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Abstract. We provide a prescription for parametrizing the vacuum choice ambiguity in cosmological settings. We introduce
an arbitrary boundary action representing the initial conditions. A Lagrangian description is moreover the natural setting
to study decoupling of high-energy physics. RG flow affects the boundary interactions. As a consequence the boundary
conditions are sensitive to high-energy physics throughirrelevant terms in the boundary action. Using scalar field theory as
an example, we derive the leading dimension four irrelevantboundary operators. We discuss how the known vacuum choices,
e.g. the Bunch-Davies vacuum, appear in the Lagrangian description and square with decoupling. For all choices of boundary
conditions encoded by relevant boundary operators, of which the known ones are a subset, backreaction is under control.All,
moreover, willgenericallyfeel the influence of high-energy physics through irrelevant (dimension four) boundary corrections.
Having established a coherent effective field theory framework including the vacuum choice ambiguity, we derive an explicit
expression for the power spectrum of inflationary density perturbations including the leading high energy corrections. In
accordance with the dimensionality of the leading irrelevant operators, the effect of high energy physics is linearly proportional
to the Hubble radiusH and the scale of new physicsℓ = 1/M. Effects of such strength are potentially observable in future
measurements of the cosmic microwave background.

1. INTRODUCTION

The cosmological vacuum ambiguity has been a vexing problemfor decades now. In a spacetime background where
the concept of energy changes from observer to observer and time to time, we are still at a loss how to unambiguously
construct the quantum-mechanical ground state — or whethersuch a state even exists.4 For better or for worse, a
consensus prescription has emerged, the adiabatic/Bunch-Davies vacuum. Both solve a number of conundrums, but
leave others unanswered. A preference for either is clearlya choice that is made. Initial conditions are always physical
input and rarely a consistency condition.

The ambiguity shows in part why quantum field theory in a curved, cosmological background is still an inexact
science. We do not yet fully know how to quantize gravity. String theory does provide a fundamental framework to
describe gravitational physics at the highest energy scales. Yet, the details of transplanckian physics, particularly in
cosmological settings or how they may affect vacuum selection, have completely eluded us so far. Fortunately, the
notion of decoupling allows us to understand low energy phenomena despite our ignorance of physics at very high
energies. Renormalization Group (RG) flow teaches us that the effects of high energy physics can be captured by only
a finite number of relevant couplings in the low energy theory. In flat spacetime, the decoupling between high and low
energy physics is well established. Again, however, for quantum field theories in curved space and in FRW universes
in particular, decoupling is not so clearcut. In cosmological spacetimes high energy scales are redshifted to low energy
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scales via cosmic expansion. This connects high and low energy physics through unitary time evolution in addition to
the dynamics.

Decoupling, specifically in the inflationary context, is of great importance to upcoming cosmological precision
experiments. All current physical scales would originate from transplanckian scales at the onset of inflation, if inflation
lasted longer than the minimal number of e-folds. Conceivably, then, signatures of Planck scale physics (stringy or
other) could show up in cosmological measurements [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. This possibility whether glimpses
of transplanckian physics can be observed in the cosmic microwave background (CMB) radiation [11] is determined
by the strength with which transplanckian physics decouples. Remarkably, such effectsarepotentially observable, but
only if the transplanckian physics selects a non-standard initial state [2, 9].5 Other high energy effects are generically
too small [4] (with the exception of the higher dimensional operators identified in [3]). More recently, explicit examples
were presented to illustrate that the integrating out of a massive field could result in a non-trivial initial state, offering
both a proof of principle that transplanckian physics may beobservable, and suggesting that decoupling is more subtle
in expanding universes [10].

In this review — a condensation and expansion of [12] — we would like to clarify the connections between vac-
uum/initial state selection and decoupling in a fixed FRW background with the goal to describe transplanckian effects
in inflation (we ignore gravitational dynamics throughout). In cosmological settings, i.e. in a spatially homogeneous
and isotropic universe, the size of the scale factor yields apreferred time coordinate, and as a consequence a Hamilto-
nian approach has become standard [13]. In contrast to the Hamiltonian point of view which emphasizes the dynamical
evolution, a Lagrangian point of view emphasizes the symmetries and scaling behaviour relevant to physical processes
(see e.g. [4, 10, 14]). It is therefore the natural frameworkfor a Wilsonian RG understanding of decoupling of energy
scales and relevant degrees of freedom determined by symmetries.6 However, a Lagrangian or an action by itself is
insufficient to determine the full kinematic and dynamic behaviour of quantum fields. One must in addition specify
the boundary conditions. This corresponds to the choice of initial or vacuum state in the Hamiltonian language. The
question directly relevant to the window on transplanckianphysics provided by inflation is therefore whichboundary
conditionsto impose on the fields. To preserve the symmetries of the Lagrangian a subset of all possible boundary
conditions is often only allowed. With enough symmetry, e.g. Minkowski QFT, the choice may in fact be unique. FRW
spacetimes have less symmetry and it is a priori not clear, what the natural or correct boundary conditions are. Here
we re-encounter the cosmological vacuum ambiguity from theLagrangian perspective. How to proceed?

The clear advantage of the Lagrangian effective field theoryformalism is that at low energies the inital state will
be determined by a finite number of relevant boundary couplings. As always in effective field theories, relevant
couplings are determined by phenomenological input: a measurement. The Lagrangian effective field theory formalism
therefore parametrizes our ignorance of the cosmological initial conditions into measurable quantities. Clearly, this
does not solve the cosmological vacuum ambiguity, but it does give us a quantitative controlled method to confront
the ambiguity head-on. “When one does not know the answer, let a measurement decide”.

What we will furthermore explain in section 2 is that no matter which choice of boundary conditions is made in the
full quantum theory, RG-flow in the effective low energy action will generically change these conditions. In particular
high-energy physics will affect the boundary conditions through irrelevant corrections, which we derive. We apply
these results in section 4 to the computation of the power spectrum of inflationary density perturbations. The leading
irrelevant correction to the boundary conditions is of dimension four, and we therefore find that the power spectrum is
subject to corrections of orderH/M with M the scale of new physics. This is in accordance with earlier predictions that
transplanckian effects are potentially observable [2, 9].Importantly, we are able to derive this result purely withinthe
framework of Wilsonian effective field theory. This makes our answer predictive both in the sense that the parametric
dependence of inflationary physics on high-energy is now manifest, and that the strength is computable in any theory
where the high energy physics is explicitly known. Because our results are derived within the context of effective field
theory, they provide a settlement to the debate [2, 4, 9, 16] whetherH/M corrections are consistent with decoupling
arguments. We conclude with an outlook where we will briefly comment on the relation of our results to consistency
issues regarding (non-trivial) de Sitter invariant vacua known asα-states. We will, however, begin with a summary,
lest the trees obscure the forest.

5 In an abuse of language, we use vacuum and initial state interchangeably.
6 Wilsonian RG in effect explains why (non-gravitational) physics works. Its success strongly suggests that the same principles are at work in
quantum gravity and that general relativity is the low energy effective action relevant at scales belowMPlanck (for a nice review on general relativity
as an effective field theory see [15]). String theory, in particular, is an explicit manifestation of this idea.



1.1. The cosmological vacuum ambiguity, effective actionsand transplanckian effects in
inflation: a summary

Any boundary conditions one wishes to impose can be encoded in a boundary action. This is even true for
the Minkowski vacuum (section 2.5). It has long been known that the couplings in such a boundary action are
renormalized at the quantum level. Equivalently, a Wilsonian approach to the effective action ought to result not
only in a renormalization of the boundary couplings, but also in the generation of irrelevant boundary operators.
Consider, for example, a two scalar field model with a mass separationMχ ≫ mφ and boundary and bulk interactions
Sint =−∫ gχφ −∮ γχφ . This is exactly solvable, and upon integrating outχ , permitted when the cut-off scaleΛ≪Mχ ,
one generates the boundary interactions

Se f f =

∮
gγ
M2

χ
φ

�n

M2n
χ

φ . (1.1)

We will describe and review the Wilsonian effective action for theories with a boundary, including this example, in
section 2.

The issue of (boundary) Wilsonian decoupling is relevant toour understanding of cosmology. In an expanding
universe, there is no unique vacuum state. In the Lagrangianlanguage, this translates to a lack of knowledge of
the appropriate boundary conditions. Recall thatany boundary conditions, including the ‘Minkowski’ ones, can be
encoded in a boundary action. Wishing to emphasize the Lagrangian viewpoint, where the study of decoupling is most
natural, we add a boundary action with free parameters at a fixed but arbitrary timet0.

Our limited understanding of high-energy physics in the very early universe can thus be accounted for by the
inclusion of a boundary action in a cosmological effective Lagrangian. Whichever boundary conditions we choose this
boundary action to encode, they will be subject to renormalization. In particular, the details of the high-energy physics,
which has been integrated out, will be encoded in irrelevantcorrections to the boundary action. ForZ2 symmetric scalar
field theory the leading irrelevant boundary operators (that respect the homogeneity and isotropy of FRW cosmologies)
are

Sirr .op.
bound =

∮
d3x

[
−

β‖
2M

∂ iφ∂iφ − β⊥
2M

∂nφ∂nφ − βc

2M
φ∂n∂nφ − β4

2M
φ4
]
, (1.2)

where∂n is the normal derivative. These operators are of dimension four — one dimension higher than the boundary
measure — and describe corrections of order|~k|/M plus a boundary four-point interaction. For the momentum range
of interest to the CMB,|~k| ∼ H, whereH is the Hubble parameter, the quadratic operators scale asH/M and they
are therefore the primary candidates for witnessing consequences of high-energy physics in cosmological data. The
leading bulk operator is of orderH2/M2 and is generically beyond observational reach [4]. Computing the inflationary
perturbation spectrum in a de Sitter background, includingthe corrections to Bunch-Davies boundary conditions due
to the irrelevant operators (1.2), we find

PdS

BD+irr.op.

= PdS
BD

(
1− π

4H

[
H

2
ν(y0)

i

[
~k2

1(β‖−βc)

a2
0M

+
κ2

BDβ⊥
M

− βcm2

M
−κBD

3βcH
M

]
+c.c.

])
,

(1.3)

with

κBD =
d−1+2ν

2
H − |~k|

a0

Hν+1(y0)

Hν(y0)
, (1.4)

whereHν(y0) are Hankel functions aty0 = |~k|/a(η0)H whose indexν(m2) depends on the massm2. Crucial in our
exposition will be the proof (section 2.4) that, despite appearances, this expression does not depend on the location of
the boundary actiony0. Only the meaning of the initial conditions matters, not where they are imposed.

Eq. (1.3) is our main result. Having translated the cosmological vacuum choice ambiguity into an arbitrary boundary
effective action, we conclude based on Wilsonian decoupling that the leading irrelevant operators in FRW field theory
are boundary operators at orderH/M. Using optimistic but not untypical estimates ofH ∼ 1014 GeV andM ∼ 1016



GeV (string scale), new (transplanckian) physics willgenericallyaffect the standard predictions of inflationary cos-
mology at the one-percent level.Conversely, CMB observations with an accuracy of one percent or better can poten-
tially measure effects of transplanckian physics.Only for very special choices of initial conditions and transplanckian
physics will this correction be absent.

We further identify the boundary conditions correspondingto several cosmological vacuum choices including the
generalization of the “Minkowski-space” boundary conditions (sections 2.5 and 3.1). In the Wilsonian effective La-
grangian description it is clear that no vacuum is preselected by a consistency condition. Any boundary condition
encoded by relevant operators is consistent, in the sense that the Minkowski space stress tensor counterterm generated
with the appropriate boundary conditions will render the cosmological stress tensor finite as well (section 3). Back-
reaction is always under control. Which cosmological boundary conditions are the right ones to impose, requires just
physical input, as it should be.

2. DECOUPLING IN THEORIES WITH A BOUNDARY: A REVIEW

2.1. Initial states in transition amplitudes, path integrals and fixed timeslice boundaries

That boundary actions capture the initial conditions one wishes to impose, follows directly from the relation of the
path-integral to quantum-mechanical transition amplitudes. We will show this here.

Recall that after a spatial Fourier transformation a field can be considered as an infinite set of harmonic oscillators,
each with action

Sbulk =

∫ t f

t0
dt

[
q̇2

2
− ω2q2

2

]
. (2.1)

This action is obtained from the quantum-mechanical transition amplitude
∫

DxeiSbulk
= 〈xN, t f |e−iĤ(t f −t0)|x1,t0〉 , Ĥ =

p̂2

2
+ ω2 x̂2

2
, (2.2)

by splitting the intervalt f − t0 into N smaller intervals of length(t f − t0)/N, insertingN−1 complete sets of|x〉 and
N complete sets of|p〉 states, and taking the continuum limitN → ∞. This derivation makes clear that the action
(2.1) has boundary conditionsq(t f ) = xN, q(t0) = x1, and that the endpoints arenot integrated over. Also clear is that
temporal boundaries are quantum-mechanically on a very different footing than spatial boundaries. The latter simply
affect the spatial modefunctions. Temporal boundaries, however, are encoded in the choice of initial and final state. In
Lorentz-invariant field theory the distinction disappearsbut for a technical point regarding reality conditions thatwill
become clear below.

