initial distributions, � �
 
 � � � �

� � , are fixed when the best global fit is
found. The data from deeply inelastic � � scattering (DIS) are most important for these global DGLAP fits,
especially the HERA data at small values of � and

� �
. The sum rules for momentum, charge and baryon

number give further constraints. In this way, through the global DGLAP fits, groups like MRST [44],
CTEQ [19] or GRV [45] obtain their well-known sets of the free proton PDFs.

The nuclear parton distribution functions (nPDFs) differ in magnitude from the PDFs of the free
proton. In the measurements of the structure function, # �� � � � # �

�
�� � 
 � # � � � # �

�
�� , of nuclear

targets in DIS (see e.g. Ref. [46] and references therein), and especially of the ratio

� �� ! 
 � � � �
��� �� ����� � �	� � � ���

�� ��� ��� �	� � � ��� 

�� # �� 
 � � � � �
�� #��� 
 � � � � � � (1.9)

the following nuclear effects have been discovered in different Bjorken- � regions:
� shadowing; a depletion, � �� ! � 1, at � �� 0.1,
� antishadowing; an excess, � �� ! � 1, at 0.1 �� � �� 0.3,
� EMC effect; a depletion at 0.3 �� � �� 0.7, and
� Fermi motion; an excess towards � � 1 and beyond.
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The
� �

dependence of � �� ! is weaker and has thus been more difficult to measure. Data with high
enough precision, however, exist. The NMC collaboration discovered a clear

� �
dependence in the

ratio ����� � � �	����� � [47], i.e. the scale dependence of the ratio # � �� � #
�
� , at � �� � 
 � � . Since # ��� � 


�
�� �! � �

�
� � � � ��� � 


�
�� � � ��� � 


�
��� � ��� 
 � � � , the nuclear effects in the ratio � �� ! directly translate into nuclear

effects in the parton distributions: � �
�
�


 �
� � �
 .

The nPDFs, � �
�
�



, also obey the DGLAP equations in the large-

� �
limit. They can be determined

by using a global DGLAP fit procedure similar to the case of the free proton PDFs. Pioneering studies
of the DGLAP evolution of the nPDFs are found in e.g. Ref. [48–51]. References for various other
studies of perturbative evolution of the nPDFs and also to simpler

� �
-independent parametrizations of

the nuclear effects in the PDFs can be found in Refs. [52, 53]. The nuclear case is, however, more
complicated because of additional variables, the mass number A and the charge � , and, because the
number of data points available in the perturbative region is more limited than for the PDFs of the free
proton. The DIS data play the dominant role in the nuclear case as well. However, as illustrated by
Fig. 1.8, no data are available from nuclear DIS experiments below � �� 5 � 10 
 � at

� � �� 1 GeV
�
. This

makes the determination of the nuclear gluon distributions especially difficult. Further constraints on the
global DGLAP fits of the nPDFs can be obtained from e.g. the Drell–Yan (DY) process measured in
fixed-target pA collisions [54, 55]. Currently, there are two sets of nPDFs available which are based on
the global DGLAP fits to the data: (i) EKS98 [27, 28] (the code in Refs. [56, 57]), and (ii) HKM [29]
(the code in Ref. [58]). We shall compare the main features of these two analyses and comment on their
differences below.
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in HKM. For the rest of the figure, see the text in Section 4.1.3.
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4.1.2. Comparison of EKS98 and HKM

EKS98 and overview of constraints available from data. The parametrization EKS98 [27] is based
on the results of the DGLAP analysis [28] and its follow-up [27]. We refer to these together as EKRS
here. In the EKRS approach, the nPDFs, the parton distributions of the bound protons, � �

�
�



, are defined

through the modifications of the corresponding distributions in the free proton,

� �



 � � � �

��� � �
�
�




 � � � � �� �
 
 � � � � � � (1.10)

where the PDFs of the free proton are from a known set such as CTEQ, MRS or GRV. As in the case
of the free nucleons, for isoscalar nuclei the parton distributions of bound neutrons are obtained through
isospin symmetry, � �

�
�� � �� 
 � � �

�
�� � �� 
 and � �

�
�� � �� 
 � � �

�
�� � �� 
 . Although exact only for isoscalar and mirror nuclei,

this is expected to be a good first approximation for all nuclei.

To simplify the determination of the input nuclear effects for valence and sea quarks, the following
flavour-independent initial modifications are assumed: � ���� 
 � � � �

� � 
 � �� � 
 � � � �
� � 
 � �� 
 � � � �

� � , and
� � �� 
 � � � �

� � 
 � � �� 
 � � � �
� � 
 � �� 
 � � � �

� � 
 ��� 
 � � � �
� � . Thus only three independent initial ratios, � �� ,

� �� and � �� are to be determined at
� �

� �
� �� = 2.25 GeV
�
. Note also that the approximations above are

needed and used only at
� �

� in [28]. In the EKS98-parametrization [27] of the DGLAP-evolved results,
it was observed that, to a good approximation, � ���� � � �� � and � � �� � � � �� for all

� �
. Further details

of the EKRS analysis can be found in Ref. [28], here we summarize the constraints available in each
� -region. Consider first quarks and antiquarks:
� At � �� 0.3 the DIS data constrains only the ratio � �� : valence quarks dominate # �� , so that
� �� ! 
 � �� but � �� and � �� are left practically unconstrained. An EMC effect is, however, assumed
also for the initial � �� and � �� since in the scale evolution the EMC effect of valence quarks is
transmitted to gluons and, further on, to sea quarks [50]. In this way the nuclear modifications � �



also remain stable against the evolution.

� At 0.04 �� � �� 0.3 both the DIS and DY data constrain � �� and � �� but in different regions of
� �

,
as shown in Fig. 1.8. In addition, conservation of baryon number restricts � �� . The use of DY
data [54] is essential in order to fix the relative magnitude of � �� and � �� since the DIS data alone
cannot distinguish between them. As a result, no antishadowing appears in � �� 
 � � � �

� � .
� At 5 � 10 
 � �� � �� 0.04, only DIS data exist in the region

� �� � GeV where the DGLAP analysis
can be expected to apply. Once � �� is fixed by the DIS and DY data at larger � , the magnitude of
nuclear valence quark shadowing in the EKRS approach follows from the conservation of baryon
number. As a result of these contraints, nuclear valence quarks in EKRS are less shadowed than
the sea quarks, � �� � � �� .

� At � �� 5 � 10 
 � , as shown by Fig. 1.8, the DIS data for the ratio � �� ! lie in the region
�
�� � GeV

where the DGLAP equations are unlikely to be applicable in the nuclear case. Indirect constraints,
however, can be obtained by noting the following: (i) At the smallest values of � (where

� �
� GeV), � �� ! depends only very weakly, if at all, on � [60, 62]. (ii)

� 
 # � �� � #
�
� � � � �	��
 � � � �

at � � 0.01 [47], indicating that
� � �
�! � � �	��
 � � � � . (iii) Negative �	��
 �

�
-slopes of � �� ! at

� �� 5 � 10 
 � have not been observed [60]. Based on these experimental facts, the EKRS approach
assumes that the sign of the �	��
 �

�
-slope of � �� ! remains non-negative at � � 0.01 and therefore

the DIS data [60, 62] in the nonperturbative region gives a lower bound on � �� ! at
� �

� for very
small � . The sea quarks dominate over the valence quarks at small values of � so that only � �� is
constrained by the DIS data. � �� remains restricted by baryon number conservation.

Pinning down the nuclear gluon distributions is difficult in the absence of stringent direct constraints.
What is available in different regions of � can be summarized as follows:
� At � �� 0.2, no experimental constraints are currently available on the gluons. Conservation of

momentum is used as an overall constraint but this alone is not sufficient to determine whether
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there is an EMC effect for gluons. Only about 30% of the gluon momentum comes from � �� 0.2
so that fairly sizeable changes in � �� 
 � � � �

� � in this region can be compensated by smaller changes
at � � 0.2 without violating the constraints discussed below. As mentioned above, in the EKRS
approach an EMC effect is initially assumed for � � . This guarantees a stable scale evolution and
the EMC effect remains at larger

� �
.

� At 0.02 �� � �� 0.2 the
� �

dependence of the ratio # � �� � #
�
� measured by NMC [47] cur-

rently sets the most important constraint on � �� [64]. In the small- � region where gluons
dominate the DGLAP evolution, the

� �
dependence of # � 
 � � � � � is dictated by the gluon dis-

tribution as
� # � 
 � � � � � � � �	��
 � � � � � ��� 
 � � � � � � [65]. As discussed in Refs. [28, 52], this

leads to
� � �� ! 
 � � � � � � � �	��
 � � � � � � � �� 
 � � � � � � # � �� ! 
 � � � � � � ��� 
 � � � � � � � # �� 
 � � � � � . The

�	��
 �
�

slopes of # � �� � #
�
� measured by NMC [47] therefore constrain � �� . Especially, the pos-

itive �	��
 �
�
-slope of # � �� � #

�
� measured by NMC indicates that � �� 
 � � � � �

� � � � �� ! 
 � � � �
� � at

� � 0.01 [28, 52]. Thus, within the DGLAP framework, much stronger gluon than antiquark
shadowing at � � 0.01, as suggested e.g. in Ref. [66], is not supported by the NMC data. The
antishadowing in the EKRS gluons follows from the constraint � �� 
 � 
 ��� � � �

� � 
 1 imposed by
the NMC data (see also Ref. [64]) combined with the requirement of momentum conservation.
The EKRS antishadowing is consistent with the E789 data [67] on � -meson production in pA
collisions (note, however, the large error bar on the data). It also seems to be supported by � ���
production in DIS, measured by NMC [68].

� At � �� 0.02, stringent experimental constraints do not yet exist for the nuclear gluons. It should
be emphasized, however, that the initial � �� in this region is directly connected to the initial
� �� ! . As discussed above, related to quarks at small � , taking the DIS data on � �� ! in the non-
perturbative region as a lower limit for � �� ! at

� �
� corresponds to

� � � �! � � � ��
 � � � � so that

� �� 
 � � � 
 � � � � �
� � � � �� ! 
 � � � � � �

� � � � �� ! 
 � � � � � � � ��� �	� �
� . Reference [28] observed that

setting � �� 
 � � � �
� � 
 � �� ! 
 � � � �

� � at � �� 0.01 fulfils this constraint. This approximation remains
fairly good even after DGLAP evolution from

�
�
�

1 GeV to
� �

100 GeV, see Ref. [27].

As explained in detail in Ref. [28], in the EKRS approach the initial ratios � �� 
 � � � �
� � , � �� 
 � � � �

� �
and � �� 
 � � � �

� � are constructed piecewise in different regions of � . Initial nPDFs are computed at
� �

� .
Leading order (LO) DGLAP evolution to higher scales is performed and comparisons with the DIS and
DY data are made. The parameters in the input ratios are iteratively changed until the best global fit to the
data is achieved. The determination of the input parameters in EKRS has so far been done only manually
with the best overall fit determined by eye. For the quality of the fit, see the detailed comparison with the
data in Figs. 4–10 of Ref. [28]. The parametrization EKS98 [27] of the nuclear modifications � �




 � � � � �

was prepared on the basis of the results from Ref. [28]. It was also shown that when the free proton PDFs
were changed from GRVLO [69] to CTEQ4L [70] (differing from each other considerably), the changes
induced in � �




 � � � � � were within a few per cent [27]. Therefore, accepting this range of uncertainty,

the EKS98 parametrization can be used together with any (LO) set of the free proton PDFs.

The HKM analysis. In principle, the definition of the nPDFs in the HKM analysis [29] differs slightly
from that in EKRS: instead of the PDFs of the bound protons, HKM define the nPDFs as the average

distributions of each flavour " in a nucleus A: � �
 
 � � � � � � 
 � � � � � �
�
�




 � � � � � � 
 � # � � � � � �

�
�




 � � � � � .

Correspondingly, the HKM nuclear modifications at the initial scale
� �

� � � GeV
�

are then defined
through � �
 
 � � � �

� � ���



 � � � � � � � 
 � � � � � �
 
 � � � �

� ��� 
 �$# � � � � � �
 
 � � � �
� � � 
 (1.11)

In practice, however, since in the EKS98 parametrization � ���� � � �� � and � � �� � � � �� , the EKS98 mod-
ifications also represent average modifications. Flavour-symmetric sea quark distributions are assumed
in HKM whereas the flavour asymmetry of the sea quarks in EKRS follows from that of the free proton.
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An improvement relative to EKRS is that the HKM method to extract the initial modifications
�




 � � � � � � at

� �
� is more automatic and more quantitative in the statistical analysis since the HKM

analysis is strictly a minimum- � �
fit. Also, with certain assumptions of a suitable form (see Ref. [29])

for the initial modifications �



, the number of parameters has been conveniently reduced to seven. The

form used in the fit is

�




 � � � � � � � � � �

� # �� �
�
��� �




 � � � ����� 
 
 � �

 �$# � ���	� � (1.12)

where � 
 
 ��� � �


� � �



� � . An analysis with a cubic polynomial is also performed, with similar results.

Due to the flavour symmetry, the sea quark parameters are identical for all flavours. For valence quarks,
conservation of charge � (not used in EKRS) and baryon number A are required, fixing � � � and � � � .
In the case of non-isoscalar nuclei � � �

�
� � � � . Also, momentum conservation is imposed fixing � 
 .

Taking 
 � , � � and � � to be equal for � � and � � , and 
 �� ��
 
 � � , � 
 � # � � 
 , the remaining seven
parameters � � , � � , 
 � , � �� � �� , � �� and � 
 are determined by a global DGLAP fit which minimizes � �

.

The comparison. Irrespective of whether the best fit is found automatically or by eye, the basic proce-
dure to determine the nPDFs in the EKRS and HKM analyses is the same. The results obtained for the
nuclear effects are, however, quite different, as can be seen in the comparison at

� �
� 2.25 GeV

�
shown

in Fig. 1.9. The main reason for this is that different data sets are used:
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Fig. 1.9: The nuclear modifications for the 
 � , �
 and gluon distributions in EKS98 (solid) and in HKM (dot-dashed) at� !�� 2.25 GeV
!
. Upper panels: C/D. Lower panels: Pb/D with isoscalar Pb.

� The HKM analysis [29] uses only the DIS data whereas EKRS include also the DY data from pA
collisions. As explained above, the DY data are very important in the EKRS analysis to fix the
relative modifications of valence and sea quarks at intermediate � . Preliminary results reported in
Ref. [71] show that, when the DY data are included in the HKM analysis, the antiquark modifica-
tions become more similar to those of EKRS.

� The NMC data on # �� � #
�
� [61], which imposes quite stringent constraints on the A-systematics

in the EKRS analysis, is not used in HKM. As a result, � �� ! has less shadowing in HKM than in
EKRS (see also Fig. 1 of Ref. [52]), especially for heavy nuclei.
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� In addition to the recent DIS data sets, some older ones are used in the HKM analysis. The older
sets are not included in EKRS. This, however, presumably does not cause any major differences
between EKRS and HKM since the older data sets have larger error bars and will therefore typi-
cally have less statistical weight in the � �

analysis.
� The HKM analysis does not make use of the NMC data [47] on the

� �
dependence of # � �� � #

�
� .

As explained above, these data are the main experimental constraint on the nuclear gluons in the
EKRS analysis. Figure 1.10 shows a comparison of the EKRS (solid) and the HKM (dot-dashed)
results to the NMC data on # � �� � #

�
� as a function of

� �
. The HKM results do not reproduce

the measured
� �

dependence of # � �� � #
�
� at the smallest values of � . This figure demonstrates

explicitly that the nuclear modifications of gluon distributions at 0.02 �� � �� 0.1 can be pinned
down with the help of these NMC data.
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4.1.3. Future prospects

Constraints from pA collisions at LHC, RHIC and SPS. The hard probes in pA collisions, especially
those at the LHC, will play a major role in probing the nPDFs at regions not accessible before. Figure 1.8
shows the � and

� �
regions of the phase space probed by certain hard processes at different centre-of-

mass energies1 . Let us consider the figure in more detail:
� The measurements of semileptonic decays of � and � mesons in pA will help to pin down

the nuclear gluon distributions [72, 73]. Borrowed from an LO analysis [73], the thick solid lines in
Fig. 1.8 show how the average scale

� �
�
� � �
� � of open charm production is correlated with the average

fractional momentum � � � � � � of the incoming nuclear gluon in dimuon production in correlated � �
decays at the LHC (computed for pPb at � � � 5500 GeV and single muon acceptance 2.5 	 � � 	 4.0,
with no rapidity shifts), at RHIC (pAu at � � � 200 GeV, 1.15 	 � � 	 2.44) and at the SPS (pPb at
� � � 17.3 GeV, 0 	 � � 	 1). For each solid curve, the smallest

� �
shown corresponds to a dimuon

invariant mass � � 1.25 GeV, and the the largest
� �

to � � 9.5 GeV (LHC), 5.8 GeV (RHIC) and
4.75 GeV (SPS) (cf. Fig. 5 in Ref. [73]). We observe that data from the SPS, RHIC and the LHC will
offer constraints in different regions of � . The data from NA60 at the SPS will probe the antishadowing

1No counting rates have been considered for the figure.
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of nuclear gluons, while the RHIC data probe the onset of gluon shadowing, and the LHC data constrain
the nuclear gluons at very small � , deep in the shadowing region.

� Similarly, provided that the DY dimuons can be distinguished from those coming from the �
and

�
decays, the DY dimuon pA cross sections are expected to set further constraints on the nuclear

effects on the sea quark distributions. In 2
�

1 kinematics, � � � 
 � � � � � � 
 % where � and � are the
invariant mass and rapidity of the lepton pair. The rapidity of the pair is always between those of the
leptonic constituents of the pair. The shaded regions in Fig. 1.8 illustrate the regions in � � � �� and� �
� �

�
probed by DY dimuons in pA collisions at the LHC, RHIC and SPS. The parameters used

for the LHC are � � � 5500 GeV and 2.5 	 � 	 4.0 with no rapidity shifts [74]. Note that from the
(phase space) point of view of � �� (but not of � � � ), PbPb collisions at � � ������� � 5500 GeV at the LHC
are equivalent to pPb collisions at � � � ��� � 8800 GeV: the decrease of � � due to the increase in � � is

compensated by the rapidity shift � � [74]: � � �� � 
 � � � � � � � � 
 � % � � � % � 
 � 
 � � � � � � � � 
 % � � � � � �� .
For RHIC, the shaded region corresponds to � � � 200 GeV and 1.2 	 � 	 2.2, the rapidity acceptance
of the PHENIX forward muon arm [75]. For the SPS, we have again used � � � 17.3 GeV and 0 	 � 	 1.
Single muon � � -cuts (see Refs. [75, 76]) have not been applied and the shaded regions all correspond
to �

� �
1 GeV

�
. At the highest scales shown, the dimuon regions probed at the SPS and RHIC are

limited by the phase space. The SPS data may shed more light on the existence of an EMC effect for the
sea quarks [77]. At the LHC the dimuons from decays of � and

�
mesons are expected to dominate the

dilepton continuum up to the � mass [78–80]. If, however, the DY contribution can be identified (see
Section 6.1. for more discussion), DY dimuons at the LHC will probe the sea quark distributions deep in
the shadowing region and also at high scales, up to

� �
� �

�� . The RHIC region again lies conveniently
between the SPS and the LHC, mainly probing the beginning of sea quark shadowing region. In pA
collisions at the LHC, DY dimuons with � � 
 � � � � � � ����� � �

�
probe the regions indicated by the dashed

line (the spread due to the � acceptance is not shown).
� The dotted line shows the kinematical region probed by open heavy flavour production in pA

(and also in AA) collisions, when both heavy quarks are at � � 0 in the detector frame. In this case, again
assuming 2

�
2 kinematics, � � �� � � � �� �

� � � � � � � with
�
� � � . To illustrate the effect of moving

towards forward rapidities, the case ��� � � � = 3 is also shown. Only the region where
� � �� � �	

(above
the upper horizontal line) is probed by � � � production. Due to the same kinematics (in � � and

� �
) as in

open heavy quark production, the dotted lines also correspond to the regions probed by direct photon
production (with

�
� � � ).

� As demonstrated by Fig. 1.8, hard probes in pA collisions at RHIC and at the LHC in particular
will provide us with very important constraints on the nPDFs at scales where the DGLAP evolution
is expected to be applicable. Power corrections to the evolution [25, 26] can, however, be expected to
play an increasingly important role towards small values of � and

� �
. The effects of the first of such

corrections, the GLRMQ terms [25, 26] leading to non-linear DGLAP+GLRMQ evolution equations,
have been studied recently in light of the HERA data [81]. From the point of view of the DGLAP
evolution of the (n)PDFs, gluon saturation occurs when their evolution becomes dominated by power
corrections [82]. Figure 1.8 shows the saturation limits obtained for the free proton and for Pb in the
DGLAP+GLRMQ approach [32] (solid curves, the dotted curves are extrapolations to guide the eye).
The saturation limit obtained for the free proton in the DGLAP+GLRMQ analysis should be taken as an
upper limit in

� �
. It is constrained quite well by the HERA data (see Ref. [81]). The constraints from

the
� �

dependence of # � �� � #
�
� , however, were not taken into account in obtaining the saturation limit

shown for the Pb nucleus [32]. For a comparison of the saturation limits obtained in other models, see
Ref. [32].

� Figure 1.8 also shows which hard probes of pA collisions can be expected to probe the nPDFs
in the gluon saturation region. The probes directly sensitive to the gluon distributions are especially
interesting from this point of view. Such probes include open � �� production at small � � and direct photon
production at � � � few GeV, both as far forward in rapidity as possible (see the dotted lines). Note that
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open � �� production is already in the region where linear DGLAP evolution is applicable. In light of the
saturation limits shown, the chances of measuring the effects of non-linearities in the evolution through
open � �� production in pA at RHIC would seem marginal. At the LHC, however, measuring saturation
effects in the nuclear gluon distributions through open � �� in pA could be possible.

Improvements of the DGLAP analyses. On the practical side, the global DGLAP fits of the nPDFs
discussed above can be improved in obvious ways. The EKRS analysis should be made more auto-
matic and a proper statistical treatment, such as in HKM, should be added. The automatization alone
is, however, not expected to change the nuclear modifications of the PDFs significantly from EKS98
but more quantitative estimates of the uncertainties and of their propagation would be obtained. This
work is in progress. As also discussed above, more contraints from data should be added to the HKM
analysis. More generally, all presently available data from hard processes in DIS and pA collisions have
not yet been exhausted: for instance, the recent CCFR DIS data for #�� � �� and #�� � �� from � Fe and �� Fe
collisions [83] (not used in EKRS or in HKM), could help to pin down the valence quark modifica-
tions [84]. In the future, hard probes of pA collisions at the LHC, RHIC and the SPS will offer very
important constraints on the nPDFs, especially for gluons and sea quarks. Eventually, the nPDF DGLAP
analyses should be extended to NLO perturbative QCD. As discussed above, the effects of power correc-
tions [25, 26] to the DGLAP equations and also to the cross sections [85] should be analysed in detail in
the context of global fits to the nuclear data.

4.2. Nonlinear Corrections to the DGLAP Equations; Looking for the Saturation Limits

K.J. Eskola, H. Honkanen, V.J. Kolhinen, J.W. Qiu and C.A. Salgado

Free proton PDFs, � 
 
 � � � � � , are needed for the calculation of hard process cross sections in
hadronic collisions. Once they are determined at a certain initial scale

� �
� , the DGLAP equations [43]

well describe their evolution to large scales. Based on global fits to the available data, several different
sets of PDFs have been obtained [19, 20, 44, 86]. The older PDFs do not adequately describe the recent
HERA data [87] on the structure function # � at the perturbative scales

� �
at small � . In the analysis

of newer PDF sets, such as CTEQ6 [19] and MRST2001 [44], these data have been taken into account.
However, difficulties arise when fitting both small and large-scale data simultaneously. In the new MRST
set, the entire H1 data set [87] has been used in the analysis, leading to a good average fit at all scales
but at the expense of a negative NLO gluon distribution at small � and

� �
�� 1 GeV

�
. In the CTEQ6 set

only the large scale (
� � � 4 GeV

�
) data have been included, giving a good fit at large

� �
but resulting

in a poorer fit at small- � and small
� �

(
� �

� 4 GeV
�
). Moreover, the gluon distribution at small � with� �

�� 1.69 GeV
�

has been set to zero.

These problems are interesting since they could indicate a new QCD phenomenon. At small
values of momentum fraction � and scales

� �
, gluon recombination terms, which lead to non-linear

corrections to the evolution equations, can become significant. The first of these non-linear terms have
been calculated by Gribov, Levin and Ryskin [25], and Mueller and Qiu [26]. In the following, these
corrections shall be referred to as the GLRMQ terms for short. With these modifications, the evolution
equations become [26]

� � � 
 � � � � ��
�	��
 �

� �
� ��� 
 � � � � ��

�	��
 �
�
���� �����
	 � # �

�� � � �
� �

� �

�
���
� �

�
� � � 
 
 � � � �
� � (1.13)

� � �� 
 � � � � ��
� ��
 �

� �
� � �� 
 � � � � ��

� ��
 �
�
���� ������	 � # � �� �

� � �
� � � �
� � � 
 
 � � � �

� � 
	
	
 ��� � � (1.14)

where the two-gluon density can be modelled as � � � � � 
 
 � � � � � � ���� ! � � � 
 � � � � � � � � with proton radius
� � 1 fm. The higher dimensional gluon term,

���
� [26], is here assumed to be zero. The effects of

the non-linear corrections on the DGLAP evolution of the free proton PDFs were studied in Ref. [81] in
view of the recent H1 data. The results are discussed below.
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Fig. 1.11: Left: � !�� ��� � !�� calculated using CTEQ6L [19] (dotted-dashed) and the DGLAP+GLRMQ results with set 1 (solid)

and set 2a (double dashed) [81], compared with the H1 data [87]. Right: The � ! dependence of the gluon distribution function

at fixed � , from set 1 evolved with DGLAP+GLRMQ (solid) and directly from CTEQ6L (dotted-dashed).

4.2.1. Constraints from the HERA data

The goal of the analysis in Ref. [81] was (1) to possibly improve the (LO) fit of the calculated # � 
 � � � � �
to the H1 data [87] at small

� �
while (2) concurrently maintaining the good fit at large

� �
and, finally,

(3) to study the interdependence of the initial distributions and the evolution.

In CTEQ6L, a good fit to the H1 data is obtained (see Fig. 1.11) with a flat small- � gluon distribu-
tion at

� � �
1.4 GeV

�
. As can be seen from Eqs. (1.13), (1.14), the GLRMQ corrections slow the scale

evolution. Now one may ask whether the H1 data can be reproduced equally well with different initial
conditions (i.e. assuming larger initial gluon distributions) and the GLRMQ corrections included in the
evolution. This question was addressed in Ref. [81] by generating three new sets of initial distributions
using DGLAP + GLRMQ evolved CTEQ5 [86] and CTEQ6 distributions as guidelines. The initial scale
was chosen to be

� �
� = 1.4 GeV

�
, slightly below the smallest scale of the data. The modified distributions

at
� �

� were constructed piecewise from CTEQ5L and CTEQ6L distributions evolved down from
� �

= 3
and 10 GeV

�
(CTEQ5L) and

� �
= 5 GeV

�
(CTEQ6L). A power law form was used in the small- � region

to tune the initial distributions until good agreement with the H1 data was found.

The difference between the three sets in Ref. [81] is that in set 1 there is still a nonzero charm
distribution at

� �
� = 1.4 GeV

�
, slightly below the charm mass threshold with � � = 1.3 GeV in CTEQ6.

In set 2a and set 2b the charm distribution has been removed at the initial scale and the resulting deficit
in # � has been compensated by slightly increasing the other sea quarks at small � . Moreover, the effect
of charm was studied by using different mass thresholds: �	� = 1.3 GeV in set 2a and � � � � � 
 � GeV
in set 2b, i.e. charm begins to evolve immediately above the initial scale.

The results of the DGLAP+GLRMQ evolution with the new initial distributions are shown
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in Fig. 1.11. The left panel shows the comparison between the H1 data and the (LO) structure function
# � 
 � � � � � � ! 
 �

�


� � �




 � � � � � � ��




 � � � � � � calculated from set 1 (solid lines), set 2a (double dashed)

and the CTEQ6L parametrization (dotted-dashed lines). As can be seen, the results are very similar,
showing that with modified initial conditions and DGLAP+GLRMQ evolution, one obtains an as good
or even a better fit to the HERA data ( � � � � � 1.13, 1.17, 0.88 for the sets 1, 2a, 2b, respectively) as
with the CTEQ6L distributions ( � � � � � 1.32).

The evolution of the gluon distribution functions in the DGLAP+GLRMQ and DGLAP cases is
illustrated more explicitly in the right panel of Fig. 1.11, where the absolute distributions for fixed �
are plotted as a function of

� �
for set 1 and for CTEQ6L. The figure shows how large differences at the

initial scale vanish during the evolution due to the GLRMQ effects. At scales
� � �� 4 GeV

�
, the GLRMQ

corrections fade out rapidly and the DGLAP terms dominate the evolution.

4.2.2. Saturation limits: p and Pb

The DGLAP+GLRMQ approach also offers a way to study the gluon saturation limits. For each �
in the small- � region, the saturation scale

� �
� � � can be defined as the value of the scale

� �
where the

DGLAP and GLRMQ terms in the non-linear evolution equation become equal,
� � 
 ��� � � ! 

������� � ! � � ! � � !�
	�� � � 
 �

� . The region of applicability of the DGLAP+GLRMQ is
� � � � �

� � � 
 ��� where the linear DGLAP part
dominates the evolution. In the saturation region, at

� �
� �

�
� � � 
 ��� , the GLRMQ terms dominate, and all

non-linear terms become important.

In order to find the saturation scale
� �

� � � 
 � � , for the free proton, the initial distributions (set 1)
at
� �

� = 1.4 GeV
�

have to be evolved downwards in scale using the DGLAP+GLRMQ equations. As
discussed in Ref. [81], since only the first correction term has been taken into account, the gluon distribu-
tion near the saturation region should be considered as an upper limit. Consequently, the saturation scale
obtained is an upper limit as well. The result is shown by the asterisks in Fig. 1.12. The saturation line
for the free proton from the geometric saturation model by Golec-Biernat and Wüsthoff (G-BW) [88] is
also plotted (dashed line) for comparison. It is interesting to note that although the DGLAP+GLRMQ
and G-BW approaches are very different, the slopes are very similar at the smallest values of � .
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Fig. 1.12: The gluon saturation limits in the DGLAP+GLRMQ approach for proton (asterisks) and Pb (A = 208), with (crosses)

and without (dots) nuclear modifications [81]. The saturation line for the proton from the geometric saturation model [88]

(dashed line), and for Pb from [89] (dotted-dashed) are also plotted.
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Saturation scales for nuclei can be determined similarly. For a nucleus A, the two-gluon density
can be modelled as � � � � � 
 
 � � � � � � ���� !�

� � � � 
 � � � � � � � , i.e. the effect of the correction is enhanced by

a factor of
� �
�
� . An initial estimate of the saturation limit can be obtained by starting the downwards

evolution at high enough scales,
� �

= 100–200 GeV
�
, for the GLRMQ terms to be negligible. Like in the

proton case, the result is an upper limit. It is shown for Pb in Fig. 1.12 (dots). The effect of the nuclear
modifications was also studied by applying the EKS98 [27] parametrization at the high starting scale.
As a result, the saturation scales

� �
�
� � 
 ��� are somewhat reduced, as shown in Fig. 1.12 (crosses). The

saturation limit obtained for a Pb nucleus by Armesto in a Glauberized geometric saturation model [89]
is shown (dotted-dashed) for comparison. Again, despite the differences between the approaches, the
slopes are strikingly similar.

For further studies and for more accurate estimates of
� �

�
� � 
 ��� in the DGLAP+GLRMQ approach,

a full global analysis of the nuclear parton distribution functions should be performed, along the same
lines as in EKRS [27, 28] and HKM [29].

