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1. Introduction

The baryon asymmetry of the universe has recently been determined to an unprece-

dented accuracy,

ηB ≡ nB

s
= (8.9 ± 0.4) × 10−11, (1.1)

by combining measurements of the cosmic microwave background [1] and large scale

structures [2]. Explaining its origin is one of the great challenges of modern particle

physics and cosmology. For baryogenesis Sakharov’s three conditions, B violation,

CP violation and deviation from thermal equilibrium have to be satisfied. In principle

these conditions could be met within the standard model (SM) at the electroweak

phase transition (EWPT) [3]. A more quantitative analysis shows however that the

baryon asymmetry cannot be explained within the SM because there is not enough

CP violation [4] and the phase transition turns into a smooth crossover for Higgs

masses mH >∼ 80 GeV [5]. In fact, electroweak baryogenesis requires an even stronger

criterion to be satisfied: The Higgs vacuum expectation value (vev) at the critical

temperature, vc ≡ 〈φ(Tc)〉, must be larger than about Tc in order to avoid baryon

number washout after the phase transition.

Motivated by the possibility that electroweak baryogenesis can be tested at future

colliders, there were many proposals to realize this mechanism in extended settings

[6]. Some recent attempts can be found in ref. [7]. In supersymmetric models a

strong EWPT can be induced by a light top squark [8]. Supersymmetry breaking
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also provides new sources of CP violation. However, by now this scenario is quite

constrained due to the negative Higgs searches. In the SM a lower bound of mH >114

GeV was established [10]. A strong first order phase transition could also be driven

by cubic interactions of a singlet Higgs field [9].

Recently, an alternative idea caught attention: non-renormalizable operators

could have an impact on the EWPT. These operators parametrize the effects of

new physics beyond some cut-off scale M . In order to be relevant at weak scale

temperatures we have to assume that M <∼ 1 TeV. This new dynamics could be an

ordinary quantum field theory, e.g. an extended Higgs sector. It might as well be

something more fundamental, like strongly coupled gravity if the hierarchy problem

is solved by the presence of extra dimensions.

If the Higgs potential is stabilized by a φ6 interaction, a strong first order phase

transition can occur for Higgs masses well above 100 GeV [11–13]. A first order

transition is triggered by a barrier in the Higgs potential. It can be provided by the

one-loop thermal corrections of the weak gauge bosons. In the model under consid-

eration, a barrier can also be generated from a negative φ4 term, which no longer

destabilizes the Higgs potential. The latter possibility turns out to be dominant in

a large part of the parameter space. Non-renormalizable interactions also allow for

new sources of the CP violation to fuel baryogenesis [14, 15].

In the following we will investigate the strengh of the EWPT in the SM with low

cut-off, taking into account the one-loop corrections to the potential. At one-loop

the phase transition is somewhat weaker than found in the analysis of ref. [12], where

only the thermal mass part of the one-loop correction was taken into account. Still

we find a strong first order EWPT for Higgs masses up to at least 170 GeV, if we

require M > 500 GeV. We will study the properties of the bubble profile, finding in

particular that the wall thickness varies in a wide range from about 2 to 16 times

1/Tc. We will discuss dimension-6 interactions between the Higgs field and the top

quark which provide the necessary CP violation to fuel baryogenesis. In the WKB

approximation these operators induce CP violating terms in the top quark dispersion

relation which vary along the bubble wall and enter the transport equations as source

terms. We will discuss novel source terms in the transport equations which enhance

the generated baryon asymmetry. We find that the model can explain the observed

baryon asymmetry for natural values of the parameters.

2. The strength of the phase transition

The dynamics of the EWPT is determined by the effective Higgs potential. As

proposed in ref. [11], we add a non-renormalizable φ6 operator to the SM potential,

so that

V (φ) = −µ2

2
φ2 +

λ

4
φ4 +

1

8M2
φ6, (2.1)
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where φ2 ≡ 2Φ†Φ with the SM Higgs doublet Φ.

At finite temperature we add a thermal mass term to the potential. Because

of the positive definite φ6-term, the quartic coupling λ is allowed to take negative

values. In the high temperature expansion of the one-loop thermal potential we get

the thermal Higgs mass term

1

2

(

1

2
λ +

3

16
g2
2 +

1

16
g1

2 +
1

4
y2

t

)

T 2φ2, (2.2)

where yt is the top Yukawa coupling and g2 and g1 are the SU(2)L and U(1)Y gauge

couplings. We also include the one-loop contributions due to the transverse gauge

bosons

− g3
2

16π
Tφ3 (2.3)

and the top quark
3

64π2
y4

t φ
4 ln

(

Q2

cF T 2

)

. (2.4)

to the effective potential, where cF ≈ 13.94 [16]. We choose Q = mtop = 178 GeV.