For the free theory, a Gaussian integral, the exact answer for the transition amplitude is easily obtained. One
substitutes the solution to the field equation with boundaryconditionsq(t f ) = xN, q(t0) = x1 into the action. Note
that as the endpoints are not integrated over, the field equation is derived under the condition that the variationδq
vanishes on the boundary,δq(t f ) = 0, δq(ti) = 0. One finds the well-known results (up to normalizations, which we
ignore throughout this section)

qsol1(t) = Deiωt +c.c. , D ≡ xNe−iωt0 −x1e−iωt f

2i sin(ω(t f − t0))
∫

Dx eiSbulk
= exp

[
−ω

(
D2(e2iωt f −e2iωt0)

2
−c.c.

)]

≡ eiSbg,bulk(xN,x1) . (2.3)

Consider now the transition amplitude for a different initial state. In particular let us choose the harmonic oscillator
vacuum|0〉 annihilated by ˆa = 1

2 (i p̂+ ω x̂). This corresponds to the Minkowski space vacuum for the fieldmode with

frequencyω . The transition amplitude〈xN|e−iĤ(t f −t0)|0〉 can be obtained from the standard transition amplitude by the
insertion of a complete set of states

〈xN|e−iĤ(t f −t0)|0〉 =

∫
dx1〈xN|e−iĤ(t f −t0)|x1〉〈x1|0〉 . (2.4)



We can evaluate this expression in two ways. Either we can substitute the harmonic oscillator ground state wave
function〈x1|0〉 ≃ e−ωx2

1/2 and the result (2.3) for the propagator. Performing the remaining Gaussian integral overx1,

∫
dx1eiSbg,bulk(xN,x1)e−

ωx2
1

2 = e−
ωx2

N
2 , (2.5)

the result simply states that|0〉 is the zero energy eigenstate of the (normal-ordered) Hamiltonian. (This is the usual
way one deals with non-trivial initial conditions in QFT.) Or we can again derive a path-integral by splitting the interval
t f − t0 into N smaller intervals, now insertingN complete sets of|x〉 andN complete sets of|p〉 states, and taking the
continuum limitN → ∞. Doing so yields the bulk action (2.1) plus a boundary term

Sbulk+bdy=

∫ t f

t0
dt

[
q̇2

2
− ω2q2

2

]
−κ0

q(t0)2

2
, κ0 = −iω . (2.6)

The answer for the transition amplitude〈xN|e−iĤ(t f −t0)|0〉 ought then follow from solving the field equations for this
action including the boundary term, and substituting the solution back. The extra insertion

∫
dx1|x1〉〈x1| means that

the endpointq(t0) is now integrated over. The fluctuationδq(t0) therefore no longer vanishes and we obtain the field
equations

(
d2

dt2
+ ω2

)
q(t) = 0 , and − d

dt
q(t0)−κ0q(t0) = 0 , (2.7)

plus the implicit boundary conditionq(t f ) = xN.
We encounter a first subtlety. We wrote the action (2.6) in theconventional way suggesting real boundary couplings.

Yet the explicit computation shows thatκ0 ought to be imaginary. The subtlety lies in the reality condition for the
action. A check on the correct reality condition is that the Euclidean path integral is damped. Clearly Wick rotating
the boundary condition (2.7) compensates for the factori, and all equations become manifestly real. The lesson is that
the boundary couplings for spacelike boundaries are imaginary. Still, because the coordinateq(t) is manifestly real,
one has to give a prescription how to deal with the boundary condition (2.7) for imaginaryκ . It is quite obvious that
insisting onq real, i.e.dq/dt(t0) = 0 = q(t0), or insisting that the action remain real,q2 → |q|2, will not reproduce the
known answer (2.5). However, if we simply proceed on the assumption thatκ is real, i.e.

qsol2(t) = A (eiωt +b0e
−iωt) ,

A (eiωt f +b0e
−iωt f ) = xN , b0 = −κ0+ iω

κ0− iω
e2iωt0 , (2.8)

the answer for the background value of the action,

Sbg,bulk+bdy=
iω
2

(
x2

N

(1+be−2iωt f )2
−A

2b2e−2iωt f

)
, (2.9)

precisely reproduces the answer (2.5) forκ0 = −iω (henceb = 0). This is therefore the prescription for dealing with
imaginary boundary couplings: assumeκ is real until the final answer, and only then analytically continue.

In the above example we have, of course, restricted ourselves to free field theory. One can repeat the whole exercise,
however, with the inclusion of a bulk source termiS→ iS+

∫
dtJ(t)q(t) representing interactions. Treating the source

perturbatively, we expand into fluctuationsξ around the background solution,q(t) = qsol(t)+ ξ (t). Integrating the
fluctuations out, we obtain for the action

Sbulk+bdy
κ f ,κ0

(q) =

∫
dt

[
q̇2

2
−ω2q2

2
− iJq

]
+ κ f

q(t f )
2

2
−κ0

q(t0)2

2
, (2.10)

the result

Sbg,bulk+bdy
κ f ,κ0 (J;qsol) = Sbg,bulk+bdy

κ f ,κ0 (0)− i
∫

dtJ(t)qsol(t)

− i
2

∫
dtdt′ J(t)Gκ f ,κ0(t,t

′)J(t ′) . (2.11)



whereGκ f ,κ0(t, t
′) is the Green’s function obeyingddt G(t,t ′)|t=t0 = −κ0G(t0,t ′), d

dt G(t,t ′)|t=t f = −κ f G(t f ,t ′) (see
[12] for details). Note that at endpoints whereq(t) is not integrated over, i.e. whenδq(tend) is constrained to vanish,
ξ (tend) also vanishes. At these points the Green’s functions for thefluctuationsξ therefore obeys Dirichlet boundary
conditions withκend = ∞. For the transition function〈xN|e−iĤ(t f −t0)|x1〉 we thus haveκ f = ∞ = κ0, whereas for the

transition function〈xN|e−iĤ(t f −t0)|0〉 we haveκ f = ∞, κ0 = −iω . Equivalence between the two transistion functions
including bulk sources is thus established if

∫
dx1exp

[
iSbg,bulk+bdy

κ f ,0=∞ (J;qsol1(xN,x1))
]
〈x1|0〉 = exp

[
iSbg,bulk+bdy

κ f =∞,κ0=−iω
(J;qsol2(xN))

]
. (2.12)

The only dependence onx1 is in qsol1(t) (eq. (2.3)). It is an instructive exercise to verify that eq.(2.12) is indeed
true. The prescription to deal with imaginaryκ by analytic continuation to imaginary values in the final correlation
functions, therefore holds for perturbation theory as well.

This example is an explicit manifestion of the fact that (in perturbation theory) all correlation functions are analytic
in the coupling constants. This necessarily includes boundary couplings, which for a fixed time boundary correspond
to initial conditions.

2.2. Boundary field theory and RG flow

The generalization from quantum-mechanical path-integrals to field theory is straightforward. The difference of
course is that in field theory one has to address the infinitiesencountered in the perturbation/loop expansion by
renormalization. We review here, how the boundary action isalso affected by the renormalization procedure.

The study of field theories is primarily concerned with Minkowski backgrounds, with the unique symmetry-
compatible boundary conditions that the fields vanish at infinity.7 Actions which contain explicit boundary interactions,
however, have been studied in the past [17, 18, 19, 20], and are receiving renewed attention (see e.g. [21, 22, 23, 24,
25, 26]). As we have just shown, one can use such boundary interactions to enforce whichever boundary conditions
one wishes. Consider, for example, scalarλ φ4 theory on a semi-infinite space8

Sbulk =

∫

y0≤y<∞
d3xdy− 1

2
(∂µφ)2− m2

2
φ2− λ

4!
φ4 , (2.13)

with the following boundary interactions added

Sboundary=

∮
d3x− µ

2
φ∂nφ − κ

2
φ2 . (2.14)

Here∂n = ∂y is the derivative normal to the boundary. Expanding the action to first order inφ +δφ , we find the usual
equation of motion

δSbulk =
∫

d3xdyδφ
(

�φ −m2φ − λ
3!

φ3
)

, (2.15)

plusthe boundary conditions

δSbound=

∮
d3x − δφ

(
µ +2

2
∂nφ + κφ

)
− µ

2
φ∂nδφ . (2.16)

If we insist that the variationsδφ are arbitrary and do not vanish on the boundary (which would correspond to
imposing Dirichlet boundary conditions), it appears thatµ must vanish for consistency. As we will see shortly,

7 One may alternatively think of Minkowski space field theory as defined on a (infinite volume) torus (“putting it in a box”), which has no boundary
at all. See [12] for details.
8 We choose Lorentzian+ + +− signature throughout the paper. Working with effective actions, we implicitly assume that all results can be
obtained by a Wick rotation from Euclidean space. See the previous section 2.1 for details on the Wick rotation.



however, renormalization can produce counterterms proportional to µ and a more correct point of view is thatφ
can be discontinuously redefined on the boundary [27], together with a redefinition of the couplings which absorbsµ :9

φ(x,y) → φ(x,y)+ αθ (y0−y)φ(x,y0) ,

κ ′ ≡ κ + κ
(

α +
α2

4

)
+ δ (0)

(
α2

2
− µα − µα2

2

)
, α =

2µ
(2− µ)

. (2.17)

This field redefinition can be interpreted as a shift of the boundary value ofφ to the correct saddlepoint.10 That this
is the correct interpretation follows from the fact that we can also treatµ perturbatively as an interaction. A Feynman
diagram computation will then yield an effective action with couplingκ ′.11 After this ‘renormalization’ the boundary
term from partial integration is canonical

δSbound=

∮
d3x− δφ∂nφ −κ ′δφφ (2.18)

which vanishes when

∂nφ = −κ ′φ . (2.19)

We see that the (renormalized) value ofκ determines the boundary condition. Forκ = 0 we have Neumann boundary
conditions, forκ = ±∞ the (particular) Dirichlet boundary conditionφ(x,y0) = 0, and for finiteκ a mixture of the
two. All possible (linear) boundary conditions are recovered. This is comforting as there are no other terms of order
φ2 compatible with the symmetries. In fact, the boundary action Sbound is the most general one we can write down, if
we limit our attention to relevant operators12 and require (for the sake of simplicity) that the action is also invariant
under the bulkZ2 symmetryφ ↔ −φ . Of course, for a second order PDE one needs two boundary conditions. The
other comes from the second boundary of integration. In the example above this isy = ∞. See [12] for details.

RG arguments then tell us, that in a bounded space the terms inthe boundary action, even if they were not present
at the outset, would be generated as counterterms. They are necessary for the consistency of the theory. Let us show
this explicitly. Suppose we start with Neumann boundary conditions:κ initially vanishes. By the method of images,
the Neumann propagator equals13

GN(x1,y1;x2,y2) = −i
∫

d3kxdky

(2π)4

eikx(x1−x2)
(

eiky(y1−y2) +eiky(−y1−y2+2y0)
)

k2
x +k2

y +m2 . (2.20)

We will choose to regulate our theory by multiplying the propagator by a regulating functionF (�/Λ2) =
exp(−k2/Λ2) [28]. This makes the path integral well defined and cleanly separates out the ultraviolet divergences.
The one-loop seagull graph then evaluates to

= 〈φ(x1,y1)φ(x2,y2)〉1−loop

=
−iλ

4
GN(x1,y1;x1,y1)δ 3(x1−x2)δ (y1−y2)

9 Hereθ (y) is the step function, withθ (0) = 1/2 and∂yθ (y) = δ (y). Recall that this distribution is of measure zero, i.e.
∫ ∞

y0
dyθ (y0−y) f (y) = 0.

Of the bulk terms only the kinetic term is therefore affectedby the shift. Also note that
∫ ∞

y0
δ (y−y0) f (y) = 1

2 f (y0).
One can also find a redefinition of the typeφ ′(y) = φ(y)+ αθ (y0− y)φ(y), which is the correct one from the point of view of coarse graining

and the distributional definitions forθ (y) andδ (y). Interestingly, the redefinitions required are the same.
10 When counterterms of the formφ∂nφ are required for renormalization, this shift of the background value forφ is thus a boundary analogue of
the Coleman-Weinberg phenomenon.
11 A perturbative comparison with Feynman diagrams explains the delta function at zero argument [12]. It serves to make alldistributions conform
to the bare boundary condition∂nφ = −κφ .
12 We assume that the initial state encoded by the boundary actionSboundhas no intrinsic size, i.e. a dimensionful scale. We are ultimately interested
in vacuum-like initial conditions in cosmology. This restriction to scale-less initial states is therefore a natural one.
13 Our domain of interesty∈ [y0,∞) is semi-infinite. Henceky is a continuous variable.