4.3. Gluon Distributions in Nuclei at Small � : Guidance from Different Models

N. Armesto and C.A. Salgado

The difference between the structure functions measured in nucleons and nuclei [46] is a very
important and well known feature of nuclear structure and nuclear collisions. At small values of �
( � 0.01, shadowing region), the structure function # � per nucleon turns out to be smaller in nuclei
than in a free nucleon. This corresponds to shadowing of parton densities in nuclei. While at small �
valence quarks are of little importance and the behaviour of the sea is expected to follow that of # �� , the
gluon distribution, which is not an observable quantity, is badly determined and represents one of the
largest uncertainties for cross sections both at moderate and large

� �
in collinear factorization [17]. For

example, the uncertainty in the determination of the gluon distributions for Pb at
� � �

5 GeV
�

at LHC
for � = 0, � � � � � � � � 10 
 � –10 
 � , is a factor

�
3 (see Fig. 1.13), which may result in an uncertainty

of up to a factor of
�

9 for the corresponding cross sections in PbPb collisions.

In this situation, while waiting for new data from lepton-ion [90–92] or pA colliders, guidance
from different theoretical models is of utmost importance for controlled extrapolations from the region
where experimental data exist to those interesting for the LHC. Two different approaches to the problem
have been suggested: On one hand, some models try to explain the origin of shadowing, usually in terms
of multiple scattering (in the frame where the nucleus is at rest) or parton interactions in the nuclear wave
function (in the frame in which the nucleus is moving fast). On the other hand, other models parameterize
parton densities inside the nucleus at some scale

� �
� large enough for perturbative QCD to be applied

reliably and then evolve these parton densities using the DGLAP [43] evolution equations. Then, the
origin of the differences between parton densities in nucleons and nuclei is not addressed, but contained
in the parameterization at

� �
� , obtained from a fit to data.

4.3.1. Multiple scattering and saturation models

The nature of shadowing is well understood qualitatively. In the rest frame of the nucleus, the incoming
photon splits, at small enough � , into a � �� pair long before reaching the nucleus, with a coherence length� � ( � � 
 ��� ��� with ��� the nucleon mass. At small enough � , � � becomes on the order of or greater
than the nuclear size. Thus the � �� pair interacts coherently with the nucleus with a typical hadronic
cross section, resulting in absorption [93–100]. (See Ref. [101] for a simple geometrical approach in this
framework.) In this way nuclear shadowing is a consequence of multiple scattering and is thus related to
diffraction (see Refs. [102, 103]).

Multiple scattering is usually formulated in the dipole model [97, 104], equivalent to � � -
factorization [105] at leading order. In this framework, the � � -nucleus cross section is expressed as
the convolution of the probability of the transverse or longitudinal � � to split into a � �� pair of transverse
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Fig. 1.13: Ratios of gluon distribution functions from different models at � ! ���
GeV

!
; HKM refers to the results from

Ref. [29], Sarcevic, Ref. [107], EKS98, Refs. [27, 28], Frankfurt, Ref. [103], Armesto, Refs. [89, 106] and new HIJING, Ref.

[66]. The bands represent the ranges of �
� � � � � � ����� for processes with � ��� � 0.5, � ! = 5 GeV

!
at RHIC ( � � � 200 GeV)

and LHC ( � � = 5.5 TeV).

dimension � times the cross section for dipole-nucleus scattering. It is this dipole-nucleus cross section at
fixed impact parameter which saturates, i.e. reaches the maximum value allowed by unitarity. Most often
this multiple scattering problem is modelled through the Glauber–Gribov approach [89, 103, 106, 107].
The dipole-target cross section is related through a Bessel–Fourier transform to the so-called uninte-
grated gluon distribution � � 
 � � � � � in � � -factorization [89,106,108], which in turn can be related to the
usual collinear gluon density by

� � � 
 � � � �
� �

� � !
� ! � � �� � � 
 � � � � � � (1.15)

where
� �

is some infrared cut-off, if required. This identification is only true for
� � � � �

� � � [109, 110],
where

� �
� � � corresponds to the transverse momentum scale at which the saturation of the dipole-target

cross section occurs.

Other formulations of multiple scattering do not use the dipole formalism but relate shadowing to
diffraction by Gribov theory. See recent applications in [102, 103] and the discussion in Section 4.4.

An explanation equivalent to multiple scattering, in the frame in which the nucleus is moving fast,
is gluon recombination due to the overlap of the gluon clouds from different nucleons. This makes the
gluon density in a nucleus with mass number A smaller than A times that of a free nucleon [25, 26]. At
small � , the interaction develops over longitudinal distances � � � � 
 � � ��� which become of the order of
or larger than the nuclear size, leading to the overlap of gluon clouds from different nucleons located in a
transverse area

� � � � �
. Much recent work in this field stems from the development of the semiclassical

approximations in QCD and the appearance of nonlinear evolution equations in � (see Refs. [111, 112],
the contributions by Mueller, Iancu et al., Venugopalan, Kaidalov and Kharzeev in [113], and references
therein), although saturation appears to be different from shadowing [109, 110] (i.e. the reduction in the
number of gluons as defined in DIS is not apparent). In the semiclassical framework, the gluon field at
saturation reaches a maximum value and becomes proportional to the inverse QCD coupling constant,
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gluon correlations are absent and the dipole-target cross section has a form which leads to geometrical
scaling of the � � -target cross section. Such scaling has been found in small � nucleon data [114] and
also in analytical and numerical solutions of the nonlinear equations [115–118] but the data indicate
that apparently the region where this scaling should be seen in lepton–nucleus collisions has not yet
been reached [119]. Apart from proposed �

�
colliders [90–92], the LHC will be the place to look for

nonlinear effects. However, the consequences of such high density configurations may be masked in� �
collisions by other effects, such as final-state interactions. Thus pA collisions would be essential

for these studies, see Ref. [120]. Moreover, they would be required to fix the baseline for other studies
in
� �

collisions such as the search for and characterization of the QGP. As a final comment, we note
that the nonlinear terms in Refs. [25, 26] are of a higher-twist nature. Then, in the low density limit, the
DGLAP equations [43] are recovered. However, the nonlinear evolution equations in � [111–113] do not
correspond to any definite twist. Their linear limit corresponds to the BFKL equation [121, 122].

We now comment further on the difference between gluon shadowing and saturation. In saturation
models, see Refs. [111–113], saturation, defined as either a maximum value of the gluon field or by the
scattering becoming black, and gluon shadowing, defined as � � � � 
 � � � � � 1, are apparently different
phenomena, i.e. saturation does not necessarily lead to gluon shadowing [109,110]. Indeed, in numerical
studies of the nonlinear small � evolution equations, the unintegrated gluon distribution turns out to be
a universal function of just one variable � � � �� � � �

� � � [115–117], vanishing quickly for � �� � � �
� � � .

(In Ref. [118] this universality is analytically shown to be fulfiled up to � �
� much larger than

� �
� � � ).

This scaling also arises in the analysis of DIS data on nucleons [114]. It has also been searched for
in nuclear data [119]. In nuclei,

� �
� � � increases with increasing nuclear size, centrality and energy.

Thus, through the relation to the collinear gluon density given in Eq. (1.15), this scaling implies that
the integral gives the same value (up to logarithmic corrections if a perturbative tail ( � � � �

� exists
for � �� � � �

� � � ), provided that the upper limit of the integration domain
� � � � �

� � � . Thus the ratio
� � ��� 
 � � � � remains equal to 1 (or approaching 1 as a ratio of logs if the perturbative tail exists) for� � � � �

� � � . So saturation or nonlinear evolution do not automatically guarantee the existence of gluon
shadowing. Since shadowing is described in terms of multiple scattering in many models, this result
[109, 110] seems somewhat surprising.

4.3.2. DGLAP evolution models

A different approach is taken in Refs. [27–29, 123]. Parton densities inside the nucleus are parameter-
ized at some scale

� �
�
� � 
	
	
 5 GeV

�
and then evolved using the DGLAP [43] equations. Now all

nuclear effects on the parton densities are included in the parameterization at
� �

� , obtained from a fit to
experimental data. The differences between the approaches mainly come from the data used to constrain
the parton distributions (e.g. including or excluding Drell–Yan data). In these calculations lack of data
leaves the gluon badly constrained at very small � . Data on the

� �
-evolution of # �� give direct con-

straints [52] through DGLAP evolution but only for � � 0.01. See Section 4.1. for more discussion of
this framework.

4.3.3. Comparison between different approaches

Model predictions usually depend on additional semi-phenomenological assumptions. Since these
assumptions are typically different, the predictions often contradict each other. For example, in
Refs. [93–97] it is argued that large size � �� configurations give the dominant contribution to the ab-
sorption, which does not correspond to any definite twist but to an admixture of all twists, resulting in
essentially

� �
-independent shadowing. On the other hand, in the gluon recombination approach [25,26]

the absorption is clearly a higher-twist effect dying out at large
� �

. Finally, in the DGLAP-based mod-
els [27–29, 123], all

� �
-dependence comes from QCD evolution and is thus of a logarithmic, leading-

twist nature. Thus these approaches all lead to very different predictions at small � , particularly for the
gluon density.
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We now compare available numerical results from different approaches. Recall that in dipole
approaches such as that of Ref. [89], there are difficulties in identifying the unintegrated gluon distri-
bution with the ordinary gluon density at small and moderate

� �
, see the discussion of Eq. (1.15).

A comparison at
� �

= 5 GeV
�

for the Pb/p gluon ratio can be found in Fig. 1.13. In the RHIC re-
gion, ��� 10 
 � , the results from Refs. [27–29, 89, 107] roughly coincide but lie above those from
Refs. [66, 103]. At ��� 10 
 � 
	
	
 10 
 	 (accessible at the LHC) the results of Ref. [89] are smaller
than those of Refs. [27–29, 107], approaching those of Ref. [103] but remaining larger than those of
Ref. [66]. Apart from the loose small � gluon constraints from DIS data on nuclei, in Refs. [27–29] sat-
uration is imposed on the initial conditions for DGLAP evolution, while Refs. [89,103,107] are multiple
scattering models. In Ref. [66], the

� �
-independent gluon density is tuned at � � 10 
 � to reproduce

charged particle multiplicities in AuAu collisions at RHIC. The strongest gluon shadowing is thus ob-
tained. However, it seems to be in disagreement with existing DIS data [52]. Additional caution has
to be taken when comparing results from multiple scattering models with those from DGLAP analy-
sis [27–29]. The gluon ratios at some moderate, fixed

� �
and very small � may become smaller (e.g.

in Ref. [89]) than the # � ratios at the same � and
� �

, which might lead to problems with leading-twist
DGLAP evolution [52].

4.4. Predictions for the Leading-twist Shadowing at the LHC

L. Frankfurt, V. Guzey, M. McDermott and M. Strikman

The basis of our present understanding of nuclear shadowing in high-energy scattering on nu-
clei was formulated in the seminal work by V. Gribov [124]. The key observation was that, within the
approximation that the range of the strong interactions is much smaller than the average inter-nucleon
distances in nuclei, there is a direct relationship between nuclear shadowing in the total hadron–nucleus
cross section and the cross section for diffractive hadron–nucleon scattering. While the original deriva-
tion was presented for hadron–deuterium scattering, it can be straightforwardly generalized to lepton–
nucleus DIS.

Reference [125] demonstrated how to use the Collins factorization theorem for hard diffraction in
DIS [126] to generalize Gribov theory to calculate the leading-twist component of nuclear shadowing
separately for each nuclear parton distribution. The correspondence between the two phenomena is
illustrated in Fig. 1.14.
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I I PPI P PI 

j j
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HH
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Fig. 1.14: Diagrams for hard diffraction in
�
� scattering and for the leading-twist nuclear shadowing
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As a result, the double scattering term of the shadowing correction to the nuclear parton distribu-
tions, � � � � 
� � � 
 � � � � � , takes the form

� � � � 
��� � 
 � � � �
� �

� 
 � # � �� ��� ��� � � 
 �$# " � � �� � � �
�
�
� � ���


 � ��� � ���� � ��� � � ��� 	�
 �
� ���
� ���

� �� � � 
 
 � � � � �
� � � � � � � 
 � � � � � � � 
 � � � � � �



��� 	������ � � 
 � ! 
�� 
 (1.16)

Here � is a generic parton label (i.e. a gluon or a quark of a particular flavour), � �� � � is the diffractive
parton distribution function (DPDF) of the nucleon for parton � , � � 
 � � � � is the nucleon density nor-
malized to unity, � is the ratio of the real to imaginary parts of the nucleon diffractive amplitude, while
� � � � � = 0.1 for quarks and � � � � � = 0.3 for gluons. Since � ���� � obeys the leading-twist DGLAP evolution

equation, the
� �

-evolution of � � � � 
��� � is also governed by DGLAP, i.e. it is by definition a leading-twist
contribution. This explains why the approach of Ref. [125] can be legitimately called a leading-twist
approach. However, in this approach, one can also take into account higher-twist effects in diffraction.

The HERA diffractive data are consistent with the dominance of leading-twist diffraction in the
process � � � �

� � � � � for
� � �

4 GeV
�
. These studies have determined NLO quark DPDFs

directly and the gluon diffractive DPDF indirectly through scaling violations. More recent studies of
charm production and diffractive dijet production in the direct photon kinematics measured the gluon
DPDF directly. It was found to be consistent (within a 30% uncertainty primarily determined by the
treatment of the NLO contribution to two-jet production) with the inclusive diffraction in DIS. As a
result, we were able to determine the strength of interaction in the quark and gluon channels, �

�
��� . This

strength turns out to be large at
� �

�
�

4 GeV
�
, where one can set up the boundary condition2 for the

subsequent QCD evolution. The interaction strength is typically of the order of 20 mb for the quark
channel and 30–40 mb for the gluon channel at

� � �
4 GeV

�
, � 	 10 
 � . Consequently, it is necessary

to include the interactions with � �
3 nucleons in the calculations. These interactions were modelled

using the quasi-eikonal approximation. Corrections due to fluctuations in the cross section were also
analysed and found to be rather small for reasonable models of these effects [127]. Therefore, the master
equation for the evaluation of nuclear shadowing takes the following form

� � ��� � 
 � � � �
� �

� 
 � # � �� ��� ��� � � 
 �$# " � � �� � � �
�
�
� � � �


 � ��� � � �� � ��� � � ��� 	�
 �
� ���
� ���

���� � � 
 
 � � � � �
� � � � � � � 
 � � � � � � � 
 � � � � � �



��� 	������ � � 
 � ! 
 � 
 � �

�
� 
 � � 



�� 
���� ���! #" !" � � �%$ � � 	 � � 
 � 
 (1.17)

It is important to note that Eq. (1.17) defines the input nuclear PDFs at the initial, low scale
�
��

� = 2 GeV for subsequent QCD evolution to higher scales
� �

. In order to have consistent results after
evolution, Eq. (1.17), applicable for 10 
 	 	 � 	 0.05, should be supplemented by a model of nuclear
PDFs for larger � , � � 0.05. In our analysis, this is done by assuming no enhancement for quarks and
some enhancement (antishadowing) for gluons (see Fig. 1.15).

We have recently performed a detailed analysis of nuclear shadowing within the leading-twist
approach using the current HERA diffractive data [103]. We have analysed the uncertainties originating
from the input diffractive parton distribution functions, related to the uncertainties in the data, and found
that they are less than 	 20–30% for � 	 10 
 � . The biggest uncertainty in the gluon channel originates
from the � -dependence of the gluon DPDF, not directly measured. An example of our calculations [128]
is presented in Fig. 1.15.

2For � ! � 4 GeV
!
, higher-twist effects in

�
� diffraction appear to be significant. This leads to 30–50% contributions

of higher-twist effects in nuclear shadowing at � !'& 1–2 GeV
!
, which may make the use of the small- � NMC data for the

extraction of nuclear PDFs problematic.
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Fig. 1.15: Predictions of quark and gluon shadowing for � = 2 GeV (solid curves), � = 10 GeV (dashed curves) and� � 100 GeV (dot-dashed curves)

We also calculated the higher-twist shadowing, which we estimated in the eikonal approximation,
and demonstrated that the leading-twist contribution dominates down to very small � at

� � �
4 GeV

�
.

(Numerical results are available from V. Guzey upon request.) Also, we found large differences between
the LO and NLO calculations of the nuclear structure function # �� .

One can see from Fig. 1.15 that the leading-twist shadowing effects are expected to be large for
small � for both the quark and gluon channels at

� �
few GeV. These effects are expected to survive up

to scales characteristic of � and
�

production.

Our formalism can be readily applied to evaluate nuclear shadowing in nPDFs at all impact pa-
rameters. The nuclear shadowing correction to the impact-parameter-dependent nPDFs, � � ��� � 
 � � � � � � � ,
can be found from Eq. (1.17) by simply differentiating with respect to the impact parameter � [103]. The
effect of nuclear shadowing increases with decreasing impact parameter. This is illustrated in Fig. 1.16,
where we plot the ratios � ��� � 
 � � � � � � � � 
 � � � 
 � � � � � � 
 � � � � � � , where � � 
 � � ��� � � � � 
 � � � � , for quarks
and gluons at � = 0 (solid curves) and � = 6 fm (dashed curves). For comparison, the impact-parameter-
averaged ratios � � � � 
 � � � � � � 
 � � ��� � 
 � � � � � � are given by the dot-dashed curves. Figure 1.16 demon-
strates that nuclear shadowing significantly depends on the impact parameter � . Hence, comparing pe-
ripheral and central pA collisions will provide an additional measure of the nuclear shadowing.

It is worth emphasizing that the diagrams corresponding to leading-twist shadowing are usually
neglected in the BFKL-type approaches to nuclear scattering. For example, these diagrams are neglected
in the model of Balitsky [129] and Kovchegov [130]. Note also that higher-twist effects become im-
portant at sufficiently small � and

� 	 �
�
� � 
 � � . Rough estimates indicate that, in the gluon sector

with
� �

200,
�
�
� � (10 
 � )

�
2–5 GeV, depending on how the NLO effects are handled. Also,

�
�
� � 
 ���

should increase with decreasing � .
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Fig. 1.16: Predictions of quark and gluon shadowing as a function of the impact parameter: � = 0 (solid curves); � = 6 rm

(dashed curves); � -averaged ratios (dot-dashed curves). For all curves, � = 2 GeV.

In conclusion, leading-twist shadowing effects are expected to lead to significant modifications of
the hard process cross sections at the LHC in pA and AA collisions. Further progress in the diffraction
studies at HERA will significantly reduce the uncertainties in the predictions.

4.5. Structure Functions are not Parton Distributions

S.J. Brodsky

Ever since the earliest days of the parton model, it has been assumed that the leading-twist struc-
ture functions #




 � � � � � measured in deep inelastic lepton scattering are determined by the probability

distributions of quarks and gluons as determined by the light-cone (LC) wavefunctions of the target. For
example, the quark distribution is

���
�
� 
 ��	 � � �

� �
�
�
�
�
!� � � � ! ��� 


���


�
� � �


 � � � � 
 � 
 � � � 
 � � � �� � � � 
 � 	 # �
�
� 


The identification of structure functions with the square of light-cone wavefunctions is usually made in
the LC gauge, 
�� � � � � = 0, where the path-ordered exponential in the operator product for the forward
virtual Compton amplitude apparently reduces to unity. Thus the deep inelastic lepton scattering cross
section (DIS) appears to be fully determined by the probability distribution of partons in the target. How-
ever, Paul Hoyer, Nils Marchal, Stephane Peigne, Francesco Sannino, and I have recently shown that the
leading-twist contribution to DIS is affected by diffractive rescattering of a quark in the target, a coherent
effect which is not included in the light-cone wavefunctions, even in light-cone gauge [131–133]. The
distinction between structure functions and parton probabilities is already implied by the Glauber–Gribov
picture of nuclear shadowing [134–137]. In this framework shadowing arises from interference between
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Fig. 1.17: Glauber–Gribov shadowing involves interference between rescattering amplitudes

complex rescattering amplitudes involving on-shell intermediate states, as in Fig.1.17. In contrast, the
wavefunction of a stable target is strictly real since it does not have on energy-shell configurations. A
probabilistic interpretation of the DIS cross section is thus precluded.

It is well-known that in the Feynman and other covariant gauges one has to evaluate the correc-
tions to the ‘handbag’ diagram due to the final-state interactions of the struck quark (the line carrying
momentum � � in Fig. 1.18) with the gauge field of the target. In light-cone gauge, this effect also involves
rescattering of a spectator quark, the � � line in Fig. 1.18. The light-cone gauge is singular – in partic-
ular, the gluon propagator � � ���� 
 � � �


�
! �


� � # � � � � ���

�
� �
�
� � ��	�
� 


has a pole at � � � � which requires
an analytic prescription. In final-state scattering involving on-shell intermediate states, the exchanged
momentum � � is of O(1/ � ) in the target rest frame, which enhances the second term in the propagator.
This enhancement allows rescattering to contribute at leading twist even in LC gauge.

The issues involving final-state interactions even occur in the simple framework of abelian gauge
theory with scalar quarks. Consider a frame with � � � 0. We can then distinguish FSI from ISI using
LC time-ordered perturbation theory, LCPTH [138]. Figure 1.18 illustrates two LCPTH diagrams which
contribute to the forward � � � � � � � amplitude, where the target � is taken to be a single quark. In
the aligned jet kinematics the virtual photon fluctuates into a � �� pair with limited transverse momentum,
and the (struck) quark takes nearly all the longitudinal momentum of the photon. The initial � and ��
momenta are denoted � � and � � # � � , respectively.
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Fig. 1.18: Two types of final state interactions. (a) Scattering of the antiquark (� ! line), which in the aligned jet kinematics is

part of the target dynamics. (b) Scattering of the current quark (� � line). For each LC time-ordered diagram, the potentially

on-shell intermediate states – corresponding to the zeros of the denominators ��
 ��������� � – are denoted by dashed lines.

The calculation of the rescattering effects on DIS in Feynman and light-cone gauge through three
loops is given in detail in Ref. [131]. The result can be resummed and is most easily expressed in
eikonal form in terms of transverse distances � & � � & conjugate to � � & � ��& . The DIS cross section can be
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expressed as
� � ���
� � � ��� 	 �

� � �
��� � � �$# �� � �

� � �
� � � 
�

� 
� �
���

� & � � �
� & � �

� � � � (1.18)

where
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 �
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�
� & � �
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 � 
� � �� & � �
� & � ������ (1.19)

is the resummed result. The Born amplitude is�� 
 � 
� � �� & � �
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�
	 
 ���
� � & � � 


�
� & � �

� & � � (1.20)

where � � �
� � � 
� � � 	 � � �
and	 
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� &
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 (1.21)

The rescattering effect of the dipole of the � �� is controlled by

� 

�

� & � �
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�
��&
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 (1.22)

The fact that the coefficient of
��

in Eq. 1.19 is less than unity for all
�

� & � �
� & shows that the rescattering

corrections reduce the cross section. It is the analogue of nuclear shadowing in our model.

We have also found the same result for the DIS cross sections in light-cone gauge. Three prescrip-
tions for defining the propagator pole at � � = 0 have been used in the literature:

�
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 # " � 
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 � 

 � 
 
 � 
 �"! � (1.23)

the principal-value (PV), Kovchegov (K) [139], and Mandelstam–Leibbrandt (ML) [140] prescrip-
tions. The ‘sign function’ is denoted

�

 ��� �$# 
 � � # # 
 # ��� . With the PV prescription we have% �

� � � � �� � � ��



 �
�
! � � 
 Since an individual diagram may contain pole terms

� � � � �



, its value

can depend on the prescription used for light-cone gauge. However, the � �



= 0 poles cancel when all
diagrams are added. The net is thus prescription-independent and agrees with the Feynman gauge result.
It is interesting to note that the diagrams involving rescattering of the struck quark � � do not contribute to
the leading-twist structure functions if we use the Kovchegov prescription to define the light-cone gauge.
In other prescriptions for light-cone gauge the rescattering of the struck quark line � � leads to an infrared
divergent phase factor �'&)( 
 " ��� , where

� � �
� % � # �
� � � � 
 ' � & ���+* 
 � 
 � � (1.24)

where ' is an infrared regulator, and
% �
� 1 in the K prescription. The phase is exactly compensated

by an equal and opposite phase from FSI of line � � . This irrelevant change of phase can be understood
by the fact that the different prescriptions are related by a residual gauge transformation proportional to
� 
 � � � which leaves the light-cone gauge

� � = 0 condition unaffected.

Diffractive contributions which leave the target intact thus contribute at leading twist to deep
inelastic scattering. These contributions do not resolve the quark structure of the target, and thus they are
contributions to structure functions which are not parton probabilities. More generally, the rescattering
contributions shadow and modify the observed inelastic contributions to DIS.
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Our analysis in the K prescription for light-cone gauge resembles the ‘covariant parton model’ of
Landshoff, Polkinghorne and Short [141,142] when interpreted in the target rest frame. In this description
of small � DIS, the virtual photon with positive � � first splits into the pair � � and � � . The aligned quark

� � has no final state interactions. However, the antiquark line � � can interact in the target with an effective
energy �� ( � �& � � while staying close to mass shell. Thus at small � and large �� , the antiquark � � line
can first multiply scatter in the target via pomeron and Reggeon exchange, and then it can finally scatter
inelastically or be annihilated. The DIS cross section can thus be written as an integral of the � �� � � � cross
section over the � � virtuality. In this way, the shadowing of the antiquark in the nucleus � �� � � � cross
section yields the nuclear shadowing of DIS [136]. Our analysis, when interpreted in frames with � � � 0,
also supports the colour dipole description of deep inelastic lepton scattering at small � . Even in the case
of the aligned jet configurations, one can understand DIS as due to the coherent colour gauge interactions
of the incoming quark-pair state of the photon interacting first coherently and finally incoherently in the
target. For further discussion see Refs. [132, 143, 144]. The same final-state interactions that produce
leading-twist diffraction and shadowing in DIS also lead to Bjorken-scaling single-spin asymmetries in
semi-inclusive deep inelastic, see Refs. [145–147].

The analysis presented here has important implications for the interpretation of the nuclear struc-
ture functions measured in deep inelastic lepton scattering. Since leading-twist nuclear shadowing is
due to the destructive interference of diffractive processes arising from final-state interactions (in the

� � 	 0 frame), the physics of shadowing is not contained in the wavefunctions of the target alone. For
example, the light-front wavefunctions of stable states computed in light-cone gauge (PV prescription)
are real, and they only sum the interactions within the bound-state which occur up to the light-front time

� = 0 when the current interacts. Thus the shadowing of nuclear structure functions is due to the mutual
interactions of the virtual photon and the target nucleon, not the nucleus in isolation [131].

4.6. Nuclear Parton Distribution Functions in the Saturation Regime

Yu.V. Kovchegov

4.6.1. Introduction

At the high collision energies reached at the LHC, parton densities in the nuclear wavefunctions will
become very large, resulting in the onset of parton recombination and saturation of parton distribution
functions [23, 25, 26]. In the saturation regime, the growth of partonic structure functions with energy
is expected to slow down sufficiently to unitarize the total nuclear cross sections. Gluonic fields in the
saturated nuclear wavefunction would become very strong, reaching the maximum possible magnitude
in QCD of

� � � � � � [139, 148, 149]. The transition to the saturation region can be characterized by the
saturation scale

� � � 
 � � � � , which is related to the typical two dimensional density of the parton colour
charge in the infinite momentum frame of the hadronic or nuclear wavefunctions [23,139,148,149]. The
saturation scale is an increasing function of energy � � and of the atomic number A [116, 118, 130, 150–
154]. It is expected that it (roughly) scales as

� � � 
 � � � � � � % ��� � (1.25)

where � 
 0.2–0.3 based on HERA data [88, 155] and � �
1/3 [116, 118, 152–154]. Various estimates

predict the saturation scale for lead nuclei at 14 TeV to be
� � �


 10–20 GeV
�
. This high value of the

saturation scale would ensure that the strong coupling constant � � 
 � � � � is small, making the vast majority
of partons in the nuclear wave functions at the LHC perturbative [109,110,149,156,157]! The presence
of an intrinsic large momentum scale

� �
justifies the use of a perturbative QCD expansion even for such

traditionally nonperturbative observables as total hadronic cross sections [23, 150].

Below we first discuss the predictions for gluon and quark distribution functions of a large nucleus,
given by the quasi-classical model of McLerran and Venugopalan [23, 109, 139, 148, 150]. We then
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Fig. 1.19: The non-Abelian Weizs äcker–Williams field of a nucleus

discuss how quantum corrections should be included to obtain an equation for the realistic # � structure
function of the nucleus [129, 130, 151, 158, 159]. We will conclude by deriving the gluon production
cross section for pA scattering in the quasi-classical approximation [109] and generalizing it to include
quantum corrections [160].

4.6.2. Structure functions in the quasi-classical approximation

The gluon distribution

As suggested originally by McLerran and Venugopalan [23], the gluon field of a large ultrarelativistic
nucleus is classical and is given by the solution of the Yang–Mills equations of motion with the nucleus
providing the source current. The classical solution in the light cone gauge of the nucleus, known as
the non-Abelian Weizsäcker–Williams field (WW), has been found in Refs. [139, 148, 149]. It includes
the effects of all multiple rescatterings of the small- � gluon on the nucleons in the nucleus located at
the same impact parameter as the gluon. This resummation parametrically corresponds to resumming
powers of

� � � � � �
(higher twists), where � is the gluon transverse momentum. Diagrammatically, the

field is shown in Fig. 1.19. The correlator of two WW fields gives rise to the unintegrated nuclear gluon
distribution given by [109, 149]

� � � � 
 � � � � �
� � � �

�


 � � � �
�
�
� � � 



 � � � � �
� � ��� � � ��� 
 � � � ��� 
 � ���

�
�

� 
 � � � �
�
�
� � � 



 � � � � &�� �
� � � � �

� # � 

�� � ! � !	�
 � (1.26)

where � is the gluon impact parameter and

� � � 
 � � � � � � � � � �
�

�� # � �!� � � 
 � � � � � � �	� � 
 � � (1.27)

is the saturation scale with atomic number density � �
� � � 
 � � � � � � �� � and � � 
 � � � �
� � �� # � � for

spherical nuclei A considered here. The gluon distribution in a single nucleon, � � � 
 � � � � � , is assumed
to be a slowly varying function of

� �
. In the two-gluon exchange approximation [109] � � � 
 � � � � � �


 � � � � � � � � 

� � � � �

.

The gluon distribution function of Eq. (1.26) falls off perturbatively as � � � � � � � � � �
for large

transverse momenta � , but is much less singular in the infrared region, scaling as � � � �
��

� � � �

for small � [149]. We conclude that multiple rescattering softens the infrared singular behaviour of the
traditional perturbative distribution. Note also that the number of gluons given by Eq. (1.26) is of the
order of � � � � , corresponding to strong gluonic fields of the order of

� � � � � � .
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Fig. 1.20: DIS on a nucleus in the quasi-classical approximation

The quark distribution

To calculate the quark distribution function in the quasi-classical approximation, one has to consider
deep inelastic scattering in the rest frame of the nucleus including all multiple rescatterings, as shown
in Fig. 1.20. The # � structure function (and the quark distribution) was first calculated by Mueller [150]
in this approximation, yielding

# � 
 � � � �
� �

�
�

�
�
� � � � 
 � � � �

����� � 
 � � � �
� � � � �

� � � � � �
�
�

�
�
�
� � � � ����

� �
��� � � �� 
 � � � � � � ��� 
 � � � ��� � �

(1.28)
where �

� � � � �� 
 � � � � is the wavefunction of a virtual photon in DIS, splitting into a � �� pair with trans-
verse separation � . The fraction of photon longitudinal momentum carried by the quark is � . The
quantity � 
 � � � ��� � is the forward scattering amplitude of a dipole with transverse size � at impact pa-
rameter � with rapidity � on a target nucleus. In the quasi-classical approximation of Refs. [23, 150],
� ( � � � ��� = 0) is given by

� 
 � � � ��� � � � � � # � 
 � ! � !	 
 �	� 	�

� � � � (1.29)

where
� � � � ���

��� � is the quark saturation scale which can be obtained from the gluon saturation scale in Eq.
(1.27) by replacing � � by � � in the numerator [150, 160].

