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Abstract. We provide a prescription for parametrizing the vacuum oh@mbiguity in cosmological settings. We introduce
an arbitrary boundary action representing the initial ¢omas. A Lagrangian description is moreover the naturdfirsg

to study decoupling of high-energy physics. RG flow affetis boundary interactions. As a consequence the boundary
conditions are sensitive to high-energy physics througtievantterms in the boundary action. Using scalar field theory as
an example, we derive the leading dimension four irreleanndary operators. We discuss how the known vacuum choices
e.g. the Bunch-Davies vacuum, appear in the Lagrangiamigéen and square with decoupling. For all choices of bamgd
conditions encoded by relevant boundary operators, oftwtfie known ones are a subset, backreaction is under coflol.
moreover, willgenericallyfeel the influence of high-energy physics through irrelégdimension four) boundary corrections.
Having established a coherent effective field theory fraorkincluding the vacuum choice ambiguity, we derive an ieipl
expression for the power spectrum of inflationary densitstysbations including the leading high energy correctidns
accordance with the dimensionality of the leading irrefévaperators, the effect of high energy physics is lineartypprtional

to the Hubble radius! and the scale of new physiés= 1/M. Effects of such strength are potentially observable iorkut
measurements of the cosmic microwave background.

1. INTRODUCTION

The cosmological vacuum ambiguity has been a vexing proliderdecades now. In a spacetime background where
the concept of energy changes from observer to observeiraadd time, we are still at a loss how to unambiguously
construct the quantum-mechanical ground state — or wheithar a state even existszor better or for worse, a
consensus prescription has emerged, the adiabatic/BDaecites vacuum. Both solve a number of conundrums, but
leave others unanswered. A preference for either is cl@aghpice that is made. Initial conditions are always physica
input and rarely a consistency condition.

The ambiguity shows in part why quantum field theory in a cdneosmological background is still an inexact
science. We do not yet fully know how to quantize gravityirgfrtheory does provide a fundamental framework to
describe gravitational physics at the highest energy scak, the details of transplanckian physics, particylarl
cosmological settings or how they may affect vacuum salactiave completely eluded us so far. Fortunately, the
notion of decoupling allows us to understand low energy phema despite our ignorance of physics at very high
energies. Renormalization Group (RG) flow teaches us teatffiects of high energy physics can be captured by only
a finite number of relevant couplings in the low energy thebrylat spacetime, the decoupling between high and low
energy physics is well established. Again, however, fomtuia field theories in curved space and in FRW universes
in particular, decoupling is not so clearcut. In cosmolaggpacetimes high energy scales are redshifted to low gnerg
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scales via cosmic expansion. This connects high and lovwggmdrysics through unitary time evolution in addition to
the dynamics.

Decoupling, specifically in the inflationary context, is atgt importance to upcoming cosmological precision
experiments. All current physical scales would originabaf transplanckian scales at the onset of inflation, if irdfat
lasted longer than the minimal number of e-folds. Concédyaben, signatures of Planck scale physics (stringy or
other) could show up in cosmological measurements [, 2, 8,18,.7, 8] 9| 10]. This possibility whether glimpses
of transplanckian physics can be observed in the cosmicomare background (CMB) radiation [11] is determined
by the strength with which transplanckian physics decauftemarkably, such effecase potentially observable, but
only if the transplanckian physics selects a non-standhtidlistate [2| OF Other high energy effects are generically
too small [4] (with the exception of the higher dimensionaéators identified irl[3]). More recently, explicit exarapl
were presented to illustrate that the integrating out of agiva field could result in a non-trivial initial state, afifeg
both a proof of principle that transplanckian physics maglservable, and suggesting that decoupling is more subtle
in expanding universes [110].

In this review — a condensation and expansion_of [12] — we wdilkk to clarify the connections between vac-
uum/initial state selection and decoupling in a fixed FRWKigacund with the goal to describe transplanckian effects
in inflation (we ignore gravitational dynamics throughout) cosmological settings, i.e. in a spatially homogeneous
and isotropic universe, the size of the scale factor yielpieéerred time coordinate, and as a consequence a Hamilto-
nian approach has become standard [13]. In contrast to timéltdaian point of view which emphasizes the dynamical
evolution, a Lagrangian point of view emphasizes the symigwand scaling behaviour relevant to physical processes
(see e.gll4, 10, 14]). It is therefore the natural frameworla Wilsonian RG understanding of decoupling of energy
scales and relevant degrees of freedom determined by syiasfetlowever, a Lagrangian or an action by itself is
insufficient to determine the full kinematic and dynamic &&bur of quantum fields. One must in addition specify
the boundary conditions. This corresponds to the choicaitiéli or vacuum state in the Hamiltonian language. The
question directly relevant to the window on transplanclkibgsics provided by inflation is therefore whibbundary
conditionsto impose on the fields. To preserve the symmetries of thedragan a subset of all possible boundary
conditions is often only allowed. With enough symmetry, 8gkowski QFT, the choice may in fact be unique. FRW
spacetimes have less symmetry and it is a priori not cleaa Wie natural or correct boundary conditions are. Here
we re-encounter the cosmological vacuum ambiguity fronlLégrangian perspective. How to proceed?