=
−λ δ 3

x;1,2δy;1,2

4(2π)4




∫

d4k
e−

k2

Λ2

k2 +m2 +

∫
d3kxdky

eiky(−2y+2y0)− k2

Λ2

k2
x +k2

y +m2



 . (2.21)

The first term is the usual bulkλ φ4 divergence of the two-point function. The second term, however, is a newly
divergent term, and quite obviously a direct consequence ofthe boundary conditions. Evaluating this term in more
detail, we find

〈φφ〉1−loop =
λ δ 3

x;1,2δy;1,2

4(2π)4

(
π5/2Λe

m2

Λ2

)(
Λ√
π

∫ 1

0
dse−sΛ2(y0−y)2− m2

Λ2s

)

∼ λ Λδ 3
x δ (y1−y2)δ (y1−y0)

∣∣
Λ2≫m2 . (2.22)

Note that the new divergence is entirely located on the boundary. The last step utilizes one of the more common
distributional definitions of the Dirac-delta function (before doing the finite integral overs). Recalling the coarse-
graining steps underlying RG-flow, it should come as no surprise that the delta-function localization appears in a
distributional limit. This simply reflects that our spatialresolution decreases under RG-flow, and the precise location
of the boundary becomes fuzzy.

That the divergence is concentrated solely on the boundary (in this distributional sense) is reassuring. Bulk UV-
physics should be unaffected by the presence of a boundary. It is precisely the breaking of Lorentz invariance due to
the presence of the boundary that is responsible for the new divergence. By necessity it must then appear in the same
sector of the theory that was responsible for the symmetry-violation in the first place.

To make the theory finite, we therefore need to add a boundary counterterm of the type14

Scount
bound=

∮

y=y0

d3x ξ 2(m2/Λ2)

(
λ Λ
π3/2

)
φ2 . (2.23)

with ξ (m2/Λ2) chosen such that it cancels the divergence in eq. (2.22). This result is of course expected (in part)
purely on dimensional grounds.

The necessity of this counterterm has serious implications, however. Recalling the results from the first half of this
section, we see that the boundary conditionschangeunder RG-flow. In order to reproduce the same physics in a theory
with a different cut-off, we not only need to change the vertices, but also theboundary conditions. (More precisely, to
maintain a given physical renormalized boundary conditionκren we need to change the bare couplingκ .) Of course,
this counterterm is scheme-dependent. The beta-functionsat one loop on the other hand are scheme-independent, and
we can extract the generic behaviour of the boundary conditions from them. We find that as we change the scale, the
boundary conditions change under RG-flow as

βκ ≡ Λ
∂κ
∂Λ

∣∣∣∣
m2/Λ2fixed

= ξ 2Λ
λ

π3/2
+O(λ 2) . (2.24)

with ξ 2 > 0. This may seem surprising, but it does not go against the lore that boundary conditions are determined
by physical conditions, and not by dynamics. It is worthwhile to repeat that what the RG-scaling of the boundary
conditions says, is that in acut-off theory, under a change of the cut-off, one reproduces the same physics when one
changes the boundary conditions according to eq. (2.24).

2.3. Boundary RG fixed points and ‘vacua’

A natural question to ask is what the endpoints of boundary RG-flow are. The explicit dimensionality of the coupling
κ already betrays the answer. In the deep IR, when|p| ≪ Λ (Λ → ∞ effectively; m = µΛ), κ blows up, and the
boundary conditions tend to the special Dirichlet boundaryconditionφ(x,y0) = 0. Physically this is easily understood
in Wilsonian RG language. The moment the cut-off restricts the momentum scales|p| to be smaller thanm (Λ ∼ m),
all modes freeze out and the theory ceases to be dynamical. Hence the fieldφ ‘vanishes’, and must be Dirichlet.

14 Since the ‘bare’ boundary conditions are Neumann, this is the only type we can add.



Dirichlet conditions thus form a trivial fixed point of RG-flow. This is easily visible. Whenφ strictly vanishes on
the boundary, simply no counterterms are possible. Both terms

∮
φ∂nφ and

∮
φ2 vanish. For completeness, were one to

repeat the computation eq. (2.21) for Dirichlet conditions, the difference is that the propagator now has a relative minus
sign. As a consequence, the bulk divergence cancels the boundary divergence aty = y0. Eq. (2.21) shows this clearly.
In effective field theory the distinction between the fuzzy boundary and the bulk disappears in the deep IR limit, which
explains why we can no longer treat bulk and boundary singularities separately when the boundary conditions become
Dirichlet.

When the boundary is spacelike and represents initial conditions in time, the induced changes in the boundary
conditions due to RG-flow have a natural description in the Hamiltonian language of states. Under coarse graining
the original state gets screened by vacuum polarization. Inthe low-energy effective theory, the correct state to use is
a dressed version of the original state. If we take this picture further, we can deduce the boundary conditions which
correspond to the vacuum. If the vacuum is the ‘empty’ state,then it ought not to become dressed under coarse
graining. Translating back to the Lagrangian language, this means that the corresponding boundary conditions will
not suffer from renormalization. Hence a vacuum in the Hamiltonian language should correspond to a fixed point of
boundary RG-flow.15

2.4. Freedom of choice for the boundary location

What will be of fundamental importance to us, is that the location of the boundary is arbitrary. The introduction of
a boundary action aty0 is a way to encode the initial conditions at the level of the action, but it does not necessarily
mean that there is a physical object or obstruction aty = y0. It is simply a translation of the statement that a second
order PDE needs two boundary conditions, but at what location one imposes those conditions is irrelevant. Of course,
if one imposes the boundary conditions at a different location, they will not in general be of the same form as
the original initial conditions. If one changes the location y0 one must change the value ofκ to keep the physics
unchanged. A symmetry is therefore present between the location y0 andκ .16 To show this explicitly, choose a basis
ϕ+(~k,y), ϕ−(~k,y) = ϕ∗

+(~k,y) for the two independent solutions of the kinetic operator. In terms of this basis, the linear
combination which obeys the boundary condition∂nϕ(y0) = −κϕ(y0) is

ϕbκ (~k,y) ≡ ϕ+(~k,y)+bκ(~k)ϕ−(~k,y) , bκ(~k) = −κϕ+,0+ ∂nϕ+,0

κϕ−,0+ ∂nϕ−,0
, (2.25)

Here the subscript 0 means that the quantity is evaluated at the boundaryy0. Obviously if bκ stays the same, physics
stays the same. This allows us to derive a symmetry relation between the valueκ and the locationy0. Under a constant
shift of the boundaryδϕ = ξ ∂nϕ = ξ ∂yϕ and a simultaneous changeδκ , bκ changes as17

δbκ = −ξ
[

κ∂nϕ+,0 + ∂ 2
n ϕ+,0

κϕ−,0+ ∂ϕ−,0
− κϕ+,0 + ∂nϕ+,0

(κϕ−,0 + ∂nϕ−,0)2 (κ∂nϕ−,0 + ∂ 2
n ϕ−,0)

]

−δκ
[

ϕ+,0

κϕ−,0+ ∂nϕ−,0
− κϕ+,0 + ∂nϕ+,0

(κϕ−,0 + ∂nϕ−,0)2 (ϕ−,0)

]
. (2.26)

Demanding thatδbκ vanishes, one finds the change inκ necessary to keep physics unchanged under a change of the
location of the boundary. This shows explicitly that this location is arbitrary.

2.5. Minkowski space boundary conditions

Minkowski space formally does not have a boundary of course.The arbitrariness of the location of the boundary,
however, suggests that we should be able to treat it in a similar way. This is not quite manifest because, to stay within

15 Presumably this is a UV-fixed point. Exciting the vacuum to a state, i.e. deforming away from the fixed point, reinstates RG-flow. The excitation,
however, should not disappear in the deep IR. Hence the dressing of the state due to coarse graining leads one away from thevacuum. Of course to
study boundary RG-flow, one needs an interacting theory. Anystate in a free theory is a trivial fixed point of boundary RG-flow.
16 This is not a true symmetry of the action. Because the coupling constantκ changes, it is an isomorphism between families of theories.This is
analogous to general coordinate invariance of the target space manifold in non-linear sigma models.
17 Note thatbκ depends on the basis choiceϕ±, butκ does not.



the framework of effective field theory,κ must remain an analytic dimension one operator in the spatial momenta.
The symmetry (2.26) is subject to this condition. The harmonic oscillator boundary conditions, constructed here to
yield physics equivalent to unbounded Minkowski space physics, will be consistent with this requirement. To find
these conditions suppose the boundary is a fixed time slice. We can then take a cue from the Hamiltonian formalism.
Minkowski boundary conditions should correspond to choosing the standard Minkowski vacuum in the Hamiltonian
picture. By definition this is the state annihilated by the lowering operator of each spatial momentum mode~kx (in the
free theory).

â~k|0〉 = 0 ⇔
(

π̂~k− iω(~k,m)φ̂~k

)
|0〉 = 0 , ω(~k,m) =

√
~k2 +m2 . (2.27)

The canonical momentum conjugate toπk = ∂0φk is precisely the normal derivative to the fixed time slice. This
suggests that we should choose the spatial momentum dependent boundary conditions [29]

∂nφ |y=y0 = i

√
~k2 +m2φ |y=y0 −→ κ = −i

√
~k2 +m2 . (2.28)

This boundary condition descends from the ‘higher derivative’ operator
∮

φ
√

∂ 2
i −m2φ . But, asκ has canonical

dimension one, there is no new scale associated with this higher derivative term. Note thatκ is purely imaginary. We
recall from section 2.1 that this is a consequence of imposing the boundary condition at a fixed time. Wick rotating from
a spatial boundary with realκ generates a factor ofi in the boundary condition∂φ = −κφ . All correlation functions
will be analytic in the boundary couplingκ , as is usual in effective field theory, and we are therefore instructed to treat
κ as real throughout all steps of the calculation, substituting its imaginary value only at the end.

This momentum dependent choice of boundary conditions indeed ensures that the theory reproduces Minkowski
space dynamics. For an arbitraryκ the Green’s function is (see eq. (2.25), and recall thaty parametrizes a timelike
direction)

Gκ(x1,y1;x2,y2) = −i
∫

d3~kdky

(2π)4

ei~k(x1−x2)
(

eiky(y1−y2) +
iky+κ
iky−κ eik(−y1−y2+2y0)

)

~k2−k2
y +m2− iε

, (2.29)

where we have included theiε term. The second term, at first sight, negates equivalence with the Minkowski propagator

GMink = −i
∫

d3~kdky

(2π)4

ei~k(x1−x2)+iky(y1−y2)

~k2−k2
y +m2− iε

, (2.30)

The coefficientκ , however, is precisely chosen such that on shell the second term vanishes.18 By unitarity, the theory
with κ = −iω(~k,m) is then the same as the Minkowski space theory. We can see thisexplicitly by performing the
integral overky. Doing so returns the standard Minkowski propagator in Hamiltonian form

G(x1,y1;x2,y2) =

∫
d3k

(2π)3

ei~k(~x1−~x2)−iω(~k,m)(y1−y2)

2ω
θ (y1−y2)+ (y2 ↔ y1) , (2.31)

which shows that the second term really is spurious. Indeed,this choice ofκ removes the pole in the second term,
which means its contribution to any physical quantity disappears.

We still have an official boundary aty0 of course, even though the specific boundary conditions (2.28) ensure that it
has no effect on physical amplitudes. The situation described here, is familiar from electrodynamics.19 We have chosen
an interface aty0 where the dielectric properties happen to be the same for both materials. The transmission coefficient
is therefore 100% and the wavefunction behaves as if the interface is not there, i.e. the interface is completely
transparent.

18 The second term only vanishes for the domainθ (y1 +y2−2y0). Since our domain of interest isy > y0, this is always true.
19 Except that this boundary is spacelike, which is why we can infact relate it to a choice of initial state.



2.5.1. Minkowski boundary conditions and RG-flow

Classical physics is indeed insensitive to a completely transparent interface. Is the quantum physics as well? In other
words does the fact that the off-shell propagators appear todiffer become relevant at the loop level? The answer is
obviously no in perturbation theory. The cancellation of the pole by the specific ‘Minkowski’ choice forκ means that
in any integral the contribution of the second term vanishes. Hence the Minkowski boundary conditions do not get
renormalized. They are a fixed point of boundary RG-flow exactly as befits the boundary conditions corresponding to
a true vacuum. The reason why this is so is clear. The choiceκMink = −iω(~k,m) is precisely the one that restores the
Lorentz symmetry naively broken by the introduction of a boundary. Counterterms are forbidden to appear for they
would break the reinstated Lorentz symmetry.

2.6. Wilsonian RG-flow and irrelevant operators

Quite generically therefore the boundary conditions of a quantum field theory are affected by RG flow, unless
they are protected by a symmetry. Integrating out high energy degrees of freedom necessitates a change in boundary
conditions to reproduce the same physics in a low-energy effective description of the theory. Decoupling then ensures
that the low-energy theory remains predictive: the effectsof high-energy physics are primarily encoded in a small set
of relevant operators with universal scaling behaviour independent of the details of the high-energy theory. Subleading
corrections of an energy expansion are by definition captured by irrelevant operators. These encode the specifics of the
high-energy completion of the theory.