Another choice of Q would only change the value of the self-coupling λ. Moreover

we add the leading one-loop and two-loop corrections due to the φ6 interaction

1

8M2
(2φ4T 2 + φ2T 4). (2.5)

Altogether we end up with the high temperature effective potential

Veff(φ, T ) =
1

2

(

−µ2 +

(

1

2
λ +

3

16
g2
2 +

1

16
g1

2 +
1

4
y2

t

)

T 2

)

φ2

− g3
2

16π
Tφ3 +

λ

4
φ4 +

3

64π2
y4

t φ
4 ln

(

Q2

cF T 2

)

+
1

8M2
(φ6 + 2φ4T 2 + φ2T 4). (2.6)

With the two conditions

∂Veff(φ, 0)

∂φ

∣

∣

∣

∣

φ=v

= 0 and
∂2Veff(φ, 0)

∂φ2
= m2

H , (2.7)

where

Veff(φ, 0) = V (φ) − 3

64π2
y4

t φ
4 ln

(

y2
t φ

2

2Q2

)

(2.8)

is the zero-temperature potential including the one-loop correction from the top-

quark, we can express the two parameters µ and λ by the physical quantities mH

and v = 246 GeV. In the following we take mH and M as the free parameters of

the model. The SM bound on the Higgs mass applies to our model, so we require
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Figure 1: Contours of constant ξ = vc/Tc in the M -mH-plane. M and mH are given in

units of GeV. Below the lowest line the zero-temperature minimum at φ 6= 0 is no longer

the global one. Below the metastability line the probability for thermal tunneling gets too

small.

mH > 114 GeV. We need M <∼ 1 TeV in order for the dimension-six operator to be of

relevance for the phase transition. If M becomes too small, for a fixed value of mH ,

the electroweak minimum ceases to be the global minimum of the zero-temperature

potential. As shown in fig. 1, this happens around M < 500 GeV, and we exclude

these values from the parameter space.

During a first order phase transition there exist two energetically degenerate

phases separated by an energy barrier at the critical temperature Tc. To obtain Tc

and the non-zero value of the vacuum expectation value vc the two conditions

∂Veff(φ, Tc)

∂φ

∣

∣

∣

∣

φ=vc

= 0 and Veff(vc, Tc) = 0 (2.9)

have to be fulfilled. The critical temperature in case of the EWPT is around 100

GeV. At some particular temperature below Tc, say Tn (nucleation temperature),

the broken phase bubbles nucleate, expand and percolate. The Higgs field changes

rapidly as the bubble wall passes through space. Baryogenesis has to take place

outside the bubble while within the bubble the sphaleron induced (B + L)-violating

reactions must be strongly suppressed. Otherwise the generated baryon asymmetry

would be washed out after the phase transition. The sphaleron rate is practically

switched off if the ”washout criterion” [17]

ξ =
vc

Tc

≥ 1.1 (2.10)

4



is satisfied. This is the condition for a first order transition to be strong. As was

discussed in ref. [12], the sphaleron energy and therefore eq. (2.10) are practically

not affected by the presence of the φ6 term.

In fig. 1 we show the strength of the phase transition as a function of the model

parameters. As expected the EWPT becomes weaker for increasing Higgs masses.

For the smallest allowed Higgs mass we need M <∼ 825 GeV to satisfy the washout

criterion. In contrast to the SM we find a strongly first order phase transition, even

for Higgs masses above 150 GeV. A large part of the parameter space meets the

requirements of electroweak baryogenesis. As M approaches the region of wrong

zero-temperature minimum, the critical temperature becomes smaller and ξ larger.

For ξ >∼ 3 the high temperature approximation breaks down for the top quark.

What Higgs masses are compatible with the washout criterion depends on how

small M is allowed to be. There is no particular bound on the φ6 operator [18].

However, in fig. 1 we take M >∼ 400 GeV in order to make an expansion in powers

of v/M reasonable. In an effective field theory all operators which are allowed by

the symmetries are expected to be present. In particular, we expect dimension-6

operators involving gauge fields, such as (1/M2)(Φ†DµΦ)2. These operators have to

be suppressed by a higher scale of about 10 TeV in order to be in agreement with

the electroweak precision data [12]. Thus a tuning of couplings on the order of (10

TeV/M)2 is required, and has to be explained by the UV completion of the model.

At the one-loop level the phase transition is somewhat weaker compared to the

analysis of ref. [12]. There only the thermal masses (2.2) were included in the com-

putation. For instance, taking mH = 115 GeV, we find M = 825 GeV to arrive at a

strong enough EWPT, i.e. ξ = 1.1. Including only the thermal mass corrections, one

arrives at ξ = 1.43, and the cut-off scale can be increased to about 870 GeV until

the phase transition becomes too weak [12].

How important are the different one-loop contributions? For ξ >∼ 1 the cubic

term (2.3) is still relevant: Leaving it out considerably weakens the phase transition

from ξ = 1 to ξ = 0.56, for mH = 115 GeV. Omitting also the log-term (2.4) makes

the phase transition stronger again, ξ = 0.81. In addition, getting rid of the one-loop

term of eq. (2.5) increases ξ to 1.27. Thus the one-loop contributions in (2.3) - (2.5)

partially cancel each other and therefore our results agree reasonably well with those

of ref. [12]. For larger Higgs masses and stronger phase transition the picture is

qualitatively similar, however, the cubic term becomes less important.