The clear advantage of the Lagrangian effective field théampalism is that at low energies the inital state will
be determined by a finite number of relevant boundary cogplii\s always in effective field theories, relevant
couplings are determined by phenomenological input: a oreasent. The Lagrangian effective field theory formalism
therefore parametrizes our ignorance of the cosmolognitili conditions into measurable quantities. Clearlys th
does not solve the cosmological vacuum ambiguity, but isdgpiee us a quantitative controlled method to confront
the ambiguity head-on. “When one does not know the answex,feeasurement decide”.

What we will furthermore explain in secti@h 2 is that no mattéich choice of boundary conditions is made in the
full quantum theory, RG-flow in the effective low energy actwill generically change these conditions. In particular
high-energy physics will affect the boundary conditionsotigh irrelevant corrections, which we derive. We apply
these results in sectid¢h 4 to the computation of the powentspe of inflationary density perturbations. The leading
irrelevant correction to the boundary conditions is of disien four, and we therefore find that the power spectrum is
subject to corrections of ordet/M with M the scale of new physics. This is in accordance with eartiediptions that
transplanckian effects are potentially observablel[2lBportantly, we are able to derive this result purely witttie
framework of Wilsonian effective field theory. This makes answer predictive both in the sense that the parametric
dependence of inflationary physics on high-energy is nowif@stnand that the strength is computable in any theory
where the high energy physics is explicitly known. Becaugeresults are derived within the context of effective field
theory, they provide a settlement to the debatel[2] 4,19, I&therH /M corrections are consistent with decoupling
arguments. We conclude with an outlook where we will briefiynenent on the relation of our results to consistency
issues regarding (non-trivial) de Sitter invariant vacnawn asa-states. We will, however, begin with a summary,
lest the trees obscure the forest.

5 In an abuse of language, we use vacuum and initial statehsageably.

6 Wilsonian RG in effect explains why (non-gravitational)ysfts works. Its success strongly suggests that the sameipes are at work in
quantum gravity and that general relativity is the low egeffective action relevant at scales belMp)anck (for a nice review on general relativity
as an effective field theory seie[15]). String theory, inipatar, is an explicit manifestation of this idea.



1.1. The cosmological vacuum ambiguity, effective actiorand transplanckian effects in
inflation: a summary

Any boundary conditions one wishes to impose can be encaded bhoundary action. This is even true for
the Minkowski vacuum (sectiofn—2.5). It has long been knowat tiie couplings in such a boundary action are
renormalized at the quantum level. Equivalently, a Wilsonapproach to the effective action ought to result not
only in a renormalization of the boundary couplings, bubals the generation of irrelevant boundary operators.
Consider, for example, a two scalar field model with a masarsgienMy > m, and boundary and bulk interactions
S" = — [gx@— § yxo. Thisis exactly solvable, and upon integrating gupermitted when the cut-off scafe< My,
one generates the boundary interactions
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We will describe and review the Wilsonian effective action theories with a boundary, including this example, in
sectior 2.

The issue of (boundary) Wilsonian decoupling is relevandtio understanding of cosmology. In an expanding
universe, there is no unique vacuum state. In the Lagrangiaguage, this translates to a lack of knowledge of
the appropriate boundary conditions. Recall thay boundary conditions, including the ‘Minkowski’ ones, ca@ b
encoded in a boundary action. Wishing to emphasize the bhagga viewpoint, where the study of decoupling is most
natural, we add a boundary action with free parameters aed fiut arbitrary timey.

Our limited understanding of high-energy physics in theyvearly universe can thus be accounted for by the
inclusion of a boundary action in a cosmological effectiegtangian. Whichever boundary conditions we choose this
boundary action to encode, they will be subject to renormadibbn. In particular, the details of the high-energy pbysi
which has beenintegrated out, will be encoded in irrelegarrections to the boundary action. Farsymmetric scalar
field theory the leading irrelevant boundary operator4 fspect the homogeneity and isotropy of FRW cosmologies)
are
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whered, is the normal derivative. These operators are of dimensian- one dimension higher than the boundary
measure — and describe corrections of oﬂﬁpﬂ\/l plus a boundary four-point interaction. For the momentunyea

of interest to the CMB]R| ~ H, whereH is the Hubble parameter, the quadratic operators scalt/a% and they
are therefore the primary candidates for witnessing camssees of high-energy physics in cosmological data. The
leading bulk operator is of ordét?/M? and is generically beyond observational reach [4]. Conmgyitie inflationary
perturbation spectrum in a de Sitter background, includlrgcorrections to Bunch-Davies boundary conditions due
to the irrelevant operator§(1.2), we find
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with
KBD = MH_MM7 (14)
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whereH, (yo) are Hankel functions aty = |k|/a(no)H whose indexv(n?) depends on the mass®. Crucial in our
exposition will be the proof (sectidn2.4) that, despiteeamances, this expression does not depend on the location of
the boundary actiogy. Only the meaning of the initial conditions matters, not vehihey are imposed.

Eq. (IB) is our main result. Having translated the cosmoldgacuum choice ambiguity into an arbitrary boundary
effective action, we conclude based on Wilsonian decogjthat the leading irrelevant operators in FRW field theory
are boundary operators at ordeéfM. Using optimistic but not untypical estimatestdf~ 104 GeV andM ~ 106



GeV (string scale), new (transplanckian) physics wéhericallyaffect the standard predictions of inflationary cos-
mology at the one-percent lev&onversely, CMB observations with an accuracy of one péebetter can poten-
tially measure effects of transplanckian physi@sly for very special choices of initial conditions and tsptanckian
physics will this correction be absent.