One of our best hopes to detect the properties of high energy physics beyond the Planck scale is in a cosmological
setting. The tremendous cosmological redshift during inflation may bring the consequences of such irrelevant operators
within reach of experimental measurements. This exciting opportunity has been a preeminent question in recent
literature. In section 4 we shall show that the irrelevant boundary operators discussed in this subsection are responsible
for the leading effects of high-energy physics in cosmology, appearing generically at orderH/MPlanck. The leading
irrelevant operators for the bulk theory have long been known and their consequences for cosmological measurements
are discussed in [4]. However, it is well known that quantum field theory in cosmological settings suffers from
a vacuum choice ambiguity. In the Lagrangian language this corresponds to a choice of boundary conditions. As
we have just seen, we can parametrize this ambiguity in the cosmological vacuum choice by adding an arbitrary
boundary action

∮
κφ2. Whichever the value ofκ may be, the influence of high-energy physics will be encoded in

the irrelevant corrections to the boundary action. For thatreason, we devote this section to a determination of the
leading irrelevant operators on the boundary. Earlier studies have indeed indicated it is only (irrelevant) changes in
the boundary condition which can have observable effects inmeasurements. Due to the symmetry constraints on the
action the consequences of bulk irrelevant operators are just too small to be detectable. Our aim here is to provide a
solid foundation for these earlier results.

One can make a straightforward guess as to what the leading boundary irrelevant operators are, insisting on locality,
compatibility with theZ2 symmetry, andSO(3) rotational invariance on the boundary.20 They are the dimension four
operators:

∮

y=y0

d3x φ4 ,

∮

y=y0

d3x ∂ iφ∂iφ ,

∮

y=y0

d3x ∂nφ∂nφ ,

∮

y=y0

d3x φ∂n∂nφ . (2.32)

Note that the breaking of Lorentz invariance on the boundarydistinguishes normal and tangential derivatives, and
that normal derivatives cannot be integrated by parts. Varying φ infinitesimally, the latter two will generate normal
derivatives on the variation∂nδφ . To restore the applicability of the calculus of variations, one needs to perform a
discontinuous field redefinition and adjustment of the couplings similar to (2.17). (For the interested reader, we do so
in [12].) In this sense, all physics can be captured by the first two irrelevant operators. However, for tractability we will
treat all four operators perturbatively and on the same footing. We will see in section 4 that these operators will lead to
corrections of orderH/MPlanck to inflationary density perturbations, as predicted by the studies [2]. Here we will give
an explicit example where high-energy physics induces two of these dimension four irrelevant boundary operators.

20 These symmetry constraints follow from the assumption thatthe initial state has no intrinsic dimensionful parameter.See footnote 12.



Tree-level diagrams exchanging a heavy field are the naturalcandidates for producing higher derivative corrections
under RG-flow. We therefore add a scalarχ to the theory with massMχ ≥Λ, to represent the high energy sector whose
influence we will deduce. The only communication between thefield χ andφ will be through the ‘flavor-mixing’ bulk
and boundary couplings

Sint
high = −

∫
d3xdy gχφ −

∮
d3x γχφ , (2.33)

and χ will have no other bulk or boundary (self)-interactions. Because the mass ofχ is higher than the cut-off, it
will not appear as a final state, and in this simple model we canintegrate it out explicitly. Its influence on the low-
energy effectiveλ φ4 theory is only through tree-level mass oscillation graphs and a boundary reflection. Treating the
couplingsg andγ as perturbations — hence the propagator forχ will have Neumann boundary conditions — consider
the tree level correction to〈φφ〉 represented by the following Feynman diagram and its effective replacement.

=⇒
(2.34)

Here wiggled lines denote the heavy fieldχ , solid lines the light fieldφ ; the shaded region denotes the boundary, and
the dashed line the insertion of aγ-vertex. This diagram is easily evaluated to

〈φ(x1,y1)φ(x2,y2)〉χ−e f f ect = −2gγGN(x1,y1;x2,y0)δ (y2−y0)

=
2igγδ (y2−y0)

(2π)4



∫

d4k
eikx(x1−x2)+iky(y1−y0)− k2

Λ2

k2 +M2
χ


 . (2.35)

Approximating the denominator in the standard way by a geometric series valid forM2
χ ≫ Λ2,

〈φφ〉χ =
2igγδy2−y0

M2
χ(2π)4

∞

∑
n=0

[∫
d4k

(
−k2

M2
χ

)n

eikx(x1−x2)+iky(y1−y0)− k2

Λ2

]
, (2.36)

we extract theky dependence in the second term as a derivative to find21

〈φφ〉χ =
2igγδy2−y0

M2
χ(2π)4

∞

∑
n=0

[(
�1

M2
χ

)n∫
d4keikx(x1−x2)+iky(y1−y0)− k2

Λ2

]

=
2igγδy2−y0

M2
χ(2π)4

∞

∑
n=0

[(
�1

M2
χ

)n

Λ4π2e−Λ2 (x1−x2)2

4 −Λ2 (y1−y0)2

4

]
. (2.37)

Now recall that the projection onto the boundary of bulk terms appears as a distribution with resolutionΛ. In this
sense the above term contains the delta functionΛ

2
√

π e−Λ2(y−y0)2/4. Up to this resolution the above expression is thus
equivalent to

〈φφ〉χ =
2igγδy2−y0

M2
χ

∞

∑
n=0

[(
�1

M2
χ

)n

δ 3
Λ(x1−x2)δΛ(y1−y0)

]
. (2.38)

Hence we see explicitly the resultant higher derivative boundary interactions in theφ low-energy effective action. The
above results correspond to the vertices

Se f f =

∮
d3x

gγ
M4

χ

[
∂iφ∂ iφ −φ∂n∂nφ

]
+O((∂/M)4) . (2.39)

21 Note that these results are not inconsistent with our earlier calculation (2.22). There we evaluate the answer in the approximationΛ≫m. Here we
approximateΛ≪Mχ . The exact intermediate answer obtained in eq. (2.22) is non-perturbative inΛ/M. This is why we approximate the momentum
integral forMχ ≫ Λ in the standard way.



This supports the naive integrating out ofχ after a shiftχ → χ −g(�+M2)−1φ as argued in section 1.1. The terms
arising from the boundary term

∮
γχφ under this shift precisely reproduce the higher derivativeterms (2.39).

Note the similarity between the expression (2.35) and the image-charge term in the seagull-graph (2.21). We see
therefore that a similar set of higher derivative corrections can arise fromloop-diagrams in aχφ theory with only the
bulk interaction

Sint
high =

∫
d3xdy− g̃χ2φ2 . (2.40)

This is the hybrid inflation inspired model, considered before in the context of decoupling in FRW-spacetimes [10].
The seagull diagram responsible for the higher-derivativecorrections is a direct copy of eq. (2.21) only to be evaluated
in the limit Mχ ≫ Λ rather thanmφ ≪ Λ.

= 〈φ(x1,y1)φ(x2,y2)〉χ−e f f ect

= −ig̃GN(x1,y1;x1,y1)δ 3(x1−x2)δ (y1−y2)

=
−g̃δ 3

x;1,2δy;1,2

(2π)4



∫

d4k
e−

k2

Λ2

k2 +M2
χ

+
∫

d3kxdky
eiky(−2y+2y0)− k2

Λ2

k2
x +k2

y +M2
χ


 . (2.41)

Repeating the geometric series expansion ink2/M2
χ ,

〈φφ〉χ =
−g̃δ 3

x;1,2δy;1,2

M2
χ(2π)4 ×

∞

∑
n=0

[∫
d4k

(
−k2

M2
χ

)n

e−
k2

Λ2 +
∫

d3kxdky

(
−k2

x −k2
y

M2
χ

)n

eiky(−2y+2y0)− k2

Λ2

]
. (2.42)

we see that we can extract theky dependence in the second term as a derivative. Thex dependence along the boundary
and the full bulk term give purely local corrections as expected from loop graphs. Though this non-localy-dependence
is counterintuitive, the physical reason is easily identified. It is the interaction with the image charge. We find

〈φφ〉χ =

= bulk+
−g̃δ 3

x;1,2δy;1,2

M2
χ(2π)4

[
∞

∑
n=0

n

∑
p=0

(
n
p

)( ∂ 2
y

M2
χ

)p∫
d3kxdky

(
−k2

x

M2
χ

)n−p

eiky(−2y+2y0)− k2

Λ2

]

= bulk+
−g̃δ 3

x;1,2δy;1,2Λ3

M2
χ(2π)4

[
∞

∑
n=0

n

∑
p=0

αn−p

(
n
p

)( ∂ 2
y

M2
χ

)p∫
dkye

iky(−2y+2y0)−
k2
y

Λ2

]

= bulk+
−g̃δ 3

x;1,2δy;1,2Λ3π1/2

M2
χ(2π)4

[
∞

∑
n=0

n

∑
p=0

αn−p

(
n
p

)( ∂ 2
y

M2
χ

)p

Λe−Λ2(y−y0)
2

]
. (2.43)

whereαn = 2π3/2(−2)n+1(2n+1)!!. In the distributional sense this is therefore equal to

〈φφ〉χ = bulk+
−g̃Λ3

M2
χ

[
∞

∑
p=0

ζp
∂ 2p

y

M2p
χ

δ (y−y0)

]
. (2.44)

whereζp can be read off from (2.43). The bulk one-loopχ-diagrams therefore gives rise to the higher-derivative
irrelevant corrections on the boundary

Se f f = ∑
p

∮
d3x

g̃βpΛ3

M2
χ

φ

(
∂ 2p

n

M2p
χ

)
φ . (2.45)



This result shows that the boundary irrelevant operators will generically not appear in the combination
∮

∂iφ∂iφ −
φ∂ 2

n φ . This is a direct consequence of the fact that the boundary breaks Lorentz invariance. Examples which generate
the other two irrelevant operators are easily found. The model just discussed will also generate

∮
φ4 terms. A non-linear

sigma model will naturally have
∮

∂nφ∂nφ corrections.

2.6.1. Minkowski space boundary conditions and irrelevantoperators

An important question therefore is how generic the occurrence of irrelevant corrections is. In particular do fixed
points of boundary RG-flow, e.g. the Minkowski boundary conditions or other ‘vacua’, still receive irrelevant correc-
tions? RG principles tell us that we should expect them. Justbecause we are at a fixed point of RG-flow, does not mean
that irrelevant operators encoding a high-energy sector are forbidden. In the context of boundary RG-flow, the con-
nection between boundary conditions and ‘vacua’, makes this statement somewhat surprising. In Minkowski space in
particular we do not expect that integrating out a high-energy sector would change the vacuum state in the low-energy
effective theory even at the irrelevant level.22 Both the general RG principles and the intuition that in Minkowski space
high energy physics should not change the low-energy boundary conditions are true, as we will now illustrate. The
first point is evident from the two scalar theory at the beginning of this section with the interactions given in (2.33).
Integrating out theχ field exactly, clearly gives rise to the following irrelevant contributions to the low-energy effective
theory forφ .

Sint
low−energy =

1
2

∫
d3xdy−φ(g+ γδ (y−y0))(�bcχ −M2

χ)−1(g+ γδ (y−y0))φ

= bulk+
∞

∑
n=0

1
2

∮
2γg
M2

χ
φ

(
�bcχ

M2
χ

)n

φ +
γ2

M2
χ

φ

(
�bcχ

M2
χ

)n

δ (0)φ . (2.46)

Here�bcχ should be interpreted as acting on a complete set of eigenfunctions with the boundary conditions∂nχ =

−κχ that belong to the massive fieldχ . To address the formal divergence of the delta function at its origin,δ (0),
recall first that in a cut-off theory, as we are considering, all distributions become smeared on the scale of the cut-off.
Theδ (0) in the second term is therefore proportional toMχ purely on dimensional grounds. Our cut-off scheme eq.

(2.22) indicates thatδ (x) = limΛ→∞ π−1/2Λe−Λ2x2
, δ (0) = Mπ−1/2. This regularization only postpones the problem,

however. In [12] we perform a computation, which indicates that theδ (0) term arising from discontinuous field
redefinitions does not explicitly appear in bulk correlation funcions. Its sole function is to generalize all distributions
so that they obey the correct boundary conditions∂n f (y) = −κ f (y).