4.6.3. Inclusion of quantum corrections

At high energy, the quasi-classical approximation previously considered ceases to be valid. The energy
dependence of the cross sections comes in through the quantum corrections which resum logarithms of
energy [122, 161–165]. The evolution equation for � , resumming logarithms of energy, closes only in
the large- � � limit of QCD and reads [104, 129, 130, 151, 158, 159, 166–168]

� 
 � � � � � ��� � � � 
 � � � � � � � � � 

�������� � ����� � ����� � � � �

�
�
�  
�
� � � 


�������� � ����� � ���� �  
 % 

� � $ � � � � � �� �

� �� � � � � �
� � � 
 � � � � � � �� � � � � � � # � 
 � � � � � � �� � � � � � � � 
 � � � � � � �� � � � � � � � � (1.30)

with initial condition in Eq. (1.29) and �

��
� �


 # � � . In the usual Feynman diagram formalism, it
resums multiple pomeron exchanges (fan diagrams). Together with Eq. (1.28), it provides the quark
distribution function in a nucleus at high energies. The equation has been solved both by approximate
analytical methods and numerically in Refs. [116,118,152–154], providing unitarization of the total DIS
cross section and saturation of the quark distribution functions in the nucleus.

Using Eq. (1.30) together with Eq. (1.26), one may conjecture the following expression for the
unintegrated gluon distribution function including quantum corrections [160]

��� � � 
 � � � � �
� � � �

�

� 
 � � � �
�
�
� � � � � � 



 � � � � �
� � � � � � 
 � � � ��� � � 
 � � � � � (1.31)
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Fig. 1.21: Gluon production in pA collisions in the quasi-classical approximation.

with � � the forward amplitude of a gluon dipole scattering on the nucleus which, in the large- � � limit,
is � � � � � # �

�
[160], where � is the forward amplitude of the � �� dipole scattering on the nucleus

used in Eq. (1.30). Equation (1.31) must still be proven.

4.6.4. Gluon production in pA collisions

The pA programme at the LHC will test the above predictions for parton distribution functions by mea-
suring particle production cross sections which depend on these quantities. Below we discuss gluon
production in pA.

Quasi-classical result

Gluon production in pA interactions has been calculated in the quasi-classical approximation in
Ref. [109]. The relevant diagrams in the light cone gauge of the proton are shown in Fig. 8.8.. The
cross section is [109]
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 % 
 ! � !	

�
� 
 

(1.32)

Gluon production including quantum corrections

To include quantum corrections in Eq. (1.32), it must be rewritten in the factorized form [160] and
generalized to include the linear evolution of the proton structure function and nonlinear evolution of the
nuclear structure function. The result, see also Ref. [160], is

��� � �
� � � � � �

� �
� � � 
 � � � �

�
�
� � 
 � 
 � ��� # � � �

�
�� �


��
� � �

�
��

� � � � 
 � � � � � (1.33)

where � is the total rapidity interval between the proton and the nucleus, � � 
 � � � � � � � � � � � 
 � � � � � �
and

�
�

�� is the transverse gradient squared. The function 
 � 
 � ��� # � � in Eq. (1.33) is the solution of the
linear part of Eq. (1.30) (BFKL) integrated over all � with the two-gluon exchange amplitude between
the proton and a gluon dipole as initial conditions. In the no-evolution limit, Eq. (1.33) reduces to
Eq. (1.32). Equation (1.33) gives the saturation physics prediction for particle production at midrapidity
in pA collisions at the LHC.
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5. THE BENCHMARK TESTS IN pA

5.1.
�

, � , and Drell–Yan Cross Sections

R. Vogt

Studies of
� �

and � � gauge bosons as well as high mass Drell–Yan production in pA interactions
at the LHC will provide information on the nuclear parton densities at much higher

� �
than previously

available. The high
� �

measurements will probe the � range around 0.015 at � = 0. This range of � has
been probed before by fixed target nuclear deep-inelastic scattering so that a measurement at the LHC
will constrain the evolution of the nuclear quark distributions over a large lever arm in

� �
. Knowledge

of the nuclear quark distributions in this region will aid in studies of jet quenching with a � � opposite
a jet in AA collisions. At least one of the initial partons will be a quark or antiquark in the reactions

� � � � � � and � 
 � � � � � 
 � � � � .

Since the
�

and � � studies will open a new window in the 
 � � � � � plane for nuclear parton distri-
bution functions, these measurements are obvious benchmarks. The � � measurement probes symmetric

� � annihilation while measurements such as the
� � –

� 
 asymmetry via high � � decay leptons are
better probes of the nuclear valence quark distributions. Drell–Yan production at high

� �
is a somewhat

different story because, to be an effective benchmark, the Drell–Yan signal should dominate the dilepton
mass spectrum. In AA collisions, the signal dilepton mass distribution is dominated by � � decays until
� � � � [169]. Thus only in this large mass region is Drell–Yan a useful benchmark.

We very briefly outline the next-to-leading order, NLO, calculation here. The NNLO cross sections
are available [170] but are only a small addition (a few per cent) compared to the NLO correction. The
NLO cross section for production of a vector boson, 	 , with mass � at scale

�
in a pp interaction is

���
�� �

��� � � �
�� �
��� � ��� � � ���
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� ��� �

where � �
��
is proportional to the LO partonic cross section, " � � 	 , and the sum over

�
includes � ,

� , � and � . The matrices � � � and � � � contain information on the coupling of the various quark flavours
to boson 	 . The parton densities in the proton, � �
 , are evaluated at momentum fraction � and scale� �

. The convolutions of the parton densities, including the proton and neutron (isospin) content of the
nucleus, with shadowing parametrizations formulated assuming � �
 
 � � � � � � � �
 
 � � � � � � �




 � � � � � � �

are given in the appendix of Ref. [171]3. All the results are calculated with the MRST HO densities [172]
at
�
� � �

and the EKS98 shadowing parametrization [27, 28]. In the Drell–Yan process, the mass
distribution can also be calculated by adding a � � in the denominator of the left-hand side of Eq. (1.34)
and the delta function � 
 � # � � � on the right-hand side. The prefactors � �
��

are rather simple [170],

� � �
�� ��� �� � �
� �
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 �
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�� �

�
�
�

� �
� �

�
��
� � (1.35)

where
� � � 1.16639 � 10 
 	 GeV

�
, � � � 91.187 GeV, and � � � 80.41 GeV. In the case of the

Drell–Yan process, there are three contributions to � �
��
: virtual photon exchange, � � exchange, and

3In Ref. [171], � � � ��� � ! � 	 �
��� �� � ��� � ! � .
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Fig. 1.22: The � � , � � and � � rapidity distributions in pp, pPb and Pbp collisions at 5.5 TeV/nucleon evaluated at � � � � .

The solid and dashed curves show the results without and with shadowing respectively in Pbp collisions while the dotted and

dot-dashed curves give the results without and with shadowing for pPb collisions. The dot-dot-dot-dashed curve is the pp result.

� � # � � interference so that

� �
�� � � � �
�� � � � � 
 � �
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�� � (1.36)
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where � � 
 � � � � � # � �� � � �� , � � = 2.495 GeV, and � � � � � � � = 3.367%. The functions �


��

 � � � � � in

Eq. (1.34) are universal for gauge bosons and Drell–Yan production [170]. We work in the ��� scheme.
The NLO correction to the � � channel includes contributions from soft and virtual gluons as well as hard
gluons from the process � � � 	 � . The quark–gluon contribution only appears at NLO through the real
correction � �

� � 	 . At NLO, � � 
 � � � is calculated to two loops with 

	 � 5.

As we show in Fig. 1.22, the isospin of the nucleus is most important for � � -dominated processes.
Gauge boson and Drell–Yan production are the best examples of this domination in hadroproduction.
We compare the pPb and Pbp

� � ,
� 
 and � � distributions per nucleon with and without the EKS98

shadowing parametrization to pp production at 5.5 TeV. The pp distributions closely follow the pPb
distributions without shadowing except for � � 2. Since the

� � distribution is most sensitive to the� �� 
 � � � � �� 
 � � � contribution, the pp and pPb distributions peak away from � = 0. The Pbp distribution,
on the other hand, decreases with increasing � because the neutron content of lead washes out the peak.
The opposite effect is seen for

� 
 production where, in Pbp, the neutrons produce a peak at forward
rapidity since � �� � � �� . The � � distribution is almost independent of isospin, as are the high mass
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Table 1.5: Gauge boson cross sections per nucleon. No decay channel is specified

��� ����� (nb) �����	��

� (nb) ���	� (nb) ��������
�� (nb) ����� (nb) �����	��

� (nb)

� � � " � �

pp 5.5 TeV

0 � � � 2.4 8.10 – 15.13 – 11.41 –

0 � � � 1 3.51 – 6.13 – 5.16 –

2.4 � � � 4 2.01 – 5.68 – 2.42 –

Pbp 5.5 TeV

0 � � � 2.4 8.23 8.37 13.12 13.34 13.37 13.63

0 � � � 1 3.53 3.53 5.71 5.67 5.56 5.54

2.4 � � � 4 2.14 2.06 3.72 3.62 4.36 4.24

pPb 5.5 TeV

0 � � � 2.4 8.12 7.39 14.87 13.43 11.62 10.57

0 � � � 1 3.52 3.33 5.95 5.60 5.31 5.01

2.4 � � � 4 2.01 1.68 5.67 4.69 2.43 2.02

Pbp 8.8 TeV

0 � � � 2.4 12.37 12.47 19.62 19.71 19.87 20.01

0 � � � 1 5.22 5.11 8.37 8.16 8.22 8.02

2.4 � � � 4 5.07 5.03 8.30 8.31 9.46 9.47

pPb 8.8 TeV

0 � � � 2.4 12.26 10.93 21.41 18.96 18.08 16.09

0 � � � 1 5.20 4.82 8.60 7.92 7.98 7.35

2.4 � � � 4 4.83 3.95 11.80 9.58 5.98 4.87

Drell–Yan distributions. We see antishadowing in Pbp interactions with large nuclear � � while we have
small nuclear � � in the pPb calculations, reducing the � distributions. The

� � pA distributions are all
reduced compared to the pp distributions, the

� 
 pA results are typically enhanced relative to pp while
the � � pA/pp ratios do not change much with � .

The gauge boson cross sections in pp, Pbp, and pPb collisions at 5.5 TeV/nucleon as well as Pbp
and pPb collisions at 8.8 TeV/nucleon are given in Table 1.5. The Drell–Yan cross sections in the mass
bins 60 � � � 80 GeV, 80 � � � 100 GeV, and 100 � � � 120 GeV are given in Table 1.6 for pp,
Pbp, and pPb collisions at 5.5 TeV/nucleon. The cross sections are presented in three rapidity intervals,
0 � � � 2.4, corresponding to the CMS barrel+endcaps, 0 � � � 1, the central part of ALICE, and
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Table 1.6: Drell–Yan cross sections in the indicated mass intervals at 5.5 TeV/nucleon in pp, Pbp and pPb collisions

� � � (nb) ���	� (nb) ��������
�� (nb) ���	� (nb) ��� ����
�� (nb)

pp Pbp pPb

60 � � � 80 GeV

0 � � � 2.4 0.012 0.012 0.012 0.012 0.011

0 � � � 1 0.0048 0.0048 0.0047 0.0048 0.0044

2.4 � � � 4 0.0038 0.0036 0.0035 0.0038 0.0031

80 � � � 100 GeV

0 � � � 2.4 0.26 0.27 0.27 0.26 0.24

0 � � � 1 0.11 0.11 0.11 0.11 0.10

2.4 � � � 4 0.055 0.059 0.057 0.055 0.046

100 � � � 120 GeV

0 � � � 2.4 0.0088 0.0088 0.0090 0.0088 0.0080

0 � � � 1 0.0037 0.0037 0.0037 0.0037 0.0035

2.4 � � � 4 0.0015 0.0015 0.0014 0.0015 0.0012

2.4 � � � 4, the ALICE muon arm. The difference in the Pbp and pPb cross sections without shadowing
is entirely due to isospin. Thus the pA cross section in � � � � 2.4 is not a simple factor of two larger
than the 0 � � � 2.4 cross section since the results are not symmetric around � = 0, as can be seen
in Fig. 1.22.

We have checked the dependence of the gauge boson results on scale, parton density, and shadow-
ing parametrization. The scale dependence enters in the PDFs, � � , and the scale-dependent logarithms
� 
 
 � � � � �� � [170]. At these high

� �
values, � � � � � � � � � �

, the change in � � is 
 �
10%, small

compared to the variation at lower scales. When
� �
� �

�� , the scale dependent terms drop out. If� � � �
�� , the logs are positive, enhancing the � 
 � � � component, but if

� �
� �

�� , the scale-dependent
logs change sign, reducing the NLO contribution. Evolution with

� �
increases the low � density of the

sea quarks and gluons while depleting the high � component and generally reducing the valence distri-
butions. Since the � values do not change when

� �
is varied, the higher scales also tend to enhance the

cross sections. The gauge boson cross sections are decreased
�

30% when
� �

is decreased and increased
by 20% with increased

� �
. The scale change is even smaller for high mass Drell–Yan production, a few

per cent in the 60–80 GeV bin and 1% or less for higher masses.

The variation with parton density can be as large as the scale dependence. The MRST and
CTEQ [86] rapidity distributions are similar but the CTEQ cross sections are 7% higher. The GRV
98 [45] results are stronger functions of rapidity than the MRST. The total GRV 98 cross sections, how-
ever, are about 13% smaller.

We have also compared the pA/pp ratios to the HPC [173] and HKM [29] parametrizations. The
HPC parametrization does not distinguish between the sea and valence effects and includes no

� �
evo-
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lution. HKM actually parameterizes the nuclear parton distributions themselves and focuses on the
distinction between the up and down nuclear distributions. It is only useful to LO. However, shadowing
at LO and NLO is nearly identical [174].

In Pbp collisions, the EKS98 and HKM ratios are similar for � 	 1.5. At higher rapidities, the
HKM ratio is larger because its sea distribution increases more with � � but its valence shadowing is
weaker. The HPC ratio is lower than the EKS98 ratio at � � 0,

�
0.8 relative to

�
0.97. However

the two ratios are very similar for � � 2. In pPb collisions, � � is in the shadowing region and all three
ratios decrease with rapidity. Again, near � � 0, the HKM and EKS98 ratios are similar but the HKM
sea quark shadowing is nearly independent of � � while the EKS98 ratio drops from 0.97 to 0.8 between
� = 0 and 4. The HPC ratio is parallel to but lower than the EKS98 ratio.

Finally, we note that, without keeping the energy fixed, extracting the nuclear quark distributions
from pp and pA and applying them to AA is difficult4 since the isospin is an additional, nonnegligible
uncertainty. Therefore, it is desirable to make pp and pPb runs at 5.5 TeV for a more precise correlation
with the PbPb data at 5.5 TeV/nucleon. Indeed, for best results, both pPb and Pbp runs should be done
since the ALICE muon detector is not symmetric around � = 0. Its large rapidity coverage would extend
the nuclear � coverage to much higher (Pbp) and lower (pPb) values since � � 4 is the maximum
rapidity for � � production at 5.5 TeV/nucleon, the upper limit of the muon coverage, where � � � 1 and
� � � 0.0003.

Systematic studies with nuclear beams could be very useful for fully mapping out the A depen-
dence of the nuclear parton densities. The LHC Ar beam would link to the NMC Ca data while the LHC
O beam could connect back to previous C data [59]. However, these A systematics are best tuned to
the AA collision energies, different for O, Ar, and Pb. Comparing pA and pp at the same energies does
not shift � while a comparison to pp at 14 TeV rather than 5.5 TeV would shift the � values by a factor
of
�

3 between PbPb and pp. Energy systematics of gauge boson production between RHIC and LHC
are more difficult because

�
and � � production in pA at RHIC is quite close to threshold. However, at

RHIC, larger � values can be probed at � � 0, � � 0.45, where the cross sections are quite sensitive to
the valence distributions. High mass Drell–Yan is likely to be beyond the reach of RHIC.

5.2. � � and
�

Transverse Momentum Spectra

X.F. Zhang and G. Fai

At LHC energies, perturbative QCD (pQCD) provides a powerful calculational tool. For � � and�
transverse momentum spectra, pQCD theory agrees with the CDF [175] and D0 [176] data very well

at Tevatron energies [177]. The LHC pp programme will test pQCD at an unprecedented energy. The
heavy-ion programme at the LHC will make it possible for the first time to observe the full � � spectra
of heavy vector bosons in nuclear collisions and will provide a testing ground for pQCD resummation
theory [178].

In nuclear collisions, power corrections will be enhanced by initial and final state multiple scatter-
ing. As we will show, higher-twist effects are small at the LHC for heavy boson production. The only
important nuclear effect is the nuclear modification of the PDFs (shadowing). Because of their large
masses, the

�
and � � will tell us about the nPDFs at large scales. Since contributions from different

scales need to be resummed, the � � spectra of heavy vector bosons will provide information about the
evolution of nPDFs from small scales to large scales. Since it is more difficult to detect

� �
than � � , we

will concentrate on the � � here (the results for
� �

production are very similar [179]).

Resummation of large logarithms in QCD can be carried out either directly in � � -space, or in the
so-called ‘impact parameter’,

�� -space, the Fourier conjugate of the � � -space. Using the renormalization
group equation technique, Collins, Soper, and Sterman (CSS) derived a formalism for the transverse

4For a discussion of shadowing effects on gauge boson production in PbPb collisions at 5.5 TeV/nucleon and the possible
impact parameter dependence of the effect, see Ref. [171].
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momentum distribution of vector boson production in hadronic collisions [178]. In the CSS formalism,
nonperturbative input is needed for the large

�� region. The dependence of the pQCD results on the
nonperturbative input is not weak if the original extrapolation proposed by CSS is used. Recently, a new
extrapolation scheme was introduced, based on solving the renormalization group equation including
power corrections [177]. Using the new extrapolation formula, the dependence of the pQCD results on
the nonperturbative input was significantly reduced.

For vector boson ( 	 ) production in a hadron collision, the CSS resummation formal-
ism yields [178]

��� 
 � � � � 	 � 	 � � �
� � � � � � �

�
� �

�

 � � � �

�
�
� � � �


 �� � � ��	 �� 

�� � � � � � � � 	 ��� � 
 � � � � � � � � ��	 � � (1.37)

where � � � � % � � � � and � 	 � � 
 % � � � � , with rapidity � and collision energy � � . In Eq. (1.37),
the

��
term dominates the � � distributions when � � � � , and the � term gives corrections that are

negligible for small � � but become important when � � � � .

The function
�� 


�� � � � � � � ��	 � can be calculated perturbatively for small
� � , but an extrapolation

to the large
�� region, requiring nonperturbative input, is necessary in order to complete the Fourier

transform in Eq. (1.37). In order to improve the situation, a new form was proposed [177] by solving
the renormalization equation including power corrections. In the new formalism,

�� 

�� � � � � � � ��	 � ��� � � � � 
 �� � � � � � � � 	 � , when

�� 	 �� ����� , with�� � � � � 
 �� � � � � � � � 	 � � � � � �	 � � 
 �� 

�� � � �

�� � � � � ��	 � � (1.38)

where all large logarithms from � 
 
 � �
�� � � to � 
 
 � � � have been completely resummed into the exponential

factor
� 
 �� � � � , and � is a constant of order unity [178]. For

���� �� ����� ,�� 

�� � � � � � � � 	 � � �� � � � � 
 �� ����� � � � � � � ��	 � # � � 
 ���� �� ����� � � (1.39)

where the nonperturbative function # � � is given by

#
� �
� �'&)( � # � 
 
 �

� � � ������ � �
�
�

�
� �

�


�� � � % # 
 �� ������ � % 
 � � � � �� � # �� ������ 
 � # �� �

� � � � # �� ������ 
�� 
 (1.40)

Here,
�� ����� is a parameter that separates the perturbatively calculated part from the nonperturbative input.

Unlike in the original CSS formalism,
�� 


�� � � � � � � � 	 � is independent of the nonperturbative param-
eters when

���� �� ����� . In addition, the
�� -dependence in Eq. (1.40) is separated according to different

physics origins. The 

�� � � % -dependence mimics the summation of the perturbatively calculable leading-

power contributions to the renormalization group equations to all orders in the running coupling constant
� � 
 � � . The

�� � -dependence of the � � term is a direct consequence of dynamical power corrections to the
renormalization group equations and has an explicit dependence on � . The �� � term represents the effect
of the non-vanishing intrinsic parton transverse momentum.

A remarkable feature of the
�� -space resummation formalism is that the resummed exponential

factor �'&)( � � 
 �� � � � � suppresses the
� � -integral when

�� is larger than � � � . It can be shown using the
saddle point method that, for a large enough � , QCD perturbation theory is valid even at � � = 0 [178].
As discussed in Refs. [177, 179], the value of the saddle point strongly depends on the collision energy
� � , in addition to its well-known �

�
dependence. The predictive power of the

�� -space resummation
formalism should be even better at the LHC than at the Tevatron.

In � � production, since final-state interactions are negligible, power corrections can arise only
from initial state multiple scattering. Equations (1.39) and (1.40) represent the most general form of

��
and thus, apart from isospin and shadowing effects, which will be discussed later. The only way nuclear
modifications associated with scale evolution enter the

��
term is through the coefficient � � .
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Fig. 1.23: (a) Cross section ��� � � � � for � � production in pp collisions at the LHC with � � = 14 TeV; (b)
�����

defined in

Eq. (1.41) with � ! = 0.26 GeV
!

(dashed) and 0.40 GeV
!

(solid). (c) Cross section in pPb collisions at � � = 8.8 TeV; (d)
� ���

in pPb with � ! � 0.8GeV
!

The parameters � � and � of Eq. (1.40) are fixed by the requirement of continuity of the
function

�� 

�� � and its derivative at

�� � �� ����� . (The results are insensitive to changes of
�� �����	 �

� 
 � GeV 
 � , 0.7 GeV 
 � � . We use
�� ����� � 0.5 GeV 
 � .) A fit to low energy Drell–Yan data gives

�� � = 0.25
�

0.05 GeV
�

and � � = 0.01
�

0.005 GeV
�
. As the

�� dependence of the � � and �� � terms in
Eq. (1.40) is identical, it is convenient to combine these terms and define

� � � � 
 
 � � �� ������ � �
� � � � � �� � 


Using the values of the parameters listed above, we get
� � = 0.33

�
0.07 GeV

�
for � � production in pp

collisions. The parameter
� � can be considered the only free parameter of the nonperturbative input in

Eq. (1.40), arising from the power corrections in the renormalization group equations. An impression of
the importance of the power corrections can be obtained by comparing results with the above value of� � to those with power corrections turned off (

� � = 0). We therefore define the ratio

� � ! 
 � � ��� ��� � � ! 
 
 � � �
� � �

��� 
 � � �
� � � 
 (1.41)

The cross sections in the above equation and in the results presented here have been integrated over
rapidity (–2.4 	 � 	 2.4) and �

�
in the narrow width approximation. For the PDFs, we use the

CTEQ5M set [86].

Figure 1.23 displays the differential cross sections and the corresponding � � ! ratio (with the
limiting values of

� � = 0.26 GeV
�

(dashed) and
� � = 0.40 GeV

�
(solid)) for � � production as functions

of � � in pp collisions at � � = 14 TeV. The deviation of � � ! from unity decreases rapidly as � � increases.
It is smaller than one per cent for both � � = 5.5 TeV (not shown) and � � = 14 TeV in pp collisions, even
when � � = 0. In other words, the effect of power corrections is very small at the LHC over the whole

� � region.

Without nuclear effects on the hard collision, the production of heavy vector bosons in nucleus–
nucleus (

� �
) collisions should scale with the number of binary collisions, and � � 	 ( � �

. However,
there are several additional nuclear effects on the hard collision in a heavy-ion reaction. First of all, the
isospin effects, which come from the difference between the neutron PDFs and the proton PDFs, is about
2% at LHC. This is expected, since at the LHC � � 0.02 where the � # � asymmetry is very small.

The dynamical power corrections entering the parameter � � should be enhanced by the nuclear
size, i.e. proportional to

� �
�
� . Taking into account the

�
-dependence, we obtain

� � = 1.15
�

0.35 GeV
�
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Fig. 1.24: (a) Cross section ratios for � � production in PbPb collisions at � � = 5.5 TeV:
�
��� of Eq. (1.42) (solid line), and

�
���

with the scale fixed at 5 GeV (dashed) and 90 GeV (dotted); (b)
�
��� in pPb at � � = 8.8 TeV

for PbPb reactions. We find that with this larger value of
� � , the effects of power corrections appear to

be enhanced by a factor of about three from pp to PbPb collisions at the LHC. Thus, even the enhanced
power corrections remain under 1% when 3 GeV � � � � 80 GeV. This small effect is taken into account
in the following nuclear calculations.

Next we turn to the phenomenon of shadowing, expected to be a function of � , the scale � , and
of the position in the nucleus. The latter dependence means that in heavy-ion collisions, shadowing
should be impact parameter ( � ) dependent. Here we concentrate on impact-parameter integrated results,
where the effect of the � -dependence of shadowing is relatively unimportant [180], and focus on the scale
dependence. We therefore use the EKS98 parametrization [27]. We define

� ��� 
 � � ��� ��� � ��� 
 
 � � � � � � � � � 	 � � �
� � �

��� 
 � � �
� � � � (1.42)

where � � and � 	 are the atomic numbers and
�

and
�

are the mass numbers of the colliding nuclei.
The cross section ��� � ��� 
 
 � � � � ��� � � � 	 � � � �	� � � has been averaged over

� �
, while ��� 
 � � � �	� � � is the

pp cross section. We have seen above that shadowing remains the only significant effect responsible
for nuclear modifications. Figure 1.23(c) shows ��� � ��� 
 �	� � � and (d) the corresponding � � ! for pPb
collisions at � � = 8.8 TeV.

In Fig. 1.24(a), the result for � ��� (solid line) is surprising because even at � � = 90 GeV, � � 0.05,
and we are still in the ‘strict shadowing’ region. Therefore, the fact that � ��� � 1 for 20 GeV
� � � � 70 GeV is not ‘anti-shadowing’. To better understand the shape of the ratio as a function
of � � , we also show � ��� with the scale fixed to 5 GeV (dashed line) and 90 GeV (dotted), respectively,
in Fig. 1.24(a). The nuclear modification to the PDFs is only a function of � and flavour in the calcu-
lations represented by the dashed and dotted lines. These two curves are similar in shape, but rather
different from the solid line. In

�� space,
�� 


�� � � � � � � � 	 � is almost equally suppressed in the whole
��

region if the fixed scale shadowing is used. However, with scale-dependent shadowing, the suppression
increases as

�� increases since the scale �
� � � �� in the nPDFs. Thus the scale dependence redistributes

the shadowing effect. Here the redistribution brings � ��� above unity for 20 GeV � � � � 70 GeV. When
� � increases further, the contribution from the � term starts to be important and � ��� dips back below
one to match the fixed order pQCD result. Figure 1.24(b) shows � ��� in pPb at � � = 8.8 TeV.
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We see from Fig. 1.24 that the shadowing effects on the � � distribution of � � bosons at the
LHC are intimately related to the scale dependence of the nPDFs where the data are very limited [27].
Theoretical studies such as EKS98 are based on the assumption that the nPDFs differ from the parton
distributions in the free proton but obey the same DGLAP evolution [27]. Therefore, the transverse
momentum distribution of heavy bosons at the LHC in PbPb and pPb collisions can further test our
understanding of the nPDFs.

In summary, higher-twist nuclear effects appear to be negligible in � � production at LHC energies.
We have demonstrated that the scale dependence of shadowing may lead to unexpected phenomenology
of shadowing at these energies. Overall, the � � transverse momentum distributions can be used as
a precision test for leading-twist pQCD in the TeV energy region for both proton–proton and nuclear
collisions. We propose that measurements of the � � spectra be of very high priority at the LHC.

5.3. Jet and Dijet Rates in pA Collisions

A. Accardi and N. Armesto

The study of jet production has become one of the precision tests of QCD. Next-to-leading order
(NLO) computations have been successfully confronted with experimental data. For example, jet pro-
duction at the Tevatron [181] provides a very stringent test of available QCD Monte Carlo codes and
gives very valuable information on the behaviour of the gluon distribution in the proton at large � .

On the other hand, few studies on jets in a nuclear environment have been performed in fixed
target experiments [182,183] and at colliders. There are prospects to measure high-� � particles at RHIC
but the opportunity of detecting and studying jets with 
 � � 100 GeV, where 
 � is the total transverse
energy of all jets, will appear only at the LHC. Concretely, such measurements in pA collisions would
settle some uncertainties such as the validity of collinear factorization [17, 184, 185], the modifications
of nPDFs inside nuclei [46,186], and the existence and amount of energy loss of fast partons inside cold
nuclear matter [187]. Such issues have to be well understood before any claim, based on jet studies, of the
existence of new physics in nucleus–nucleus collisions (hopefully QGP formation), can be considered
conclusive. Furthermore, the study of high-� � particles and jets can help not only to disentangle the
existence of such new state of matter but also to characterize its properties, see Refs. [188–190].

For our computations we will use a NLO Monte Carlo code [191–193], adapted to include isospin
effects and modifications of the PDFs inside nuclei. This code is based on the subtraction method to
cancel the infrared singularities between real and virtual contributions. A full explanation, a list of
available codes and detailed discussions on theoretical uncertainties in nucleon–nucleon collisions can
be found in Ref. [194]. The accuracy of our computations, limited by CPU time, is estimated to be:

� 2% for the lowest and 15% for the highest 
 � -bins of the transverse energy distributions.
� 3% for the pseudorapidity distributions.
� 20% for the least populated and 3% for the most populated bins of the dijet distributions of the

angle between the two hardest jets.

The results will be presented in the LHC lab frame, so that for pPb collisions we have a 7 TeV proton
beam on a 2.75 TeV Pb beam, see Section 2.1. on the experimental parameters in pA collisions. All the
energies will be given per nucleon and, in order to compare with the pp case, all cross sections will be
presented per nucleon–nucleon pair, i.e. divided by

� �
.

Unless explicitly stated, we will use the MRST98 central gluon distribution [172] with the EKS98
parametrization [27, 28] and identical factorization and renormalization scales � � � � � � � � 
 � � � .
We will employ the � � -clustering algorithm for jet reconstruction [195, 196] with � � 1 which is
more sound on theoretical grounds than the cone algorithm [197–199]. The kinematical regions we
consider are:
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� � �


� � 2.5, where �



is the pseudorapidity of the jet, corresponding to the acceptance of the central

part of the CMS detector.
� 
 �



� 20 GeV for a single jet in the pseudorapidity distributions, to ensure the validity of pertur-

bative QCD.
� 
 � � � 20 GeV and 
 � � � 15 GeV for the hardest and next-to-hardest jets entering the CMS

acceptance in the � -distributions, where � is the angle between these two jets.

Please note that, even in the absence of nuclear effects, the �


-distributions may be asymmetric with

respect to �



= 0 since we present our results in the lab frame, not the centre-of-mass frame.

Asymmetric 
 �


-cuts have been imposed on the � distributions to avoid the generation of large

logarithms at certain points in phase space, see Ref. [193]. Also, the results near � � � are unreli-
able [193], because they require all-order resummation, not available in the code we are using.

We caution that a comparison of our results with data is not straightforward. Comparison with
� �

data will be even more problematic, see Chapter 2 for details. Several physical effects are not included
in our computations. For example, the so-called underlying event (i.e. the soft particle production that
coexists with the hard process) is not considered here. It may cause difficulties with jet reconstruction
and increase the uncertainties in jet-definition algorithms. This effect has been considered in antiproton–
proton collisions at the Tevatron [200, 201] but its estimate is model-dependent, relying on our limited
knowledge of soft multiparticle production. In collisions involving nuclei, the situation is even worse
since our knowledge is more limited. The only way to take this into account would be to use available
Monte Carlo simulations for the full pA event [202, 203], modified to include the NLO contributions.
Other processes which might need to be taken into account more carefully in our computations are
multiple hard parton collisions [204–206]. They may be divided into two classes:

1) Disconnected collisions: more than one independent parton–parton collisions in the same event,
each one producing a pair of high-� � jets. This has been studied at the Tevatron [207,208] for sin-
gle � �� collisions, but its quantitative explanation and the extension to nuclear collisions is model-
dependent. Simple estimates of the influence of disconnected collisions on jet production in pA
show it to be negligible5 . This is not the case for AB collisions, see Chapter 2 of this report.