We further identify the boundary conditions correspondmgeveral cosmological vacuum choices including the
generalization of the “Minkowski-space” boundary conutis (sectionE215 arffd"B.1). In the Wilsonian effective La-
grangian description it is clear that no vacuum is presetkbly a consistency condition. Any boundary condition
encoded by relevant operators is consistent, in the seasththMinkowski space stress tensor counterterm generated
with the appropriate boundary conditions will render themological stress tensor finite as well (secfibn 3). Back-
reaction is always under control. Which cosmological bargatonditions are the right ones to impose, requires just
physical input, as it should be.

2. DECOUPLING IN THEORIES WITH A BOUNDARY: A REVIEW

2.1. Initial states in transition amplitudes, path integrds and fixed timeslice boundaries

That boundary actions capture the initial conditions onghes to impose, follows directly from the relation of the
path-integral to quantum-mechanical transition ampégidVe will show this here.

Recall that after a spatial Fourier transformation a field lsa considered as an infinite set of harmonic oscillators,
each with action

tf 42 w2q2
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This action is obtained from the quantum-mechanical ttemmsamplitude
- bu " B2 52
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by splitting the intervat; —to into N smaller intervals of lengtfts —to) /N, insertingN — 1 complete sets dk) and

N complete sets ofp) states, and taking the continuum lintNt— . This derivation makes clear that the action
(Z1) has boundary conditiomgt ) = XN, q(to) = X1, and that the endpoints anetintegrated over. Also clear is that
temporal boundaries are quantum-mechanically on a veigrdift footing than spatial boundaries. The latter simply
affect the spatial modefunctions. Temporal boundariesgher, are encoded in the choice of initial and final state. In
Lorentz-invariant field theory the distinction disappdausfor a technical point regarding reality conditions thwilt
become clear below.

For the free theory, a Gaussian integral, the exact answethétransition amplitude is easily obtained. One
substitutes the solution to the field equation with boundamditionsq(ts) = xn, d(to) = X1 into the action. Note
that as the endpoints are not integrated over, the field mouist derived under the condition that the variatidg
vanishes on the boundagg(ts) = 0, dq(t)) = 0. One finds the well-known results (up to normalizationsicivhwe
ignore throughout this section)

XNefiaXO _ Xlefiwtf
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Consider now the transition amplitude for a different mlistate. In particular let us choose the harmonic oscillato
vacuum|0) annihilated bya= % (ip+ wX). This corresponds to the Minkowski space vacuum for the fredde with

frequencyw. The transition amplitudéy |e*“q<tf40) |0) can be obtained from the standard transition amplitude &y th
insertion of a complete set of states

(x|e 1At —10)|0) — /dx1<xN|e*”:'(tf*t°)|x1><x1|0> . (2.4)



We can evaluate this expression in two ways. Either we castiute the harmonic oscillator ground state wave
function (x;|0) ~ e ©%/2 and the resul{{Z]3) for the propagator. Performing the meimg Gaussian integral ove,

2

2
/ dxq B e T , (2.5)

the result simply states thi) is the zero energy eigenstate of the (normal-ordered) Hamigin. (This is the usual
way one deals with non-trivial initial conditions in QFT.Jy @e can again derive a path-integral by splitting the iraérv
ts —to into N smaller intervals, now inserting complete sets dik) andN complete sets dfp) states, and taking the
continuum limitN — . Doing so yields the bulk actiofi{2.1) plus a boundary term

it 42 2 2
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The answer for the transition amplitu@q\l|e*”:'(tf*t0)|0> ought then follow from solving the field equations for this
action including the boundary term, and substituting tHatgm back. The extra insertiofidx|x1)(X;| means that
the endpoing(to) is now integrated over. The fluctuatidu(ty) therefore no longer vanishes and we obtain the field
equations

d? d
(ﬁ + “’2) q(t) =0, and — —q(to) — kod(to) =0, (2.7)

plus the implicit boundary conditiog(t;) = xn.

We encounter a first subtlety. We wrote the actlonl(2.6) irctireventional way suggesting real boundary couplings.
Yet the explicit computation shows thag ought to be imaginary. The subtlety lies in the reality cdiodifor the
action. A check on the correct reality condition is that theliflean path integral is damped. Clearly Wick rotating
the boundary conditioli.{2.7) compensates for the factamd all equations become manifestly real. The lessonfis tha
the boundary couplings for spacelike boundaries are insagirstill, because the coordinagét) is manifestly real,
one has to give a prescription how to deal with the boundanglition {ZT) for imaginary. It is quite obvious that
insisting ong real, i.e.dqg/dt(ty) = 0 = q(to), or insisting that the action remain reaf,— |g|?, will not reproduce the
known answei{Z15). However, if we simply proceed on the mggion thatk is real, i.e.

QSolz(t) = "M(eiwt + bOeiiwt) )
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the answer for the background value of the action,
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precisely reproduces the answer2.5)kg= —iw (henceb = 0). This is therefore the prescription for dealing with
imaginary boundary couplings: assumés real until the final answer, and only then analytically thaue.