Consistent with the principles of decoupling, we see that whatever boundary conditions we choose forφ including
fixed points of RG flow, the boundary action will receive irrelevant corrections. How can this possibly square with
the idea that Minkowski space high energy physics should notcorrect the vacuum choice, i.e. the Minkowski space
boundary conditions ofφ? In this simple model it is fairly easy to see that the boundary conditions ofφ change, because
the massive fieldχ does not have Minkowski space boundary conditions. Whenχ is integrated out, this reverberates in
the low energy effective boundary action forφ . A naive way to see thatχ is not at a fixed point of boundary RG-flow,
is to note that the full boundary condition forχ reads∂nχ = −κχ − γφ . The explicit dependence onφ perturbs one
away from aχ-sector fixed pointκ f ixed. To consider a fixed point in theχ-sector alone is inconsistent of course; the
full χ-φ dynamics needs to be taken into account. But an exact answer,possible because the theory is exactly solvable,
shows that this naive guess is qualitatively correct. The exact answer is obtained by diagonalizing the theory to two
fieldsΦ1 andΦ2 with action

Sbulk =
1
2

∫
d3xdyΦ1

(
�−M2

χ +
g2

4M2
∆

)
Φ1 + Φ2

(
�−m2

φ +
g2

4M2
∆

)
Φ2 +O(g3) ,

Sbound =
1
2

∮
d3x Φ1

(
2gγ
M2

∆
+

γ2δ (0)

M2
∆

)
Φ1−Φ2

(
2gγ
M2

∆
+

γ2δ (0)

M2
∆

)
Φ2 +O(γ3,gγ2,g2γ) ,

M2
∆ = M2

χ −m2
φ . (2.47)

22 We thank Jim Cline for emphasizing this point.



If we tuneγ andg such that one of the two fields has Minkowski boundary conditionsκΦ2 =−iω(~k,MΦ2), we see that
the difference in massesMΦ1 ∼ Mχ andMΦ2 ∼ mφ prevents the other from obeying Minkowski boundary conditions.

At a very fundamental level these results are easily understood. Recall that the Minkowski boundary conditions are
the only boundary conditions respecting Lorentz invariance; this is what guarantees that the values of the boundary
couplings correspond to a fixed point. The explicit boundaryinteraction

∮ −γχφ ≃− 1
2

∫
δ (y−y0)γχφ breaks Lorentz

invariance, however. In the diagonal system withΦ1, Φ2, the Lorentz invariance is broken because one of the two fields
does not obey Minkowski boundary conditions.

We have only shown that irrelevant operators will generically appear in a situation where a field in the high energy
sector is not in the Minkowski vacuum. Lorentz symmetry should guarantee the converse: that if all massive fields obey
Minkowski boundary conditions, no boundary RG-flow or boundary irrelevant operators can appear. Importantly, in
the setting of interest to us, FRW cosmology, Lorentz invariance is absent. It is therefore not clear that cosmological
boundary conditions, to which we turn now, are similarly protected from RG-flow and irrelevant contributions from
high energy physics. Strictly applying the RG principles, we shouldnotexpect them to be protected.

3. BOUNDARY CONDITIONS IN COSMOLOGICAL EFFECTIVE LAGRANGI ANS

We have seen that:

(1) a boundary action can encode the boundary conditions onewishes to impose on the fields.
(2) This holds in full generality. The boundary need not correspond to a physical obstruction or object. Completely

transparent boundary conditions exist that mimick the situation as if there is no boundary. Introducing a boundary
action to account for initial conditions therefore places no additional constraints on the theory.

(3) Generically the boundary conditions will be affected byRG flow, and suffer irrelevant corrections that are
controlled by the high energy physics.

We now use this knowledge to describe FRW cosmologies from a Lagrangian point of view. The main issue in the
Hamiltonian description of FRW cosmologies is that of vacuum selection. In the absence of a global time-like Killing
vector or asymptotic flatness, there is no unique vacuum state. There are two preferred candidates, the Bunch-Davies
and the set of adiabatic vacuum states, which we review below, but some uncertainty remains. Both states, in fact, rely
on an asymptotic condition which ceases to be valid in the presence of a finite Planck scale. We wish to emphasize,
however, that whichever state is the true one, points (1) and(2) above tell us that we can account for this state by the
introduction of a specific boundary condition at an arbitrary time t0.

Our lack of knowledge of the specifics of the very early universe and the high energy degrees of freedom dominating
at that time rather suggests to encode the initial state uncertainty in a ‘past boundary’ for any cosmological theory.
With the boundary comes the Lagrangian translation of the vacuum choice ambiguity: what boundary conditions to
impose? We will not give an answer to this long-standing question. We will show, however, that whatever (local
relevant) boundary conditions one chooses, they are consistent in the sense that the backreaction is under control. The
countertermsappropriate to the boundary conditions specifiedthat are necessary to render the Minkowski stress-tensor
finite, do so in cosmological setting as well. This confirms the intuition that the boundary conditions do not affect UV-
physics. And this continues to hold for any choice of cosmological initial conditions. This may come as a surprise.
The Hadamard condition — that at short distances the two-point correlation function is the appropriate power of the
geodesic distanceσ(x1,x2)

d−2 — has long been thought to be a consistency requirement for cosmological boundary
conditions. Only these correlation functions permit ‘renormalization’ by the standard Minkowski stress tensor. The
lesson from section 2, however, is that other short distancebehavior does not necessarily signal an inconsistency, but
instead implies that the ‘boundary conditions’ need to be renormalized as well. This returns to the front the question
which boundary conditions describe the physics of the real world, butnonethat can be deduced from local relevant
boundary interactions are intrinsically inconsistent. This is the power of the effective Lagrangian point of view.

Suppose for now that all choices for boundary conditions on the initial surface of an FRW universe are indeed consis-
tent. Compared to Minkowski spacetime there is a new ingredient. The boundary condition needs to be covariantized.
This is done by the introduction of a unit vectornµ normal to the boundary.

∂nφ ≡ nµ∂µφ = 0 , |gµνnµnν | = 1. (3.1)

In the conformal frame,

ds2
FRW = a2(η)(−dη2 +dx2

d−1), (3.2)



the unit normal vector to the boundary scales asa−1. Hence the boundary condition reads

1
a

∂η φ |η=η0 = −κφ |η=η0 . (3.3)

The explicit dependence on the scale factora simply reflects that momenta redshift under cosmic expansion.23 To
construct the two-point correlation function for a massivescalarφ that satisfies this boundary condition, we need the
equation of motion in an FRW background. For simplicity we will assume that this background is pure de Sitter;
the results below generalize straightforwardly to power-law inflation and are therefore truly generic. The equation of
motion is

1√−g
∂µ

√−ggµν∂νφ(x,η)−m2φ(x,η) = 0 ,

⇒
(

1
a2 ∂ 2

η +(d−2)
a′

a3∂η +
~k2

a2 +m2

)
φ(~k,η) = 0 . (3.4)

In the second step we Fourier transformed the spatial directions. Substituting the constant de Sitter Hubble radius
a−2a′ = H, the explicit scale factora=−1/Hη and making the conventional redefinitionη =−y/~k, we have a Bessel
equation forφ̃ ≡ y−(d−1)/2φ :

(
y2∂ 2

y +y∂y +y2+
m2

H2 −
(d−1)2

4

)
φ̃(~k,y) = 0 . (3.5)

The most general solution to the field equation is therefore

ϕbκ (~k,η) = ϕdS,+ +bκϕdS,−

ϕdS,+ ≡ (−~kη)(d−1)/2
√

π
4~k

(
H
~k

) d−2
2

Hν(−~kη) , ν =

√
(d−1)2

4
− m2

H2 , (3.6)

with Hν(y) the Hankel function satisfying eq.(3.5). The normalization and convention is such that in the limit~k→ ∞
we recover the Minkowski space solutions. The boundary conditions (3.3) determineb, as in eq. (2.25).

By construction the Green’s function is given by24

Gκ f ,κ(~k1,η1;~k2,η2) = (2π)3δ 3(~k1 +~k2)Nκ f ,κ

(
ϕbκ f

(~k1,η1)ϕbκ (~k2,η2)θ (η1−η2)

+ϕbκ (~k1,η1)ϕbκ f
(~k2,η2)θ (η2−η1)

)
, (3.7)

where κ f characterizes the future boundary conditions aty = ∞. The normalizationNκ f ,κ is chosen such that

(�−m2)G = iδ d/
√−g. This requires that

Nκ f ,κ ϕbκ (~k,η)
↔
∂η ϕbκ f

(~k,η) = −ia2−d(η) = −i(−Hη)d−2 . (3.8)

23 Realizing that cosmological scaling induces RG-flow we manifestly see the previous claim that Dirichlet conditions aretrivial IR-fixed points.
24 A ‘covariant’ Green’s function is given by

Gκ f ,κ(~k1,η1;~k2,η2) = (2π)3δ 3(~k1 +~k2)

trunc(κ f )

∑
n

µ(n)
φbκ ,n(η1)φbκ ,n(η2)

H2n2−m2 +H2(d−1)2/4
.

whereκ f characterizes the future boundary condition atη = ∞ andµ(n) is an easily determined measure. From this expression it is clear that the
delta function therefore also obeys the boundary condition. Indeed the delta function is best viewed as a completeness relation for eigenfunctions
of the Laplacian�ϕk = −k2ϕ obeyinga−1

0 ∂η ϕk|η0 = −κϕk|η0 , i.e.

δκ(η1−η2) = ∑
n

µ(n)φb,n(η1)ϕb,n(η2)



We find that

Nκ f ,κ =
1

(1−bκ f bκ)
. (3.9)

From here on we will again restrict our attention tod = 4 spacetime dimensions.

3.1. Harmonic oscillator and shortest length boundary conditions

A special set of boundary conditions are the covariantization of the completely transparent “Minkowski” boundary
conditions of eq. (2.27). We will call these “harmonic oscillator” boundary conditions. Recall that these correspond to

the boundary action
∮

φ
√

∂ 2
i −m2φ . Covariance requires that the scale factor should enter here as well. We thus find

that thecosmologicalharmonic oscillator boundary condition is characterized by

κHO = −i

√
~k2

a2
0

+m2 . (3.10)

For the specific momentum dependent choice of boundary location ηSL
0 (~k) = −Λ/H|~k| or equivalentlya0 = |~k|/Λ,

these boundary conditions correspond to aconstantvalue for the physical parameterb. They are therefore the boundary
conditions proposed in [2, 9]. Underlying this inspired choice is the thought that in a cosmological theory there is an
‘earliest time’, where a physical momentump≡~k/a(η) reaches the cut-off scale (the shortest length). Whether there
is truly an earliest time in cosmological theories is an interesting question in its own right. It would be the natural
location for the boundary action, but as a consequence of thesymmetry between boundary locationη0 and couplingκ
exposed in section 2.4, it is not directly relevant to us. Indeed it is easy to see that a momentum-independent coupling
κHO at ηSL

0 (~k) = −Λ/H|~k| is equivalent to a boundary action on a standard time-sliceη ′
0 with momentum-dependent

couplingκSL

κSL = −∂φ+(η ′
0)+bSL∂φ−(η ′

0)

φ+(η ′
0)+bSLφ−(η ′

0)
, bSL = −κHOφ+(ηSL

0 )+ ∂φ+(ηSL
0 )

κHOφ−(ηSL
0 )+ ∂φ−(ηSL

0 )
. (3.11)

In the limit Λ → ∞ we recover the harmonic oscillator vacuum atη =−∞. The couplingκ ′ encodes these harmonic
oscillator boundary conditions atη0 = −∞ in terms of conditions atη ′

0 pluscorrections that vanish asΛ → ∞. As we
have seen in the previous section and will discuss in detail in the next, these corrections therefore correspond to the
introduction ofspecific irrelevantboundary operators.

3.2. The Bunch-Davies and adiabatic boundary conditions

In universes without a global timelike Killing vector, there is no clear concept of the vacuum as a lowest energy
state. Particle number is also not conserved and one cannot unambiguously define an ‘empty’ state either. Instead one
must specify a particular in-state characterizing the initial conditions. Two solutions to this vacuum choice ambiguity
have become preferred. One is the Bunch-Davies vacuum, which is indirectly constructed by requiring that for high
momenta~k/a ≫ H the Green’s function reduces to the Minkowski one. The second corresponds to the set of (n-th
order) adiabatic vacua, which is constructed by the requirement that the number operator on the vacuum changes as
slowly as possible [13, 30].25 For de Sitter space the infinite order vacuum and the Bunch-Davies one are the same;
we shall therefore only discuss the latter.

The boundary conditions corresponding to the Bunch-Daviesvacuum are readily found. In the basis (3.6) we have
chosen, the Bunch-Davies-state corresponds to choosingb = 0, and hence

κBD = −∂nϕdS,+,0

ϕdS,+,0
. (3.12)

25 Referring to our earlier comment, we see why the definitions of the BD and adiabatic state become ambiguous in the presenceof a finite Planck
scale. For the former the strict high~k limit does not exist (~k/a ≤ MPlanck). For the latter the adiabaticity parameter (roughlyaH/~k) is no longer
arbitrarily small.