2) Rescatterings: a high-� � parton may undergo several hard collisions before hadronizing into a jet,
mimicking a single higher-order process. Quantitative descriptions of the modification of the jet

 �



spectrum are model dependent. However, at the LHC the effect is expected to be very small,
almost negligible at the transverse energies considered here (see Section 6.5. on the Cronin effect
in pA collisions).

Finally, no centrality dependence has been studied. It is not clear how to implement such dependence in
theoretical computations because both the number of nucleon–nucleon collisions and the modification of
the nPDF may be centrality-dependent.

5We make a simple estimate of the average number of binary nucleon–nucleon collisions ����� associated with jet production
for � � ��� � � � . In the Glauber model [209, 210], one obtains:

����� � ��� ��� � � ���	� �� ! � � ��� � � � 	�
 � � � � �	��� � � � � � �
where � is the impact parameter and the nuclear profile function 
 � � � � is normalized to unity. The cross sections are � � � � � � �
� ��� � � � � � ��
������� � � � � ��� ��� � � � � � � � � � , the jet cross section for jets with � � ��� � � � in pp collisions and � � � � ��� � � � � �
���	� � � � � � � � � ! � ����������� 
 � � � � �	��� � � � � ��� � , the inelastic jet production cross section for � � � � ��� � in pA collisions as
a function of � . In both cases the cross sections are integrated over the pseudorapidity acceptance. Taking � � � � � � = 527, 1.13
and 0.046 � b as representative values in pPb collisions at 8.8 TeV for � � � = 20, 100 and 200 GeV respectively, see Fig. 1.27,
����� = 1.0 for all ��� � , both for minimum bias collisions (i.e. integrating 
 � � � � and ���	� � � ��� ��� � � � � ! � over � between � = 0
and  ) and for central collisions (e.g. integrating 0 ! �"! 1 fm). Thus the contribution of multiple hard scattering coming
from different nucleon–nucleon collisions seems to be negligible.
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5.3.1. �����	��
 � and �����	��� for jets at large 
 �
Uncertainties

A number of theoretical uncertainties in pp and pPb collisions are examined in Figs. 1.25 and
1.26.Varying the scale between 
 � � � and 
 � gives differences of order

�
10%, the smaller scale giving

the larger result. We have estimated the uncertainty due to the PDF by using CTEQ5M [86]. It gives
a
�

5% larger results than the default MRST98 central gluon [172]. The effect of isospin alone (ob-
tained from the comparison of pp and pPb without any modification of nPDF at the same energy per
nucleon) is very small, as one would expect from ��� dominance. The effect of nPDFs, estimated using
EKS98 [27, 28], is also small. However it produces an extra asymmetry (an excess in the region �



� 0)

in pA collisions at reduced energy (e.g. pPb at 5.5 TeV), which disappears at maximum energy (e.g. pPb
at 8.8 TeV), see Fig. 1.26 (bottom-left) and Fig. 1.27 (bottom-right), due to the asymmetry of the pro-
jectile and target momentum in the LHC lab frame. Finally, there is some uncertainty due to the choice
of jet-finding algorithm. The cone algorithm [197–199] with � � 0.7 slightly reduces the cross section�

1 
	
	
 2% compared to the ��� -clustering algorithm [195,196] with � � 1. The cone with � � 1 gives
results

�
15% larger than our default choice.

Finally, we discuss the ratio of the NLO to LO cross sections, the � -factor. In Fig. 1.28 the
� -factor is calculated for different collision systems and energies, varying the inputs. For our default
options, the ratio is quite constant,

�
1.2, over all 
 �



and �



for all energies. The � -dependence results

in �
�

1.35 for � � 

� and
�

1.15 for � � 
�� /4. The cone algorithm with � � 0.7 gives results very
similar to those obtained with the � � -clustering algorithm with � � 1, while a cone with � � 1 produces

�
�

1.45. (Note that at LO the choice of jet-finding algorithm has no influence on the results.) Finally,
the choice of PDF, isospin and modifications of the nPDFs do not sizeably influence the � -factor.

Results

The expected LHC luminosities for different collisions are shown in Table 1.7, along with the one month
(10



s) integrated luminosity expressed in units of � � � 
 � � � . Using this table and the cross sections for

inclusive single jet and dijet production in the figures, it is possible to extract the number of expected
jets (Figs. 1.25, 1.26 and 1.27) or dijets (Figs. 1.29 and 1.30). For example, from the solid curve on the
upper left-hand side of Fig. 1.27 and � = 10 � � cm 
 � s 
 � , we expect 10 ��� jets with 
 �



�

70 GeV from
a cross section of 1 � b/(

� �
), and 10



jets with 
 �



�

380 GeV from a cross section of 10 
 � � b/(
� �

),
in our �



range.

Table 1.7: Luminosities � (cm �
!
s �
�
) and ��� 10 � s ( ��� � 	�� ) for different collision systems at the LHC. The numbers of

expected jets and dijets in a certain kinematical range are obtained by multiplying the last column by the cross sections given

in Figs. 1.25, 1.26, 1.27 (jets) and 1.29, 1.30 (dijets).

System � ��	
	 (TeV) � (cm � � s �� ) �
� 10 � s ( � b/( ��� ))

pp 14 10 � � 10 ���

pp 14 3 � 10 �
� 3 � 10



pAr 9.4 4 � 10 �
� 1.6 � 10
�

pAr 9.4 1.2 � 10
�
�

4.8 � 10



pPb 8.8 10
�
�

2.1 � 10
�
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Fig. 1.25: Left: Scale dependence of jet cross sections [we use � � � � ��� (solid), � � � � /4 (dashed) and � � � � (dotted)

lines] as a function of � � � for � � � � ! 2.5 (upper plot) and � � for � � � � 20 GeV (lower plot). Right: PDF dependence of jet

cross sections, MRST98 central gluon (solid) and CTEQ5M (dashed), as a function of � � � for � � � � ! 2.5 (upper plot) and � �
for � � � � 20 GeV (lower plot). In each plot, results for pPb at 8.8 TeV (upper lines) and pp at 14 TeV (lower lines, scaled by

0.1 in the upper plots and by 0.25 in the lower plots) are shown. Unless otherwise stated, default options are used, see text.
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Fig. 1.26: Left: Isospin and nuclear PDF dependence of jet cross sections [we give the pp results (solid), pA results without

(dashed) and pA results with EKS98 (dotted)] as a function of � � � for � � � � ! 2.5 (upper plot) and � � for � � � � 20 GeV (lower

plot). In each plot, results for pp and pPb at 5.5 TeV (upper lines) and pp and pAr at 6.3 TeV (lower lines, scaled by 0.1 in the

upper plot and by 0.25 in the lower plot) are shown. Right: Dependence of jet cross sections on the jet reconstruction algorithm

[we show the � � -algorithm with � � 1 (solid), the cone algorithm with
� �

0.7 (dashed) and the cone algorithm with
� �

1

(dotted)] as a function of � � � for � � � � ! 2.5 (upper plot) and � � for � � � � 20 GeV (lower plot). In each plot, results for pPb

at 8.8 TeV (upper lines) and pp at 14 TeV (lower lines, scaled by 0.1 in the upper plot and by 0.25 in the lower plot) are shown.

Unless otherwise stated, default options are used, see text.

54



Fig. 1.27: Energy dependence of jet cross sections as a function of � � � for � � � � ! 2.5 (upper plots) and � � for � � � � 20 GeV

(lower plots). Left: pp collisions at 14 (solid), 6.3 (dashed) and 5.5 TeV (dotted). Centre: pAr collisions at 9.4 (solid) and

6.3 TeV (dashed). Right: pPb collisions at 8.8 (solid) and 5.5 TeV (dashed). Default options are used, see text.

Looking at the results of Fig. 1.27, it is evident that samples of
�

10 � jets are feasible, up to

 �


� � � � GeV in a one-month run at the given luminosity. Indeed, from Table 1.7, 10 � jets in pPb

at 8.8 TeV would correspond to a cross section of 4.8 � 10 
 	 � b/(
� �

) which intersects the upper right
solid curve in Fig. 1.27 at 
 �



�

325 GeV.

Some conclusions can now be drawn. First, since nuclear effects on the PDFs are not large (at most
10% at 

�
� 20 GeV for Pb according to EKS98), an extensive systematic study of the A-dependence of
the large- 
 � jet cross sections does not seem to be the most urgent need. If, however, the nuclear effects
in these cross sections turn out to be significant, the measurements of the A systematics, especially
towards the smallest values of 
 � , would be necessary in order to understand the new underlying QCD
collision dynamics. Second, noting the asymmetry in the pseudorapidity distributions in pPb collisions
at the reduced energy of 5.5 TeV, and to a lesser extent in pAr at 6.3 TeV, when EKS98 corrections are
implemented, a pA run at reduced proton energies might test the nuclear PDF effects; a study of 
 �



distributions in different �



slices going from the backward (A) to the forward (p) region would scan

different regions in � of the ratio of the nuclear gluon distribution over that of a free nucleon, which is
so far not well constrained. Nevertheless, this would require a detailed comparison with pp results at
the same energy in order to disentangle possible biases (e.g. detector effects). If these pp results were
not available experimentally, the uncertainty due to the scale dependence, which in our computations at
reduced energies is as large as the asymmetry, in the extrapolation from 14 TeV to the pA energy should
be reduced as much as possible for this study to be useful.

55



Fig. 1.28: The � -factors as a function of � � � for � � � ��! 2.5 (left) and � � for ��� � � 20 GeV (right). From top to bottom:

scale dependence ( � � � � /2: solid; � � � � /4: dashed; � � � � : dotted); dependence on the jet reconstruction algorithm

( � � algorithm with � �
1: solid; cone algorithm with

� �
0.7: dashed; cone algorithm with

� �
1: dotted); nucleon PDF

dependence (MRST98 central gluon: solid; CTEQ5M: dashed lines); and isospin and nuclear PDF dependence (pp: solid; pA

without: dashed; pA with EKS98: dotted). Six upper plots: pp at 14, 6.3 (scaled by 0.5) and 5.5 (scaled by 0.2) TeV. Two

bottom plots: pp and pAr at 6.3 TeV (scaled by 0.5), and pp and pPb at 5.5 TeV. Unless otherwise stated, default options are

used, see text.
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Fig. 1.29: Uncertainties in dijet cross sections as a function of � for � � � ! 20 GeV, ��� ! ! 15 GeV and � � � � � � � ! ��! 2.5 in

pp collisions at 14 TeV. Upper left: Scale dependence; Upper right: dependence on jet reconstruction algorithm; Lower left:

PDF dependence in pp collisions at 14 TeV. Lower right plot shows the isospin and nuclear PDF dependence in pp and pPb

collisions at 5.5 TeV. Unless otherwise stated, default options are used, see text.

Fig. 1.30: Energy dependence of dijet cross sections as a function of � for � � � ! 20 GeV, � � ! ! 15 GeV and � � � � � � � ! � ! 2.5.

Upper: pp collisions; Centre: pAr collision; Lower: pPb collisions. Default options are used, see text.
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5.3.2. High- 
 � dijet momentum imbalance

Dijet distributions as a function of � , the angle between the two hardest jets, can test the perturbative
QCD expansion. At LO in collinear factorization [17, 184, 185], the two jets are produced back-to-back,
so that any deviation from a peak at � � � is a signal of NLO corrections. However, recall that the
results near � � � are unreliable [193] since the NLO corrections become large and negative, requiring
an all-order resummation in this region.

Uncertainties

In Fig. 1.29, the same uncertainties examined for 
 �



and �



are studied in the dijet cross sections as
a function of � . First, the smaller the scale, the larger the results, so that the results for � � 
 � are
up to

�
50% smaller than for � � 
 � /4. Second, the PDF choice has less than a 10% effect when

comparing CTEQ5M with the MRST98 central gluon. Third, the variation due to isospin, obtained from
the comparison of pp and pPb without nuclear modifications of PDFs, is again negligible, and the effect
of including EKS98 [27, 28] is also small,

�
3%. Finally, the jet-finding algorithm gives an uncertainty

of order 20% for a cone with � � 1, � � 0.7 and the � � -clustering algorithm with � � 1.

Results

Our results for pp and pA collisions at different energies are presented in Fig. 1.30. It is clear that the
dijet momentum imbalance should be measurable provided jet reconstruction is possible in the nuclear
environment and no other physics contribution, such as the underlying event or multiple hard parton scat-
tering, interferes, spoiling the comparison with experimental data. Only extensive studies using Monte
Carlo simulations including full event reconstruction will be able to clarify whether such measurements
are feasible, see Chapter 2, Section 5.2.

5.4. Direct Photons

For direct photons, see Chapter 4, Sections 5–8.

5.5. Quarkonium Transverse Momentum Distributions

R. Vogt

Quarkonium suppression has already been an important plasma probe [211,212] at the SPS. It will
be a major experimental focus at the LHC. These systematics are especially valuable for the 
 family
where high statistics measurements of 
 production will be available in pp, pA, and AA interactions for
the first time at the LHC.

Studies of quarkonium production in pA interactions are particularly relevant for LHC because
the energy dependence of cold nuclear matter effects such as nucleon absorption are not fully understood
and need to be checked with measurements. The existence of nuclear effects beyond the modifications
of the parton densities in the nucleus argues that quarkonium production is not a good reaction by which
to study the nuclear gluon distribution. However, the nuclear gluon distribution can be obtained through
careful measurements of heavy-flavour production in pp and pA interactions and used as an input to
quarkonium production. Thus quarkonium is still a benchmark process for testing cold matter effects
in pA interactions at the LHC. It is important to study the shape of the quarkonium � � distributions in
pA interactions because plasma effects on the � � distributions are expected to persist to high � � [213,
214]. Detailed comparisons of the � � dependencies of different quarkonium states in AA collisions
will reveal whether or not the ratios of �	� � � ��� and 
�� � 
 and 
�� � � 
 , for example, are independent
of � � , as predicted by the colour evaporation model [215–217] or vary over the � � range, as expected
from nonrelativistic QCD [218]. Indeed quarkonium studies in pA may provide a crucial test of the
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quarkonium production process because it is likely to be possible to separate the p and
�

states only in
pA interactions where the accompanying decay photons can be found.

Two approaches have been successful in describing quarkonium production phenomenologically
— the colour evaporation model (CEM) [215, 216] and nonrelativistic QCD (NRQCD) [218]. Both are
briefly discussed.

In the CEM, any quarkonium production cross section is some fraction # � of all
� �

pairs below
the � � threshold where � is the lowest mass heavy hadron containing

�
. Thus the CEM cross section

is simply the
� �

production cross section with a mass cut imposed but without any contraints on the
colour or spin of the final state. The produced

� �
pair then neutralizes its colour by interaction with

the collision-induced colour field—“colour evaporation”. The
�

and the
�

either combine with light
quarks to produce heavy-flavoured hadrons or bind with each other in a quarkonium state. The additional
energy needed to produce heavy-flavoured hadrons is obtained nonperturbatively from the colour field in
the interaction region. The yield of all quarkonium states may be only a small fraction of the total

� �

cross section below the heavy hadron threshold,
� ��� . At leading order, the production cross section of

quarkonium state � is

�
������ � # � � 


�

� � � � !�
� � !� � �� � ��� � � � � � �
 
 � � � � �

� � �� 
 � � � � �
� ��

��

 �� � � 
 �� # � � � � � � � (1.43)

where " � � � � or ��� and ��

��

 �� � is the " � � � �

subprocess cross section. The fraction # � must be
universal so that, once it is fixed by data, the quarkonium production ratios should be constant as a
function of � � , � � and � � . The actual value of # � depends on the heavy quark mass, � � , the scale,� �

, the parton densities and the order of the calculation.

Of course the leading order calculation in Eq. (3.3) is insufficient to describe high-� � quarkonium
production since the

� �
pair � � is zero at LO. Therefore, the CEM was taken to NLO [217, 220] using

the exclusive
� �

hadroproduction code of Ref. [219]. At NLO in the CEM, the process ���
�
�
� �

is included, providing a good description of the quarkonium � � distributions at the Tevatron [220]. The
values of # � for the individual charmonium and bottomonium states have been calculated from fits
to the total � ��� and inclusive 
 data combined with relative cross sections and branching ratios, see
Refs. [213, 221] for details. The pp total cross sections at 5.5 TeV are shown in Tables 1.13 and 1.14 in
Section 6.6., along with the fit parameters for the parton densities, quark masses and scales given for

� �

production in Table 1.9 in Section 6.4.

NRQCD was motivated by the success of potential models in determining the quarkonium mass
spectra. It was first applied to high-� � quarkonium production when it was clear that the leading colour
singlet contribution severely underestimated direct � ��� and � � production at the Tevatron [222, 223].
NRQCD describes quarkonium production as an expansion in powers of � , the relative

�
-
�

velocity.
Thus NRQCD goes beyond the leading colour singlet state to include colour octet production. Now the
initial

� �
quantum numbers do not have to be the same as in the final quarkonium state because an

arbitrary number of soft gluons with 
 � � ��� can be emitted before bound state formation and change
the colour and spin of the

� �
. These soft gluon emissions are included in the hadronization process.

The cross section of quarkonium state � in NRQCD is

�
�
	 ��� �� �

� 

�

� �
�
� �

�
� � � ��� � � �
 
 � � � � �

� � �� 
 � � � � �
� �

��
� ��� ��
 


� �
� � � �� � � (1.44)

where the partonic cross section is the product of perturbative expansion coefficients, �

��
� ��� ��
 


� � � , and

nonperturbative parameters describing the hadronization,
� � �� � . The expansion coeffients can be factor-

ized into the perturbative part and the nonperturbative parameters because the production time ( � ��� �
is well separated from the timescale of the transition from the

� �
to the bound state ( � ��� ��� . If
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� ��� � � � � ��� � , the bound state formation is insensitive to the creation process. In principle, this ar-
gument should work even better for bottomonium because � � is larger. The colour singlet model result
is recovered when � � 0 [224]. The NRQCD parameters were obtained from comparison [225–228] to
unpolarized high-� � quarkonium production at the Tevatron [222, 223]. The calculations describe this
data rather well but fail to explain the polarization data [229].

Both the CEM and NRQCD can explain the Tevatron quarkonium data because both are dominated
by � �

�
���
�

and ���
�
�
� �

at high-� � . In the CEM �
� � � �

while in NRQCD, �
� � � � � � � � � 


� �
but

� � � � � � � � � � 

� � � � � � 
� � [224]. Direct � ��� and � � production at the Tevatron are predominantly

by � � � � 

� states followed by � � � � 


� � � � � � 
� states and, while the � � singlet contribution does not under-

predict the yield as badly, a � � � � 

� component is needed for the calculations to agree with the data. The

CEM includes the octet components automatically, but the relative strengths of the octet contributions
are all determined perturbatively. The two approaches differ in their predictions of quarkonium polar-
ization. NRQCD predicts transverse polarization at high-� � [224] while the CEM predicts unpolarized
quarkonium production. Neither approach can successfully explain the polarization data [229].

The bottomonium results at the Tevatron [230] extend to low � � where the comparison to NRQCD
is somewhat inconclusive. Some intrinsic � � is needed to describe the data below � � � 5 GeV.

In this Section, we present only the CEM � � distributions. The NRQCD approach has not yet been
fully calculated beyond LO [224]. We include intrinsic transverse momentum broadening, described fur-
ther in Section 6.7., although it is a rather small effect at high-� � . The direct � ��� and 
 � � distributions
above 5 GeV in pp interactions at 5.5 TeV are shown in Fig. 1.31 for all the fits to the quarkonium
data, described in Section 6.6. They all agree rather well with each other. However, the GRV98 result is
slightly larger than the other � ��� curves at high-� � . Thus, changing the quark mass and scale does not
have a large effect on the � � dependence. In general, the � ��� � � distributions are more steeply falling
than the 
 distributions.

Figure 1.32 shows the � � distributions in pp and pPb interactions at 5.5 and 8.8 TeV along with
pp interactions at 14 TeV. The shadowing effect is negligible at high-� � so that the two distributions are
indistinguishable.

6. PROCESSES WITH POTENTIALLY LARGE NUCLEAR EFFECTS

6.1. Drell–Yan Cross Sections at Low � � : rapidity distributions

R. Vogt

Low-mass Drell–Yan production could provide important information on the quark and antiquark
distributions at low � but still rather high

� �
relative to the deep-inelastic scattering measurements.

When � = 4, 11, 20 and 40 GeV, respectively, � � 0.00073, 0.002, 0.0036 and 0.0073 at � = 0 and
� � = 5.5 TeV. Such low values of � have been measured before in nuclear deep-inelastic scattering but
always at

� �
� 1 GeV

�
, out of reach of perturbative analyses. Thus, these measurements could be a

benchmark for analysis of the nuclear quark and antiquark distributions.

As previously explained in Section 5.1., in AA collisions, the inclusive Drell–Yan contribution is
unlikely to be extracted from the dilepton continuum which is dominated by correlated and uncorrelated� �

( � � ,
� �

) pair decays [79, 80]. However, in pA, the low-mass Drell–Yan may be competitive with
the
� �

decay contributions to the dilepton spectra [79]. The number of uncorrelated
� �

pairs is also
substantially reduced from the AA case [73]. Further calculations of the heavy quark contribution to
dileptons are needed at higher masses to determine whether the Drell–Yan signal ever dominates the
continuum or not. Perhaps the Drell–Yan and

� �
contributions can be separated using their different

angular dependencies, isotropic for
� �

and ( 
 � � " � � � � � for Drell–Yan, as proposed by NA60 [231]
and discussed in Section 6.2. When � is small and � � is large relative to � , the

� �
background may

be reduced and the Drell–Yan signal observable. This is discussed in the next Section.
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Fig. 1.31: The � � distributions for
� ��� (left) and � (right) production assuming � �

!� � � 1 GeV
!
. On the left-hand side, the

solid curve employs the MRST HO distributions with 
 � � � ��� � 1.2 GeV, the dashed, MRST HO with 
 � � � � 1.4 GeV,

the dot–dashed, CTEQ 5M with 
 � � � ��� � 1.2 GeV, and the dotted, GRV 98 HO with 
 � � � = 1.3 GeV. On the right-

hand side, the solid curve employs the MRST HO distributions with 
 � � � = 4.75 GeV, the dashed, 
 � � � � � = 4.5 GeV,

the dot–dashed, 
�� � � � � 5 GeV, and the dotted, GRV 98 HO with 
 � � � = 4.75 GeV.

Fig. 1.32: The � � distributions for
� ��� (left) and � (right) production assuming � �

!� � � � � 1 GeV
!

for pp interactions at 5.5

(lower), 8.8 (centre) and 14 (upper) TeV. On the left-hand side, we use the MRST HO distributions with 
 � � � ��� � 1.2 GeV

while on the right-hand side, we use the MRST HO distributions with 
 � � � = 4.75 GeV.
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The calculation of the Drell–Yan cross section is described in Section 5.1. Since the nuclear effects
are larger at low

� �
, we will focus on the variation of the results with scale and shadowing parametriza-

tion. We again make our calculations with the MRST HO [172] parton densities with
� �
� �

�
and the

EKS98 parametrization [27,28] in the ��� scheme. The Drell–Yan convolutions with nuclear parton den-
sities including isospin and shadowing effects are the same as for the � � in the appendix of Ref. [171].
Only the prefactor changes from � � �
�� to � �
�� . We present results for pp, Pbp and pPb collisions at
5.5 TeV/nucleon, the same energy as the PbPb centre of mass for better comparison without changing � .
This is most desirable from the theoretical point of view because the nuclear parton densities are most
easily extracted from the data. However, as was not touched upon in Section 5.1., the desirability of
this approach ultimately depends upon the machine parameters. The highest pPb and Pbp luminosities
can be achieved at 8.8 TeV/nucleon. Running the machine at lower energies will reduce the maximum
luminosity, up to a factor of 20 if only injection optics are used [232], which could reduce the statistical
significance of the measurement. This issue remains to be settled.

Figure 1.33 shows the rapidity distributions in pPb and Pbp collisions at 5.5 TeV/nucleon in four
mass bins: 4 � � � 9 GeV, 11 � � � 20 GeV, 20 � � � 40 GeV, and 40 � � � 60 GeV. The
shadowing effect decreases as the mass increases, from a

�
25% effect at � = 0 in the lowest mass bin

to a
�

10% effect in the highest bin. Isospin is a smaller effect on low-mass Drell–Yan, as is clear from
Fig. 1.34, where the pPb/pp and Pbp/pp ratios are given.

The pPb/pp ratio without shadowing is indistinguishable from unity over the whole rapidity range.
The Pbp/pp ratio without shadowing differs from unity only for � � �

. The dashed curves in Fig. 1.34
represent the Pbp/pp ratios with EKS98 shadowing and show the pattern of increasing � � through the
‘antishadowing’ region into the EMC region. The ratio does not increase above unity because we present
the Ap/pp ratio rather than a ratio of Ap with shadowing to Ap without shadowing. This difference can be
easily seen by comparison to Fig. 1.33 where the dotted curves are equivalent to the pp distributions. The
dashed curves in Fig. 1.34 are the ratios of the dashed to solid curves of Fig. 1.33. Clearly, at the peak of
the rapidity distributions, the dashed curves are higher than the solid curves, signifying antishadowing,
yet do not cross the dotted curves. The isospin of the Pb nucleus thus causes the Pbp/pp ratio to remain
less than unity over all rapidity. Note also that the peaks of the ratios occur at smaller values of � � ,
from � � � 0.11 in the lowest bin to

�
0.062 in the highest. The evolution of the antishadowing region

broadens and the average � decreases somewhat with increasing
� �

. On the other hand, the pPb/pp ratios
are rather constant, decreasing only slowly with rapidity although the slope of the ratio increases with
� . The pPb calculations are always at low � � where the shadowing parametrization does not change
much with � � . These results are reflected in the integrated cross sections in Table 1.8.

In Fig. 1.35 we show the effects of scale (upper two plots) and shadowing parametrization (lower
two plots) on the results.

We choose the lowest mass bin to emphasize the overall effect. The scale variation, discussed in
Section 5.1., shows that the cross sections are larger for scale

� � and smallest for scale � /2. This scale
dependence is contrary to typical expectations since lower scales generally lead to larger cross sections.
At lower energies and other processes this is true, but at high energies, the low- � evolution exceeds the
effect of the scale-dependent logarithms [170]. The scale variation is a 50% effect in this bin, decreasing
to 10% for 40 � � � 60 GeV. The HPC [173] and HKM [29] shadowing calculations have the same
general trends as the EKS98 parametrization. The HKM model has the weakest effect on sea quarks at
low- � and produces the largest ratios for pPb/pp and in Pbp/pp for � � � . The HPC parametrization has
the strongest shadowing without evolution and is generally lower than the other two.

If the low
� �

Drell–Yan cross section can be extracted from the other contributions to the contin-
uum in pA, it could provide useful information on the low- � , moderate

� �
regime not covered in previous

experiments. Comparison could be made to the only previous available pA Drell–Yan measurements as
a function of � � by the E772 [54] and E866 [55] Collaborations at much higher � .

RHIC pA data should also be available by the time the LHC starts up. This could increase the � �
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Fig. 1.33: The Drell–Yan rapidity distributions in pPb and Pbp collisions at 5.5 TeV evaluated at � � � for 4 ! � ! 9 GeV,

11 ! � ! 20 GeV, 20 ! � ! 40 GeV and 40 ! � ! 60 GeV. The solid and dashed curves show the results without

and with shadowing, respectively, in Pbp collisions while the dotted and dot–dashed curves give the results without and with

shadowing for pPb collisions.

Fig. 1.34: The ratios of pPb and Pbp collisions to pp collisions at 5.5 TeV evaluated at � � � for 4 ! � ! 9 GeV,

11 ! � ! 20 GeV, 20 ! � ! 40 GeV and 40 ! � ! 60 GeV, as a function of rapidity. The solid and dashed curves

show the Pbp/pp ratios without and with shadowing, respectively, while the dotted and dot–dashed curves are the pPb/pp ratios

without and with shadowing.
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Table 1.8: Rapidity-integrated Drell–Yan cross sections at 5.5 TeV/nucleon in the indicated mass intervals. The calculations

are to NLO with the MRST HO parton densities and � ! � � !
.

� � � (nb) ���	� (nb) ��������
�� (nb) ���	� (nb) ��� ����
�� (nb)

pp Pbp pPb

4 � � � 9 GeV

0 � � � 2.4 3.61 3.57 2.82 3.60 2.51

0 � � � 1 1.41 1.40 1.05 1.40 1.00

2.4 � � � 4 2.52 2.44 2.28 2.52 1.68

11 � � � 20 GeV

0 � � � 2.4 0.44 0.43 0.39 0.44 0.34

0 � � � 1 0.17 0.17 0.14 0.17 0.14

2.4 � � � 4 0.30 0.27 0.28 0.30 0.21

20 � � � 40 GeV

0 � � � 2.4 0.12 0.12 0.11 0.12 0.10

0 � � � 1 0.048 0.047 0.043 0.048 0.041

2.4 � � � 4 0.077 0.068 0.069 0.077 0.058

40 � � � 60 GeV

0 � � � 2.4 0.019 0.018 0.018 0.019 0.016

0 � � � 1 0.0074 0.0072 0.0070 0.0073 0.0066

2.4 � � � 4 0.0094 0.0078 0.0078 0.0094 0.007

systematics, providing, with both colliders, a collective measurement over a wide range of � values at
similar

� �
.

6.2. Low-Mass Drell–Yan Production at LHC Energies

G. Fai, J.W. Qiu and X.F. Zhang

6.2.1. Introduction

Massive dilepton production in hadronic collisions is an excellent laboratory for theoretical and exper-
imental investigations of strong interaction dynamics, and it is a channel for discovery of quarkonium
states and a clean process for the study of the PDF. In the Drell–Yan process, the massive lepton pair is
produced via the decay of an intermediate virtual photon � � . If both the physically measured dilepton
mass � and the transverse momentum � � are large, the cross section in a collision between hadrons
(or nuclei) A and

�
,
� 
 � � � � � 
 � 	 � � � � 
 � � �� � � �

, can be factorized systematically in QCD
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Fig. 1.35: The upper two plots present the scale dependence of the Drell–Yan cross section in the mass interval 4 ! � ! 9 GeV

in pPb and Pbp collisions at 5.5 TeV respectively. The EKS98 parametrization is used in all cases. The solid curve is calculated

with � � � , the dashed curve with � � � /2 and the dot–dashed with � � � � . The lower plots present the dependence

on the shadowing parametrization in the mass range 4 ! � ! 9 GeV for the ratios pPb/pp and Pbp/pp at 5.5 TeV. The

solid curve is the EKS98 parametrization, the dashed curve is the HPC parametrization and the dot–dashed curve is the HKM

parametrization.

perturbation theory and expressed as [17]

��� � 	 � � �� � � 
 �
� � � � � � �

�
� �

� � � �
� � �

� 
 �
� �
	
�
� � � � �

�
� 
 � � � � �

�
� � � � 	 � 	 
 � � � � � � �� �

	 � � � �
� �

�
� � � 
 � � � � � � � � � � � � � � � 


(1.45)
The sum ! � �

	
runs over all parton flavours, � �

�
� and � 	 � 	 are normal parton distributions and � rep-

resents the renormalization and factorization scales. The partonic cross section � �� �

	 � � � � �	� �
�
� ��� in

Eq. (1.45), the short-distance probability for partons of flavours � and � to produce a virtual photon of
invariant mass � , is perturbatively calculable in terms of a power series in � � 
 � � . The scale � is of the

order of the energy exchange in the reaction, �
� � � � � �

�
� .

When � � � � , high-mass dilepton production in heavy-ion collisions at LHC energies is dom-
inated by the � � channel and is an excellent hard probe of QCD dynamics [233]. In this contribution,
we demonstrate that the transverse-momentum distribution of low-mass (

� ���	� � � � ��� ) dilepton
production at LHC energies is a reliable probe of both hard and semihard physics at LHC energies and
is an advantageous source of constraints on gluon distributions in the proton and in nuclei [234]. In
addition, it provides a significant contribution to the total dilepton spectra at the LHC, also an important
channel for quarkonium and heavy-flavour decays.