In the above example we have, of course, restricted ourstvece field theory. One can repeat the whole exercise,
however, with the inclusion of a bulk source tei®— iS+ [ dtJ(t)q(t) representing interactions. Treating the source
perturbatively, we expand into fluctuatiodsaround the background solutioq(t) = gse(t) + &(t). Integrating the
fluctuations out, we obtain for the action

. 2 2 ] t 2 t 2
SO dt[%—wz%—UQ}‘i‘Kfq(zf) o (2.10)
the result
P = SN0~ [ bt
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where Gy, «,(t,t') is the Green’s function obeyin§G(t,t')|i—, = —koG(to,t'), SG(t,t')]i—t, = —K:G(ts,t') (see
[12] for details). Note that at endpoints wheg) is not integrated over, i.e. whe¥q(teng) is constrained to vanish,
& (teng) @lso vanishes. At these points the Green’s functions fofltituationsé therefore obeys Dirichlet boundary

conditions withkeng = . For the transition functiome|e*“j'<tf*t°)|xl) we thus havess = © = Kg, whereas for the

transition function(xN|e*iF'(tf*tO)|O> we havek; = o, Ko = —iw. Equivalence between the two transistion functions
including bulk sources is thus established if

/ dx exp [iSE?j(?iLﬁ*bdy(J; QSoll(XNaxl))} (x1|0) = exp [iSbg’b”'”bdy(J; Osop () |- (2.12)

K=

The only dependence on is in gsoy, (t) (eq. [Z3B)). It is an instructive exercise to verify that €4.12) is indeed
true. The prescription to deal with imaginakyby analytic continuation to imaginary values in the finalretation
functions, therefore holds for perturbation theory as well

This example is an explicit manifestion of the fact that (@rtprbation theory) all correlation functions are analyti
in the coupling constants. This necessarily includes bagndouplings, which for a fixed time boundary correspond
to initial conditions.

2.2. Boundary field theory and RG flow

The generalization from quantum-mechanical path-integmfield theory is straightforward. The difference of
course is that in field theory one has to address the infindieuntered in the perturbation/loop expansion by
renormalization. We review here, how the boundary actiaide affected by the renormalization procedure.

The study of field theories is primarily concerned with Mimiski backgrounds, with the unique symmetry-
compatible boundary conditions that the fields vanish atityff Actions which contain explicit boundary interactions,
however, have been studied in the past [17, 18} 19, 20], anckaeiving renewed attention (see e.gl [21,2P] 23, 24,
25,126]). As we have just shown, one can use such boundamnaatiens to enforce whichever boundary conditions
one wishes. Consider, for example, scalgr* theory on a semi-infinite spate

1 e A
Suk= oy~ 50,97 - -7~ 5.6, (2.13)
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with the following boundary interactions added
: K
Sooundary= Y{dSX— %(oanw_ E‘pz . (2.14)

Hered, = dy is the derivative normal to the boundary. Expanding theoadt first order inp+ 6, we find the usual
equation of motion

S5k [ dxdlydp (Dcp— mfp— %cf') : (2.15)
plusthe boundary conditions
' +2
BShound = f & — 5 (“ S Ono+ K(p) ~ £ 9000 . (2.16)

If we insist that the variation®¢ are arbitrary and do not vanish on the boundary (which wouoldespond to
imposing Dirichlet boundary conditions), it appears thamust vanish for consistency. As we will see shortly,

7 One may alternatively think of Minkowski space field theosydefined on a (infinite volume) torus (“putting it in a box”)hish has no boundary
at all. Seell112] for details.

8 We choose Lorentziar + +— signature throughout the paper. Working with effectiveicarst, we implicitly assume that all results can be
obtained by a Wick rotation from Euclidean space. See théqrs sectiof. 211 for details on the Wick rotation.



however, renormalization can produce counterterms ptimpal to 4 and a more correct point of view is that
can be discontinuously redefined on the boundary [27], tegetith a redefinition of the couplings which absogh$

P(xy) —  @XY)+ab(yo—Yy)@(xYo) ,
2 2
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This field redefinition can be interpreted as a shift of thertutzuy value ofy to the correct saddlepoiff. That this
is the correct interpretation follows from the fact that vem@lso treat: perturbatively as an interaction. A Feynman
diagram computation will then yield an effective actionmiouplingk’.!! After this ‘renormalization’ the boundary
term from partial integration is canonical

SShouna= § dx- S9onp— K'59 (2.18)
which vanishes when
Onp=—K'@. (2.19)

We see that the (renormalized) valuexofietermines the boundary condition. ko= 0 we have Neumann boundary
conditions, fork = +o the (particular) Dirichlet boundary conditiap(x, yo) = 0, and for finitek a mixture of the
two. All possible (linear) boundary conditions are rec@ekerThis is comforting as there are no other terms of order
@? compatible with the symmetries. In fact, the boundary ac8gunqis the most general one we can write down, if
we limit our attention to relevant operaté#sind require (for the sake of simplicity) that the action soahvariant
under the bulkZ, symmetryp « —¢@. Of course, for a second order PDE one needs two boundarytioorsd The
other comes from the second boundary of integration. Inxaeple above this ig = . See|[12] for details.