The two-loop φ2 term of eq. (2.5) practically does not change the result, demon-

strating that the dimension-6 operator does not spoil the loop expansion. We have

also checked that adding a dimension-8 term (1/M4)(Φ†Φ)4 only affects ξ at the

order of v2/M2.

The one-loop effective potential was also discussed in ref. [13]. However, the

authors impose an erroneous lower bound on the cut-off scale, requiring a positive

mass squared for the Goldstone boson. As a result, they obtain a lower bound on
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the Higgs mass from eq. (2.10) which is much too small.

3. The bubble properties

In this section we discuss some bubble properties which will enter the computation

of the baryon asymmetry, in particular the thickness Lw, and the velocity, vw of the

wall. As already mentioned, the two minima of Veff become of the same depth at Tc,

but tunneling with the formation of bubbles of the broken phase will start somewhat

later at a temperature Tn. The probability for thermal tunneling is exponentially

suppressed by the energy of the critical bubble, S3. The phase transition starts if the

nucleation probability per horizon volume becomes of order unity, which translates

to S3(Tn)/Tn ∼ 130 − 140 [19].

For ξ = 1 the amount of supercooling, i.e. the difference between the critical and

nucleation temperatures, is small. For mH = 115 GeV we find Tc = 107.34 GeV and

Tc − Tn = 0.45 GeV. The system is well described by the thin wall approximation.

For smaller values of M and stronger phase transition, supercooling becomes more

and more important. The thin wall approximation is no longer reliable. At some

critical value the phase transition does no longer proceed at all. The universe remains

stuck in the symmetric vacuum. This regime is indicated by the ”metastability” line

in fig. 1.

Once a critical bubble is nucleated it will expand. The expansion is accelerated

by the internal pressure and slowed down by plasma friction. Finally, a stationary

situation will be reached, where the different forces are balanced, and the wall prop-

agates with constant velocity, vw. In order to estimate the thickness of the bubble

wall, we ignore friction for a moment and solve the field equation at the critical

temperature with the effective potential of eq. (2.6),

d2φ

dz2
=

∂

∂φ
Veff(φ). (3.1)

The boundary conditions read φ(z → −∞) = vc and φ(z → ∞) = 0. The bubble

profile can approximately be described by a kink,

φ(z) =
vc

2

(

1 − tanh
z

Lw

)

(3.2)

with Lw =
√

v2
c/(8Vb), where Vb is the height of the potential barrier. This relation

would be exact for a φ4 potential and we found that it is also a good approximation

in our case. In fig. 2 the wall thickness is shown in dependence of the Higgs mass

mH and M . As we decrease M at fixed mH , the wall thickness in units of 1/Tc

becomes smaller. The same happens if we decrease mH at fixed M . The main effect

comes from the decrease of Tc in these cases. Notice that LwTc varies in a wide range

between about 2 and 16.
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Figure 2: The wall thickness Lw as a function of the Higgs-mass mH for several values of

M , which are given in units of GeV. In addition lines of constant ξ are shown.

Let us finally comment on the wall velocity. Taking into account only the friction

related to the infrared gauge field modes [20],

vw =
32πLw

11g2
2T

3
· ∆V

ln(mW Lw) + O(1)
(3.3)

we obtain a wall velocity of order unity, except for ξ being close to one. Here ∆V

is the potential difference at the nucleation temperature and mW the mass of the W

boson. The order unity correction in the denominator is induced by friction of other

particles in the plasma, in particular the top quark [21]. Since numerically ln(mW Lw)

is only of order unity, top quark friction will slow down the wall considerably. The

wall velocity is further reduced by latent heat of the nucleating bubbles. In general,

the wall moves faster in the case of a stronger phase transition.

Let us briefly discuss two representative examples. Taking ξ = 1 and mH = 115

GeV, we obtain vw = 0.24 from eq. (3.3). Including the effect of reheating, ∆V is

reduced and we arrive at vw = 0.08. If we finally switch on the order unity correction,

we end up with vw ∼ 0.05. The picture looks very much different for stronger phase

transitions. Going to ξ = 1.5, eq. (3.3) already leads to a wall velocity of order unity.

Including again top quark friction and reheating, we obtain vw ∼ 0.5. For larger

Higgs masses we find a very similar behavior. These are only very rough estimates,

since eq. (3.3) breaks down for large values of vw. Given these uncertainties we will

treat vw as a free parameter in our computation of the baryon asymmetry.

7



4. CP violation

Non-renormalizable interactions provide new sources of CP violation. In the absence

of gauge singlets the leading operators are of mass dimension six. In ref. [14] a

|Φ|2FF̃ operator was discussed. We will focus on the operators

xu
ij

M2
(Φ†Φ)Φuc

iqj (4.1)

which have been proposed to drive baryon number generation in ref. [15]. There are

analogous terms for the down-type quarks and leptons. The fermion masses become

mij = yij

v√
2

+
v3

2
√

2M2
xij (4.2)

where yij are the ordinary Yukawa couplings. In unitary gauge, the effective Yukawa

couplings to the physical Higgs boson are given by

Yij = yij +
3v2

2M2
xij . (4.3)

Thus, there is a mismatch of order (xv2/M2) between the fermion masses and the

effective Yukawa couplings. In general, the couplings xij contain complex phases, and

they are of unknown flavor structure. While for the top quark xu
33 may be of order

unity, the couplings of the lighter fermions should not exceed O(M2mf/v
3) to avoid

fine tuning of the fermion masses mf . For instance, the corresponding coupling for

the electron should at most be of order 10−4 × (M/TeV)2, which is a small number.