The transverse-momentum (� � ) distribution of the dileptons can be divided into three regions: low
� � ( � � ), intermediate � � (

� � ), and high-� � (
� � ). When both the physically measured � and

� � are large and are of the same order, the short-distance partonic part � �� �

	 � � � � �	� �
�
� � � in Eq. (1.45)

can be calculated reliably in conventional fixed-order QCD perturbation theory in terms of a power series
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in � � 
 � � . However, when � � is very different from � , the calculation of Drell–Yan production in both
low- and high-� � regions becomes a two-scale problem in perturbative QCD and the calculated partonic
parts include potentially large logarithmic terms proportional to a power of � 
 
 � � ��� � . As a result, the
higher-order corrections in powers of � � are not necessary small. The ratio � �

���
�	�
��� ( � � � (large

logarithms) can be of order 1 and convergence of the conventional perturbative expansion in powers of
� � is possibly impaired.

In the low-� � region, there are two powers of � 
 
 � � � �
�
� � for each additional power of � � and the

Drell–Yan � � distribution calculated in fixed-order QCD perturbation theory is known to be unreliable.
Only after all-order resummation of the large � � � � 


��� � � 
 � � � �
�
� � logarithms do predictions for the � �

distributions become consistent with data [177, 235]. We demonstrate in Section 6.2.2. that low-mass
Drell–Yan production at � � as low as

� ��� �
at LHC energies can be calculated reliably in perturbative

QCD with all order resummation.

When � � � � /2, the lowest-order virtual photon ‘Compton’ subprocess � � � � � � � �

dominates the � � distribution, and the high-order contributions including all-order resummation of
� � � ��


� 
 � 
 � � � �
�
� � preserve the fact that the � � distributions of low-mass Drell–Yan pairs are domi-

nated by gluon-initiated partonic subprocesses [236]. We show in Section 6.2.3. that the � � distribution
of low-mass Drell–Yan pairs can be a good probe of the gluon distribution and its nuclear dependence.
We give our conclusions in Section 6.2.4.

6.2.2. Low-mass Drell–Yan production at low transverse momentum

Resummation of large logarithmic terms at low-� � can be carried out in either � � or impact-parameter
(
�� ) space, the Fourier conjugate of � � space. All else being equal, the

�� space approach has the advantage
of explicit transverse-momentum conservation. Using renormalization group techniques, Collins, Soper,
and Sterman (CSS) [178] devised a

�� space resummation formalism that resums all logarithmic terms as
singular as 
 � � �

�
� � � 
 � 
 � � � �

�
� � when � � �

0. This formalism has been widely used for computations
of vector boson � � distributions in hadron reactions [237].

At low-mass � and � � , Drell–Yan transverse-momentum distributions calculated in the CSS
�� -

space resummation formalism strongly depend on the nonperturbative parameters determined at fixed
target energies. However, it was pointed out recently that the predictive power of pQCD resummation
improves with � � and, when the energy is high enough, pQCD should have good predictive power even
for low-mass Drell–Yan production [177]. The LHC will give us a chance to study low-mass Drell–Yan
production at unprecedented energies.

In the CSS resummation formalism, the differential cross section for Drell–Yan production in
Eq. (1.45) is reorganized as the sum

��� � 	 � � �� � � 
 �
� � � ��� � �

�
�
�
��� � � � � � � 
��	�� � �� � � 
 �
� � � ��� � �

�
�
�
��� � � 
��	�� � �� � � 
 �
� � � � � � �

�
�

 (1.46)

The all-orders resummed term is a Fourier transform from the
�� -space,

��� � � � � � � 
� 	 � � �� � � 
 �
� � � ��� � �

�
� �

�

 � � � �

�
�
� �� �


 �� � � ��	 � 

�� � � � � � � � 	 � � �

�
�

�
�
�� � � 
 � �

�� � �� � 

�� � � � � � � � 	 � �

(1.47)
where � � is a Bessel function, ��� � � % � � � � and ��	 � ��
 % � � � � , with rapidity � and collision
energy � � . In Eq. (1.46), the � � � � � � � 
 term dominates the � � distributions when � � � � , while the
� �  
 term gives negligible corrections for small � � but becomes important when � � � � .

The function
� 


�� � � � � � � � 	 � resums to all orders in QCD perturbation theory the singular terms
that would otherwise behave as � � 
 � � � and 
 � � �

�
� � � 
 � 
 � � � �

�
� � in transverse-momentum space for all
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� �
0. It can be calculated perturbatively for small

�� ,
� 


�� � � � � � � � 	 � � � 
 � � �	 � � 
 � 

�� � � �

�� � � � � � 	 � � � � � � � 
 �� � � � � � � ��	 � 
 (1.48)

All large logarithms from � 
 
 �
� �

�� � � to � 
 
 � � � have been completely resummed into the exponential

factor
� 
 �� � � � � �

� !� !
�
�	 ! � �

� � �
� �
� 
 
 � � � �

� � � 
 � � 
 � � ����� 
 � � 
 � � �



where the functions
�

and � are

given in Ref. [178] and � � �
� 
 � � with the Euler constant ���

 0.577. With only one large-momentum

scale � �
�� , the function

� 

�� � � �

�� � � � � ��	 � in Eq. (1.48) is perturbatively calculable and is factorized as

� 

�� � � �

�� � � � � � 	 � � �
� �
	
� � �

�
� 
�� � � � � �� ��	�� � 
 � �� � �
�

� � 	 � 	 
�� � � � � �� ��		� 	 
 � 	� � �
� � � � (1.49)

where the sum ! � �
	

runs over all parton flavours, the 	 represents the convolution over parton mo-
mentum fraction, and � � is the lowest order partonic cross section for the Drell–Yan process [178]. The
functions � � ! � � � � 
 
 � � � � � � in Eq. (1.49) are perturbatively calculable and given in Ref. [178]. Since
the perturbatively resummed

� � � � � 
 �� � � � � � � ��	 � in Eq. (1.48) is reliable only for the small
�� region, an

extrapolation to the nonperturbative large
�� region is necessary in order to complete the Fourier transform

in Eq. (1.47).

In the original CSS formalism, a variable
�� � and a nonperturbative function # � �� � � 


�� � � � � � � ��	 �
were introduced to extrapolate the perturbatively calculated

� � � � � into the large
�� region. The full

�� -
space distribution was of the form

� � � � 
 �� � � � � ��� � 	 � � � � � � � 
 �� � � � � � � � � 	 � # � �� � � 
 �� � � � � ��� � 	 � � (1.50)

where
�� � � �� � � � � 
 �� � �� ����� � � , with

�� ����� � 0.5 GeV 
 � . This construction ensures that
�� � 	 � � ����� for

all values of
�� .

In terms of the
�� � formalism, a number of functional forms for the # � �� � � have been proposed. A

simple Gaussian form in
�� was first proposed by Davies, Webber and Stirling (DWS) [238],

#
� ���
 � 


�� � � � � � � � 	 � � �'&)( � # 
 � � � � � ��
 
 � � � � � � �
�� �
� � (1.51)

with the parameters � � = 2 GeV, � � = 0.15 GeV
�
, and � � = 0.4 GeV

�
. In order to take into account

the apparent dependence on collision energies, Ladinsky and Yuan (LY) introduced a new functional
form [239],

#
� ���� 


�� � � � � � � � 	 � � �'&)( � # 
 ��� � � � ��
 
 � � � � � � �
�� � # ��� � � � 
 
 ��� � � � � 	 � �� � � (1.52)

with � � = 1.6 GeV, � � � � 
 � � � ��� � �
 ��� �
� GeV
�
, � � � � 
 � � � ��� �
 ��� � GeV

�
, and � � � # � 
 � � ��� �
 ��� � GeV 
 � . Recently,

Brock, Landry, Nadolsky, and Yuan proposed a modified Gaussian form [240],

#
� �� � � � 
 �� � � � � � � � 	 � � �'& ( � # � � � � � � � 
 
 � � � � � � � � � � � � 
 
 ��� � � ����	 � � �� ��� � (1.53)

with � � = 1.6 GeV, � � � � 
 � � � ��� � �
 ��� � � GeV
�
, � � � � 
 � � � ��� � �
 ��� � � GeV

�
, and � � � # � 
 � � ��� � 	
 ��� � � . All these param-

eters were obtained by fitting low-energy Drell–Yan and high-energy
�

and � data. Note, however, that
the

�� � formalism introduces a modification to the perturbative calculation. The size of the modifications
strongly depends on the nonperturbative parameters in # � � 


�� � � � � � � � 	 � , � , and � � [237].

A remarkable feature of the
�� -space resummation formalism is that the resummed exponential fac-

tor �'&)( � # � 
 �� � � � � suppresses the
�� -integral when

�� is larger than � � � . It can be shown using the saddle
point method that, for a large enough � , QCD perturbation theory is valid even at � � = 0 [178]. For
high-energy heavy boson (

�
, � , and Higgs) production, the integrand of

�� -integration in Eq. (1.47) at
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Fig. 1.37: Differential cross section ��� � � � ! � � � � !� for pro-

duction of Drell–Yan pairs of � = 5 GeV in pp collisions

at the LHC with � = 0, and � � = 5.5 TeV with the NNLL

(solid), NLL (dashed), and LL (dotted) accuracy

� � = 0 is proportional to
�� � 


�� � � � � � � � 	 � , with a saddle point
� � � � well within the perturbative region

(
�� � � � �� ����� ). Therefore, the

�� -integration in Eq. (1.47) is dominated by the perturbatively resummed
calculation. The uncertainties from the large-

�� region have very little effect on the calculated � � distri-
butions and the resummation formalism has good predictive power.

On the other hand, in low-energy Drell–Yan production, there is no saddle point in the perturbative
region for the integrand in Eq. (1.47). Therefore the dependence of the final result on the nonperturbative
input is strong [177, 235]. However, as discussed in Refs. [177, 179, 237], the value of the saddle point
strongly depends on � � in addition to its well-known �

�
dependence.

Figure 1.36 shows the integrand of the
�� -integration in Eq. (1.47) at � � = 0 for production of

Drell–Yan pairs of mass � = 5 GeV in pp collisions at � � = 5.5 TeV and � ����� = 0.5 GeV 
 � . The curves
represent different extrapolations to the large-

�� region. The three curves (dashed, dotted, and dot–dashed)
are evaluated using the

�� � formalism with the DWS, LY, and BLNY nonperturbative functions, respec-
tively. Although these three nonperturbative functions give similar

�� -space distributions for heavy-boson
production at Tevatron energies, they predict very different

� � -space distributions for low-mass Drell–
Yan production at LHC energies even within the perturbative small-

�� region. Since the
�� -distribution

in Fig. 1.36 completely determines the resummed � � distribution through the
�� -integration weighted by

the Bessel function � � 
 � �
�� � , we need to worry about the uncertainties of the resummed low-mass � �

distributions calculated with different nonperturbative functions.

In order to improve the situation, a new formalism of extrapolation (QZ) was proposed [177],

� 

�� � � � � � � ��	 � � � � � � � � 
 �� � � � � � � ��	 � �� 	 �� ������ � � � � 
 �� ����� � � � � � � � 	 � # � � 
 �� � � � � � � � 	 � �� ����� � � � ���� �� ����� � (1.54)

where the nonperturbative function # � � is given by

#
� �
� �'&)( � # ��
 
 �

� �� ������ � �
�
�

�
� �

�


�� � � % # 
 �� ������ � % 
 � � � � �� � # �� ������ 
 � # �� �

� �� � # �� ������ 
 � 
 (1.55)

Here,
�� ����� is a parameter to separate the perturbatively calculated part from the nonperturbative input,

and its role is similar to the
� � ����� in the

�� � formalism. The term proportional to � � in Eq. (1.55) represents
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a direct extrapolation of the resummed leading power contribution to the large-
�� region. The parameters

� � and � are determined by the continuity of the function
� 


�� � � � � � � ��	 � at
�� ����� . On the other hand,

the values of � � and �� � represent the size of nonperturbative power corrections. Therefore, sensitivity to
� � and �� � in this formalism clearly indicates the precision of the calculated � � distributions.

The solid line in Fig. 1.36 is the result of the QZ parametrization with
�� ����� = 0.5 GeV 
 � and

� � � �� � = 0. Unlike in the
� � � formalism, the solid line represents the full perturbative calculation and

is independent of the nonperturbative parameters for
�� � �� ����� . The difference between the solid line

and the other curves in the small-
�� region, which can be as large as 40%, indicates the uncertainties

introduced by the
�� � formalism.

It is clear from the solid line in Fig. 1.36 that there is a saddle point in the perturbative region
even for dilepton masses as low as � = 5 GeV in Drell–Yan production at � � = 5.5 TeV. At that energy,
� � � � 	 � 0.0045. For such small values of � , the PDFs have very strong scaling violations, leading to
large parton showers. It is the large parton shower at the small � that strongly suppresses the function� 


�� � � �
�� � � � � � 	 � in Eq. (1.48) as

� � increases. Therefore, for
�� ����� � (a few GeV) 
 � , the predictive

power of the
�� -space resummation formalism depends on the relative size of contributions from the

small-
�� (

�� � � � ����� ) and large-
�� (

�� � �� ����� ) regions of the
� � -integration in Eq. (1.47). With a narrow�� distribution peaked within the perturbative region for the integrand, the

�� -integration in Eq. (1.48) is
dominated by the small-

�� region and, therefore, we expect pQCD to have good predictive power even for
low- � Drell–Yan production at LHC energies.

Figure 1.37 presents our prediction of the fully differential cross section �����	� � � ��� � �
�
� for Drell–

Yan production in pp collisions at � � = 5.5 TeV and � = 0 [234]. Three curves represent the different
order of contributions in � � to the perturbatively calculated functions

� 
 � � � , � 
 � � � , and � 
 � � � in the
resummation formalism [241]. The solid line represents a next-to-next-to-leading-logarithmic (NNLL)
accuracy corresponding to keeping the functions,

� 
 � � � , � 
 � � � , and � 
 � � � to order � � � , � � � , and � �� ,
respectively. The dashed line has next-to-leading-logarithmic (NLL) accuracy with the functions,

� 
 � � � ,
� 
 � � � , and � 
 � � � at � � � , � � , and � � � , respectively, while the dotted line has the lowest leading-logarithmic
(LL) accuracy with the functions,

� 
 � � � , � 
 � � � , and � 
 � � � at the � � , � � � , and � � � , respectively. Similar to
what was seen in the fixed-order calculation, the resummed � � distribution has a � -factor about 1.4–1.6
around the peak due to the inclusion of the coefficient � � � 
 .

In Eq. (1.55), in addition to the � � term from the leading power contribution of soft gluon showers,
the � � term corresponds to the first power correction from soft gluon showers and the �� � term is from
the intrinsic transverse momentun of the incident parton. The numerical values of � � and �� � have to be
obtained from fits to the data. From fits of low-energy Drell–Yan data and heavy gauge boson data at
the Tevatron, we found that the intrinsic transverse-momentum term dominates the power corrections. It
has a weak energy dependence. For convenience, we combine the parameters of the

�� � term as
� � �

� � � 
 
 � � �� ������ � �
� � � �� � . For � = 5 GeV and � = 0, we use

� � � 0.25 in the discussion here [177]. To
test the

� � dependence of our calculation, we define

� � ! 
 � � ��� ��� ��� ! 
��	�� � �� � � 
 � 
 � � �
� � � � � � �

�
�

��� � 	�� � �� � � 
 � 
 � � �
� � � ��� � �

�
� � (1.56)

where the numerator represents the result with finite
� � , and the denominator contains no power correc-

tions,
� � = 0.

The result for � � ! is shown in Fig. 1.38. It deviates from unity by less than 1%. The dependence
of our result on the nonperturbative input is indeed very weak.

Since the
� � terms represent the power corrections from soft gluon showers and parton intrinsic

transverse momenta, the smallness of the deviation of � � ! from unity also means that leading power
contributions from gluon showers dominate the dynamics of low-mass Drell–Yan production at LHC
energies. Even though the power corrections will be enhanced in nuclear collisions, we expect them
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pPb and PbPb collisions at � � = 5.5 TeV

to be still less than several per cent [179]. The isospin effects are also small here because � � and ��	
are small.

Since the leading power contributions from initial-state parton showers dominate the production
dynamics, the important nuclear effect is the modification of the parton distributions. Because � � and ��	
are small for low-mass Drell–Yan production at LHC energies, shadowing is the only dominant nuclear
effect. In order to study the shadowing effects, we define [179]

� ��� 
 � � � � ��� � ��� 
� 	 � � �� � � 
 � 
 � � � � � � � � � 	 � � �
� � � ��� � �

�
�

��� ��	�� � �� � � 
 � 
 � � �
� � � � � � �

�
�


 (1.57)

We plot the ratio � ��� as a function of � � in PbPb collisions at � � = 5.5 TeV for � = 5 GeV and � = 0
in Fig. 1.39. The EKS parametrization of nuclear parton distributions [27, 28] was used to evaluate the
cross sections in Eq. (1.57). It is clear from Fig. 1.39 that low-mass Drell–Yan production can be a good
probe of nuclear shadowing [234], both in PbPb and in pPb collisions at the LHC.

6.2.3. Low-mass Drell–Yan production at high transverse momentum

The gluon distribution plays a central role in calculating many important signatures at hadron colliders
because of the dominance of gluon-initiated subprocesses. A precise knowledge of the gluon distribution
as well as its nuclear dependence is absolutely vital for understanding both hard and semihard probes at
LHC energies.

It was pointed out recently that the transverse-momentum distribution of massive lepton pairs
produced in hadronic collisions is an advantageous source of constraints on the gluon distribution [242],
free from the experimental and theoretical complications of photon isolation that beset studies of prompt
photon production [243, 244]. Other than the difference between a virtual and a real photon, the Drell–
Yan process and prompt photon production share the same partonic subprocesses. Similar to prompt
photon production, the lowest-order virtual photon ‘Compton’ subprocess � � � � � � � � dominates the

� � distribution when � � � � /2. The next-to-leading order contributions preserve the fact that the � �
distributions are dominated by gluon-initiated partonic subprocesses [242].

There is a phase space penalty associated with the finite mass of the virtual photon, and the Drell–
Yan factor � � � � 
 � � �

� � � 10 
 � � � �
in Eq. (1.45) renders the production rates for massive lepton pairs
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small at large values of � and � � . In order to enhance the Drell–Yan cross section while keeping
the dominance of the gluon-initiated subprocesses, it is useful to study lepton pairs with low invariant
mass and relatively large transverse momenta [236]. With the large � � setting the hard scale of the
collision, the invariant mass of the virtual photon � can be small, as long as the process can be identified
experimentally and � � � ��� �

. For example, the cross section for Drell–Yan production was measured
by the CERN UA1 Collaboration [245] for virtual photon mass � 	 [2 � � , 2.5] GeV.

When �
�
� � �

�
, the perturbatively calculated short-distance partonic parts, � �� �

	 � � � � �	� �
�
� ���

in Eq. (1.45), receive one power of the logarithm � 
 
 �
�
� � �

� � at every order of � � beyond leading order.
At sufficiently large � � , the coefficients of the perturbative expansion in � � will have large logarith-
mic terms, so that these higher-order corrections may not be small. In order to derive reliable QCD
predictions, resummation of the logarithmic terms � 
 � 
 �

�
� � �

� � must be considered. It was recently
shown [236] that the large � 
 � 
 �

�
� � �

� � terms in the low-mass Drell–Yan cross sections can be system-
atically resummed into a set of perturbatively calculable virtual-photon fragmentation functions [246].
Similar to Eq. (1.46), the differential cross section for low-mass Drell–Yan production at large � � can be
reorganized as

��� � 	 � � �� � � 
 �
� � � ��� � �

�
� �

��� � � � � � � 
��	�� � �� � � 
 �
� � � ��� � �

�
� �

��� � � � � 
��	�� � �� � � 
 �
� � � � � � �

�
� � (1.58)

where � � � � � � � 
 includes the large logarithms and can be factorized as [236]

��� � � � � � � 
� 	�� � �� � � 
 �
� � � � � � �

�
� �

� � � �
� � �

� 
 �
� �
	
� �
�
��� � � �

�
� 
 � � � � �

�
� � � � 	 � 	 
 � � � � �

� � ���� � � �� �

	 ��� �
� �

�� � � � 
 ��� � � � � � � � � � � � � � 
 � � �
�� � � �

� � (1.59)

with the factorization scale � and fragmentation scale � � , and virtual photon fragmentation functions� � � � � 
 � � �
�� � � � � . The � � � � � 
 term plays the same role as � � � 
 term in Eq. (1.46), dominating the cross

section when � � � � .

Figure 1.40 presents the fully resummed transverse-momentum spectra of low-mass Drell–Yan
production in pp collisions with � = 5 GeV at � = 0 and � � = 5.5 TeV (solid). For comparison, we also
plot the leading order spectra calculated in conventional fixed-order pQCD. The fully resummed distri-
bution is larger in the large-� � region and smoothly convergent as � � �

0. In addition, as discussed
in Ref. [236], the resummed differential cross section is much less sensitive to the changes of renor-
malization, factorization, and fragmentation scales and should thus be more reliable than the fixed-order
calculations.

To demonstrate the relative size of gluon-initiated contributions, we define the ratio

� 
 � ��� � 	 � � � � � 
 � 
 gluon-initiated �
� �

�
� � �

� ��� � 	�� � � � � 
 �
� �

�
� � � 
 (1.60)

The numerator includes the contributions from all partonic subprocesses with at least one initial-state
gluon while the denominator includes all subprocesses.

In Fig. 1.41, we show � 
 as a function of � � in pp collisions at � = 0 and � � = 5.5 TeV with
� = 5 GeV. It is clear from Fig. 1.41 that gluon-initiated subprocesses dominate the low-mass Drell–
Yan cross section and that low-mass Drell–Yan lepton-pair production at large transverse-momentum is
an excellent source of information about the gluon distribution [236]. The slow falloff of � 
 at large-� �
is related to the reduction of phase space and the fact that cross sections are evaluated at larger values
of � .
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Fig. 1.40: Differential cross section ��� � � � ! � � � � !� for pro-
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Yan production at the LHC,
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, defined in Eq. (1.60) with� = 5 GeV at � � = 5.5 TeV

6.2.4. Conclusions

In summary, we present the fully differential cross section of low-mass Drell–Yan production calculated
in QCD perturbation theory with all-order resummation. For � � � � , we use CSS

�� -space resumma-
tion formalism to resum large logarithmic contributions as singular as 
 � � �

�
� � � 
 � 
 � � � �

�
� � to all orders

in � � . We show that the resummed � � distribution of low-mass Drell–Yan pairs at LHC energies is
dominated by the perturbatively calculable small

� � -region and thus reliable for � � as small as
� ��� �

.
Because of the dominance of small � PDFs, the low-mass Drell–Yan cross section is a good probe of
the nuclear dependence of parton distributions. For � � � � , we use a newly derived QCD factoriza-
tion formalism [236] to resum all orders of ��
 � 
 �

�
� � �

� � type logarithms. We show that almost 90% of
the low-mass Drell–Yan cross sections at LHC energies is from gluon initiated partonic subprocesses.
Therefore, the low-mass Drell–Yan cross section at � � � � is an advantageous source of information
on the gluon distribution and its nuclear dependence — shadowing. Unlike other probes of gluon distri-
butions, low-mass Drell–Yan does not have the problem of isolation cuts associated with direct photon
production at collider energies and does not have the hadronization uncertainties of � ��� and charm pro-
duction. Moreover, the precise information on dilepton production in the Drell–Yan channel is critical
for studying charm production at LHC energies.
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6.3. Angular Distribution of Drell–Yan Pairs in pA at the LHC

R.J. Fries

6.3.1. Introduction

The Drell–Yan cross section can be described by a contraction of the lepton and hadron tensors

���
� � � � �

�
� ��� � � �

� �� �� � � � � � �
� � � � � � 
 (1.61)

Here we parametrize the lepton pair by the invariant mass � of the virtual photon and its transverse-
momentum � � and rapidity � in the centre-of-mass frame of the colliding hadrons. In addition we give
the direction of one of the leptons, say the positively charged one, in the photon rest frame using polar
and azimuthal angles � and

�
: � � � � � � " � � � . Now the cross section can be understood in terms of

four helicity amplitudes [247–249]

���
� � � � �

�
� ��� � � �

� �� �� � � � � � �
� � � � 
 � � " � � � � � � � � 
 � � � # � � � " � � � � �
� ��� ��� 
 � � " � � � � ����� ��� 
 � � " � � � � � 
 (1.62)

These are defined as contractions
� � � � � � �

� 
 � � � � �
�
�

� 
 � � � of the hadron tensor with polarization
vectors of the virtual photon for polarizations � = 0,

�
1. Only four out of all possible contractions are

independent, the others can be related by symmetries of the hadron tensor. The usual choice is to pick
the longitudinal

� �
�

�
� � � , the helicity flip

���
� 
 � � � � � �

� � � � � � � and the double helicity-flip
amplitude

�����
�
�
� � 
 � together with the trace

� � � � � � � � � � � � # � �� /2 as a basis. Note that
integration over the angles

�
and � leaves only contributions from the trace

���
� � � � �

�
� � � �

� �� �� � � � � � �
��� �
�

� � � � � �� �� � � � � � � 
 # � � � � � � � 
 (1.63)

On the other hand, if we are only interested in relative angular distributions, i.e. in the ratio

��� �
�

���
� � � � �

�
� � � � �

� ���
� � � � �

�
� � � � (1.64)

we can make use of angular coefficients. Two different sets can be found in the literature [250]. One set
consists of the coefficients

�
� �

� �
� � � � �

� �
���
� � � � � � �

� �����
� � � � (1.65)

the other one is defined by

' �
� # � � �� � � �

� � �
� �

�� � � �
� � �

� � �
� � � �


 (1.66)

The helicity amplitudes are frame-dependent. In principle we allow all frames where the photon
is at rest, i.e. � � � 
 � � � � � � � � . However, there are some frames with particular properties studied
in Ref. [248]. Here we use only the Collins–Soper (CS) frame. It is characterized by two properties.
First, the � -axis is perpendicular to the plane spanned by the two hadron momenta � � and � � (which are
no longer collinear in the photon rest frame as long as � �

�
� 0, as in our kinematic domain) and second,

the � -axis cuts the angle between � � and # � � into two equal halves, see Fig. 1.42.
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Fig. 1.42: The Collins–Soper frame: the � -axis cuts the angle between
� � and

� � ! into halves (the half angle is called the

Collins–Soper angle � � � ) while the � -axis is perpendicular to
� � and

� ! . The direction of one lepton momentum � � can then

be given by the angles � and � .

6.3.2. Leading twist

The hadron tensor for the Drell–Yan process in a leading-twist (twist-2) calculation is given by the well-
known factorization formula as a convolution of two parton distributions with a perturbative parton cross
section. We are interested here in the kinematic region characterized by intermediate photon mass � of a
few GeV and intermediate transverse-momentum � � � � . For these values, the dominant contribution
to twist-2 is given by the NLO perturbative diagrams like the one in Fig. 1.43 (left) and we can safely
omit logarithmic corrections of type � 


�

 � � � �

�
� � . It has been shown that a leading-twist calculation up

to NLO respects the so-called Lam–Tung sum rule,
� �

�
� ��� �

[251]. In terms of angular coefficients
this can be rewritten as

�
� �

� � or 2 � = 1 – ' . Furthermore, the spin-flip amplitude
� �

has to vanish
for a symmetric colliding system like pp. For pA we expect small contributions for

� �
due to lost

isospin symmetry and nuclear corrections to the parton distributions. Results for pp at � � = 5.5 TeV
have already been presented elsewhere [252].

l
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l
-

A

h

l
+

l
-

A

h

Fig. 1.43: Examples for diagrams contributing to the dilepton production in hadron (h) nucleus (A) scattering at twist-2 (left)

and twist-4 (right) level

6.3.3. Nuclear-enhanced twist-4

For large nuclei, corrections to the leading-twist calculation, induced by multiple scattering, play an im-
portant role. The formalism for including these nuclear-enhanced higher-twist contributions was worked
out by Luo, Qiu and Sterman [36, 253, 254]. The leading nuclear corrections (twist-4 or double scatter-
ing) have already been calculated for some observables. For Drell–Yan this was first done by Guo [37]
and later generalized to the Drell–Yan angular distribution [250, 255].

Figure 1.43 (right) shows an example for a diagram contributing at twist-4 level. Now two partons
� , � from the nucleus and one ( � ) from the single hadron are involved. As long as � � � � , twist-4 is
dominated by two different contributions. The double-hard (DH) process where each parton from the
nucleus has a finite momentum fraction and the soft-hard (SH) process where one parton has vanishing
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momentum fraction. The factorization formulas are given by

� � � �
�

� �
	
� �
� ��� �

� � �
� �

�

	

 � � � � 	 � � � ��

	
� � 
 � � � � � � 	 � ��� � � � 
 � � � � (1.67)
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 � � � 
 � � ��� � � � ��

	

 � � � � � ��

	
� � 
 � � � � � � 	 � � � � � � � � 
 � � � (1.68)

for double-hard and soft-hard scattering, respectively [37, 250, 255]. The function � � 
 � � � 
 � � � � � is a
second-order differential operator in � � and � 	 while �

� �
�

	
and � � �

�

	
are new twist-4 matrix elements

which encode nonperturbative correlations between the partons � and � . Since we are still missing solid
experimental information about these new quantities, they are usually modelled in a simple way through
parton distributions. We use �

� �
�

	 
 � � � � 	 � � � � �

�
� � � 
 � � � � 	 
 � 	 � and � � �

�

	 
 � � � � ' � � �

�
� � � 
 � � � where

� and ' � are normalization constants. The key feature, the nuclear enhancement, is their scaling with
the nuclear size.

It has been shown in Refs. [250, 255] that the DH process shows a trivial angular pattern in the
sense that it is similar to the LO annihilation of on-shell quarks. The only difference is that one of the
quarks now carries finite � � . In this spirit, it is no surprise that the DH contribution respects the Lam–
Tung relation. On the other hand, SH scattering is more complicated and violates the Lam–Tung sum
rule. We also expect that the spin-flip amplitude

� �
can receive large contributions from the twist-4

calculation.

6.3.4. Numerical results

In this section, we present some numerical results obtained for pPb collisions at the LHC energy
� � = 8.8 TeV. Results for RHIC energies can be found elsewhere [250]. We use the CTEQ5L par-
ton distributions [86] combined with EKS98 [27] nuclear modifications both for the nuclear parton
distributions and for the models of the twist-4 matrix elements. In some plots we also give results
for double-hard contributions without nuclear modification. Since we do not know anything about the
correct � -dependence of the higher-twist matrix elements, this gives an impression of the theoretical
uncertainty we may assume for the higher-twist calculation. The normalization constants for the twist-4
matrix elements are chosen to be ' � � 0.01 GeV

�
and � = 0.005 GeV

�
. In order to enable con-

venient comparison with cross sections, we show all helicity amplitudes multiplied by the prefactor
� � � � �� � � 
 � � � � � � � � of Eq. (1.62).

In Fig. 1.44 we give results for the helicity amplitudes
� � � and

���
as functions of rapidity. We

observe that DH scattering gives a large contribution at negative rapidities (the direction of the proton)
which can easily balance the suppression of the twist-2 contribution by shadowing. Soft-hard scattering
is strongly suppressed at these energies.

� �
(not shown) has qualitatively the same behaviour as

� � � .
The helicity-flip amplitude

� �
picks up only a small contribution from twist-2 and is entirely dominated

by double-hard scattering, as already expected. This would be a good observable to pin down nuclear
effects in pA collisions. Figure 1.45 gives the full set of angular coefficients ' , � and � as functions of
� and � � . Both the twist-2 results and the modifications by twist-4 are given. The violation of the Lam–
Tung sum rule is numerically almost negligible since the soft-hard contribution is so small. Note here that
earlier experiments have discovered a large violation of the Lam–Tung relation in � A collisions [256].
This issue is still not fully resolved.