RG arguments then tell us, that in a bounded space the terthe moundary action, even if they were not present
at the outset, would be generated as counterterms. Theyaessary for the consistency of the theory. Let us show
this explicitly. Suppose we start with Neumann boundaryditions: k initially vanishes. By the method of images,
the Neumann propagator equdls

d3k dk, dkx(x1—x2) (eiky(Yr)’z) + eiky(*y1*y2+2)’o))
G . — i X
N (X1, Y1 X2, Y2) l/ 27 R

(2.20)

We will choose to regulate our theory by multiplying the pagptor by a regulating function# (0/A?) =
exp(—k?/A?) [2€]. This makes the path integral well defined and cleanpasates out the ultraviolet divergences.
The one-loop seagull graph then evaluates to

@ = (@(X1,Y1)P(X2,¥2))1-100p

—iA
= TGN (Xe, Y1 X1, Y1) 8> (X1 — %2) 8 (y1 — y2)

9 Hered(y) is the step function, witi(0) = 1/2 anddy8(y) = &(y). Recall that this distribution is of measure zero, f%dye(yo —y)f(y)=0.
Of the bulk terms only the kinetic term is therefore affedtgthe shift. Also note thafy"; d(y—vyo)f(y) = %f(yo).

One can also find a redefinition of the typ&y) = @(y) + a 8(yo — Y)@(y), which is the correct one from the point of view of coarse mjraj
and the distributional definitions fd(y) andd(y). Interestingly, the redefinitions required are the same.
10 When counterterms of the forgd, are required for renormalization, this shift of the backgmd value forg is thus a boundary analogue of
the Coleman-Weinberg phenomenon.
11 A perturbative comparison with Feynman diagrams expldiesielta function at zero argumehtl[12]. It serves to makdisitibutions conform
to the bare boundary conditialy@ = —k @.
12 \We assume that the initial state encoded by the boundanna&iunghas no intrinsic size, i.e. a dimensionful scale. We arenaltély interested
in vacuum-like initial conditions in cosmology. This rastion to scale-less initial states is therefore a natuna.o
13 Our domain of interesy € [yo, ) is semi-infinite. Hencé, is a continuous variable.
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The first term is the usual bulk¢* divergence of the two-point function. The second term, hareis a newly
divergent term, and quite obviously a direct consequendbeboundary conditions. Evaluating this term in more
detail, we find

(@P)1-100p = %(;ﬁﬂ/\&é)( /ds e SN0y /\25)

~  ANEZS(y1—Y2)3(Y1—Y0) | g2 e - (2.22)

Note that the new divergence is entirely located on the bapndhe last step utilizes one of the more common
distributional definitions of the Dirac-delta function {bee doing the finite integral oves). Recalling the coarse-
graining steps underlying RG-flow, it should come as no ssepthat the delta-function localization appears in a
distributional limit. This simply reflects that our spatiasolution decreases under RG-flow, and the precise locatio
of the boundary becomes fuzzy.

That the divergence is concentrated solely on the boundiaryig distributional sense) is reassuring. Bulk UV-
physics should be unaffected by the presence of a boundasypiecisely the breaking of Lorentz invariance due to
the presence of the boundary that is responsible for the nexggnce. By necessity it must then appear in the same
sector of the theory that was responsible for the symmétrlation in the first place.

To make the theory finite, we therefore need to add a bounaanyterterm of the typé

= et/ () o 223)

with & (m?/A?) chosen such that it cancels the divergence in[EG](2.22% fBsult is of course expected (in part)
purely on dimensional grounds.

The necessity of this counterterm has serious implicatioowever. Recalling the results from the first half of this
section, we see that the boundary conditiomsngeunder RG-flow. In order to reproduce the same physics in ayheo
with a different cut-off, we not only need to change the wersi but also thboundary conditiongMore precisely, to
maintain a given physical renormalized boundary condikigp we need to change the bare coupling Of course,
this counterterm is scheme-dependent. The beta-fundiomse loop on the other hand are scheme-independent, and
we can extract the generic behaviour of the boundary camgitirom them. We find that as we change the scale, the
boundary conditions change under RG-flow as

0K
B« = A— 52/\—+ﬁ()\ ). (2.24)
‘ Z m? / \2fixed /2

with 2 > 0. This may seem surprising, but it does not go against theethat boundary conditions are determined
by physical conditions, and not by dynamics. It is worthwhib repeat that what the RG-scaling of the boundary
conditions says, is that in@ut-offtheory, under a change of the cut-off, one reproduces the gdaysics when one
changes the boundary conditions according to[eq.1(2.24).

2.3. Boundary RG fixed points and ‘vacua’

A natural question to ask is what the endpoints of boundanflB®@are. The explicit dimensionality of the coupling
K already betrays the answer. In the deep IR, wh@n< A (A — « effectively; m = pA), k blows up, and the
boundary conditions tend to the special Dirichlet boundanmnyditiong(x,yp) = 0. Physically this is easily understood
in Wilsonian RG language. The moment the cut-off restricésthomentum scaldg| to be smaller tham (A ~ m),
all modes freeze out and the theory ceases to be dynamiaateHie fieldp ‘vanishes’, and must be Dirichlet.

14 Since the ‘bare’ boundary conditions are Neumann, thisétily type we can add.



Dirichlet conditions thus form a trivial fixed point of RG-flo This is easily visible. Wheip strictly vanishes on
the boundary, simply no counterterms are possible. Bothgérpd, @ and§ ¢ vanish. For completeness, were one to
repeat the computation e {2121) for Dirichlet conditiaghs difference is that the propagator now has a relativeimin
sign. As a consequence, the bulk divergence cancels thalboudivergence at = yo. Eq. [Z221) shows this clearly.