Note that the Bunch-Davies boundary conditions are the analogues of the Minkowski boundary conditions in a
mathematical sense only. The flat space Minkowski boundary conditions in eq. (2.28) are easily recognized as
κ f lat−space

Mink = −∂nϕMink,+,0/ϕMink,+,0 with ϕMink,± ≃ e±iωt . Using the Bessel function recursion relation

∂yHν (y) =
ν
y

Hν (y)−Hν+1 , (3.13)

and the chain rule∂η = −~k∂y (recall that∂n = a−1∂η ) a straightforward calculation yields

κBD = −
~k
a0

(
Hν+1(−~kη0)

Hν (−~kη0)
+

(d−1)+2ν
2~kη0

)

= −
~k
a0

(
Hν+1(−~kη0)

Hν (−~kη0)

)
+H

(d−1)+2ν
2

. (3.14)

Knowing the asymptotes of the Hankel functions

z→ 0 : Hν(z) ∼−i
1

sin(νπ)Γ(1−ν)

(
2
z

)ν
= −i

Γ(ν)

π

(
2
z

)ν
, (3.15)

z→ ∞ : Hν(z) ∼
√

2
πz

ei(z− 1
2νπ− 1

4π) , (3.16)

we see that forη0 →−∞ the Bunch-Davies boundary condition reduces to harmonic oscillator boundary conditions

κBD ≃ −|~k|
a0

(
e

iπ
2

)
+H

(d−1)+2ν
2

≃ −i
|~k|
a0

(3.17)

of a massless field. (One cannot say that the boundary conditions tend to Dirichlet, the diverginga0 is compensated
by the normal vector, see eq. (3.3).) The mass correction is subleading in this limit. We should keep in mind though
that this is a formal expression. Atη0 = −∞ the induced boundary volume vanishes, and boundary conditions cannot
easily be accounted for in terms of a boundary action.

3.3. Transparent, thermal, adiabatic boundary conditions; fixed points of boundary RG
flow?

The most natural choice for the boundary conditions are arguably the ones which are transparent. If there is no real
interface at the boundary locationy0, no physical effects of its location should be noticeable. To define transparency
we need a notion of incoming and outgoing waves. A clean definition of such waves only exists in asymptotically
flat spaces. Suppose one establishes these and let us call theincoming wave (from the past)ϕ− and the outgoing
ϕ+. The transparent boundary conditions are then those withbκ = 0. Of course de Sitter space is not asymptotically
flat, but based on the asymptotic behavior of the Bessel functions, one can argue that the basis functionsϕdS,− and
ϕdS,+ defined in (3.6) correspond to in- and out-going waves respectively. In that sense the Bunch-Davies boundary
conditions are the transparent ones.

A definition which is more intrinsic to de Sitter is that the Bunch-Davies boundary conditions are the thermal
boundary conditions. This emphasizes the existence of a cosmological horizon, and is probably tied to the notion of
transparency. From the Lagrangian point of view the true vacuum should be a (UV) fixed point of boundary RG-
flow. In the presence of a global timelike Killing vector witha conserved quantum number∂tφ = iEφ such a fixed
point is easily constructed following the Minkowski space example in section 2.5. In cosmological spacetimes it is
not clear what the fixed points of boundary RG-flow are or whether there are any. The absence of a unique vacuum
suggests that there may be none. If we recall that cosmological expansion induces RG-flow, the definition of the
adiabatic vacuum, i.e. that the number operator on the vacuum change as slowly as possible, becomes very interesting.
It would be worthwhile to investigate these connections between the transparent (i.e. Bunch-Davies), the thermal, and
the adiabatic vacuum in FRW backgrounds and fixed points of boundary RG-flow further.



3.4. Backreaction and renormalizability for arbitrary bou ndary conditions

We shall now make a crucial point. Any cosmological boundaryconditionκ , provided it is a dimension-one analytic
function of the spatial momenta, is consistent in the sense that backreaction is under control. The divergences appearing
in the stress tensor must, of course, be regulated by the flat space counterterms of thesametheory. This includes the
boundary counterterms for

∮
κφ2 and

∮
µφ∂nφ . Our review in section 2 has made this clear. In a rather coarse fashion

we can also see this directly from the FRW Green’s function inthe limit of high (spatial) momentum — in as far as
this limit exists in a cut-off theory. Using the asymptotic values of the Hankel functions, the basis functionsφ±,dS(~k,η)
tend to massless Minkowski ones (the mass is negligible in the high momentum limit)

~k→ ∞ : φ±,dS(~k,η) ≃ 1√
2~k

e±i~kη

a
=

φ±,Mink(~k,η)

a
. (3.18)

The coefficientb encoding the effective boundary conditions for high-momentum modes therefore does not vanish,
but reads

b = −κφ+,Mink,0 +a−1
0 ∂η φ+,Mink,0−Hφ+,Mink,0

κφ−,Mink,0 +a−1
0 ∂η φ−,Mink,0−Hφ−,Mink,0

= −a0κ + i|~k|+a0H

a0κ − i|~k|+a0H
e2i|~k|η0 . (3.19)

The last terms in the numerator and the denominator are negligible in this limit |~k| ≫ aH. They are remnants of the
fact that the background breaks Lorentz invariance. The coefficientb thus does not vanish in the high momentum limit.
Because a non-zerob means that there will be divergences in the theoryasidefrom the ‘Minkowski’-space divergences,
it appears that any choice of boundary conditions withb 6= 0 is in trouble. In section 2 we reviewed, however, that
this is not so. The additional divergences are localized on the boundary surface where the boundary conditions are
imposed, and can be reabsorbed in a redefinition of the boundary couplings. Any choice forb (descending from a
boundary couplingκ that is dimension one and analytic in the spatial momenta) isconsistent.

One is tempted to conclude that for any boundary condition imposed atη0 = −∞, the high spatial momentum limit
of b vanishes. This is true in the sense that if we keepκ fixed our flat space intuition, that boundary effects vanish
when the boundary is moved off to infinity, continues to hold.However, this goes against the principles behind the
framework we advocate here. In the sense of the symmetry between boundary location and boundary couplingκ , as
explained in section 2.4, it is only the specific combinationbκ which matters. At what locationη0 one imposes the
boundary conditionsκ is immaterial to the physics.

The conclusion is that the answer to the question “what boundary conditions should we impose on quantum fields in
FRW backgrounds” requires physics input rather than internal consistency. The Bunch-Davies vacuum certainly seems
the closest analogue of Minkowski boundary conditions, even though it is not the naive covariantization of them. The
similarity suggests that the Bunch-Davies boundary conditions may correspond to a fixed point of boundary RG-flow.
At the same time Lorentz symmetry is still broken. If they arerenormalized, it would suggest that they are not special
in any sense.

Let us emphasize again that we have shown consistency, i.e. amanifestly finite backreaction. The observed energy
density of our current universe will or will not agree with the predictions for the backreaction based on using different
boundary conditions. This, however, is precisely the physics input that is needed. Only a measurement can decide the
correct boundary conditions to be used in any situation.

4. TRANSPLANCKIAN EFFECTS IN INFLATION

Inflationary cosmologies are the leading candidates to solve the horizon and flatness problems of the Standard
Model of Cosmology. Consistency with the observed spectrumof temperature fluctuations in the Cosmic Microwave
Background (CMB) provides an estimate of the Hubble parameter H during inflation. Depending on the model,H
can be as high as 1014 GeV. With the string scaleMstring = 1016 GeV as the scale of new physics, this means that the
suppression factorH/M of irrelevant operators could optimistically be at the one-percent level. This opens a window
of opportunity toexperimentally witnesseffects of Planck scale physics [1]. Besides its theoretical appeal, inflation



is also the leading candidate for early universe cosmology on experimental grounds. The most precise cosmological
measurements to date, the temperature fluctuations in the CMB, advocate inflation. The CMB measurements are
therefore also the most promising arena where remnants of transplanckian physics could show up. In inflationary
cosmologies the CMB temperature fluctuations originate in quantum fluctuations during the inflationary era. The issue
of vacuum selection in cosmological settings thus has immediate consequences for CMB predictions. At the classical
level the Bunch-Davies choice is, for reasons reviewed in the previous section, the preferred one; it is the closest
analogue to the Minkowski boundary conditions. Previous investigations into effects of Planck scale physics suggest
that the CMB fluctuation spectrum is affected at leading order in H/MPlanck and that this effect is precisely due to the
choice of vacuum [2, 9]. Due to our ignorance of the details ofPlanck scale physics (i.e. our lack of understanding
of string theory in time-dependent settings), decoupling in effective field theory is arguably the framework in which
transplanckian corrections must ultimately be understood[4]. By the addition of an arbitrary boundary action encoding
the boundary conditions, we have put the issue of vacuum selection on a consistent footing with the ideas of effective
field theory. In this comprehensive formulation, we can deduce systematically what the effect of Planck scale physics
is on boundary conditions (vacuum selection) and whether its effect on CMB predictions is indeed leading compared
to bulk corrections.26

The Planck scale physics is encoded in irrelevant operators. The leading bulk irrelevant operator1
M2

∫
φ�2φ

consistent with the symmetries is dimension six. In section2.6 we constructed and derived the four leading irrelevant
boundary operators in flat space

1
M

∮

y=y0

d3x φ4 ,
1
M

∮

y=y0

d3x ∂ iφ∂iφ ,
1
M

∮

y=y0

d3x ∂nφ∂nφ ,
1
M

∮

y=y0

d3x φ∂n∂nφ . (4.1)

compatible with unbrokenISO(3) symmetry. In a cosmological setting this is the requirementof homogeneity and
isotropy. These operators are all dimension four and as the explicit scaling shows, they are expected to be dominant
over the leading bulk irrelevant operator. In curved space these operators are covariantized. For a scalar fieldφ
covariantization has only a significant effect on the last operator in (4.1). A new coupling is needed which provides
the connection for the covariant normal derivative

1
M

∮ √
hnµnν (φ∂µ ∂νφ −φΓρ

µν ∂ρ(g)φ
)

=
1
M

∮ √
hnµnνDµ∂ν φ . (4.2)

Herehi j = gµν∂ixµ∂ jxν is the induced metric on the boundary, andnµ its unit normal vector. In FRW cosmology with
the metric in the conformal gauge,

ds2
FRW = a2(η)(−dη2 +dx2

3) , (4.3)

and an initial timesliceη = η0 as boundary, the induced metric, connection coefficients, and normal vector are

hi j = a2
0(δi j ) ,

nµ = a−1
0 δ µ

η ,

Γη
i j = a0H0δi j , Γi

η j = a0H0δ i
j , Γη

ηη = a0H0 . (4.4)

Herea0 ≡ a(η0) andH0 = H(η0) is the Hubble radiusH = a−2∂ηa atη = η0. Substituting these values we obtain the
FRW version of the irrelevant operator

1
M

∮
a3

0φ (∂n−H)∂nφ . (4.5)

We shall compute the effect of the leading irrelevant operators on the two-point correlator ofφ . In inflationary
cosmologies, the latter determines the power spectrum of CMB density perturbations. We will assume we can treat

26 The object of our study is an external scalar field in a fixed FRWbackground. Strictly speaking only the gravitational tensor fluctuations are
effectively described by such a model. However, our arguments should apply to the scalar-metric fluctuations as well, since these only differ by an
amplification factor of the inverse slow-roll parameter.



the four-point bulkλ φ4 and (irrelevant) boundary interaction
∮

φ4 perturbatively and will ignore them to first order.
Combining the remaining irrelevant boundary operators in acorrection to the FRW boundary action, one obtains

Sirr .op.
bound =

∮

η=η0

d3xa0

[
− β⊥

2M
∂ iφ∂iφ −

β‖
2M

∂ηφ∂η φ − βc

2M
φDη ∂η φ

]
. (4.6)

The precise value of a coupling constantsβi is determined bytwo parts. (1) It is determined by the details of the
transplanckian physics; e.g. if transplanckian physics isa free sector, decoupling is exact andβ = 0 (for dynamical
gravity the sectors are never decoupled of course), but (2) the couplingsβi are also covariant under the symmetry
between boundary location and coupling. If we would have computed the irrelevant corrections to a boundary condition
at a different locationy′0, we would have found different valuesβi which upheld that all physical quantities only depend
on the choice of boundary location through a specific combination bκ ,βi

.
Two of the operators in eq. (4.6) contain normal derivatives. As discussed in section 2, such operators can be

removed by a discontinuous field redefinition and a change of the remaining boundary couplings. Doing so [12] we
find that to lowest order inβi/M, eq. (4.6) is equivalent to a boundary interaction (if the boundary couplingµ=0)

Sirr ,leading =
∮

a3
0d3x − φ2

2

[
~k2

1(β‖−βc)

a2
0M

+
κ2β⊥

M
− βcm2

M
−κ

3βcH
M

]
, (4.7)

wherem2 is the mass of the scalar field. Fourier transforming along the boundary, the leading irrelevant correction
thus amounts to a change in the boundary conditionκ by27

κe f f = κ0 +
~k2

1(β‖−βc)

a2
0M

+
κ2

0β⊥
M

− βcm2

M
−κ0

3βcH
M

. (4.8)

We clearly see that the leading correction to the low-energyeffective action occurs at order|~k|/a0M andH/M. For
CMB physics the momentum scale of interest is|~k|/ahor.crossing∼ H, and both are of the same order. The conclusion
that the|~k| dependent operators are suppressed by a factora0/ahor.crossingis incorrect, when we recall that the location
of the boundary is arbitrary.