Thus pA collisions offer the unique opportunity to study nuclear effects directly via the rapidity
dependence of observables. Helicity amplitudes and angular coefficients can help to pin down the role
of nuclear-enhanced higher twist. The helicity-flip amplitude

� �
and the coefficient � , which both

vanish for pp, are particularly promising. Several different species of nuclei are advisable to address the
important question of A scaling.
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Fig. 1.44: Rapidity dependence of ��� ����� (left) and ��� ��� (right) for pPb at � � = 8.8 TeV, � = 5 GeV and � � = 4 GeV:

twist-2 NLO (short dashed), double-hard with EKS98 modifications (long dashed), soft hard (dot–dashed, scaled up by a factor

of 10) and the sum of all contributions (bold solid line). The double hard contribution calculated without EKS98 modifications

is also shown (dotted line). Note that the incoming nucleus has positive rapidity.

Fig. 1.45: The angular coefficients
�

(long dashed), � (short dashed) and 	 (dot dashed) for pPb at � � = 8.8 TeV and � = 5 GeV

as functions of rapidity (left, at � � � 4 GeV) and transverse-momentum (right, at � = 0). Thin lines represent pure twist-

2 calculations, thick lines show the results including twist-4. The solid line gives the violation of the Lam–Tung relation
� 	
� � ��� � � scaled up by a factor of 10.

In addition, the angular distribution of Drell–Yan lepton pairs might play a crucial role in the
extraction of the Drell–Yan process from dilepton data. Dilepton spectra at the LHC have a large contri-
bution from the decay of correlated and uncorrelated heavy quark pairs [79, 80]. However, the angular
pattern of these dileptons is isotropic rather than modulated as in the Drell–Yan case. This provides
additional means to discriminate between Drell–Yan dileptons and those from heavy quark decays.

6.4. Heavy Flavour Total Cross Sections

R. Vogt

Heavy quark production will be an important part of the LHC programme, with both open heavy
flavours and quarkonium studied extensively. Heavy quark production will probe the small- � region
of the gluon distribution in the proton and in the nucleus: at � = 0, � �

4 � 10 
 � for charm and
� � 0.0011 for bottom. Direct information on the gluon distribution in the proton is still lacking, let
alone the nucleus. Open heavy-flavour production is a better direct test of the nuclear gluon distribution
than quarkonium which is subject to other cold matter effects such as nuclear absorption.
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Heavy quark studies in pA interactions provide important benchmarks for further measurements
in AA. More than one

� �
pair (bottom as well as charm) will be produced in each central AA colli-

sion. Therefore heavy quark decays will dominate the lepton-pair continuum between the � ��� and � �

peaks [169]. Although heavy quark energy loss in the medium is currently expected to be small [257],
the shape of the dilepton continuum could be significantly altered due to modifications of the heavy
quark distributions by energy loss [80, 258]. An understanding of heavy quark production in pA is also
a necessity for the study of quarkonium production in AA collisions. Models predicting a quarkonium
enhancement relative to heavy flavour production in nuclear collisions require a reliable measure of the
heavy flavour production rates in AA collisions with shadowing included to either verify or disprove
these predictions.

In this section, we first discuss our estimates of the
� �

total cross sections and some of their
associated uncertainties. We then describe a more detailed measurement of the nuclear gluon distribution
using dileptons from heavy quark decays.

At LO heavy quarks are produced by ��� fusion and � � annihilation while at NLO � � and � � scatter-
ing is also included. To any order, the partonic cross section may be expressed in terms of dimensionless
scaling functions � �

�
� � 

��

that depend only on the variable � [259],

��

��

 �� � � �

� � � �
� � �

� � 
 � � �
� �

��� � � � � � � � 
 � �
���

� �
�
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�
� � 

��

 � � ��
 � � � �

� �
� � � (1.69)

where �� is the partonic centre-of-mass energy squared, � � is the heavy quark mass,
�

is the scale and
� � �� � � � �

� # � . The cross section is calculated as an expansion in powers of � � with � = 0 corresponding
to the Born cross section at order � 
 � � � � . The first correction, � � 1, corresponds to the NLO cross
section at � 
 � � � � . It is only at this order and above that the dependence on renormalization scale

� �
enters the calculation since when � � 1 and � � 1 the logarithm � 
 
 � � ��� �

� � appears, as in gauge boson
and Drell–Yan production at � 
 � � � , described in Section 5.1. The dependence on the factorization scale� � in the argument of � � , appears already at LO. We assume that

� � � � � � � . The next-to-next-
to-leading order (NNLO) corrections to next-to-next-to-leading logarithm (NNLL) have been calculated
near threshold [259] but the complete calculation only exists to NLO.

The total hadronic cross section is obtained by convoluting the total partonic cross section with
the parton distribution functions (PDFs) of the initial hadrons,

� � � 
 � � � �
� � �

�

�
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 �
���� !�	

� �

�
� 
 � � � � # � � � �
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� �

� �� 
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� � ��


��

 � � � �

� � � �
� � (1.70)

where the sum " is over all massless partons and � � and � � are fractional momenta. The parton densities
are evaluated at scale

�
. All our calculations are fully NLO, applying NLO parton distribution functions

and the two-loop � � to both the � 
 � � � � and � 
 � � � � contributions, as is typically done [219, 259].

To obtain the pp cross sections at the LHC, we compare the NLO cross sections to the available
� � and � � production data by varying the mass, � � , and scale,

�
, to obtain the ‘best’ agreement with

the data for several combinations of � � ,
�

, and PDF. We use the recent MRST HO central gluon [172],
CTEQ 5M [86], and GRV 98 HO [45] distributions. The charm mass is varied between 1.2 and 1.8 GeV
with scales between � � and

� � � . The bottom mass is varied over 4.25–5 GeV with �
	
� � 	 � 	 � �

	
.

The best agreement for
�
� � � is with � � � 1.4 GeV, and � � � 1.2 GeV is the best choice using�

�
� � � for the MRST HO and CTEQ 5M distributions. The best agreement with GRV 98 HO is�

� � � = 1.3 GeV while the results with
�
�

� � � lie below the data for all � � . All five results
agree very well with each other for � �

� � � . We find reasonable agreement with all three PDFs for
�
	
�
�

= 4.75 GeV, �
	
�
� � � = 4.5 GeV, and �

	
�
� �
� 5 GeV.

Before calculating the
� �

cross sections at nuclear colliders, some comments need to be made
about the validity of the procedure. Since the � � calculations can only be made to agree with the data
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when somewhat lower than average quark masses are used and the � �
� � � data also need smaller

�
	

to agree at NLO, it is reasonable to expect that corrections beyond NLO could be large. Indeed, the
preliminary HERA-B cross section agrees with the NNLO–NNLL cross section in Ref. [259], suggesting
that the next-order correction could be nearly a factor of two. Thus the NNLO correction could be nearly
as large as the NLO cross section.

Unfortunately, the NNLO–NNLL calculation is not a full result and is valid only near threshold.
The p �p data at higher energies, while not total cross sections, also show a large discrepancy between the
perturbative NLO result and the data, nearly a factor of three [260]. This difference could be accounted
for using unintegrated parton densities [261] although the unintegrated distributions vary widely. The
problem remains how to connect the regimes where near-threshold corrections are applicable and where
high-energy, small- � physics dominates. The problem is increased for charm where, even at low energies,
we are far away from threshold.

We take the most straightforward approach — comparing the NLO calculations to the pp and � 
 p
data without higher-order corrections. The � � data are extensive while the � � data are sparse. The � � data
tend to favor lighter charm masses but the � � data are less clear. A value of �

	
= 4.75 GeV underpredicts

the Tevatron results [260] at NLO but agrees reasonably with the average of the � 
 p data. However, for
the HERA-B measurement [262] to be compatible with a NLO evaluation, the � quark mass would have
to be reduced to 4.25 GeV, perhaps more compatible with the Tevatron results. Therefore, if the NNLO
cross section could be calculated fully, it would likely be more compatible with a larger quark mass.
A quantitative statement is not possible, particularly for charm which is far enough above threshold at
fixed-target energies for the approximation to be questionable [263], see however Ref. [264].

If we assume that the energy dependence of the NNLO and higher order cross sections is not
substantially different from that at LO and NLO, then we should be in the right range for collider energies.
The theoretical � factors have a relatively weak � � dependence, 	 50% for 20 GeV 	 � � 	 14 TeV
[265]. The heavy quark distributions might be slightly affected since the shapes are somewhat sensitive
to the quark mass but the LHC energy is far enough above threshold for the effect to be small.

The total pp and pA cross sections at 5.5, 8.8 and 14 TeV, calculated with a code originally from
J. Smith, are given in Table 1.9. Shadowing is the only nuclear effect included in the calculation. The
cross sections do not reflect any possible difference between the pA and Ap rates because they are
integrated over all � � and � � . However, the different � regions probed by flipping the beams could
be effectively studied through the dilepton decay channel. Thus we now turn to a calculation of the
nuclear gluon distribution in pA interactions [73]. We show that the dilepton continuum can be used
to study nuclear shadowing and reproduces the input shadowing function well, in this case, the EKS98
parametrization [27,28]. To simplify notation, we refer to generic heavy quarks,

�
, and heavy-flavoured

mesons, � . The lepton-pair production cross section in pA interactions is

��� � � � � � ���
� � � � � � � � �

�
� �

�
� � � � �

� � � � �
�

�
��� �
�

� � � 
 � � � # � 
 � � � � � � � � 
 � � � # � 
 � � � � � � �
� � � � � � ��� 
 �� � �

� �
�

� � � � � � � ��� 
 �� � �
� �

�
� �

��� � � ��� � ���
� �

�
�
�
� �

�
� �

� � 
 � � � � � � � � � � � � ����� � � 
 � � � � � � � � � � � � ����� � � (1.71)

where � 
 � � � � � � and � 
 � � � � � � are the invariant mass and rapidity of the lepton pair. The decay rate,
� � � � � ��� 
 ��
� � �	� �

�
� � , is the probability that meson � with momentum

�
� � decays to a lepton � with

momentum
�

� � . The
�

functions define single lepton rapidity and azimuthal angle cuts used to simulate
detector acceptances.

Using a fragmentation function � �� to describe quark fragmentation to mesons, the � � produc-
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Table 1.9: Charm and bottom total cross sections per nucleon at 5.5, 8.8 and 14 TeV

5.5 TeV 8.8 TeV 14 TeV

pp pPb pp pPb pp

� �

PDF � � (GeV)
� ��� � � (mb) � (mb) � (mb) � (mb) � (mb)

MRST HO 1.4 1 3.54 3.00 4.54 3.76 5.71

MRST HO 1.2 2 6.26 5.14 8.39 6.76 11.0

CTEQ 5M 1.4 1 4.52 3.73 5.72 4.61 7.04

CTEQ 5M 1.2 2 7.39 5.98 9.57 7.56 12.0

GRV 98 HO 1.3 1 4.59 3.70 6.20 4.89 8.21

� �
PDF �

	
(GeV)

� ���
	

� ( � b) � ( � b) � ( � b) � ( � b) � ( � b)

MRST HO 4.75 1 195.4 180.1 309.8 279.7 475.8

MRST HO 4.5 2 201.5 186.6 326.1 296.0 510.2

MRST HO 5.0 0.5 199.0 183.9 302.2 272.6 445.1

GRV 98 HO 4.75 1 177.6 162.7 289.7 259.7 458.3

GRV 98 HO 4.5 2 199.0 183.9 329.9 298.7 530.7

GRV 98 HO 5.0 0.5 166.0 151.2 262.8 233.6 403.2

tion cross section can be written as

��� � � ��� � ���
� �

�
�
��� �

�
� �

�
� � �

�
� �

 �

� �
�

� �

 � 
 ��
 � ���

� � � � � ���
� �

�
� ��� �

�
� �

�
��� � ��� � � �� 
 � � � � �� 
 � � �

� � � � 
 
 ��
� # � � �
� � � � � � 
 
 �� � # � � �

� � � 
 (1.72)

Our calculations proved to be independent of � �� . The hadronic heavy-quark-production cross section
per nucleon in Eq. (1.72) is

�� 
 ��
 � ���
� � � � � ���
� �

�
� � � �

�
� �

�
� 

�

� �
��� � � � � � �
 
 � � � � �

� � �� 
 � � � � �
� 
 � 
 � � ��


�� � � �
� �

�
� ��� �

�
� �

� (1.73)

where the parton densities in the nucleus are related to those in the proton by � �
 � � �
 � �
 where � �



is the EKS98 parametrization [27, 28]. The partonic cross section in Eq. (1.73) is the differential of
Eq. (1.69) at � = 0. Note that the total lepton-pair production cross section is equal to the total

� �
cross

section multiplied by the square of the lepton branching ratio.
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Fig. 1.46: The ratios of lepton pairs from correlated � � and � � decays in pA to pp collisions at the same energies (solid

curves) compared to the input
� ��

at the average � ! and � (dashed)/ � � � ! � (dot–dashed) of each � bin. From Ref. [73].

We compare the ratios of lepton-pair cross sections with the input � �
 in Fig. 1.46. The RHIC and
LHC results are integrated over the rapidity intervals appropriate to the PHENIX and ALICE dilepton
coverages. The ratio is similar to but smaller than � �
 at all energies. The higher the energy, the better
the agreement. The ratio always lies below � �
 because we include � � annihilation, which decreases with
energy, but quark and gluon shadowing are different and the phase space integration smears the shadow-
ing effect relative to � �
 
 � � � � � � � � � . The calculated ratio deviates slightly more from � �
 
 � � � � � � � � � for

�
�

� 
 than for � � � 
 because the curvature of � �
 with � is stronger at larger � and, due to the differences
in rapidity coverage, the average values of � � are larger for �

�
��
 .

The average
� �

increases with energy and quark mass while the average � � decreases with energy.
At the SPS, 0.14 	 � � � � 	 0.32, � �
 is decreasing. At RHIC, 0.003 	 � � � � 	 0.012, � �
 is increasing
quite rapidly. Finally, at the LHC, 3 � 10 
 	 	 � � � � 	 2 � 10 
 � , � �
 is almost independent of � . The
values of

� � � � are typically larger for electron pairs at collider energies because the electron coverage
is more central than the muon coverage. We have only considered pPb collisions but in Pbp collisions
� � is an order of magnitude or more greater than � � at forward rapidities such as in the ALICE muon
spectrometer. Thus doing both pA and Ap collisions would greatly increase the � range over which the
nuclear gluon distribution could be determined. By assessing � � and � � pairs together, it is possible to
investigate the evolution of the nuclear gluon distribution with

� �
, albeit with slightly shifted values of

� due to the mass difference.

The importance of such a study as a function of A and � � is clear, especially when there is cur-
rently little direct information on the nuclear gluon distribution. It is desirable for the pp, pPb, and Pbp
measurements to be performed at the same energy as the PbPb collisions at 5.5 TeV even though the rela-
tive proton/neutron number is negligible in gluon-dominated processes. The effect of shadowing is easier
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to determine if the � value does not shift with energy, particularly because the dilepton measurement does
not provide a precise determination of the heavy quark momenta, only an average.

As shown in Fig. 1.46, energy systematics would provide a much clearer picture of the nuclear
gluon distribution over the entire � range. The PHENIX Collaboration has already demonstrated that
charm can be measured using single leptons [266]. Perhaps it might be possible to obtain the bottom
cross section the same way as well at higher � � . Another handle on the

� �
cross sections may be

obtained by � � correlations, since the Drell–Yan and quarkonium decays will not contribute. At the
LHC, uncorrelated

� �
pairs can make a large contribution to the continuum. These pairs, with a larger

rapidity gap between the leptons, are usually of higher mass than the correlated pairs. However, the
larger rapidity gap reduces their acceptance in a finite detector. Like-sign subtraction also reduces the
uncorrelated background. For further discussion, see Refs. [72, 73, 79].

6.5. Cronin Effect in Proton–Nucleus Collisions: a Survey of Theoretical Models

A. Accardi

6.5.1. Introduction

In this short note I shall compare available theoretical models for the description of the so-called Cronin
effect [267] in inclusive hadron spectra in pA collisions. The analysis will be limited to references
containing quantitative predictions for pA collisions [180,205,268–270]. The observable we study is the
Cronin ratio, � , of the inclusive differential cross sections for proton scattering on two different targets,
normalized to the respective atomic numbers

�
and

�
:

� 
 � � � �
�

� ��� � � �	� � � �
��� � 	 �	� � � � 


In absence of nuclear effects one would expect � 
 � � � = 1, but for
� � �

a suppression is measured at
small � � , and an enhancement at moderate � � with � 
 � � � � 1 as � � � �

. This behaviour may be
characterized by the value of three parameters: the transverse-momentum ��� at which � crosses unity
and the transverse-momentum � � at which � reaches its maximum value � � � � 
 � � � , see Fig. 1.47.
These Cronin parameters will be studied in Section 6.5.3.

pMpx

RM

pT

1

R

Fig. 1.47: Definition of ��� � ��� � � �
The Cronin effect has received renewed interest after the experimental discovery at RHIC of an

unexpectedly small � � 1 in AuAu collisions at � � � 130 GeV compared to pp collisions at the same
energy [271, 272]. This fact has been proposed as an experimental signature of large jet quenching,
suggesting that a Quark–Gluon Plasma was created during the collision [273, 274]. However, the ex-
trapolation to RHIC and LHC energies of the known Cronin effect at lower energies is haunted by large
theoretical uncertainties which may make the interpretation of such signals unreliable. More light has
recently been shed on this problem by the RHIC data on dA collisions at � � = 200 GeV [6–8, 275].
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Since no hot and dense medium is expected to be created in pA collisions, a pA run at the same
nucleon–nucleon energy as in AA collisions would be of major importance to test the theoretical models
and to have reliable baseline spectra for the extraction of novel physical effects. This has been the key in
establishing the relevance of final-state effects (jet quenching) as the the cause of the suppression of the
Cronin ratio � in AuAu collision at RHIC [275, 276]. This measurement will also be essential at LHC,
where at the accessible Bjorken � �� 10 
 � new physics such as gluon saturation may (or may not) come
into play.

A further advantage of pA collisions is the relatively small multiplicity compared to AA collisions.
For this reason, at ALICE, minijets may be observed at � � � 5 GeV, see Section 2. As I shall discuss in
Section 6.5.3., the Cronin effect on minijet production may then be a further check of the models.

6.5.2. The models

Soon after the discovery of the Cronin effect [267], it was realized that the observed nuclear enhancement
of the � � spectra could be explained in terms of multiple interactions [277, 278]. The models may be
classified according to the physical object which is rescattering (the projectile hadron or its partons), and
to the ‘hardness’ of the rescattering processes taken into account. Note that a parton is commonly said
to undergo a hard scattering if the exchanged momentum is of the order of or greater than approximately
1 GeV. However, physically there is no sharp distinction between soft and hard momentum transfer.
Therefore, I prefer to refer to the so-called two-component models of hadron transverse spectra, and call
a scattering which is described by a power-law differential cross section at large-� � hard, and a scattering
whose cross section is decreasing faster than any inverse power of the transverse-momentum at large-� �
soft. In Tables 1.10 and 1.11, I provide a quick comparison of the hadronic and partonic rescattering
models.

Soft hadronic rescattering models [180, 268]

These models are based on the pQCD collinearly factorized cross section for inclusive particle production
in pp collisions. In order to better describe the hadron transverse-momentum spectra at � � � 20 GeV,
and in the semi-hard region � � � 1 � 5 GeV at higher cms energies, one has to also include an intrinsic
transverse-momentum [279,280] for the colliding parton. The � � spectrum in a pA collision is obtained
from a Glauber-type model6:

��� �� �
� � � � � �

�

�

�
�

�
� � #

�� � 	 #

� �
� 	 � ��

� �� 
 " � � � � � 	 � �� � (1.74)

where the proton and nucleus parton distribution functions are, respectively,

#
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�� � 
 � 
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� � 

�
!� �
�
�
�
!��� � � � 	 


�
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�� #

� �
� � ��� 
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 � � � � �

� � 

�
!� � � � � !� � � � � 	 

�
� � �� � � � 
 (1.75)

In Eq. (1.74), � ����	� �� 
 " � � � � � is the pQCD parton–parton cross section, the variables with a hat are the
partonic Mandelstam variables, and a sum over incoming and outgoing parton flavours is performed. The
proton is considered point-like compared to the target nucleus, and the scattering occurs at impact param-
eter � . The nucleus is described by the Woods–Saxon nuclear thickness function � � 
 � � . In Eq. (1.75),� 
�� ��� � 
 
 � � � � � are the PDFs of the proton (nucleus). Isospin imbalance is taken into account and nuclear
shadowing is included by the HIJING parametrization [281]. Partons are assumed to have an intrinsic
transverse-momentum with average squared value

� � �� � � � � � � 
 and a Gaussian distribution. Due to the �



and �
�

integrations a regulator mass � = 0.8 GeV has been used in the pQCD cross section.

6Integrations are schematically indicated with crossed circle symbols. For details see the original references.
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Table 1.10: Parameters of the soft hadronic rescattering models [180]

Model Hard scales (GeV) K Regul. Proton intrinsic

��� (GeV

�

) n Average

�� kick (GeV
�

) nPDF

Soft

� � � � � �� 2 0.8 GeV

	
 �� ��
 
 = 1.2 + 0.2 ��� ��� �� � �� � � � � ��

= 0.255

�� ��� �GeV �

 ! �� �� �GeV � HIJING

Soft-sat.

� � 
" �#$ ;

� � � 
" �
% �

1 0.8 GeV

	 
 �� �
 
 � & � ' ( �) �

4

�

= 0.4 HIJING

* +-, �-. / 01 02 03 45 01 6 02 6 03 7 � . Parametrization chosen to best reproduce pp data.

8 +

These scales used in the computations of Table 1.12. In Ref. [180]

9. :" 4 /

and

9 ;. :" 4 /< $ .

$ +

No explicit parametrization is given. Values of

=> �" ?A@ @ extracted from a “best fit” to : : data, see Fig.15 of Ref. [180].
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Table 1.11: Parameters of the soft partonic rescattering model (at short-

�$ ) and of the hard partonic rescattering models

Model Hard scales K Regulators (GeV) Intr.

��� � � � ��� Dipole cross-section nPDF

Col. dip.

� � � � � � � � � ��� = 0.8, ��	 = 0.2 as Soft mod. –2.5 GeV/fm 
� = 23 mb,

�

= 0.288, 
 � = 3 � 10 � � EKS98

% �

Hard AT

� � � � � �) �
� 2 � free param. no no computed from pQCD no

Hard GV

� � � � � � � � � � = 0.42

� �

as Soft mod. no — EKS98

* +

Factors out in the Cronin ratio.

8 +

Only at large �� (EMC effect).

$ + 9. � in Ref. [205].

� + � determines only the typical momentum transfer in elastic rescatterings.
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Finally, � �� 
 � � � � � � are the fragmentation functions of a parton � into a hadron � with a fraction � of the
parton momentum.

Soft proton–nucleon interactions are assumed to excite the projectile proton wavefunction, so that
when the proton interacts with the next target nucleon its partons have a broadened intrinsic momentum.
Each proton rescattering is assumed to contribute to the intrinsic momentum broadening in the same way
so that: � � �� � � � 
 � � � � � � � � �� � � � � � � � 
 � � � � � � (1.76)

where
� � �� � � � is the parton intrinsic momentum needed to describe hadron transverse spectra in pp colli-

sions, � is the average momentum squared acquired in each rescattering, and

� � 
 � � � � � � � � � 
 � � � � � # � � ) � � # � 	 


 � ) � � # � � 
 (1.77)

represent the average number of collisions which are effective in broadening the intrinsic momentum.
Both models assume � � to be a function of the number of proton–nucleon collisions �

� 
 � � � � � �
� � � 
 � � � � � 
 � � , with � � � the nucleon–nucleon inelastic cross section. However, Ref. [268] takes 
 � �

,
while Ref. [180] assumes an upper limit 
 = 4 justified in terms of a proton dissociation mechanism:
after a given number of interactions, the proton is so excited that it can no longer interact as a whole with
the next nucleon. I shall call the first model simply soft and the second soft-saturated. In both models,
target nucleons do not rescatter, so that

� � �� � � � 
 � � � � � � � � �� � � � 

Further differences between the models are related to the choices of the hard scales, of the � -factor
which simulates NLO contributions to the parton cross section, and to the parametrizations of

� � �
� � � �

and � (see Table 1.10).

Soft partonic rescatterings: the colour dipole model [269]

In this model, the particle production mechanism is controlled by the coherence length � � �
� � � 
 ��� � � � , where ��� is the nucleon mass and � � the transverse-momentum of the parton which
fragments in the observed hadron. Depending on the value of �
� , three different calculational schemes
are considered. (a) In fixed-target experiments at low energy (e.g., at the SPS), where � � � � � , the
projectile partons interact incoherently with target nucleons. High-� � hadrons are assumed to originate
mainly from a projectile parton which experienced a hard interaction and whose transverse-momentum
was broadened by soft parton rescatterings. The parton is then put on-shell by a single semihard scat-
tering computed in factorized pQCD. This scheme will be discussed in detail below. (b) At LHC, where
the c.m. energy is very large and � � � � � , the partons interact coherently with the target nucleons and
high-� � hadrons are assumed to originate from radiated gluons. Parton scatterings and gluon radiation
are computed in the light-cone dipole formalism in the target rest frame. (c) At intermediate energies,
like RHIC, an interpolation is made between the results of the low- and high-energy regimes discussed
above. All the phenomenological parameters needed in this model are fixed in reactions other than from
pA collisions, and in this sense the model is said to be parameter-free.

In the short coherence length scheme, pQCD factorization is assumed to be valid and Eq. (1.74) is
used with parton masses � 
 � 0.8 GeV and � � � 0.2 GeV for, viz., gluons and quarks. Moreover,

#
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� 
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�� #
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Parton rescatterings are computed in terms of the propagation of a � �� pair through the target nucleus.
The final parton transverse-momentum distribution � �



�	� � �



� is written as:

� �



� � �


� �

�
�
�
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�
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 �� !�
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� � � � � * � � � �� � � � � 

(1.78)

The first bracket in Eq. (1.78) represents the contribution of the proton intrinsic momentum. The sec-
ond bracket is the contribution of soft parton rescatterings on target nucleons, expressed through the
phenomenological dipole cross section. For a quark, � � �� � 
 � � � ��� � � � �

� # �'&)( � # �
� �

�
� �

� � 
 � � �



with
� �
� � � �	� 
 � � � � � �

�
�

(the parameters ar given in Table 1.11). For a gluon, � �
 
 = 9/4 � � �� � is used. The

expansion of Eq. (1.78) to zeroth order in � � �� � gives the intrinsic � � distribution, ��� � � 
 �	� � � � , of the
nucleon partons. The first-order term represents the contribution of one-rescattering processes, and so
on. Partons from the target nucleus are assumed not to rescatter because of the small size of the projec-
tile. Energy loss of the projectile partons is taken into account by a shift of their fractional momentum
proportional to the energy of the radiated gluons, given by the product of the average mean path length
� � and the energy loss per unit length ��
 �	��� [282,283]. Since nuclear shadowing effects are computed
in the dipole formalism, see Eq. (1.78), parton distribution functions in the target are modified only to
take into account antishadowing at large � according to the EKS98 parametrization [27].

By Fourier-transforming the dipole cross section we find that the transverse-momentum distribu-
tion of single parton–nucleon scattering is Gaussian, which justifies the classification of this model as
‘soft’. However, the single distributions are not just convoluted to obtain a broadening proportional to the
average number of rescatterings. Indeed, in the second bracket, the rescattering processes have a Poisson
probability distribution. As a result, the nuclear broadening of the intrinsic momentum is smaller than the
product of the average number of rescatterings and the single scattering broadening; perhaps a dynamical
explanation of the assumption that 
�� � in Eq. (1.77), used in the soft-saturated model [180].

Hard partonic rescattering model [205, 270]

The model of Ref. [205], hereafter labeled ‘hard AT’, assumes that parton rescatterings are responsible
for the Cronin enhancement. Up to now, it includes only semihard scatterings, i.e. scatterings described
by the pQCD parton–parton cross section. It is the generalization to an arbitrary number of hard parton
rescatterings of the early models of Refs. [277, 278, 284] and of the more recent Refs. [285, 286], which
are limited to a single hard rescattering. As shown in Ref. [278], considering only one rescattering may
be a reasonable assumption at low energy to describe the gross features of the Cronin effect, but already
at RHIC energies this might be insufficient to determine the Cronin peak � � [205]. The AT model
assumes that the S-matrix for a collision of 
 partons from the projectile on � partons from the target
is factorizable in terms of S-matrices of parton–parton elastic-scattering. It also assumes generalized
pQCD factorization [18, 287]. The result is a unitarized cross section, as discussed in Refs. [205, 288]:
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 (1.79)

The first term accounts for multiple semihard scatterings of partons in the proton on the nucleus. In the
second term, partons of the nucleus are assumed to undergo a single scattering, with ���

� � � �	� � � � �! 
 � 
�� � 	 � � �����

��
� . Nuclear effects are included in ���


��
� �	� � � � , the average transverse-momentum distri-

bution of a proton parton that suffered at least one semihard scattering. In impact parameter space it reads

� �

��
�

� � � � 
 � � �
� � � �
� � � 



 ��
� �

�� �
� 
 � � 	�
	���
 � � � 
 � � � 	 
 # � 
 � � 	�
	���
 � � � � 	 
 � � (1.80)
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where unitarity is explicitly implemented at the nuclear level, as discussed in Ref. [288]. In Eq. (1.80),
� �
��� �

��
� 
 � � � � ! � � � � �

�
� # � 



 �� � �� 
 ����� �� �����
	����
�����������
. Moreover, �



� � �

�����

��
� � � 
 � � is identified with

the target opacity to the parton propagation. Note that � �
��� �

��
� 
 � � ( �

�
as � �

0 and � �
�����

��
� 
 � � � � �

�����

��
�

as � � �
. This, together with the similarity of Eqs. (1.78) and (1.80), suggests the interpretation

of � �
��� �

��
� 
 � � as a hard dipole cross section, accounting for hard parton rescatterings on target nucleons

analogous to what � �� �� does for soft parton rescatterings. Note that no nuclear effects on PDFs are
included. However, shadowing is partly taken into account by the multiple scattering processes.

To regularize the IR divergences of the pQCD cross section, a small mass regulator � is introduced
in the parton propagators. It is considered a free parameter of the model that sets the scale at which pQCD
computations break down. As a consequence of the unitarization of the interaction, due to the inclusion
of rescatterings, both � � and � � are almost insensitive to � [205]. Therefore, these two quantities are
considered reliable predictions of the model7. Note, however, that they both depend on the c.m. energy
� � and on the pseudorapidity � . On the other hand, � � is quite sensitive to the IR regulator. This
sensitivity may be traced back to the inverse-power dependence of the target opacity �



on � , �


 ( � � �
�

,
where � � �

is energy- and rapidity-dependent. The divergence of �



as � �

0 indicates the need for
unitarization of the parton–nucleon cross section and deserves further study. Therefore, � can here be
considered only as an effective scale which simulates nonperturbative physics [289, 290], the nonlinear
evolution of target PDFs [81] and physical effects so far neglected, e.g., collisional and radiative energy
losses [291].

Another model which implements hard partonic rescatterings, labeled ‘hard GV’, is found in
Ref. [270]. This model is discussed in more detail in Chapter 2, see also Ref. [292]. In the hard GV
model, the transverse-momentum broadening of a parton which experiences semihard rescatterings is
evaluated, using Eq. (1.80), to be

� � �� � � ��� � ��� �
�
� 

�
� � � �

�
�

�
� � 
 (1.81)

The IR regulator is fixed to � = 0.42 GeV and identified with the medium screening mass. It represents the
typical momentum kick in each elastic rescattering of a hard parton. The factor � and the constant term 1
are introduced in order to obtain no broadening for � � 
 0, as required by kinematic considerations. The
average value of the opacity in the transverse plane, � 
 
 � 
 � ��)+* � � � (where � � is the nuclear radius),
and the factor � � �

�
= 0.18 are fixed in order to reproduce the experimental data at � � = 27.4 GeV and

� � = 38.8 GeV [293]. With these values the logarithmic enhancement in Eq. (1.81) is of order 1 for
� � 
 3 GeV. Note that � and � are assumed to be independent of � � and � . Finally, the transverse
spectrum is computed by using Eq. (1.74) and adding to the semihard broadening of Eq. (1.81) the
intrinsic momentum of the projectile partons,

� � �� � = 1.8 GeV
�
:

� � �� � � � � � � �� � � � � � � �� � � ����� �
with shadowing and antishadowing corrections to target partons from the EKS98 parametrization [27].