In effective field theory the distinction between the fuzoyihdary and the bulk disappears in the deep IR limit, which
explains why we can no longer treat bulk and boundary simijigla separately when the boundary conditions become
Dirichlet.

When the boundary is spacelike and represents initial ¢iondiin time, the induced changes in the boundary
conditions due to RG-flow have a natural description in thenlitanian language of states. Under coarse graining
the original state gets screened by vacuum polarizatiothddow-energy effective theory, the correct state to use is
a dressed version of the original state. If we take this pécfurther, we can deduce the boundary conditions which
correspond to the vacuum. If the vacuum is the ‘empty’ stiiten it ought not to become dressed under coarse
graining. Translating back to the Lagrangian languags, mieans that the corresponding boundary conditions will
not suffer from renormalization. Hence a vacuum in the Heomian language should correspond to a fixed point of
boundary RG-flow®

2.4. Freedom of choice for the boundary location

What will be of fundamental importance to us, is that the timeaof the boundary is arbitrary. The introduction of
a boundary action afp is a way to encode the initial conditions at the level of thosg but it does not necessarily
mean that there is a physical object or obstructionatyp. It is simply a translation of the statement that a second
order PDE needs two boundary conditions, but at what locatiee imposes those conditions is irrelevant. Of course,
if one imposes the boundary conditions at a different lacatthey will not in general be of the same form as
the original initial conditions. If one changes the locatip one must change the value wfto keep the physics
unchanged. A symmetry is therefore present between thédaog andk.1® To show this explicitly, choose a basis
o, (R, ), qL(R, y)=¢; (R, y) for the two independent solutions of the kinetic operatotekms of this basis, the linear
combination which obeys the boundary condit@w (Yo) = —K ¢ (yo) is

- ~ T T Kdi o+, 0

ka = k, +b k 7k, 5 b k:—é’
o (ky) = 9. (k) +DeRg-(ky) . be(R) = — L2215
Here the subscript 0 means that the quantity is evaluatdwdidundaryy. Obviously if b, stays the same, physics
stays the same. This allows us to derive a symmetry relatbmden the valug and the locatiolyy. Under a constant
shift of the boundarp¢ = &dnd = &dy¢ and a simultaneous change, b, changes d$

(2.25)

_ KOnd 0+ 02¢. 0 K@ o0+ 0ndio
obc = ¢ [ Ko _o+0¢ o (K¢’O+an¢’0)2(K5n¢,o+5nz¢,o)]
90 K@i o+ 0ndio
5k {K(P,o-i-and’,o - (K¢,o+dn¢,o)2(¢’°)] : (2.26)

Demanding thadby vanishes, one finds the changeximecessary to keep physics unchanged under a change of the
location of the boundary. This shows explicitly that thisdtion is arbitrary.
2.5. Minkowski space boundary conditions

Minkowski space formally does not have a boundary of courke. arbitrariness of the location of the boundary,
however, suggests that we should be able to treat it in azgimdy. This is not quite manifest because, to stay within

15 presumably this is a UV-fixed point. Exciting the vacuum teedes i.e. deforming away from the fixed point, reinstatesfR@. The excitation,
however, should not disappear in the deep IR. Hence theidgeskthe state due to coarse graining leads one away fromettieum. Of course to
study boundary RG-flow, one needs an interacting theory.Aae in a free theory is a trivial fixed point of boundary R@afl

16 This is not a true symmetry of the action. Because the cogionstank changes, it is an isomorphism between families of theofiiass is
analogous to general coordinate invariance of the targetesmanifold in non-linear sigma models.

17 Note thatb, depends on the basis choige, butk does not.



the framework of effective field theork, must remain an analytic dimension one operator in the dpataenta.
The symmetry[[2.26) is subject to this condition. The harimascillator boundary conditions, constructed here to
yield physics equivalent to unbounded Minkowski space msysvill be consistent with this requirement. To find
these conditions suppose the boundary is a fixed time slieecali then take a cue from the Hamiltonian formalism.
Minkowski boundary conditions should correspond to chogshe standard Minkowski vacuum in the Hamiltonian
picture. By definition this is the state annihilated by thedoing operator of each spatial momentum mEydén the
free theory).

4/0)=0 & (f@—iw(ﬁ,m)@)|o>:0, w(k,m) = /K2 + . (2.27)

The canonical momentum conjugate R = do¢x is precisely the normal derivative to the fixed time sliceisTh
suggests that we should choose the spatial momentum depdrmadary conditions [29]

On@ly—yo = IVKR+M@lyy, — K= —iy/K2+m?. (2.28)

This boundary condition descends from the ‘higher deratoperator§ /92 — m2¢. But, ask has canonical

dimension one, there is no new scale associated with thieehierivative term. Note thatis purely imaginary. We
recall from sectiof 21 that this is a consequence of imgpsia boundary condition at a fixed time. Wick rotating from
a spatial boundary with real generates a factor ofin the boundary conditiod@ = —k ¢@. All correlation functions
will be analytic in the boundary coupling as is usual in effective field theory, and we are therefestruicted to treat
K as real throughout all steps of the calculation, substituitis imaginary value only at the end.