For a given FRW universe the Green’s function, including theH/M correction to the boundary condition, can now
simply be read off from eqs. (3.6)-(3.7). We can thus straightforwardly compute the leading transplanckian effect on
the power spectrum of inflationary perturbations. The latter is related to the equal time Green’s function withκ f = κ̄

P(~k)κ = lim
η→0

~k3

2π2Gκ f =κ̄ ,κ(~k,η ;−~k,η)

= lim
η→0

~k3

2π2

|ϕbκ (~k,η)|2
(1−|bκ |2)

, (4.9)

whereϕbκ (~k,η) is a solution to the (free) equation of motion, normalized according to the inner product (3.8), and
with boundary condition∂nϕ | = −κϕ |. Note that the basis functionsϕbκ only depend on the location of the boundary
through the physical combination bκ . This ‘independence’ of the location of the boundary guarantees that the power-
spectrum — a physical quantity — is so as well.For an infinitesimal change in the boundary conditionκ , we can
treat the vertex

∮ − 1
2δκφ2 perturbatively, and the change in the power spectrum simplyamounts to computing the

following Feynman diagram.

(4.10)

27 Because the couplingκ is subject to renormalization, its value is fixed by a renormalization condition and an experimental measurement. An
important question therefore is, whether the effects of irrelevant operators are experimentally measurable. The standard story, that (1) measured
couplings always include all relevant and irrelevant corrections, and that (2) the contribution of each couplingβi is an independent contribution to
the precise running of couplingκe f f(βi ) under RG-flow, should apply. A very precise measurement of the scaling behaviour ofκ should reveal the
contributions of high energy physics encoded in the irrelevant operators. This is explained in detail in the next subsection 4.1.



This immediately illustrates that ifδκ is of orderH/M, the change in the power spectrum will be of orderH/M. For
completeness, we compute the power spectrum by de Sitter Feynman diagrams in [12]. With the effective change inκ
corresponding to the contributions of the irrelevant operatorsβi known, we can also simply expand the exact solution
for the power spectrum for anyκ . Choosing the Hankel functions as basis as in eq. (3.6), the solutionsϕbκ are given
by

ϕbκ = ϕ+ +bκϕ− , bκ = −κϕ+,0+ ∂nϕ+,0

κφ−,0+ ∂nφ−,0
. (4.11)

For an infinitesimal shiftδκ the power spectrum is thus

P(~k)κ+δκ = P(~k)κ + lim
η→0

~k3

2π2

[
δb

(1−|b|2)2 ϕ2
bκ +c.c.

]
+O(δb2) . (4.12)

Substituting the de Sitter values computed in the previous section, and using that asymptotically (see (3.15))

lim
η→0

ϕbκ ,dS=
(1−b)
(b−1)

lim
η→0

ϕbκ ,dS , (4.13)

we find that

P(~k)κ+δκ = Pκ

(
1+

1
(1−|b|2)2

[
δb

(1−b)
(b−1)

+c.c.

])
. (4.14)

Recall from eq. (2.26) that

δb = − δκϕ+,0

κϕ−,0+ ∂nϕ−,0
+

δκϕ−,0(κϕ+,0 + ∂ϕ+,0)

(κϕ−,0+ ∂nϕ−,0)2 . (4.15)

We see explicitly that the change in the power spectrum is also linear inH/M.
For the preferred Bunch-Davies vacuum choice, whereb = 0, the corrections thus become

PBD+δκ(~k) = PBD

(
1+

[
δκ

ϕ2
+,0

−φ−,0∂nφ+,0 + φ+,0∂nφ−,0
+c.c.

])
. (4.16)

It appears we have introduced a dependence on the boundary location, but we should not forget thatδκ intrinsically
depends ony0 as well. The combination above is guaranteed to be independent of the boundary location. We recognize
in the denominator the normalization condition (3.8) (with∂n = a−1∂η ). The expression therefore simplifies to

PBD+δκ = PBD

(
1+

[
δκ

φ2
+,0

−ia−3
0

+c.c.

]
+O(δκ2)

)
. (4.17)

Restricting our attention to de Sitter space, we insert the explicit expressions for the basis functionsφ+ from eq. (3.6),
and obtain, using thata0 =~k/Hy0,

PdS
BD+δκ = PdS

BD

(
1−
( π

4H

)[δκH
2
ν (y0)

i
+c.c

])
. (4.18)

Substituting the irrelevant operator inducedδκ from eq. (4.8), we compute the following corrections to the power
spectrum

PdS
BD+δ κ = PdS

BD

(
1− π

4H

[
H

2
ν (y0)

i

[
~k2

1(β‖−βc)

a2
0M

+
κ2

BDβ⊥
M

− βcm2

M
−κBD

3βcH
M

]
+c.c.

])
,

(4.19)

with (eq. (3.14))

κBD =
d−1+2ν

2
H −

~k
a0

Hν+1(y0)

Hν (y0)
. (4.20)

This is our final result. Let us stress again, that the apparent dependence on the boundary location is only that. The
boundary couplingsβi by construction compensate they0 dependence and the whole expression is independent ofy0.



4.1. An earliest time in cosmological effective actions.
The inflationary power spectrum

We have repeatedly stressed that the location where one setsthe boundary conditions is immaterial. To compare
the theoretical predictions with experiment one must of course choose a specific moment. Naively in cosmological
spacetimes with a past singularity, there is an ‘earliest time’ which would be the logical candidate. We will show here
that the boundary effective action supplies a ‘mathematical manifestion’ of the concept of an ‘earliest time’. It will be
very clear, however, that this ‘earliest time’ is an observer dependent choice. The existence of the shift-symmetry is
therefore essential for consistency.28

Perturbative effective actions are intrinsically limitedin their range of validity to scales below the physical cut-
off M. In an FRW cosmology, this is manifest in the momentum expansion of the bulk low energy effective action.
The metric contributes a scale factor, so that the small parameter is precisely the ratio of the physical momentum
to the cutoff:~k/a(t)M = pphys(t)/M. What is novel for cosmological effective actions is that the boundary effective
action parametrizing the initial conditions is an expansion in theblueshiftedmomentum: It is in terms of the physical
momentum at the time where the initial conditions are set.~k/a0M = pphys(t0)/M. The momentum expansion therefore
has not one but two small parameters and breaks down when either

~k
a0M

= 1 or
~k

a(t)M
= 1 . (4.21)

Physically this bounds mean the following. If the physical processes we are are interested occur at co-moving
momentum scalesµco, then we immediately see that an FRW effective action is onlyvalid up to the ‘scale’

µphys(t) ≡
~µ

a(t)
= M , (4.22)

as is conventional, but it is also only valid up to a ‘time’

a0 = µco/M . (4.23)

We see here the confirmation of our intuition that we can only trust low energy effective cosmological theories up to
the ‘Planck time’. So far this has always been lacking.

As stated, this ’earliest time’ is then of course the logicalplace to locate to boundary action to set the initial
conditions. Doing so, we can refine our analysis for which values ofβi andH/M changes in the power spectrum
are of the right order of magnitude to be potentially observable. Note that for high~k all irrelevant boundary operators
reduce to a single one

Sirr , leading, high~k =

∮
a3

0d3x − β
2M

~k2

a2
0

φ2 (4.24)

whereβ = β‖ − β⊥− βc. We will focus on this single one for simplicity. This operator induces a correction to the
power spectrum of a massless field (ν = 3/2)

PdS
BD + δP

PdS
BD

(y0) = 1+
π
4

βH
M

[
iy2

0H̄2
3/2(y0)+c.c.

]
(4.25)

The maximal change in the power spectrum naturally occurs for the largest possible value ofy0,max≡ kmax,observed/a0H.
This is simply a consequence of the fact that we are studying the effects of an irrelevant operators whose size increases
with~k. The existence of an ‘earliest time’ — the moment where we canno longer trust the boundary effective action
— suggests that we choosea0 = kmax/M (we cannotchoose ana0 smaller than that; we could choose a larger one).
Hencey0,max= M/H. For this value of we see that the change in the power spectrumequals

PdS
BD+ δP

PdS
BD

(y0,max) = 1+
π
4

βH
M

[
i
M2

H2 H̄2
3/2(M/H)+c.c.

]

≃ 1+ β sin(2M/H) (4.26)

28 The results in this section were obtained together with B.R.Greene [40].



Note: thought the chance in the power spectrum is parametrically H/M as argued before, its maximal change is in fact
quite independent of their values — if one setsa0 = kmax/M ↔ y0,max= M/H. For this value ofy0, it becomes linearly
dependent on the size of the irrelevant operatorβ . We have shown these results in figure 1. The observed window in the
CMB is four orders of magnitude fromymax to 10−4y0,max. Clearly for small values ofβ and moderately large values
of M/H the change in the power spectrum is far larger than the projected 1% uncertainty in future measurements. We
have a solid case that for a large enough value ofH/M future CMB measurements are sensitive to high-energy physics
through irrelevant corrections to the initial conditions.
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FIGURE 1. The left panel shows the change in the (amplitude of the) power spectrum due to the presence of the leading order
irrelevant operatorβM (∂iφ)2 as a function of the physical momentum in units of the size of the horizon at the ’earliest time’. (Only
for one specific choice is the full oscillatory Bessel function behaviour plotted.) This graph should be read as follows.Given the
scale of new physicsM and the Hubble constantH during inflation (or more precisely at the time when the highest modekmax of
interest exits the horizon) the earliest time up to which we can trust the effective action is wheny0,max≡ kmax/a0,minH = M/H
(see subsection). Anything to the right ofy0,max should be discarded as untrustworty. Precisely aty0,max the change in the power
spectrum is linearly dependent on the value ofβ . The values ofM/H andβ corresponding to the various curves can thus be read of
from the intersection of the plumblines to the upper and right axis. The right panel shows an exclusion plot forβ as a function of
H/M. The 45o lines (black) correspond to the backreaction bounds (4.27)- (4.29) (continuous for zeroth order in slow roll, dashed
for first order in slow roll, dotted for second order in slow roll). The 60o lines (green) correspond to the order of magnitude estimate
made in [31]. The upper horizontal line is an order of magnitude estimation of the current error to which we have a nearly scale
invariant spectrum [11]. The lower horizontal line is an order of magnitude estimate of the cosmic variance limitationsof resolution.
Finally the vertical line denotes a maximal value ofH/M consistent with observation.H/MPlanck is extracted from the observed
amplitude of the power spectrum and we have setM ≡ 1016 GeV. This leaves the shaded region as thewindow of opportunityto
observe transplanckian physics in the CMB.

Moreover, figure 1 clearly shows that the current sensitivity with which the power spectrum is measured already
constrains the allowed values forβ andH/M in nature. A coarse extrapolation from the WMAP results [11]indicates
that the observed power spectrum is scale invariant with an accuracy of around 10%.29 A value of β ∼ 0.2 and
H/M ∼ 0.01 would already imply a 20% change at the upper end of the power spectrum, inconsistent with the data.
The point of principle that the power spectrumis sensitive to irrelevant corrections has therefore been established.

Naturally, all other — measured — cosmological quantities will also be affected by the irrelevant boundary operators
and observability therefore hinges on whether other phenomenological constraints are mild enough to allow a large
enough change to the power spectrum. In particular, an orderof magnitude estimate of the gravitational backreaction

29 Actual data show a small scale dependence. The power spectrum is inversely proportional to a slow roll parameterP∼ 1/ε , which is measured
with an accuracy of about 10%. We are extrapolating that error here to a hypothetical pure de Sitter phase of inflation.



[31] argued that such constraints are quite significant.30 These constraints are not in conflict with our arguments in
section 3.4. As stressed there, this is input into what the correct initial conditions are, from the observed energy density
driving the inflationary expansion.

A forthcoming article will discuss the computation of the gravitational backreaction in detail. The resulting pertur-
bative bound on the coefficientβ of the leading irrelevant boundary operator,

|β |2 ≤ (12π)2

(
M2

pH2
0

M4
string

)
, (4.27)

plus the constraints from the observed inflationary slow-roll parametersεobserv,ηobserv

|β |2 ≤ 2(6π)2 |εobserv|
(

M2
pH2

0

M4
string

)
(4.28)

|β |2 ≤ (6π)2 |εobserv| |ηobserv|
(

M2
pH2

0

M4
string

)
(4.29)

entail relatively mild backreaction constraints. For typical but optimistic values forH ∼ 1014 GeV, the scale of new
physicsMstring ∼ 1016 GeV and the reduced Planck massMp ∼ 1019 GeV they allow a significant observational
window of opportunity (see figure 1). The mildness results from the fact that the backreaction is only significantly
affected atsecondorder in the irrelevant correction. (This had earlier been argued by Tanaka [6, 8]. Indeed compared
to the order of magnitude estimate [31] the above three equations are effectively the same withβ 2 substituted for
β .) The backreaction due to the first order correction, thoughnot zero, is essentially localized on the boundary and
therefore subject to the substraction prescription utilized to renormalize the theory. The localization is a consequence
of the highly oscillatory nature of the first order power-spectrum. When integrated all contributions cancel except
on the boundary. The second order effect which remains and dominates is the ‘time-averaged’ energy stored in the
oscillatory behaviour itself. This grows as the square of the amplitude rather than linear, and it is this which accounts
for the appearance of|β |2 rather than|β | in eqs. (4.27)- (4.29) above.