Having this in mind, and lacking a theory of flavor mixing, we will therefore assume

that the xij have a similar flavor structure as the corresponding Yukawa couplings,

i.e. xij ∼ yij, up to order unity coefficients. This structure could be motivated by

a Froggatt-Nielsen [22] type mechanism, where the operators (4.1) and the ordinary

Yukawa couplings would have the same quantum numbers.

Since the operators (4.1) do not have to be strictly aligned with the ordinary

Yukawa couplings, they will induce flavor violation and CP violation. Via tree-level

Higgs exchange they generate four-fermion interactions, which, for instance, affect

K − K̄ mixing. For example, the operator (1/Q2)(dcsd̄s̄c) is generated at a level of

1

Q2
∼ v4

M4m2
H

xd
12(x

d
21)

∗. (4.4)

For xd
12 ∼ ms sin θc/v, where ms denotes the strange quark mass and θc the Cabibbo

angle, we obtain roughly Q ∼ 5 · 107GeV×(M/TeV)2. At M >∼ 30 TeV a 2-loop

contribution of order (1/(16π2)2)xd
12(x

d
21)

∗/M2 becomes dominant.1 Experimentally,

these operators are constrained to be suppressed by Q >∼ 107 GeV, especially in the

1This diagram is quadratically divergent which we cut off at the scale M .
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presence of CP violation. This constraint is compatible with (4.4) for M >∼ 500

GeV. Later on we will only be interested in the coupling of the top, xu
33 ∼ 1. If we

make the unnatural assumption that only this coupling is present, a dds̄s̄ operator

is generated at 2-loops with Q ∼ 4 · 109GeV×(M/TeV)2. In the B system the

experimental bounds are even more easily satisfied.

CP violating couplings induce electric dipole moments (EDM’s). The EDM of

the neutron, for instance, is experimentally constrained by dn/e < 6.3 ·10−26 cm [23].

The individual EDM’s of up and down quarks should therefore be not much larger.

The up quark receives the larger contribution. At one-loop we find

du

e
∼ 1

16π2

v3Im(xu
13x

u
31)

M4
∼ 1 · 10−26cm ×

(

TeV

M

)2

, (4.5)

which might be close to the experimental bound. In the second step we assumed a

maximal phase and |xu
13| ∼ |xu

31| ∼ Vub. If only the coupling xu
33 is present, an EDM

of roughly du/e ∼ 5 · 10−27cm × Im(xu
33) × (TeV/M)2 is induced at the 2-loop level

[15]. Thus a coupling xu
33 of order unity with a large phase can be present without

inducing too large flavor changing neutral currents or EDM’s, even for M ∼ 300

GeV. Other couplings also are allowed, as long as some Yukawa-like hierarchy is

respected. However, experimental signals of non-standard flavor physics could be

detected in the near future.

At low energies the non-renormalizable operators and the Yukawa couplings melt

into the couplings (4.3). However, during the EWPT the two terms in (4.3) vary

differently along the bubble wall. As a result, the fermion masses acquire position

dependent phases which cannot be rotated away. For the phase of the top quark

mass we obtain

tan θt(z) ≈ sin ϕt

φ2(z)

2M2

xt

yt

, (4.6)

where we defined xte
iϕt ≡ xu

33 and ignored the real part of xu
33. In two Higgs doublet

models such a phase may arise from spontaneous CP violation. In supersymmetric

models position dependent phases are induced by flavor mixing, e.g. for the charginos.

In the next section we discuss how the phase (4.6) drives the generation of a baryon

asymmetry as a bubble wall moves through the plasma.

5. Transport equations

The CP violating interactions of particles in the plasma with the bubble wall create an

excess of left-handed quarks over the corresponding anti-quarks.2 In the symmetric

phase the left-handed quark density biases the sphaleron transitions to generate a

net baryon asymmetry.

2Quarks will turn out to be more important than leptons because of the large top mass.
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In the WKB approach the CP violating interaction of a fermion with the wall

leads to different dispersion relations for particles and anti-particles [24], depending

on their complex masses. To make this method applicable, it is required that the

typical de Broglie wavelength of particles in the plasma is small compared to the

width of the wall, i.e. LwT ≫ 1. Otherwise an expansion in derivatives of the

background Higgs field cannot be justified. According to the results of section 3 this

is a good approximation in a large fraction of our parameter space. It is violated only

in the cases of a very strong phase transition, ξ >∼ 3. From the dispersion relations

we compute a force term which enters the transport equations that describe the

evolution of the plasma. An alternative approach was followed in ref. [26].