This momentum dependent choice of boundary conditionseidiémsures that the theory reproduces Minkowski
space dynamics. For an arbitrarythe Green'’s function is (see e {2.25), and recall yhaarametrizes a timelike
direction)

dstlS’ ak(a—xz) (eiky(Y1*Y2) + :t)'_+ieik(fy17yz+2yo))
=
(2m? k2 —k2+mR —ig

Gk (X1,Y1: X2, Y2) = —i/ : (2.29)

where we have included theterm. The second term, at first sight, negates equivalertbeld Minkowski propagator

3K K(x—x2)+iky(y1—Y2)
./d kdk € Y (2.30)

Gmink = —I = ,
Mink (2m* K2 —k2+mR—ie

The coefficienk, however, is precisely chosen such that on shell the seesntivanished® By unitarity, the theory
with k = —iw(k,m) is then the same as the Minkowski space theory. We can seexpiigitly by performing the
integral overky. Doing so returns the standard Minkowski propagator in Htamian form

- Bk k%) —i(km)(y1—y2)
(2m)3 2w

G(X1,Y1;%2,Y2) =/ B(y1—Y2) + (Y2 = Y1) , (2.31)
which shows that the second term really is spurious. Indéesi choice ofk removes the pole in the second term,
which means its contribution to any physical quantity dszan's.

We still have an official boundary s of course, even though the specific boundary conditiongj{Zasure that it
has no effect on physical amplitudes. The situation desdti@re, is familiar from electrodynamit¥we have chosen
an interface ayg where the dielectric properties happen to be the same fonbaterials. The transmission coefficient
is therefore 100% and the wavefunction behaves as if theface is not there, i.e. the interface is completely
transparent.

18 The second term only vanishes for the dom@ig; + Y2 — 2yo). Since our domain of interestys> yo, this is always true.
19 Except that this boundary is spacelike, which is why we caadhrelate it to a choice of initial state.



2.5.1. Minkowski boundary conditions and RG-flow

Classical physics is indeed insensitive to a completehsjparent interface. Is the quantum physics as well? In other
words does the fact that the off-shell propagators appediffer become relevant at the loop level? The answer is
obviously no in perturbation theory. The cancellation & ffole by the specific ‘Minkowski’ choice far means that
in any integral the contribution of the second term vanishiEnce the Minkowski boundary conditions do not get
renormalized. They are a fixed point of boundary RG-flow dyaxt befits the boundary conditions corresponding to
a true vacuum. The reason why this is so is clear. The chqigg = —iw(l_<'7 m) is precisely the one that restores the
Lorentz symmetry naively broken by the introduction of a hdary. Counterterms are forbidden to appear for they
would break the reinstated Lorentz symmetry.

2.6. Wilsonian RG-flow and irrelevant operators

Quite generically therefore the boundary conditions of arqum field theory are affected by RG flow, unless
they are protected by a symmetry. Integrating out high gndegjrees of freedom necessitates a change in boundary
conditions to reproduce the same physics in a low-energgtfe description of the theory. Decoupling then ensures
that the low-energy theory remains predictive: the effe€tsigh-energy physics are primarily encoded in a small set
of relevant operators with universal scaling behaviouepghdent of the details of the high-energy theory. Subhepdi
corrections of an energy expansion are by definition cagtiyarrelevant operators. These encode the specifics of the
high-energy completion of the theory.

One of our best hopes to detect the properties of high endrgsigs beyond the Planck scale is in a cosmological
setting. The tremendous cosmological redshift duringtioftemay bring the consequences of such irrelevant operator
within reach of experimental measurements. This excitipgootunity has been a preeminent question in recent
literature. In sectiofl4 we shall show that the irrelevantrimary operators discussed in this subsection are respensi
for the leading effects of high-energy physics in cosmoj@gppearing generically at order/Mpjanck. The leading
irrelevant operators for the bulk theory have long been kmand their consequences for cosmological measurements
are discussed irLl[4]. However, it is well known that quantueidfitheory in cosmological settings suffers from
a vacuum choice ambiguity. In the Lagrangian language thisesponds to a choice of boundary conditions. As
we have just seen, we can parametrize this ambiguity in tisenotogical vacuum choice by adding an arbitrary
boundary actionf k ¢?>. Whichever the value ok may be, the influence of high-energy physics will be encoded i
the irrelevant corrections to the boundary action. For tkason, we devote this section to a determination of the
leading irrelevant operators on the boundary. Earlierietilave indeed indicated it is only (irrelevant) changes in
the boundary condition which can have observable effeatisaasurements. Due to the symmetry constraints on the
action the consequences of bulk irrelevant operators ate¢go small to be detectable. Our aim here is to provide a
solid foundation for these earlier results.

One can make a straightforward guess as to what the leadinglhaoy irrelevant operators are, insisting on locality,
compatibility with theZ, symmetry, andQ(3) rotational invariance on the bound&fyThey are the dimension four
operators:

& ¢ ](d3x I 9dg, 7{d3x OnOn®, A3 Pondng . (2.32)
¥Y=Yo ¥Y=Yo ¥y=Yo ¥y=Yo

Note that the breaking of Lorentz invariance on the boundistinguishes normal and tangential derivatives, and
that normal derivatives cannot be integrated by parts. ikgry infinitesimally, the latter two will generate normal
derivatives on the variatiof,d¢. To restore the applicability of the calculus of variatipnse needs to perform a
discontinuous field redefinition and adjustment of the cimgsl similar to [Z117). (For the interested reader, we do so
in [L2].) In this sense, all physics can be captured by thetfirs irrelevant operators. However, for tractability welwi
treat all four operators perturbatively and on the samearigoWWe will see in sectiofil4 that these operators will lead to
corrections of ordeH /Mpjanck to inflationary density perturbations, as predicted by thdiss [2]. Here we will give

an explicit example where high-energy physics induces titbese dimension four irrelevant boundary operators.