6.5.3. Predictions and conclusions

Table 1.12 shows the values of the Cronin parameters � � and � � computed in various models of pA
collisions at � � = 27.4 GeV (for low-energy experiments), 200 GeV (RHIC) and 5.5 TeV (LHC). The
targets considered in the Cronin ratio are also listed. I do not include ��� in the tables since in almost
all models � �

�
1 GeV, independent of energy, which lies at the border of validity of the models.

Uncertainties in the model calculations are included when discussed in the original references, see the
table footnotes. In the case of the soft-saturated model, the uncertainty due to the choice of shadowing

7This result is very different from the conclusion that � ��� � � , Ref. [286], based on a single-rescattering approximation.
Hence � � cannot be used to ‘measure’ the onset of hard dynamics as proposed in that paper.
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parametrization is illustrated by giving the results obtained with no shadowing, and with the HIJING
parametrization [281]. Using the ‘new’ HIJING parametrization [66] would change the mid-rapidity
results only at LHC energies, where a 15% smaller Cronin peak would be predicted [294]8. In the case
of ‘hard AT’ rescattering, the major theoretical uncertainty is in the choice of � , as discussed at the end
of Section 6.5.2. In the table, two choices are presented: (a) an energy-independent value � = 1.5 GeV,
which leads to an increasing Cronin effect with energy; (b) � is identified with the IR cutoff � � discussed
in Ref. [295], in the context of a leading-order pQCD analysis of pp collisions. That analysis found � �
to be an increasing function of � � . By performing a simple logarithmic fit to the values extracted from
data in Ref. [295], we find � � � � 
 � � � = 0.060 + 0.283 � ��
 
 � � � , which decreases the Cronin effect with
energy. Note that a scale increasing with � � also appears naturally in the so-called ‘saturation models’
for hadron production in AA collisions [289,296,297]. In the ‘hard GV’ model at the LHC, the remnants
of the Cronin effect at � � � 3 GeV are overwhelmed by shadowing and the calculation is not considered
reliable in this region. The value � � = 1.05 at � � � 40 in Ref. [270] is a result of antishadowing in the
EKS98 parametrization and is not related to multiple initial state scatterings.

As discussed in the introduction, experimental reconstruction of minijets with ALICE may be
possible in pA collisions for minijet transverse momenta � � �� 5 GeV. The � � spectrum of the partons
which hadronize into the observed minijet may be obtained by setting � �
 ��� 
 � # � � in Eqs. (1.74) and
(1.79). Minijet reconstruction may be very interesting because pQCD computations suffer from large
uncertainties in the determination of the large- � fragmentation functions, where they are only loosely
constrained by existing data [298]. For this reason I also listed the Cronin parameters for parton produc-
tion in Table 1.12. However, jet reconstruction efficiency should be accurately evaluated to assess the
usefulness of this observable.

Table 1.12 shows that there are large theoretical uncertainties in the extrapolation of the Cronin
effect from lower energies to the LHC. A major source of uncertainty for most of the models is nuclear
shadowing and antishadowing at small � , see Refs. [52, 53] and Section 4. for a detailed discussion
and comparison of the existing parametrizations. For example, the HIJING parametrizations [66, 281]
suggest more gluon shadowing than EKS98 [27] at small � �� 10 
 � . At the LHC the small- � region is
dominant at midrapidity and small to medium � � . On the other hand, the HIJING parametrizations give
less antishadowing than EKS98 at � �� 10 
 � , which is the dominant region at large-� � for all energies.
At the LHC, all these effects may lead to up to a factor of 2 uncertainty in the height of the Cronin
peak � � .

In conclusion, a pA run at the LHC is necessary both to test theoretical models of particle produc-
tion in a cleaner experimental environment than AA collisions, and to make reliable extrapolations to AA
collisions, which are the key to disentangling known effects from new physics. Since, as we have seen,
the nuclear effects are potentially large, it would even be preferable to have a pA run at the same energy
as AA. In addition, the study of the A dependence, or collision centrality, would be interesting since it
would change the opacity of the target — thus the size of the Cronin effect — in a controllable way.
Finally, note that the � systematics of the Cronin effect has so far been considered only in Ref. [205].
However, as also discussed in Ref. [292], given the large pseudorapidity coverage of CMS, the � depen-
dence might be a very powerful tool for understanding the effect. It would systematically scan nuclear
targets in the low- � region and would help test proposed models where the rapidity influences the Cronin
effect in different ways.

8Note, however, that the new parametrization [66], which predicts a much larger gluon shadowing at � !& 10 �
!

than the
‘old’ one [281], seems ruled out by data on the Sn/Ca � ! ratio [52, 53].
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Table 1.12: Comparison of models of the Cronin effect at � = 0

�� Model Charged pions Partons�� (GeV)

�� Ref. �� (GeV)

�� Ref.

Soft 4.0 1.55

� �

[268]
27.4 GeV Soft-saturated 4.5

� �

; 4.4

% �

1.46

� �

; 1.46

% �

[294] 5.1

� �

; 5.1

% �

1.50
� �

; 1.51

% �

[294]
p

� �

pBe Colour dipole 4.5 1.43

�

0.08

) �

[269]
data [293] Hard AT 6

�

0.8
� �

1.1

	 �

; 1.4


 �

Hard GV 4 1.4 [270]

Soft 3.5 1.35

�

0.2

� �

[268]
200 GeV Soft-saturated 2.9

� �

; 2.7

% �

1.15

� �

; 1.47

% �

[294] 4.4
� �

; 4.2

% �

1.29

� �

; 1.70

% �

[294]
pAu

�

pp Colour dipole 2.7 1.1 [269]
Hard AT 7

�

1

� �

1.25

	 �

; 1.2


 �

Hard GV 3.0 1.3 [270]

Soft 3.5 1.08

�

0.02

� �
[299]

5500 GeV Soft-saturated 2.4

� �

; 2.2

% �

0.78

� �

; 1.36
% �

[294] 4.2

� �

; 4.2

% �

0.91

� �

; 1.60

% �

[294]
pPb

�

pp Colour dipole 2.5 1.06 [269]
Hard AT 11

�

1.3

� �

2.1

	 �

; 1.2


 �

Hard GV � 40

� �

1.05

� �

[270]

* +

With HIJING shadowing [281].8 +

Without shadowing.$ +

Error estimated by varying


� 4 
< within error bars [300].� +

Numerical errors mainly.� +

Using � = 1.5 GeV.� +

Using � = 0.060 + 0.283

��� 5 � 1 7 , see text.� +

Central value with multiple scattering effects only; the error estimated by using different shadowing parametrizations.� +

Very sensitive to the shadowing parametrization, see text.
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Fig. 1.48: Forward
� ��� (left) and combined ��� � � � � � � inclusive (right) cross sections calculated to NLO in the CEM.

On the left-hand side, the solid curve employs the MRST HO distributions with 
 � � � ��� � 1.2 GeV; the dashed, MRST

HO with 
 � � � �
1.4 GeV; the dot–dashed, CTEQ 5M with 
 � � � � � � 1.2 GeV; and the dotted, GRV 98 HO with
 � � � = 1.3 GeV. On the right-hand side, the solid curve employs the MRST HO distributions with 
 � � � = 4.75 GeV;

the dashed, 
 � � � ��� = 4.5 GeV; the dot-dashed, 
 � � � � � 5 GeV; and the dotted, GRV 98 HO with 
 � � � = 4.75 GeV.

6.6. Quarkonium Total Cross Sections

R. Vogt

To better understand quarkonium suppression, it is necessary to have a good estimate of the ex-
pected yields. However, there are still a number of unknowns about quarkonium production in the pri-
mary nucleon–nucleon interactions. In this section, we report the quarkonium total cross sections in the
CEM [215, 216] and NRQCD [218], both briefly described in Section 5.5. We also discuss shadowing
effects on the � � -integrated rapidity distributions.

Recall that at leading order, the production cross section of quarkonium state � in the CEM is

�
������ � # � � 


�

� � � � !�
� � !� � �� � � � � ��� � � �
 
 � � � � �

� � �� 
 � � � � �
� ��

��

 �� � � 
 �� # � � � � � � 
 (1.82)

In a pA collision, one of the proton parton densities is replaced by that of the nucleus. Since quarkonium
production in the CEM is gluon dominated, isospin is a negligible effect. However, since shadowing
effects on the gluon distribution are large, it could strongly influence the total cross sections. We shall
use the same parton densities and parameters that fit the

� �
cross section data, given in Table 1.9 in

Section 6.4., to determine # � for � ��� and 
 production.

In the left-hand side of Fig. 1.48, we show the resulting fits to the forward 
 � � � � � � ��� total
cross sections. These data also include feeddown from � � and � � decays. The right-hand plot is the sum
of all three 
 �

states, including the branching ratios to lepton pairs.

All the fits are equivalent for � � � 100 GeV but differ by up to a factor of two at 5.5 TeV. The
high-energy 
 results seem to agree best with the energy dependence of the MRST calculations with
�
	

= 4.75 GeV and 4.5 GeV.
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Table 1.13: The production fractions obtained from fitting the CEM cross section to the
� ��� forward cross sections ( �

� � � )
and � = 0 cross sections as a function of energy. The parton distribution function (PDF), charm quark mass (in GeV), and scales

used are the same as those obtained by comparison of the � � cross section to the pp data. The charmonium cross sections (in

� b) obtained from the CEM fits for � � collisions at 5.5 TeV are also given. The production fractions are then multiplied by

the appropriate charmonium ratios determined from data. Note that the � � cross section includes the branching ratios to
� ��� .

The last row gives the NRQCD cross sections with the parameters from Ref. [301].

PDF ��� � ����� �
	 � 
���
�
� 	 ��� ����
� 	 ������� ��� 	 ��� ���	��

MRST HO 1.2 2 0.0144 30.6 19.0 9.2 4.3

MRST HO 1.4 1 0.0248 20.0 12.4 6.0 2.8

CTEQ 5M 1.2 2 0.0155 36.0 22.2 10.8 5.0

GRV 98 HO 1.3 1 0.0229 32.1 19.8 9.6 4.5

CTEQ 3L 1.5 2 – 83.1 48.1 27.6 13.6

Table 1.14: The production fractions obtained from fitting the CEM cross section to the combined � cross sections to muon

pairs at � = 0 as a function of energy. The PDF, bottom quark mass (in GeV), and scales used are the same as those obtained

by comparison of the � � cross section to the � � � data. The direct bottomonium cross sections (in nb) obtained from the CEM

fits for � � collisions at 5.5 TeV in each case above. The production fractions for the total � are multiplied by the appropriate

ratios determined from data. In this case, the � � cross sections do not include any branching ratios to lower � states. The last

row gives the NRQCD cross sections with the parameters from Ref. [301].

PDF ��� � ����� ���! �  �  �  � �  �"� � ��#%$  '&
( � ��#)$ �%&
(

MRST HO 4.75 1 0.000963 0.0276 188 119 72 390 304

MRST HO 4.50 2 0.000701 0.0201 256 163 99 532 414

MRST HO 5.00 0.5 0.001766 0.0508 128 82 49 267 208

GRV 98 HO 4.75 1 0.000787 0.0225 145 92 56 302 235

CTEQ 3L 4.9 2 – – 280 155 119 1350 1440

The pp cross sections obtained for the individual states are shown in Tables 1.13 and 1.14 along
with the values of # � determined from the fits. Two values are given for the 
 family.

The first is obtained from the combined
�

state fits shown in the right-hand side of Fig. 1.48,
including the branching ratios to lepton pairs, and the second is that of the total 
 � � state after the
branching ratios have been extracted. The cross sections given in the tables are, with the exception of
the total � ��� cross section including feeddown, all for direct production. To obtain these direct cross
sections, we use the production ratios given by data and branching ratios to determine the relative cross
sections, as in Refs. [213, 221].
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Fig. 1.49: The
� ��� and � rapidity distributions in pPb collisions (left) and the pPb/pp ratios (right). The

� ��� calculations

employ the MRST HO distributions with 
 � � � ��� � 1.2 GeV (solid), MRST HO with 
 � � � �
1.4 GeV (dashed),

CTEQ 5M with 
 � � � ��� � 1.2 GeV (dot-dashed), and GRV 98 HO with 
 � � � = 1.3 GeV (dotted). The � calculations

employ the MRST HO distributions with 
 � � � = 4.75 GeV (solid), 
 � � � ��� = 4.5 GeV (dashed), 
 � � � � � 5 GeV

(dot–dashed), and GRV 98 HO with 
 � � � = 4.75 GeV (dotted).

The direct � ��� and 
 rapidity distributions in pPb interactions at 5.5 TeV/nucleon are shown
in Fig. 1.49 for all the fits along with the pPb/pp ratios at the same energy. Note how the average rapidity
in the pPb distributions is shifted to negative rapidities due to the low- � shadowing at positive rapidity.
The ‘corners’ in the � ��� rapidity distributions at � ��� � 4 are equivalent to � � 10 
 	 , the lowest � for
which the MRST and CTEQ5 densities are valid. The pPb/pp ratios show antishadowing at large negative
rapidities, large � � , and 30–40% shadowing at large positive rapidities for the 
 and � ��� respectively
(small � � ). At � � 0, the effect is

�
30% for � ��� and

�
20% for 
 . We plot pPb/pp here but the Pbp/pp

ratio would simply be these results reflected around � = 0.

The NRQCD total cross sections, calculated with the CTEQ3L densities [302], are also shown
in Tables 1.13 and 1.14. The parameters used for the NRQCD calculations were determined for fixed-
target hadroproduction in Ref. [301] with � � = 1.5 GeV, �

	
= 4.9 GeV, and

�
�
� � � . Calculations of

shadowing effects predicted for NRQCD can be found in Ref. [174]. The dependence on the shadowing
parametrization is also discussed. It was found that the EKS98 parametrization [27,28] predicted weaker
shadowing than the HPC parametrization [173], mainly because of the larger gluon antishadowing in the
EKS98 parametrization [174]. The predicted shadowing effects were similar for the CEM and NRQCD
approaches.

Another approach to quarkonium production has been presented recently. Reference [303] argues
that the existing quarkonium data suggest the presence of a strong colour field, � , surrounding the hard� �

production vertex in hadroproduction. This field is assumed to arise from the DGLAP evolution
of the initial colliding partons. The effect of rescatterings between the quark pair and this comoving
field was shown to be in qualitative agreement with the main features of the pp and pA data [303].
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Quantitative predictions within this model are difficult because the form of the field � is unknown but
some predictions assuming an isotropic and transversely polarized field were given in Ref. [304]9.

So far we have not discussed nuclear absorption in cold matter. The A dependence of � ��� , ��� and
the 
 �

states have all been measured in pA interactions. (See Ref. [214] for a compilation of the data.)
However, there is still no measurement of the p state A dependence. The CEM makes no distinction
between singlet and octet

� �
production so that the � ��� , � � and � � A dependencies should all be the

same. The NRQCD approach, on the other hand, predicts that direct � � and � ��� are 60–80% octet but
the � � states are 95% singlet [306]. If octets and singlets are absorbed differently, the � � A dependence
should be quantitatively different than the quarkonium

�
states; see Ref. [306] for a detailed discussion

at fixed-target energies. In addition, the hard rescattering approach leads to a larger � � � A dependence
at high � � than for the � � � [307]. Thus, measuring the � � A dependencies could help distinguish the
underlying quarkonium production mechanism.

Experiments NA60 [231] and HERA-B [308] will measure the � � A dependence for the first time
at � � = 29.1 and 41.6 GeV, respectively. At the LHC, it may also be possible to extract the � 	 A de-
pendence in pA interactions as well. Comparing the A dependence of all quarkonium states at the LHC
with earlier results will also provide a test of the energy dependence of the absorption mechanism, sug-
gested to be independent of energy [309]. Since the absorption mechanism depends on impact parameter,
centrality measurements of the A dependence could also be useful in the comparison to AA interactions.

6.7. ��� Broadening in Quarkonium Production

R. Vogt

The broadening of the quarkonium transverse-momentum distribution was first observed by
NA3 [310]. Additional data at similar energies showed that the change in the � ��� � � slope with A
was larger than for the Drell–Yan slope [311]. The 
 � � distribution was shown to broaden still more
than the � ��� [312].

The � � broadening effect was explained as multiple elastic scattering of the initial parton before
the hard collision [313–315]. The difference between the � ��� and Drell–Yan broadening can be at-
tributed to the larger colour factor for gluons 
 � ��� � than for quarks (Drell–Yan). The difference between

 and � ��� broadening was more difficult to explain. The hard rescattering model of quarkonium produc-
tion [303, 304] is able to describe the effect [316]. By Coulomb rescattering in the nucleus, the

� �
pair

acquires additional transverse-momentum � � with an upper limit given by � � . Indeed, for ��� � � �
the colour octet

� �
pair can be ‘probed’ and cannot rescatter as a gluon any longer. Since �

	
� � � ,

the 
 transverse-momentum broadening should be larger than that of the � ��� [316]10.

In this Section, we investigate the combined effect of shadowing and transverse-momentum broad-
ening on � ��� and 
 production. The double differential distribution for

� �
pair production in pp

collisions is

� � �
� � � � 
 � �
�	� � � � (1.83)� 


�

� � � � �
� �

��� �
� � �

� � � � � � � � � � � 
 � �� � � � � 
 � �� � � � �
 
 � � � � �
� � �� 
 � � � � �

����� 
 �� � �� � �
�

��

��

 �� �

� �� � �� �
where ��� is a kinematics-dependent Jacobian and �� � � � ��


��

 �� � �	� �� � �� is the partonic cross section. These

partonic cross sections are difficult to calculate analytically beyond LO and expressions only exist near
threshold for �� � � � ��


��

 �� � �� � ���� �	� �� � �� , see, for example, Ref. [259]. However, the exclusive

� �
pair

NLO [219] code calculates double differential distributions numerically.

9Thanks to P. Hoyer and S. Peigne for comments on their work. See also Ref. [305].
10Thanks to P. Hoyer and S. Peigne for comments on their work. See also Ref. [305].
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The bare quark � � distributions have often been sufficient to describe inclusive � meson produc-
tion. However, the

� �
pair distributions, particularly the pair � � and the azimuthal angle distributions

at fixed target energies, are broader than can be accounted for by the bare quark distributions without
fragmentation and intrinsic transverse-momentum � � . Heavy quark fragmentation, parameterized from

�
�

� 
 � � � , which reduced the average momentum of the heavy quark in the final-state hadron, is
included. This effect, along with momentum broadening with

� � �� � � 1 GeV
�
, can describe the

� �

measurements [317]. We include the broadening here but not fragmentation since, in the CEM, both the�
and

�
hadronize together to make the quarkonium state, inconsistent with independent fragmentation.

The intrinsic � � of the initial partons has been used successfully to describe the � � distributions of
other processes such as Drell–Yan [279] and hard photon production [280]. Some of the low-� � Drell–
Yan data have subsequently been described by resummation to all orders but the inclusion of higher
orders has not eliminated the need for this intrinsic � � .

The implementation of intrinsic � � in the
� �

code in Ref. [219] is not the same as in other pro-
cesses because divergences are cancelled numerically. Since including additional numerical integrations
would slow this process, the ��� kick is added in the final, rather than the initial, state. In Eq. (1.83), the
Gaussian � � 
 � �� � ,

� � 
 � �� � � �
�
� � �� � � � �'& ( 
 # � �� � � � �� � � � � � (1.84)

with
� � �� � � � � 1 GeV

�
[317], assumes that the � and � � dependencies completely factorize. If this is

true, it does not matter whether the ��� dependence appears in the initial or final state, modulo some
caveats. In the code, the

� �
system is boosted to rest from its longitudinal centre-of-mass frame.

Intrinsic transverse momenta of the incoming partons,
�
� � � and

�
� � � , are chosen at random with � �� � and

� �� � distributed according to Eq. (1.84). A second transverse boost out of the pair rest frame changes the
initial transverse-momentum of the

� �
pair,

�
� � to

�
� � �

�
� � � �

�
� � � . The initial � � of the partons could

have alternatively been given to the entire final-state system, as is essentially done if applied in the initial
state, instead of to the

� �
pair. There is no difference if the calculation is only to LO but at NLO a light

parton may also appear in the final state. In Ref. [318], it is claimed that the difference between adding
the � � to the initial or final state is rather small if � �� 	 2 GeV

�
. However, this may not turn out to be

the case for nuclei [319].

The average intrinsic � � is expected to increase in pA interactions. This broadening is observed
in Drell–Yan [311, 312], � ��� [310], and 
 [312] production and has been used to explain high-� � pion
production in nuclear interactions [320]. We follow the formulation of Ref. [320], similar to Refs. [313–
315] for � ��� and Drell–Yan production, where the � � broadening in pA interactions is

� � �� � � � � � � �� � � � � 
 � � � # � � � �

 � � (1.85)

with
� � �� � � � � 1 GeV

�
. The number of collisions in a pA interaction, � , averaged over impact parameter,

is [321, 322]

� � � � � � � � �
� � � �� 
 � �

� � � � ��� 
 � � �
�
� � � � � � � � � (1.86)

where � � 
 � � � � ��� � � 
 � � � � is the nuclear profile function, � � � is the inelastic nucleon–nucleon scat-
tering cross section, � � is the central nuclear density, and � � is the nuclear radius. Our calculations
assume � � = 1.2

� �
�
� and � � = 0.16/fm � . The strength of the nuclear broadening, �

�
, depends on

�
,

the scale of the interaction [320]

�
�

 � � � � 
 ��� � � 


�

 � � � �	� �

� � � 
 
 � � � �	� � � �	�
� 
 (1.87)
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Fig. 1.50: The energy dependence of � � !� � pp for
� ��� (left) and � (right) production assuming � �

!� � pp = 1 GeV
!
. The open

circles are the calculated energies at � � = 0.2, 5.5, 8.8, and 14 TeV.

Thus �
�

is larger for � � production than � � production. This empirically reflects the larger � � broadening
of the 
 [312] relative to the � ��� [310]. We evaluate �

� 
 � � at
�
�
� � � for both charm and bottom

production. We find 
 � � � # � � � � 
 � � = 0.35 GeV
�

for � � and 1.57 GeV
�

for � � production in pA collisions
at � = 0 and A = 200. We can change the centrality by changing

� � � # � .
In Fig. 1.50, we show the increase in

�
�
�
� � for pp collisions at heavy-ion collider energies using

the MRST parton densities with � � � 1.2 GeV and �
	

= 4.75 GeV from Table 1.9. The average �
�
� is

obtained by integrating over all � � and rapidity. Increasing � � increases
�

�
�
� � pp. At these energies, the

difference between
�

�
�
� � pp with and without

� � �� � pp � 1 GeV
�

is small, a factor of
�

1.3 for � ��� and�
1.05 for 
 at 5.5 TeV.

Figure 1.51 compares the bare distributions,
� � �� � pp � 1 GeV

�
, and

� � �� � pPb calculated using
Eq. (1.85), integrated over all rapidity. Without intrinsic transverse-momentum, the value of the cross

Fig. 1.51: The � � distributions with �
� � 0 for

� ��� (left) and � (right) production in pA interactions at 5.5 TeV/nucleon.

The solid curve is the bare distribution, the dashed curve employs � �
!� � pp

�
1 GeV

!
, and the dot–dashed curve uses a � �

!� � pA
appropriate for Pb.

section in the lowest � � bin is less than zero due to incomplete cancellation of divergences, as discussed
in Ref. [323]. This point is left out of the plots. It is interesting to note that, while shadowing is a small
effect at large-� � , the average �

�
� increases with A, even without any broadening included. This arises

because shadowing is a 25–50% effect on � ��� production at low-� � , increasing with A, and a 10–20%
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Fig. 1.52: The � � and A dependencies of � � � !� � pA for
� ��� (left) and � (right) production in pA interactions. The dashed

curve is at � � � 200 GeV/nucleon, the solid at 5.5 TeV/nucleon and the dot–dashed at 8.8 TeV/nucleon. We use A = O, Si, I

and Au at 200 GeV/nucleon, A = O, Ar, Kr, and Pb at 5.5 TeV/nucleon and A = Pb at 8.8 TeV/nucleon.

effect on the 
 . The resulting increase in
�

�
�
� � from pp to pPb is

�
1.2 for � ��� and

�
1.13 for 
 .

Including
� � �� � pp = 1 GeV

�
increases

�
�
�
� � over all � � as well, but only by

�
1.15 for both � ��� and 
 .

Including the A dependence of the broadening as in Eq. (1.85) gives about the same increase in
�

�
�
� � as

the bare distributions.

Note that if a � � cut was imposed, e.g. � � � 5 GeV,
�

�
�
� � increases significantly but the effect of

broadening is greatly reduced. In fact,
�

�
�
� � actually decreases with increasing

� � �� � pA when such a cut
is imposed. This feature is clear from an inspection of Fig. 1.51.

The energy and A dependence of �
�

�
�
� � pA �

�
�
�
� � pA # �

�
�
� � pp is given in Fig. 1.52 for

� � � 200 GeV/nucleon at RHIC as well as 5.5 and 8.8 TeV/nucleon at the LHC. We find that �
�

�
�
� � pA

for � ��� and 
 increase by factors of
�

3 and
�

5.3 over � � = 19.4 GeV [310] and 38.8 GeV [312]
respectively. Thus, in this calculation, the increase in �

�
�
�
� � pA with � � is stronger for 
 than � ��� .

Such a phenomenological parametrization should soon be tested at RHIC for the � ��� .

7. NOVEL QCD PHENOMENA IN pA COLLISIONS AT THE LHC

L. Frankfurt and M. Strikman

7.1. Physics Motivations

An extensive discussion of the novel pA physics at the LHC was presented in Ref. [324]. Here we sum-
marize a few key points of this analysis and extend it to consider effects of the small- � high-field regime.

The proton–ion collisions at the LHC will be qualitatively different from those at fixed-target
energies. In soft interactions two prime effects are a strong increase of the mean number of ‘wounded’
nucleons — from

�
6 to

�
20 in pA central collisions (due to increase of � � � � � 
 � � � ) and a 50% increase

of the average impact parameters in pp collisions (as manifested in the shrinkage of the diffractive peak
in the elastic pp collisions with increasing energy) making it possible for a proton to interact, often
simultaneously, with nucleons at the same longitudinal coordinate but different impact parameters. At
the same time, the geometry of pA collisions at the LHC should be closer to that in classical mechanics
due to a strong increase of the pp total cross section and smaller fluctuations of the interaction strength
in the value of the effective ��� cross section. (The dispersion of the fluctuations of the cross section
is given by the ratio of the inelastic and elastic diffractive cross sections at � = 0, which is expected
to be a factor of 3 � 4 smaller at the LHC relative to RHIC.) Among other things this will lead to a
much weaker increase of the inelastic coherent diffractive cross section with A relative to fixed-target
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energies [325]. In hard interactions, the prime effect is a strong increase of the gluon densities at small- �
in both projectile and ion. Gluon densities can be measured at the LHC down to � ( 10 
 
 � 10 
 �
where pQCD will be probed in a new domain [324]. As a consequence of blackening of the interaction
of partons from the proton with nuclear partons at small � A, one should expect a disappearance of
low-� � hadrons in the proton fragmentation region and, hence, a strong suppression of nonperturbative
QCD effects11 . Thus the high-� � proton fragmentation region is a natural place to search for unusual
QCD states of quark–gluon matter which should be long lived due to the Lorentz time dilation. In spite
of a small coupling constant, gluon densities of heavy-ions become larger over a wide range of � and� �

and impact parameters than that permitted by the conservation of probability within the leading-twist
approximation [157,290,324,326,327]. Thus a decrease of � � with

� �
is insufficient for the applicability

of leading-twist pQCD to hard processes in the small- � regime where gluon fields may be strong enough
for the nonperturbative QCD vacuum to become unstable and to require modification of QCD dynamics
including modification of the QCD evolution equations. The possibility for a novel QCD regime and
therefore new phenomena is maximized in this QCD regime. 12 At the same time interpretation of these
novel effects would be much more definitive in pA collisions than in heavy-ion collisions.

New classes of strong-interaction phenomena in the short-distance regime, near the light cone,
which could be associated with perturbative QCD or with the interface of the perturbative and nonpertur-
bative QCD regions, are much more probable in pA than pp collisions. The parton and energy densities
may be high enough to ‘burn away’ the nonperturbative QCD vacuum structure in a cylinder of radius�

1.2 fm and length
�

2 � A, leaving behind only a dense partonic fluid governed by new QCD dy-
namics with small � � but large effective short-distance couplings. If there is a large enhancement of
hard-collision, gluon-induced processes, then there should be an enhancement of hard multi-parton col-
lisions, like production of several pairs of heavy-flavour particles [324]. The study of the � , �

�
� and

A-dependence of multi-parton interactions, and of forward charm and bottom production (in the proton
fragmentation region) should be especially useful for addressing these questions.

We estimate the boundary of the kinematical regime for the new QCD dynamics to set in in pA
collisions based on the LO formulae for the dipole cross section and the probability conservation. For
central impact parameters with

� �
200 and

� � �
25 GeV

�
, we find � A 	 5 � 10 
 	 for quarks and

� A 	 10 
 � for gluons [326].

7.2. Measurements of Nuclear Parton Densities at Ultra Small x

One of the fundamental issues in high-energy QCD is the dynamics of hard interactions at small- � .
Depending on the

� �
, one investigates either leading-twist effects or strong colour fields. Since the cross

sections for hard processes increase roughly linearly with A (except at very small- � and relatively small� �
where the counting rates are high anyway), even short runs with nuclear beams will produce data

samples sufficient to measure parton distributions with statistical accuracy better than 1% practically
down to the smallest kinematically allowed � : � � 10 
 � for quarks and � � 10 
 
 for gluons [329]. The
systematic errors on the ratios of nuclear and nucleon structure functions are also expected to be small
since most of these errors cancel in the ratios of the cross sections, cf. Ref. [90]. The main limitations on
such studies are the forward acceptance and the transverse-momentum resolution of the LHC detectors.

There are several processes which could be used to probe the small- � dynamics in pA collisions.
They include the Drell–Yan pairs, dijets, jet + photon, charm production, diffractive exclusive 3-jet
production, and multijet events. It is worth emphasizing that, for these measurements, it is necessary to
detect jets, leptons, and photons at rapidities which are close to the nucleon rapidity. In this � -range,

11A similar phenomenon of the low-� � suppression of another quantity, the nuclear light cone wave function at small- � , is
discussed in the saturation models [157, 290].

12It is important to distinguish between parton densities that are defined within the leading-twist approximation only [328]
and may increase with energy forever and physical quantities – cross sections/structure functions – whose increase with energy
at a given impact parameter is restricted by probability conservation.
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the accompanying soft hadron multiplicities are relatively small, leading to a soft particle background
comparable to that in pp scattering. In fact, for � � ����� # ����	 2–4, the background level is likely to be
significantly smaller than in pp collisions due to suppression of the leading particle production in pA
scattering, see Ref. [324].

Measurements of dimuon production appear to be more feasible at forward angles than hadron
production due to small muon energy losses. In the kinematics where the leading-twist dominates, one
can study both the small- � quark distributions at relatively small � � , � ��
 � � � 
 � � � 
 � � � 
 � , and the
gluon distribution at � � 
 � � � 
 � � � 
 � � � 
 � [194]. Note also that in the forward region, the dimuon
background from charm production is likely to be rather small since, on average, muons carry only 1/3
of the charm decay momentum.