Let us consider a single Dirac fermion, such as the top quark, with a space-time

dependent mass ReM(z̄) + iγ5ImM(z̄), where M(z̄) = m(z̄)eiθ(z̄) and z̄ ≡ z − vwt

denotes the relative coordinate perpendicular to the wall. For particles and anti-

particles the dispersion relations to first order in derivatives read [25]

E± = E0 ± ∆E =
√

p2 + m2 ± sign(pz)θ
′ m2

2(p2 + m2)
, (5.1)

where p2 = p2 is the squared kinetic momentum and θ′ = dθ/dz̄. E+ is the energy

of left-handed particles, E− corresponds to the right-handed states, and for the anti-

particles the other way round.3 In a more rigorous treatment similar dispersion

relations were derived for spin states in the Schwinger-Keldysh formalism [27, 28].

The evolution of the particle distributions fi(t,x,p) we describe by classical

Boltzmann equations. The dispersion relations (5.1) induce force terms, which are

different for particles and anti-particles. To make the system of equations tractable,

we use a fluid-type ansatz in the rest frame of the plasma [24]

fi(t,x,p) =
1

eβ(Ei−vipz−µi) ± 1
, (5.2)

where vi and µi denote velocity perturbations and chemical potentials for each fluid.

The velocity perturbations are introduced to model the movement of particles in

response to the force.

For a shorter notation let us first introduce some symbols K, which represent

momentum averages normalized relative to the massless Fermi-Dirac case,

〈X〉 ≡
∫

d3pX(p)
∫

d3pf ′
+(m = 0)

, (5.3)

3Later on the relevant particles will be relativistic, so that we can approximate helicity by

chirality.
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where f ′
± = −βeβE0/(eβE0 ± 1)2. We define

K1,i =

〈

p2
z

√

p2 + m2
i

f ′
±(mi)

〉

, K2,i =
〈

p2
zf

′
±(mi)

〉

,

K3,i =

〈

1

2
√

p2 + m2
i

f ′
±(mi)

〉

, K4,i =

〈 |pz|
2(p2 + m2

i )
f ′
±(mi)

〉

,

K5,i =

〈 |pz|p2

2(p2 + m2
i )

2
f ′
±(mi)

〉

, K6,i =

〈( |pz|
(p2 + m2

i )
2
− δ(pz)

p2 + m2
i

)

f ′
±(mi)

〉

,

K7,i =

〈 |pz|3
(p2 + m2

i )
2
f ′
±(mi)

〉

, (5.4)

which appear in the transport equations discussed in the following. In the case of

a massless fermion we obtain K1 = 1.096T , K2 = 4.606T 2, K3 = 0.211/T , K4 =

0.105/T , K5 = 0.105/T , K6 = −0.038/T 3 and K7 = 0.105/T . For m ≫ T the

averages experience an exponential Boltzmann suppression.

We look for solutions of the Boltzmann equation which are stationary, i.e. which

only depend on the relative coordinate z̄. We expand the Boltzmann equation in

derivatives of the fermion mass. At first order in derivatives there is no difference

between particles and anti-particles. Weighting the Boltzmann equation with 1 and

pz, we obtain after momentum averaging

κivwµ′
i,1 − K1,iv

′
i,1 − 〈Ci〉 = K3,ivw(m2

i )
′ (5.5)

− K1,iµ
′
i,1 + K2,ivwv′

i,1 − 〈pzCi〉 = 0. (5.6)

Here µi,1 and vi,1 indicate the perturbations to first order in derivatives. A prime

denotes again a derivative with respect to z̄. The statistical factor κi ≡ 〈f ′
±(mi)〉 is

1 (2) for massless fermions (bosons) and becomes exponentially small for m ≫ T .

The force term on the right-hand side is induced by the change in the particle mass

along the wall. Introducing inelastic rates, Γinel
p , and elastic rates, Γel

p , for a process

p, the collision terms take the form [29]

〈Ci〉 =
∑

p

Γinel
p

∑

j

µj , 〈pzCi〉 = vip̄
2
z

∑

p

Γel
p ≡ vip̄

2
zΓ

el
i . (5.7)

In 〈pzCi〉 we neglected inelastic processes. The leading order eqs. (5.5), (5.6) contain

the friction terms which enter the computation of the wall velocity [21].

To second order in derivatives, we have to distinguish between particles and

anti-particles. The perturbations contain CP odd and even components,

µi = µi,1 + µi,2o + µi,2e, vi = vi,1 + vi,2o + vi,2e. (5.8)
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In the following only the odd second order perturbations will enter, so we can drop

the subscript “o” to simplify the notation. Subtracting the equations of particles

and anti-particles, we obtain

κivwµ′
i,2 − K1,iv

′
i,2 − 〈Ci〉 = −K6,iθ

′
im

2
i µ

′
i,1 (5.9)

−K1,iµ
′
i,2 + K2,ivwv′

i,2 − 〈pzCi〉 = K4,ivwm2
i θ

′′
i + K5,ivw(m2

i )
′θ′i − K7,im

2
i θ

′
iv

′
i,1.(5.10)

Note that the CP violating source terms are proportional to derivatives of θi. A

constant phase does not contribute. The source terms proportional to the first order

perturbations have not been investigated so far in a realistic context. (See ref. [28]

for a discussion in the context of Schwinger-Keldysh formalism.) To study their

relevance for the generation of the observed baryon asymmetry will be a main issue

in the next section.