The bounds on the coefficientβ due to the one-loop backreaction are in fact so mild that theyare superseded by the
direct sensitivity of the power spectrum for largeH/M. Combining the various sensitivities in figure 1, we see how
the aforementioned existence of an ’earliest time’ and its concommittant bound onβ ≤ 0.1 implies that backreaction
posesno constraints at all ifH/M is large enough. The bounds onβ from backreaction are all weaker than the direct
‘search’ upper bound from the power-spectrum. Hence the search is on.

Whether the future data will be of sufficient accuracy to resolve the contributions of irrelevant corrections to the
initial conditions from other contributions to scale dependence in the power spectrum is a different question all
together. What these results do show is that such an investigation should be carried out.

5. CONCLUSION AND OUTLOOK

The recent successes in CMB measurements exemplified by [11], have made the computation of inflationary density
perturbations a focal point of research. The computation ofthese density perturbations suffers from a fundamental
deficiency, however, that is at the same time a wondrous opportunity. The enormous cosmological redshifts push
the energy levels beyond the bound of validity of general relativity, the framework in which these computations are
done. From a field theoretic point of view general relativitycan be viewed as the low energy effective action of
a more fundamental consistent theory of quantum gravity. This effective action has higher order corrections which
when re-included increase its range of validity. These higher order corrections encode the physics that is specific to
quantum gravity. Hence understanding the way these higher order corrections affect the computation of inflationary
density perturbations is both needed to restore consistency to the computation, and provides an opportunity to witness
glimpses of Planck scale physics in a measurable quantity.

30 That backreaction effects in this context could be important was also emphasized in [6] (see also [7]). Other phenomenological constraints on
initial state modifications have been discussed in [8]. Moreformal arguments against the use of non-standard initial states can be found in [4, 32].



However, an action by itself is not sufficient to extract the physics of quantum fields. One must in addition specify
a set ofboundary conditions. Which boundary conditions to impose is always a physical question. In the Hamiltonian
language boundary conditions correspond to a choice of vacuum state. In cosmological settings, due to the lack of
symmetries the correct choice of vacuum, i.e. boundary conditions, is ambiguous. A number of proposals, though,
exist for the correct state. What we have discussed here, is that this vacuum choice ambiguity can be framed in terms
of the arbitrariness of a boundary action. This puts the fullphysics in the form of a naturally coherent effective action.
Deriving the power spectrum of inflationary density perturbations within this framework, the lowest order corrections
are irrelevant boundary operators of orderH/MPlanck. Because we are able to use the language of effective field theory,
not only is the parametric dependence of the inflationary perturbation spectrum on high-energy physics known, the
coefficients are also in principle computable from the high-energy sector that has been integrated out. RG-principles
tell us thatgenericallythis coefficient will be non-zero, except for very special choices of initial conditions and high
energy completions of the low energy theory. In cosmological spacetimes in particular the Lorentz symmetry which
forbids the appearance of such corrections in flat Minkowskispace is absent. This makes the prediction that we can
potentially observe Planck scale physics in the cosmic sky quite strong, or equivalently the absence of these effects
would constrain the possible high energy completions, i.e.string theory.31

Several earlier investigations have shown that the effectsrelated to a choice of initial conditions are not the only way
in which high-energy physics can show up in cosmological measurements. Effects due to a non-vanishing classical
expectation value of high- [10] or low-energy [3] fields, or amodified dispersion relation (see, e.g. [1]) can be of the
same order. The former two should fit into our framework by theexplicit introduction of sources. The latter presumes
an all-order effective action, which is finite and thereforehas a specific kinetic termF (�/Λ). The subleading effects
in Λ obviously change the two-point correlation function and hence the power spectrum. In RG-terms a specific choice
of regulator functionF (�/Λ) corresponds to a specific choice of UV-completion of the theory. The relevant behaviour
is universal and independent of the choice ofF (�/Λ), but the irrelevant corrections are not, of course.

The introduction of a boundary action to account for the initial conditions, and its behaviour under RG-flow includ-
ing irrelevant corrections begs for a comparison with the idea of holography. The latter suggests that (gravitational)
theories ind-dimensional de Sitter space have a dual formulation as a (Euclidean boundary) conformal field theory of
dimensiond−1 [34, 35]. The cosmological implications of this conjectured correspondence underline the universality
and robustness of predictions for inflationary density perturbations precisely because they are related to RG character-
istics in the duald−1 dimensional theory [14, 36, 37]. These qualitative similarities are striking, but there are crucial
differences with the approach put forth here. Holography interchanges the IR and UV properties of the dual theories.
The UV physics of a three-dimensional Euclidean field theorycorresponds to the IR of the four-dimensional de Sitter
gravity and vice versa. The holographic screen where the dual field theory lives corresponds to a boundary action in
the de Sitter future. Its precise position defines the UV cut-off in the Euclidean field theory that should completely
describe the infinite interior (i.e. the past) of the de Sitter bulk gravity theory. Time evolution in the bulk is then inter-
preted as RG-flow in the boundary field theory, and so the IR physics in the field theory corresponds to the infinite past
in the bulk. Instead the boundary actions considered in thispaper are introduced only to encode the initial conditions
in the past of the four dimensional de Sitter gravity theory.They are not dual descriptions of the bulk de Sitter theory,
but are merely introduced as effective tools to describe theinitial conditions in the bulk. Nevertheless, it would be very
interesting to study how the results described in this papershould be interpreted from the point of view of a putative
dual three-dimensional Euclidean field theory.

The boundary effective action encoding the initial conditions finally answers the longstanding open question: do cut-
off theories in a cosmological setting cease to be valid beyond an earliest time? Naively this is so. The results here show
that the blueshifted momentum expansion on the boundary effective action supplies the mathematical underpinning
for this intuition. This time, though clearly a fiducial one,is a natural location for our boundary action. The freedom,
however, remains to impose initial conditions where-ever one wishes. We may have chosen any other fiducial point as
long as the momentum expansion stays under control. What is clear is that the choice of this point is immaterial to the
issue of boundary conditions in FRW universes. This fact is made manifest in the symmetry (2.26) between boundary
locationy0 and boundary couplingκ . Physics depends only on the invariant combinationbκ(y0). With the effective
field theory description in mind, and the idea that ‘vacua’ are boundary RG fixed points, a truly interesting question is
whether such boundary conditions exist, and if so, how they are related to the known cosmological vacuum choices.

31 A recent article examing non-Gaussian correlations in the power spectrum resulting from boundary interactions is in full support of this
conclusion [33]



5.1. A comparison with previous results and the discussion on α-states

Much discussion has taken place in the recent literature on the consistency of so-calledα-states in de Sitter space
[4, 32]. Initial investigations into the sensitivity of inflationary perturbations to high energy physics found that inpure
de Sitter the leadingH/M corrections to the power spectrum can be interpreted as choosing the harmonic oscillator
vacuum (section 3.1) at the naive earliest timeη0(~k) =−Λ/H|~k| where the theory makes sense, rather than the Bunch-
Davies choice [2, 9]. Imposing such boundary conditions in pure de Sitter can equivalently be interpreted as selecting a
non-trivial de Sitter invariant vacuum state called anα-state [9]. Strictly speaking, the Shortest Length (SL) boundary
conditions are only imposed on momentum modes below the cut-off scaleΛ of the theory, and they are not true de
Sitter α-states. Subject to this distinction, the purported inconsistency ofα-states, particularly with respect to the
decoupling of Planck scale physics [32], therefore would have major consequences (see, however, [38]). Ifα-states
and other boundary conditions are all inconsistent, all high-energy physics would have to be encoded in bulk irrelevant
operators. This would put transplanckian effects in the CMBperturbation spectrum beyond observational reach.

Let us put first, that our results form solid evidence for the presence ofH/M effects affecting inflationary predictions
for the CMB perturbation spectrum. As the explicit expression (4.19) we derive for the power spectrum shows, our
results, though qualitatively similar, are quantitatively far more general from having ‘chosen’ an (cut-off)α-state.
The coherent effective Lagrangian approach followed here gives a precise answer which differs in general from
the (earliest-time)α-state approach, but upholds the qualitative validity. Onecan certainly ask to what choice of
‘vacuum state’ our results correspond; given the physical parameterbκ this is straightforward to work out. The answer
may be interesting from the point of view of Hamiltonian dynamics, but as we have shown here, in the Lagrangian
language of boundary conditions, any initial state which can be described by a local relevant boundary couplingκ is
consistent.There is no need to know whetherα-states are consistent to study transplanckian corrections to inflationary
perturbations.

At the same time, vacuum choices,α-states included, do correspond to boundary conditions.32 And boundary
conditions should not spoil decoupling, although there will be new effects, as we reviewed in section 2. Taking this
lesson to heart, it is hard to see how (earliest-time)α-states could be inconsistent. A recent article [39] arguing for the
consistency ofα-vacua does not exactly follow the approach outlined here, but is very much in the spirit of introducing
boundary counterterms. An answer, however, is provided by pursuing the discussion in section 3.1 further. The (cut-
off) α-vacua correspond to choosing earliest-time boundary conditions in an effective theory below scaleM with the
physical parameterbSL a constant number. The precise relation is thatbSL = eα . One then readily derives that an
α-vacuum corresponds to a boundary coupling (see eq. (3.11))

κSL = −∂nφ+(η ′
0)+bSL∂nφ−(η ′

0)

φ+(η ′
0)+bSLφ−(η ′

0)
. (5.1)

Recall thatbSL is constant. To analyze the high spatial momentum behavior,we may therefore approximate the
modefunctionsφ±(η ′

0) by their Minkowski counterparts. In this limit the boundarycouplingκSL encodingα-states
becomes

|~k| → ∞, κSL ≃ −i
|~k|
a0

ei|~k|η ′
0 −bSLe−i|~k|η ′

0

ei|~k|η ′
0 +bSLe−i|~k|η ′

0

. (5.2)

The boundary couplingκSL therefore has an infinite set of poles

|~k| = −1
2η ′

0
((2n+1)π + i ln(bSL)) , n∈ Z , (5.3)

in the momentum plane. Clearly this boundary coupling corresponds to a non-local action. Cut-offα-states, i.e. shortest
length boundary conditions, therefore fall outside the class of local relevant boundary conditions we study here. But
are they inconsistent? Recall that the original studies [2,9] argue thatα-vacua should encode (first order) effects
of high-energy physics in the spectrum of inflationary density perturbations. This point of view therefore states that
by construction the boundary couplingκSL includes the effects of irrelevantboundary operators. We are therefore

32 We are grateful to Brian Greene both for emphasizing the importance in explicitly discussing the consistency ofα-vacua and his help in resolving
the issue.



instructed to treat the non-local nature of the boundary coupling κSL in the low-energy effective action in the usual
way. One expands around the origin|~k| = 0 in the momentum plane generating a series of higher derivative irrelevant
boundary operators with specific leading coefficientsβi .33 This expansion is valid as long as we limit the range of our
effective action to the location of the first pole|~k| = 1

2|η ′
0|
√

|π + i lnbSL|2, i.e. physical momenta are constrained to the

range|p0| = | ~k
a0
| . H

2 | lnbSL|. (Eq. (3.19) gives usbSL ≃ H/2Me−2iM/H−iπ/2, and we recover the cut-off|p| < M.)
The fact that the complicated pole structure of boundary couplings of alpha-vacua is highly specific (they ensure
that (non-cut-off)α-vacua are invariant under de Sitter isometries) is not to the point in this perspective. It is then
also clear whyα-vacua are not renormalizable, in particular in the sense that the bare backreaction, the divergence
in the stress tensor, is to leading order not identical to that in Minkowski space. Irrelevant operators correspond to
non-renormalizable terms in the action. Because the pole structure of the boundary couplingκ reveals thatα-states
are correctly to be interpreted as encoding specific contributions from irrelevant operators, any correlation function
computed with respect to theα-vacuum, includes the contribution from these irrelevant operators. It is therefore
expectedto be non-renormalizable. Obviously this does not mean thatthe α-vacua are inconsistent. As always in
effective actions one must ‘neglect’ any contributions of irrelevant operators for the purposes of renormalization. They
only make sense in a theory with a manifest cut-off [28]. Removing the cut-off, removes the irrelevant operators.
Indeed theα-states proposed in [2, 9] withbSL≃ H/2M are naturally in accordance with this precept.

In this sense, the (cut-off)α-vacua are therefore manifestly consistent in the framework put forth here. They simply
correspond to a specific choice of leading and higher irrelevant boundary operators. Whatever they are is not very
interesting from the perspective of effective field theory.34 A specific choice for the irrelevant operators means having
chosen a specific form for the high-energy transplanckian completion of the theory. But what this physics is, is
precisely the knowledge we are after.
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