7.3. Signals for Onset of the Black-Body Limit

A fast increase of nPDFs for heavy nuclei with energy contradicts probability conservation for a wide
range of parton momenta and virtualities for the LHC energy range. On the contrary, the rapid, power-
like growth of the nucleon structure function observed at HERA may continue forever because of the
diffuse edge of a nucleon [330]. At present, new QCD dynamics in the regime of high parton densities
where multi-parton interactions are inhibited remains a subject of lively debate. Possibilities include a
pre-QCD black-body regime for the structure functions of heavy nuclei [331], a QCD black-body regime
for hard processes with heavy nuclei [330], saturation of parton densities at a given impact parame-
ter [157], a colour glass condensate [290], turbulence and related scaling laws. To estimate the pattern
of the novel phenomena we shall use the formulae of the black-body regime because they are generic
enough to illustrate the expectations of the onset of new QCD dynamics within the existing theoretical
approaches 13.

High parton density effects can be enhanced in nuclei because of their uniform density and because
it is possibile to select scattering at central impact parameters. Indeed, in the small- � regime, a hard
collision of a parton of the projectile nucleon with a parton of the nucleus occurs coherently with all
the nucleons at a given impact parameter. The coherence length � c 
 1/2 ��� � by far exceeds the
nuclear size. In the kinematic regime accessible at the LHC, � c can be up to 10

	
fm in the nuclear

rest frame. Here the large coherence length regime can be visualized in terms of the propagation of a
parton through high-density gluon fields over much larger distances than is possible with free nucleons.
In the Breit frame, this corresponds to the fact that small- � partons cannot be localized longitudinally
within the Lorentz-contracted thickness of the nucleus. Thus low- � partons from different nucleons
overlap spatially, creating much larger parton densities than in the free nucleon case. This leads to a large
amplification of multi-parton hard collisions, expected at small � in QCD, see, for example, Refs [90,
324]. The eikonal approximation [26, 150] and constraints from the probability conservation [327, 332]
indicate that new QCD dynamics should be revealed at significantly larger � in nuclei than in the proton
and with more striking effects. Recently, extensive studies of hard diffraction were performed at HERA.
For a review see Ref. [333]. Information obtained in these studies allows one to evaluate the leading-twist
nuclear shadowing which turns out to be large both in the gluon and quark channels and significant up
to very large

� �
. For a recent discussion see Ref. [326]. This leading-twist shadowing tames the growth

of the nPDFs at small- � . However, even such large shadowing is still insufficient to restore probability
conservation, leaving room for violation of the leading-twist approximation. This violation may be
more serious than merely an enhancement of higher twist effects since the entire interaction picture can
qualitatively change. The common wisdom that a small � � guarantees asymptotic freedom, confirmed
experimentally in many hard processes, is violated at small- � . This phenomenon can be considered in

13In the black-body regime, a highly virtual probe interacts at the same time with several high- � � partons from the wave
function of a hadron [330]. This is qualitatively different from the asymptotic freedom limit where interactions with only one
highly virtual parton are important. Hence the interacting parton is far from being free when probed by an object with a large
coherence length, � � � � ��� 
 � � .
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terms of effective violation of asymptotic freedom in this limit. This regime is expected to be reached
in heavy nuclei at � values at least an order of magnitude larger than in the proton. Hence in the LHC
kinematics, the region where novel QCD phenomena are important will extend at least two orders of
magnitude in � A over a large range of virtualities.

The space–time picture of the black-body limit in pA collisions can be seen best in the rest frame of
the nucleus. A parton belonging to the proton emits a hard gluon (virtual photon) long before the target
and interacts with the target in a black regime releasing the fluctuation, a jet/ � �� (a Drell–Yan pair). This
leads to a qualitative change in the picture of pA interactions for the partons with � � and � � satisfying
the condition that

� A �
� �

�
�

� � � � � � (1.88)

is in the black-body kinematics for the resolution scale � � 	 �
� � �
� 
 � A � . Here �

� � �
� 
 � A � is the maxi-

mum � � at which the black-body approximation is applicable. Hence by varying � A for fixed � � and
looking for the the maximum value of �

� � �
� we can determine �

� � �
� 
 � � � . In the kinematics of the LHC,� �


 4 
 �
� � �
� � � can be estimated by using formulae derived in Ref. [327]. At � � � 0.3

� �
may be as

large as 
 �
��� �
� 
 � � � � � = 15 GeV

�
. All the partons with such � � will obtain � � 
�� ��� � � �

��� �
� 
 � � � , leading

to multi-jet production. The black-body regime will extend down in � � with increasing � � � � . For the
LHC with � � 	 3 GeV � � , this regime may cover the whole region � � � 0.01 where of the order 10
partons reside. Hence, in this limit, most of the final states will correspond to multi-parton collisions.
For � � 	 2 GeV � � the region extends to � � � 0.001. At the LHC, collisions of such partons correspond
to central rapidities. Dynamics of the conversion of high-� � partons with similar rapidities to hadrons is
a collective effect requiring special consideration.

Inclusive observables. For the total cross sections, logic similar to that employed in � � –nucleus
scattering [330] should be applicable. In particular, for the dimuon total cross section,

��� 
 �
� � � � � 
 � � �
� � � � � � �

� � � �� �� � 
 � ��� � � � � � �
�

� # � � 
 � � � � �
� �

�� � � � � � �� ��

� � �
� � � � (1.89)

for large but not too large dimuon masses, � . In particular we estimate �
� 
 �!� � � 
 � A �

10 
 � � 
 60 GeV
�
. Here the � -factor has the same origin as in the leading-twist case but it should

be smaller since it originates from gluon emissions only from the parton belonging to the proton. We
define � � as the maximum � for which the black body limit is valid at the resolution scale � . Hence
the expected �

�
dependence of dimuon production is qualitatively different than in pp scattering where

scattering at large impact parameters may mask the contribution from the black-body limit. In this limit,
the � A dependence of the cross section becomes weak.

The study of the dimuon � � distribution may also signal the onset of the black-body regime. As in
the case of leading partons in deep inelastic scattering [330], a broadening of the dimuon � � distribution
is expected in the black-body limit compared to the DGLAP expectations. See Ref. [334] for a calculation
of this effect in the colour glass condensate model.

At still lower � A, the black-body formalism will probably overestimate the cross section because
the interaction the sea quarks and gluons in the proton will also be in the black-body limit.

The onset of the black-body regime will also lead to important changes in hadron production
such as a much stronger drop of the � � spectrum in the proton fragmentation region accompanied by

� � broadening and enhancement of hadron production at smaller rapidities, see the discussion in Sec-
tion 7.4.3.

It is worth emphasizing that onset of the black-body limit for ultra small � A will place limits on
using forward kinematics for PDF measurements at larger � A. At the very least it would be necessary
to satisfy the condition � � 
�� ��� � � �

��� �
� 
 � � � . Indeed, as soon as large enough � � are used for the nPDF

measurements one would have to take into account that such collisions with nuclear partons are always
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accompanied by significant � � broadening, due to the interaction with the ‘black component’ of the
nuclear wave function. At a minimum, this would lead to significant broadening of the � � distribution
of the produced hard system. One can also question the validity of the leading-twist expansion for the

� � -integrated cross sections. To investigate these phenomena, the ability to make measurements at fixed
� A and different � � would be very important.

7.4. Mapping the Three-Dimensional Nucleon Parton Structure

Systematic studies of hard inclusive processes during the last two decades have led to a reasonably good
understanding of the single parton densities in nucleons. However, very little is known about multiparton
correlations in nucleons. These correlations can provide critical new insights into strong interaction
dynamics, as well as discriminate between models of the nucleon. Such correlations may be generated,
for example, by fluctuations in the transverse size of the colour field in the nucleon leading, via colour
screening, to correlated fluctuations of the gluon and quark densities.

QCD evolution is a related source of correlations since selection of a parton with a given � and� �
may lead to a local enhancement of the parton density in the transverse plane at different � values.

Also, practically nothing is known about possible correlations between the transverse size of a particular
configuration in the nucleon and the longitudinal distribution of partons in this configuration.

7.4.1. Multi-jet production and double parton distributions

It was recognized already more than two decades ago [335] that the increase of parton densities at small
� leads to a strong increase in the probability of � � collisions where two or more partons from each
nucleon undergo pairwise independent hard interactions. Although multijet production through double-
parton scattering was investigated in several experiments [207, 208, 336] at pp and p �p colliders, the
interpretation of the data was hampered by the need to model both the longitudinal and the transverse
partonic correlations simultaneously. Studies of pA collisions at the LHC will provide a feasible oppor-
tunity to study the longitudinal and transverse partonic correlations in the nucleon separately as well as
to check the validity of the underlying picture of multiple collisions.

The simplest case of a multi-parton process is double-parton collisions. Since the momentum
scale � � of a hard interaction corresponds to much smaller transverse distances,

� � � ��� , in coordinate
space than the hadronic radius, in a double-parton collision the two interaction regions are well separated
in transverse space. Also, in the centre-of-mass frame, pairs of partons from the colliding hadrons are
located in pancakes of thickness less than 
 � � � � � � � � � � � �!� � . Thus two hard collisions occur almost
simultaneously as soon as � � and � � are not too small. Hence there is no cross talk between two hard
collisions. A consequence is that the different parton processes add incoherently in the cross section.
The double-parton scattering cross section, proportional to the square of the elementary parton–parton
cross section, is therefore characterized by a scale factor with dimension of inverse length squared. The
dimensional quantity is provided by nonperturbative input, namely by the multi-parton distributions.
In fact, because of the localization of the interactions in transverse space, the two pairs of colliding
partons are aligned in such a way that the transverse distance between the interacting target partons
is practically the same as the transverse distance between the projectile partons. The double-parton
distribution, � 
 � � � � � � � , is therefore a function of two momentum fractions and of the transverse distance,
� . Although � also depends on the virtualities of the partons,

� �
and

� � � , to make the expressions
more compact, this

� �
dependence is not explicitly expressed. Hence the double-parton scattering cross

section for the two ‘2
�

2’ parton processes � and 
 in an inelastic interaction between hadrons (or
nuclei) � and � can be written as:

� � 
 � � 
 � �
� �
�
� � 
 � � � � � � � � �� % 
 � � � � � � � �� � 
 � � � � � � � � 	 
 � � � � � � � � � � ��� � ��� � � � � � � � � � � � � � (1.90)

where � � 1 for indistinguishable and � = 2 for distinguishable parton processes. Note that though the
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factorization approximation of Eq. (1.90) is generally accepted in the analyses of the multijet processes
and appears natural based on the geometry of the process, no formal proof exists. As we shall show
below, the study of the A-dependence of this process will be a stringent test of this approximation.

To simplify the discussion, we neglect small non-additive effects in the parton densities, a rea-
sonable approximation for 0.02 	 � 	 0.5. In this case, we have to take into account only � -space
correlations of partons in individual nucleons.

There are thus two different contributions to the double-parton scattering cross section (
� �

� � � � � ): � � � � �� � � �� . The first one, � �� , the interaction of two partons from the same nucleon, is
the same for nucleons and nuclei except for the enhancement of the parton flux. The corresponding cross
section is

� �� � � � � �
� � ��� 
 � � � � � � �� � (1.91)

where

��� 
 � � �
� �

 � ��� � � 
 � � � � 
�� � ��� 
 � � �

� �
�
�

(1.92)

is the nuclear thickness as a function of the impact parameter
�

of the hadron–nucleus collision.

The contribution to � � 
 � � � � � � � � � � from partons in different target nucleons, � �� , can be calcu-
lated solely from the geometry of the process by observing that the nuclear density does not change
within the transverse scale

� � � � � � . It rapidly increases with A as � � �� 
 � � � � �
. Using infor-

mation from the CDF double scattering analysis [207, 208] on the mean transverse separation of par-
tons in a nucleon, one finds that the contribution of the second term should dominate in pA collisions:
� �� �	� �� 
 0.68 (A/12) ��� � � for

� �
40 [337]. Hence one expects a stronger than ( � increase of multijet

production in pA collisions at the LHC. Measurements with a range of nuclei would probe the double-
parton distributions in nucleons and also check the validity of QCD factorization for such processes.
Factorization appears natural but is so far not derived in pQCD. An important application of this pro-
cess would be the investigation of transverse correlations between the nuclear partons in the shadowing
region. A study of these correlations would require selection of both nuclear partons in the shadowing
region, � A 	 � ��� � 10 
 � 14.

As discussed in Section 7.3., partons with sufficiently large � � , satisfying Eq. (1.88), are expected
to interact with small- � partons in the nucleus with a probability of order one. As a result, a hard collision
of partons with sufficiently large � � and � A

�
0.01 will be accompanied by production of one or more

minijets in the black-body regime with � � � �
� � �
� 
 � A � . Most sufficiently fast partons from the proton

will generate minijets, leading to a strong suppression of the cross section of events with only two jets.

Detectors with sufficiently forward rapidity acceptance could detect events originating from triple-
parton collisions at � A

� � ��� and large enough � � where � � broadening related to the black-body limit
effects are sufficiently small. These triple-parton collisions provide stringent tests of the hard interaction
dynamics as well as providing additional information on two-parton correlations and unique information
on triple-parton correlations.

Other opportunities with multi-jets include:
� Probing correlations between partons in the nucleus at high densities, i.e. for � � � � � � � � 10 
 � ,

which would provide qualitatively new information about the dynamics of nuclear shadowing and
the presence of possible new parton condensates.

� Studying the accompanying soft hadron production (cf. the discussion in Section 7.4.2.), which
would measure the transverse size of a proton configuration containing partons � � and � � . In
particular, the production of four jets with two of the jets at large � � , � � � � � � 0.5, may provide

14The A-dependence of the ratio of � !� � � �� in the kinematics where only one of the nuclear partons has � A � � ��� is
practically the same as for the case when both nuclear partons have � � � ��� .

101



another way to look for point-like configurations in nucleons, see Section 7.5. and Ref. [324] for
discussion of other possibilities.

7.4.2. Proton–ion collisions probe transverse nucleon structure

As we discuss in Section 7.5., in some subclass of events the distribution of constituents in the initial
proton may be unusually local in the transverse (impact parameter) plane when the proton collides with
the ion. If this is so, its effective cross section per nucleon will be greatly reduced, perhaps all the way to
the perturbative-QCD level. If the effective cross section of such a point-like configuration goes below
20 mb, there will be an appreciable probability that it can penetrate through the centre of a lead ion and
survive, leading to a strongly enhanced diffractive yield of the products of the point-like configuration in
collisions with heavy-ions.

Not only might the properties of the final-state collision products depend upon the nature of the
transverse structure of the proton primary on arrival at the collision point, but even the conventional
parton distributions could be affected. For example, let us consider a nucleon as a quark and small
diquark connected by a narrow QCD flux-tube. It should be clear that if the flux-tube is at right angles
to the collision axis at arrival, then the valence partons will have comparable longitudinal momentum
or � . On the other hand, if the flux tube is parallel to the direction of motion, then one of the valence
systems will have very large � and the other very small. This happens because in this case, the internal
longitudinal momenta of the valence systems, in the rest frame of the projectile proton, are in opposite
directions. Therefore the smallness of the configuration is correlated with the joint � -distribution of
its constituents. This kind of nonfactorization may be determined by the study of perturbative QCD
processes such as dilepton, direct-photon, or dijet production as a function of the centrality15 , soft hadron
multiplicity, and A. Naturally such studies would also require investigation of soft hadron production as
a function of impact parameter. At LHC energies it may differ quite strongly from fixed-target energies.

One possible kinematics where a strong correlation is expected is when a parton with large � � 0.6,
is selected in the proton. The presence of such a parton requires three quarks to exchange rather large
momenta. Hence one may expect that these configurations have a smaller transverse size and therefore
interact with the target with a smaller effective cross section, � ��� 
 � � . Suggestions for such � depen-
dence on the size are widely discussed in the literature. Using a geometric (eikonal type) picture of pA
interactions as a guide and neglecting (for simplicity) shadowing effects on nPDFs, one can estimate the
number of wounded nucleons, � 
 � � � � , in events with a hard trigger (Drell–Yan pair, � -jet, dijet...) as a
function of � ��� [338]:

� 
 � � � � � � � � ��� 
 ��� � # �� �
�

�
�� 
 � ���

� � � (1.93)

where the nuclear density per unit area � � 
 � � is defined in Eq. (1.92). At the LHC, for average inelastic
pPb collisions and � � � � � � � � � 
 � � � , Eq. (1.93) leads to � 
 10, somewhat larger than the average number
of wounded nucleons in pA collisions due to the selection of more central impact parameters in events
with a hard trigger.

A decrease of the effective cross section for large � , say, by a factor of 2, would result in a
comparable drop of the number of particles produced at central rapidities as well as in a smaller number
of nucleons produced in the nuclear fragmentation region.

7.4.3. A-dependence of the particle production

Proton fragmentation region. The A-dependence of hadron production in the proton fragmentation
region remains one of the least understood aspects of hadron–nucleus interactions. Practically all avail-
able data are inclusive and correspond to energies where the inelastic � � cross section is about three

15The impact parameter dependence is accessible in the pA collisions via a study of nuclear fragmentation into various
channels. For an extensive discussion see Ref. [324].
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Fig. 1.53: Left: transverse-momentum distribution of neutrons (in fact, � ��� � �� /2) from the breakup of an incident proton at

various longitudinal momentum fractions � and target saturation momenta � 	 (bottom six curves). The top three curves depict

the underlying quark distributions. Right: Longitudinal distributions of � ��� � �� /2 and � � , integrated over � � . From Ref. [341].

times smaller than at the LHC. They indicate that the cross section is dominated by the production of
leading particles at large impact parameters where the projectile interacts with only one or two nucleons
of the nucleus. As a result, very little information is available about hadron production at the central
impact parameters most crucial for the study of AA collisions. Theoretical predictions for this region are
also rather uncertain.

In eikonal-type models, where the energy is split between several soft interactions, one may expect
a very strong decrease of the leading particle yield. The dependence is expected to be exponential with
path length through the nucleus: the mean energy is attenuated exponentially. On the other hand, if the
valence partons of the projectile do not lose a significant amount of their initial momentum, as suggested
by pQCD motivated models, see the review in Ref. [187], the spectrum of leading particles may approach
a finite limit for large A and central impact parameters [339]. Indeed, in this case, the leading partons will
acquire significant transverse momenta and will not be able to coalescence back into leading baryons and
mesons, as seemingly happens in nucleon–nucleon collisions. As a result, they will fragment practically
independently, leading to much softer longitudinal momentum distributions for mesons and especially
for baryons [339].

We discussed previously that the interaction strength of fast partons in the nucleon ( � � � 10 
 �
for LHC) with heavy nuclei at central impact parameters might approach the black-body limit. In this
scenario, all these partons will acquire large transverse momenta

�
�
� � �
� 
 � A � 16, leading to a very signif-

icant � � broadening of the leading hadron spectrum [120]. Probably the most feasible way to study this
effect is measurement of the � � distribution of leading hadrons (neutrons, � � � � � ) in central collisions.
These hadrons will closely follow the � � of the leading quarks [341]. The results of the calculation [341]
using the colour glass condensate model for modeling � � broadening are shown in Fig. 1.53 for different
values of the saturation parameter

� �
. It is worth emphasizing that strong � � broadening, increasing

with � � , clearly distinguishes this mechanism of leading hadron suppression from the soft physics effect
of increasing the total pp cross section by nearly a factor of three over fixed-target energies.

Central region. The Gribov–Glauber model, including inelastic screening effects but neglecting the
final-state interactions between the hadrons produced in different Pomeron exchanges, as well as ne-

16Hence in the black-body limit, � � broadening of the partons should be much larger than at low energies where it is
consistent with QCD multiple rescattering model [187]. See Ref. [340] for a discussion of matching these two regimes.
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glecting the interactions of these hadrons with the nuclear target, predicts that, at high energies and
rapidities � such that � � � # ��� � 1, the inclusive pA spectrum should be proportional to that of � �
scattering:

��� � � � � � ��� 
 � � � � �
� � � � � � �

� ��� � � � � � ��� 
 � � � � �
��� � � � � 
 (1.94)

Since � � � � � 
 �
� � �	� � � � � 
 � � � ( � �

�
� , Eq. (1.94) implies that the multiplicity of particles produced in

the inelastic pA collisions should increase as ( � �
�
� . Data at fixed-target energies do not contradict

this relation but the energy is too low for an unambiguous interpretation. Effects of splitting the energy
between multiple soft � � interactions are much larger in AA collisions than in pA collisions so checking
whether a similar formula is valid for AA collisions would require energies much higher than those
available at RHIC.

The opposite extreme is to assume that parton interactions in the black-body regime become im-
portant in a large range of � � � 10 
 � . In this case, multiple scatterings between the partons, their in-
dependent fragmentation together with associated QCD radiation (gluon bremsstrahlung), may produce
most of the total entropy and transverse energy and will enhance hadron production at central rapidities
relative to the Gribov–Glauber model.

Nuclear fragmentation region. For the rapidities close to that of the nucleus, there are indications of
slow hadron rescatterings, leading to increased nucleon multiplicity for 1.0

�
� �

�
0.3 GeV compared

to no final-state reinteractions, a factor of
�

2 for heavy nuclei [342]. As discussed above, it is doubtful
that the Gribov–Glauber picture is correct at LHC energies, so that significant deviations from Eq. (1.94)
may be expected. It is likely that a coloured quark–gluon system with rapidities close to � � will be
excited along a cylinder of radius

�
1 fm and length

� � � , resulting in unusual properties of hadron
production in the nuclear fragmentation region, including production of exotic multi-quark, multi-gluon
states.

We emphasize that a quantitative understanding of particle production in pA collisions in this
phase-space region is a prerequisite for understanding the corresponding phenomenology in AA colli-
sions.

7.5. A New Hard QCD Phenomenon: Proton Diffraction into Three Jets

7.5.1. Introduction

During the last ten years, a number of new, hard, small- � phenomena have been observed and calculated
in QCD based on the QCD factorization theorems for inclusive DIS and hard exclusive processes. These
phenomena include (i) observation of a fast increase of the PDFs with energy at HERA, reasonably
described within the QCD evolution equation approximation17 ; (ii) discovery of colour transparency in
pion coherent dissociation into two high-� � jets [343], consistent with the predictions of Refs. [344,345];
(iii) observation of various regularities in exclusive vector-meson electroproduction at HERA induced by
longitudinally polarized photons and photoproduction of mesons with hidden heavy flavour consistent
with the predictions of Ref. [346]. These processes, in a wide kinematic range of small- � , have provided
effective ways to study the interaction of small colourless dipoles with hadrons at high energies and to
study the hadron wave functions in their minimal Fock space configurations. Here we outline new QCD
phenomena [324] which may become important at the LHC because their cross sections are rapidly
increasing with energy.

A fast increase of hard diffractive cross sections with energy, predicted within the leading-twist
(LT) approximation, would be at variance with unitarity of the

�
-matrix for the interaction of spatially

small wave packets of quarks and gluons with a hadron target at a given impact parameter. This new

17For a comprehensive review of the HERA data on inclusive and exclusive processes and the relevant theory, see Ref. [333].
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Fig. 1.54: LEGO plot for diffraction of proton into three jets

phenomenon may reveal itself at sufficiently small- � and/or sufficiently heavy nuclei. In the proton
structure functions, this physics is masked by a significant contribution to the hard collisions of the
nucleon periphery. Thus, unitarity of the

�
-matrix does not preclude an increase of nucleon structure

functions as fast as ( � 
 
 � � � � � [330]. Hence no dramatic signals for the breakdown of the DGLAP
regime are expected in this case. On the contrary, a breakdown of the LT approximation in hard diffractive
processes off nuclei leads to drastic changes in the cross section dependence on A, incident energy and
jet � � .

7.5.2. Three-jet exclusive diffraction

A nucleon (meson) has a significant amplitude to be in a configuration where the valence partons are
localized in a small transverse area together with the rest of the partons. These configurations are usually
referred to as minimal Fock space configurations – � � � � . Experimental evidence for a significant prob-
ability for these configurations in mesons includes the significant decay amplitude for �

� � � ( � � 
 � as
well as the significant observed diffractive vector meson electroproduction cross sections and the process
� � � � � � ��� � � � [343]. In the proton case, the amplitude of the three-quark configuration can be
estimated within QCD-inspired models and, eventually calculated in lattice QCD. Note that knowledge
of this amplitude is important for the unambiguous calculation of proton decay within Grand Unification
models.

Hadrons, in small size configurations with transverse size � , interact with a small cross section( � � � � � 
 � � � � � , where
� � �

10/ � � . The factor � � � 
 � � � � � leads to a fast increase of the small cross
section with energy. In the case of ‘elastic scattering’ of such a proton configuration off another proton,
this three-quark system with large relative momenta should preferentially dissociate diffractively into a
system of three jets with large transverse momenta � �



�

���	� , where � is the transverse size of the
minimal configuration. The kinematics of this process is presented in the LEGO plot of Fig. 1.54 for the
case of coherent scattering off a nucleus.

The 3-jet production cross section can be evaluated based on the kind of QCD factorization the-
orem deduced in Ref. [345]. The cross section is proportional to the square of the gluon density in the
nucleon at � 
 �

�
��� � � � ��� and virtuality

�
(1 – 2) �

�
� [347]. The distribution over the fractions of the

longitudinal momentum carried by the jets is proportional to the square of the light cone wave function
of the � � � � configuration, � 
 � � � � � � � � � � � � � � � � � � � � � and large transverse momenta where

� 
 � � � � � � � � � � � � � � � � � � � � ��( � � � � � � � 

�� � �

�
�
�

 �

�
�
�
� 
 (1.95)
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The proper renormalization procedure accounting for cancellation of infrared divergences is im-
plied. Otherwise the light cone gauge � � � � � � = 0, should be used to describe the diffractive fragmenta-
tion region where there are no infrared divergences. Here � � is the momentum of the diffracted proton.
The summation over collinear radiation is included in the definition of the jets.

Naively, one can hardly expect that exclusive jet production would be a leading-twist effect at high
energies since high-energy hadrons contain a very large number of soft partons in addition to three va-
lence quarks. However, application of the QCD factorization theorem demonstrates that in high-energy
exclusive processes these partons are hidden in the structure function of the target. Hence proton diffrac-
tion into three jets provides important information about the short-distance quark structure of the proton
and also provides unique information about the longitudinal momentum distribution in the � � � � configu-
ration at high-� � . The amplitude of the process can be written as

�
�

� # �
� � 
 � � � � � � � � � � � � � � � � � � � � � � � �

�
�

� �
�

 � � 
 � � � � � � � � � 
 (1.96)

Here
�
� � ! �


 � � ��!
� � !� . In Eq. (1.96) we simplify the expression by substituting a skewed gluon density

reflecting the difference in the light-cone fractions of the gluons attached to the nucleon by the gluon
density which is numerically a reasonable approximation for rough estimates. An additional factor of 2
in the numerator relative to the pion allows two gluons to be attached to different pairs of quarks. The

� � and longitudinal momentum fraction, � 
 , dependence of the cross section is given by

���
��� � ��� � ��� � � � � � � � � � � � � � � � � � � � � � � � � 
 � � � �

� � � � � � 
 � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � #

�
� 
 
 � �

� 

�

� �

 # � # � � � 
 � � 
 # � � 
 (1.97)

The coefficient � � is calculable in QCD and � � 
 � � � � � � � � � � � � � � � � . The two-gluon form factor of
a nucleon is known to some extent from hard diffractive processes [348]. A numerical estimate of the
three-jet production cross section with � � of one of the jet greater than a given value and integrated over
all other variables gives, for � � � 10 GeV � � ,

� 
 � �
� � � ��� � � � � ( � � � � � 
 � � � � � � �

�
�
� ( ��� 
 
 
	
	
 ��� 
 � � ��� � �	�

� � � �

* � (1.98)

for LHC energies. An urgent question is whether this cross section will continue to grow up to LHC
energies, as assumed here based on extrapolations of

�
� 
 � � � � � to � �

10 
 	 . The probability of
the � � � � configuration is estimated using a phenomenological fit to the probability of configurations of
different interaction strengths in a nucleon, cf. Refs. [347, 349].

A study of the same process in pA collisions would provide an unambiguous test of the dominance
of hard physics in this process. The cross section should grow with A as � !� !�

� �� 
 � � � � � � � � � �
� 
 � � � � � .

Accounting for the skewness of the gluon distribution will lead to some enhancement in the absolute
value of the cross section but will not strongly influence the A-dependence.

Our estimates indicate that for the relevant LHC kinematics, � � 10 
 	 and
� �
��� � �

�
� , nuclear

shadowing in the gluon channel is a rather small correction, reducing the A-dependence of the cross
section by

� ��� � , leading to � 
 �
� � � � ��� � � � � ( � � � �
	 . The A-dependence of total inelastic cross

section is ( � ��� � . Hence we expect that the counting rate per inelastic interaction will be enhanced in
pA collisions for a heavy nuclear target by a factor ( � ��� 	
	 . At the same time, the background from
soft diffraction should be strongly reduced. Indeed, if we estimate the A-dependence of soft diffraction
based on the picture of colour fluctuations, which provides a good description of total cross section of
the inelastic diffraction off nuclei at fixed-target energies [325], we find � � � �

� � � � � �� � ( � ��� �
	 . Scattering
off nuclei also has an obvious advantage in terms of selecting coherent processes since practically all
inelastic interactions with nuclei would lead to the emission of neutrons at 0 � .
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A competing process is proton diffraction into 3 jets off the nuclear Coulomb field. It follows from
the theorem proved in Refs. [345, 350] that to leading order in � � the dominant contribution is given in
the Weizsäcker–Williams representation by transverse photon interactions with external quark lines. The
amplitude of the process is [350]:# �

� � � 
 � 
 � � �


�

� � # � � � �
� # � 
 � �

� �
�

� 
 � � ��� �
� 
 �





�

� �


� �� � �� 
 � 
 �

�
�

 � �


� � (1.99)

where �



is the electric charge of the quark in the units of the electron charge, � �

is the virtuality of the
exchanged photon and � 
 �

�
� � is the renormalization factor for the quark Green’s function.

In the kinematics where LT dominates the QCD mechanism for 3-jet production, the electromag-
netic process is a small correction. However, if the screening effects (approach to the black-body limit)
occur in the relevant � � range, the electromagnetic process may compete with the QCD contribution.
In the case of nuclear breakup, the electromagnetic contribution remains a relatively modest correction,
even in the black-body limit. This is primarily because the cross section for electromagnetic nuclear
breakup does not have a singularity at � �

= 0. Note also that, in the case of QCD interactions, one can
consider processes with a large rapidity gap which have the same � 
 and � �



dependence as the coherent

process but with a significantly larger cross section.

Another interesting group of hard processes is proton diffraction into two high-� � jets and one
collinear jet. These processes are, in general, dominated at high energies by collisions of two nucleons
at large impact parameters (otherwise multiple soft interactions would destroy the coherence). Hence the
A-dependence of the dominant term should be similar to that of � � � �

� � � � � �� � . However, fluctuations with
cross sections of

� � � mb would have a much stronger A-dependence,
� � ��� � . Thus the study of the

A-dependence of coherent diffraction can filter out the smaller than average components in the nucleons
at LHC energies.

7.5.3. Violation of the LT approximation and new QCD strong interactions

The energy dependence of cross section in the LT approximation follows from the properties of the tar-
get gluon distribution. Hence for the virtualities probed in 3-jet production, the energy dependence is( � � � � 
 � � � �

��� ��( � ��� � for
� �
��� � 100 – 1000 GeV

�
and 10 
 	 	 � 	 10 
 � . In the black-body limit,

the inelastic diffractive processes are strongly suppressed and hence the energy dependence of the 3-jet
production cross section integrated over � � � � � � � �

�
a few GeV should slow down since only scatter-

ing off the grey edge of the nucleus (nucleon) will effectively survive. For
� �

relevant to this process,
the black-body limit may only be an interesting hypothesis for scattering off heavy nuclei. It would man-
ifest itself in a strong decrease of the A-dependence of 3-jet production at the � � corresponding to the
black-body limit. At sufficiently small- � for a heavy nuclear target, ��� 
 �

� � � � ��� � � � � �	� �
�
� ( � �

�
� ,

in striking contrast with the LT expectations, ( � � � � .
7.6. Conclusions

In conclusion, studies of pA collisions at the LHC will reveal strong interactions in the high-field domain
over an extended rapidity region. New phenomena will be especially prominent in the proton fragmen-
tation region but will extend to the central region and the nuclear fragmentation region as well.
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