We may use eq. (5.9) to solve for vi,2. Neglecting derivatives of the thermal

averages, which are higher order in derivatives, we end up with diffusion equations

for the chemical potentials

−κiDi(1 − Aiv
2
w)µ′′

i,2 − κivwµ′
i,2 − DiAivw

∑

p

Γinel
p

∑

j

µ′
j,2

+
∑

p

Γinel
p

∑

j

µj,2 − AiDivw

∑

p

(Γinel
p )′

∑

j

µj,2 = Si, (5.11)

where

Ai =
κiK2,i

K2
1,i

. (5.12)

In the massless limit we have A ≈ 3.83. The diffusion constants are given by [29]

κiDi =
K2

1,i

p̄2
zΓ

el
i

. (5.13)

To leading order in the wall velocity, neglecting derivatives of the inelastic rates and

ratios of inelastic to elastic rates, the left-hand side of eq. (5.11) reproduces the result

of ref. [29]. This corresponds to dropping the terms proportional to Ai. In the next

section we will examine to what extent this simplification is justified. Since Ai is not

a small number, the corrections will turn out to be important in certain regimes. For

the source terms we obtain

Si =
κiDivw

K1,i

(

K4,im
2
i θ

′′
i + K5,i(m

2
i )

′θ′i
)′

+K6,i

(

1 − ADivw
d

dz̄

)

(

m2
i θ

′
iµ

′
i,1

)

− κiDiK7,i

K1,i

(

m2
i θ

′
iv

′
i,1

)′
. (5.14)

In the second line new source terms related to the first order perturbations are

showing up. As expected, no source terms are left in the case of vanishing wall

velocity.
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Let us apply these general results to the SM with a low cut-off. In a first

step we compute the asymmetry in the left-handed quark density. At this stage

we neglect the weak sphalerons, i.e. baryon and lepton number are conserved. The

most important particle species are the left- and right-handed top quarks and the

Higgs bosons. Leptons are only produced by small Yukawa couplings and therefore

not taken into account. It turns out that also the Higgs bosons have only a minor

impact on the generated baryon asymmetry. They change the final result only at the

percent level, so we can ignore them. In a second step, the weak sphalerons convert

the left–handed quark number into a baryon asymmetry.

We take into account the top Yukawa interaction, Γy, the strong sphalerons, Γss

and the top helicity flips, Γm caused by the interactions with the bubble wall. The

latter are only present in the broken phase. The gauge interactions are assumed to

be in equilibrium. The transport equations become

(3κt + 3κb)vwµ′
q3,2 − (3K1,t + 3K1,b)v

′
q3,2 − 6Γy (µq3,2 + µt,2)

−6Γm (µq3,2 + µt,2) − 6Γss [(2 + 9κt + 9κb) µq3,2 + (1 − 9κt)µt,2]

= −3K6,tm
2
t θ

′
tµ

′
q3,1 (5.15)

−(K1,t + K1,b)µ
′
q3,2 + (K2,t + K2,b)vwv′

q3,2 −
(

K2
1,t

κtDQ

+
K2

1,b

κbDQ

)

vq3,2

= K4,tvwm2
t θ

′′
t + K5,tvw(m2

t )
′θ′t − K7,tm

2
tθ

′
tv

′
q3,1 (5.16)

3κtvwµ′
t,2 − 3K1,tv

′
t,2 − 6Γy (µq3,2 + µt,2) − 6Γm (µq3,2 + µt,2)

−3Γss [(2 + 9κt + 9κb)µq3,2 + (1 − 9κt) µt,2]

= −3K6,tm
2
t θ

′
tµ

′
t,1 (5.17)

−K1,tµ
′
t,2 + K2,tvwv′

t,2 −
K2

1,t

κtDQ

vt,2

= K4,tvwm2
t θ

′′
t + K5,tvw(m2

t )
′θ′t − K7,tm

2
t θ

′
tv

′
t,1. (5.18)

The top quark phase, θt, is given by eq. (4.6). For the chemical potentials we take

µt = µ(uc
3) and µq3

= (µ(u3) + µ(d3))/2. The index t (b) refers to the top and

bottom quark, respectively. We have omitted the tiny source of the bottom quark

which is suppressed by (mb/mt)
4. We used baryon number conservation to express

the strong sphaleron interaction in terms of µq3,2 and µt,2 [30]. Replacing the second

order source terms by the first order ones, the same system of transport equation

holds for the first order perturbations.

Using again baryon number conservation, the chemical potential of left-handed

quarks, µBL
= µq1

+ µq2
+ µq3

, is obtained as

µBL
= (1 + 2κt + 2κb)µq3

− 2κtµt. (5.19)
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The baryon asymmetry is then given by [25]

ηB =
nB

s
=

405Γ̄ws

4π2vwg∗T 4

∫ ∞

0

dz̄µBL
(z̄)e−νz̄, (5.20)

where Γ̄ws is the weak sphaleron rate and ν = 45Γ̄ws/(4vwT 3). The effective number

of degrees of freedom in the plasma is g∗ = 106.75. In eq. (5.20) the weak sphaleron

rate has been suddenly switched off in the broken phase, z̄ < 0. The exponential

factor in the integrand accounts for the relaxation of the baryon number if the wall

moves very slowly.

6. Numerical Results

In this section we present our evaluations of the transport equations (5.15) - (5.18).

We will discuss under what conditions the terms proportional to Ai may be neglected

in eq. (5.11) and investigate what is the impact of the new source terms in eqs. (5.9)

and (5.10). Finally, we will demonstrate that the SM with a low cut-off can explain

the observed baryon asymmetry for natural values of the parameters.

In our numerical computations we use the following values for the weak sphaleron

rate [31], the strong sphaleron rate [32], the top Yukawa rate [30], the top helicity

flip rate and the quark diffusion constant [30]

Γ̄ws = 1.0 · 10−6T 4, Γ̄ss = 4.9 · 10−4T 4,

Γy = 4.2 · 10−3T, Γm =
m2

t (z̄, T )

63T
,

DQ =
6

T
. (6.1)

Note that in Γ̄ss ≡ ΓssT
3 the value αs = 0.086 from the dimensionally reduced

theory has been used [32]. Changing the rates Γy and Γm has only a small effect

on the baryon asymmetry, as would have the inclusion of the Higgs field chemical

potential in the transport equations. Doubling the value of DQ enhances the baryon

asymmetry by 20-30% because of more efficient diffusion. Enhancing Γss reduces the

baryon asymmetry since the strong sphalerons drive µBL
to zero if the quarks are

taken massless [33]. The baryon asymmetry also depends on whether we take the

top quark to be massive or massless in the thermal averages. If we switch on the top

mass, the baryon asymmetry becomes smaller since the thermal averages go down.

In the evaluations we use the half m2
t of the broken phase to compute the averages.

Let us first discuss under which conditions the Ai corrections in eq. (5.11) become

important. At this stage we do not yet relate the bubble wall parameters to the model

introduced in section 2. In fig. 3 we display the baryon asymmetry computed with

the simplified equations (dashed lines) compared to the one obtained from the full

equations (5.15) - (5.18) (solid lines) as a function of the wall velocity. We take
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Figure 3: Comparison between eq. (5.11), where the terms proportional to Ai have been

neglected (dashed), and eqs. (5.15) - (5.18) without the first order perturbations (solid) for

different values of Lw. The other parameters are taken as ξ = 1.5 and M = 6T .

ξ = 1.5 and M/T = 6 for three different values of Lw. The CP violating phase in

the dimension-6 operator (4.1) we take as maximal, i.e. sin ϕt = 1, and we choose

xt = 1. In any case the baryon asymmetry is proportional to xt sin ϕt. Since we

want to compare the left hand sides of the transport equations, we included only the

source term of the first line of eq. (5.14). The simplified equations give a reasonable

description for vw <∼ 0.1. For large values of vw there are sizable deviations, especially

for thinner bubble walls. This behavior is expected since the Ai corrections come

with additional powers of the wall velocity. In the MSSM, where vw ∼ 0.05−0.1 [34],

the simplified equations are applicable. In the following we will use the full equations

(5.15) - (5.18) to compute the baryon asymmetry. Fig. 3 also demonstrates that the

baryon asymmetry increases for thinner bubble walls. This behavior is expected

since the source terms involve derivatives of the background Higgs field.

In fig. 4 we compare the contributions to the baryon asymmetry due to the

different source terms on the right hand side of eqs. (5.9) and (5.10), using the

parameters of fig. 3 and Lw = 8/T . The new source terms proportional to the

first order perturbations µi,1 and vi,1 are non-negligible. They enhance the baryon

asymmetry, especially for small values of vw. For large wall velocities they do no

longer matter. The total baryon asymmetry depends only mildly on vw, which is

quite positive, given our poor understanding of this parameter. For other wall widths

the picture is similar.

As shown in fig. 5 the baryon asymmetry increases rapidly for larger values of

ξ. We fixed vw = 0.01 and 0.3 and again Lw = 8/T . For large ξ the top quark mass
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Figure 4: The solid line represents ηB as a function of the wall velocity for Lw = 8/T ,

M = 6T and ξ = 1.5. The dashed line would be the asymmetry without the source terms

containing the first order perturbations µ′
1 and v′1 and the dotted one is the contribution

due to these terms only.

becomes larger in the broken phase, and the source terms involve powers of m2
t . Also

the CP violating phase in the top quark mass from eq. (4.6) becomes stronger. The

source terms related to the first order perturbations have an additional power of m2
t .

Therefore they grow even faster and dominate for large ξ. This behavior holds also

for other values of Lw.

Let us finally relate the bubble wall parameters to our SM with low cut-off. In

the fig. 6 we present the baryon asymmetry in the model for mH = 115 and 150 GeV

as a function of the cut-off scale M . For every value of M we compute the strength of

the phase transition and the bubble width. We consider one small vw = 0.01 and one

large wall velocity vw = 0.3. We take again a maximal CP violating phase sin ϕt = 1

and xt = 1. As expected the baryon asymmetry grows rapidly as we lower M . At the

very lowest values of M the wall thickness becomes of order 1/T (see fig. 2) so that

our WKB approach ceases to be reliable. Moreover, the bubble walls may become

relativistic in this regime, and diffusion of charges into the symmetric phase may no

longer be efficient. One can see that ηB depends only mildly on the wall velocity.

Nevertheless, independent of the Higgs mass we have chosen, we can generate the

observed baryon asymmetry (1.1) without amplifying the CP violating dimension-6

operator (4.1). This requires the phase transition to be sufficiently strong, i.e. ξ >∼ 1.5.

At this strength of the phase transition our computation of the baryon asymmetry

is still under control. For smaller values of ξ we have to take xt > 1. For instance, in

the case of mH = 115 GeV and ξ = 1.1 (M = 825 GeV), we could use xt ∼ 40 which
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Figure 5: The baryon asymmetry as a function of ξ for two wall velocities. The different

line types have the same meaning as in fig. 4, and again Lw = 8/T and M = 6T . On the

right edge of the figure the upper curves are for vw = 0.01 and the lower ones for vw = 0.3.
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Figure 6: The baryon asymmetry in the SM with low cut-off for two different Higgs masses

as a function of M (in units of GeV) for vw = 0.01 (solid) and vw = 0.3 (dashed). The

horizontal lines indicate the errorband of the measured value.

is barely consistant with the bound from the neutron EDM discussed in section 3.

Thus the SM with low cut-off can account for the observed baryon asymmetry in a

wide range of the model parameters, without being in conflict with constraints from

flavor and CP violation.
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At the end of this section let us briefly comment on the impact of sources from

the bottom quark and the tau lepton. In case of the bottom the source term is

heavily suppressed by (mb/mt)
4 ∼ 10−7. The tau lepton is more relevant because of

its larger diffusion constant of about 380/T [35]. Still its contribution is about 105

times smaller than that of the top quark and can be safely neglected.

7. Conclusions

We have investigated the electroweak phase transition and baryogenesis in the stan-

dard model augmented by a dimension-6 Higgs self interaction. Taking the sup-

pression scale of this operator to be M <∼ 1 TeV, the EWPT becomes first order,

without introducing new degrees of freedom in the model. In addition to the Higgs

mass only the parameter M enters the computation of the phase transition. There is

no relevant bound on the φ6 interaction. However, dimension-6 operators involving

for instance gauge fields, which are also expected to be present in a general effective

field theory, have to be tuned at the level of 10−2 in order not to spoil the electroweak

fit [12].

Requiring M > 500 GeV the phase transition is strong enough to prevent baryon

number washout for Higgs masses up to 170 GeV. In our analysis we have used the

one-loop thermal potential. The phase transition is somewhat weaker than found in

ref. [12], where only the thermal mass part of the one-loop correction was taken into

account. We have checked that the dimension-6 operator does not spoil the loop

expansion of the effective potential. We have computed the wall thickness which

turns out to vary in a wide range from about 2/T to 16/T . As M becomes smaller

the EWPT becomes stronger and the bubble wall thinner. For very small cut-off

scales the symmetric phase becomes metastable.

A dimension-6 operator involving the Higgs field and the top quark provides a

new source of CP violation. It induces a complex phase in the top quark mass which

varies along the phase boundary. We discussed that this operator is consistent with

present bounds on EDM’s and flavor violation for M >∼ 300 GeV. However, it may

leave a detectable signal in forthcoming experiments.

As a result of the varying phase, top quarks and anti-top quarks experience a

different force as they pass through the bubble wall. We treat the system in the

WKB approximation, expanding in derivatives of the background Higgs field. Our

approach is valid for a large fraction of the parameter space of the model. It will break

down for very small values of the cut-off scale M , where the bubble width becomes of

order the inverse temperature. The CP violating force enters the transport equations

which describe the hot plasma. Carefully expanding in derivatives of the wall profile,

we find novel source terms which enhance the generated baryon asymmetry. They

are especially relevant for slow bubble walls and dominate over the known source
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terms for large values of the particle mass. Because of these properties they should

play a prominent role in the MSSM, where the top quark is replaced by the charginos.

In the model considered, the observed baryon asymmetry can be explained for

natural values of the parameters. The phase transition should be somewhat stronger

than required by the washout criterion. If the EWPT is not that strong, the coeffi-

cient of the CP violating dimension-6 operator has to be taken larger than one, which

is compatible with experiments. It would also be interesting to study the impact of

other CP violating operators, such as the one discussed in ref. [14], which has been

ignored in our study.

With a low cut-off the model is expected to lead to non-standard signals in flavor

physics, such as EDM’s and flavor changing neutral currents, which can be tested in

future experiments. The LHC will be able to directly test the physics at the cut-off

scale. If the general cut-off scale is in the multi-TeV range and the φ6 interaction is

anomalously large, the model could still be identified by its non-standard Higgs self

couplings. However, the required precision will probably take a linear collider [12].

In conclusion, the standard model with low cut-off provides the missing ingre-

dients for electroweak baryogenesis: a strong phase transition and additional CP

violation. Moreover, its simple structure makes it an ideal laboratory to refine the

computation of the baryon asymmetry.
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