20 These symmetry constraints follow from the assumptionttietnitial state has no intrinsic dimensionful parameseare footnotEZ12.



Tree-level diagrams exchanging a heavy field are the nataralidates for producing higher derivative corrections
under RG-flow. We therefore add a scafeo the theory with massl, > A, to represent the high energy sector whose
influence we will deduce. The only communication betweerfitie x and¢ will be through the ‘flavor-mixing’ bulk
and boundary couplings

oh = — / d*xdy g — f dxyxo, (2.33)

and x will have no other bulk or boundary (self)-interactions.cBese the mass ¢f is higher than the cut-off, it
will not appear as a final state, and in this simple model weictagrate it out explicitly. Its influence on the low-
energy effectivel ¢* theory is only through tree-level mass oscillation grapit @ boundary reflection. Treating the
couplingsg andy as perturbations — hence the propagatonfevill have Neumann boundary conditions — consider
the tree level correction tapp) represented by the following Feynman diagram and its eéffeceplacement.

\%/ = T

| | (2.34)

Here wiggled lines denote the heavy figldsolid lines the light fieldp; the shaded region denotes the boundary, and
the dashed line the insertion ofyavertex. This diagram is easily evaluated to

(@(x1,Y1)P(X2,Y2)) x—effect = —29YGN(X1,Y1;%2,Y0)0(Y2— Yo)
_ 2I9V5(YZ YO /d4k IkX(Xl AR % (2 35)
B (2m)4 k2 + M2 '
iati ; i ; ; ; 2 2
Approximating the denominator in the standard way by a geoceeries valid foMy > A<,
<(p(p>X = 2|\|/?2yq2,;-[ Yo l/ d4k< M2 ) elkX(XI*XZ)JFiky(yl*yO)*f\_zz , (236)
n -
we extract the, dependence in the second term as a derivative té'find
n
2igydy, v, < U1 14y dkx(x—X2)+iky(y1—-Yo)— X5
010) = —2 2 — / d*ke Y N2
(PP)x M2(2m)* HZO M2 ) |
n
ZIQVQ, =y hd E) 4 A2 (xq-x)? A2 1-y0)?
— I\/I)Z(T;T)“o nz) w2 Ne =z N7 | (2.37)

Now recall that the projection onto the boundary of bulk terappears as a distribution with resolutidnin this
sense the above term contains the delta funcf&ge*’\z(y*ywz/“. Up to this resolution the above expression is thus
equivalent to

<(p(p>x _ 2igy6}’2*)’0 i

n
O
M2 (M—§> 6/%()(1_)(2)5/\()’1_)’0)] : (2.38)
X n=0 X

Hence we see explicitly the resultant higher derivativertataury interactions in the low-energy effective action. The
above results correspond to the vertices

Serf = 7{ ¢ gy [l?lfpl?qo POnda@] + O((9/M)*) . (2.39)

21 Note that these results are not inconsistent with our easdieulation [Z22R). There we evaluate the answer in theagipationA >> m. Here we
approximate\ < My . The exact intermediate answer obtained infeq]2.22) ispeoturbative im\ /M. This is why we approximate the momentum
integral forM,, > A in the standard way.



This supports the naive integrating outypffter a shifty — x — g((0+M?)~1¢p as argued in sectidiil.1. The terms
arising from the boundary tergyx @ under this shift precisely reproduce the higher derivatvens [Z.3D).

Note the similarity between the expressibn{2.35) and thegieacharge term in the seagull-graph(P.21). We see
therefore that a similar set of higher derivative corratdioan arise fronfoop-diagrams in g ¢ theory with only the
bulk interaction

|gh_ /d3Xdy ax ¢2 (2.40)

This is the hybrid inflation inspired model, considered lbefim the context of decoupling in FRW-spacetimes [10].
The seagull diagram responsible for the higher-derivatreections is a direct copy of e@. {2121) only to be evaldate
in the limit My > A rather tharmy < A.

@ — <(p(x1,yl)q0(xz,yZ)>Xfeffect
J

A
= —igGN (X1, Y1;%1,Y1)83 (X1 — X2)8(Y1 — ¥2)

_6521,25)/;1,2 4K ef/‘%22 e eiky(72y+2yo)7/‘é (.41
e |/ k2+M;+/ W eriewg | -
Repeating the geometric series expansiok?jfMz,
08,012
(pp)x = W

(2.42)
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—K? 2 _ K2 _ K2 e e
ZO /d4k (M—)Z(> e A2 +/d3kxdky < |)\(/|)2( ky) elky( 2y+2yo) A2

we see that we can extract tkedependence in the second term as a derivative Xkdiependence along the boundary
and the full bulk term give purely local corrections as expddrom loop graphs. Though this non-logadependence
is counterintuitive, the physical reason is easily idesdfilt is the interaction with the image charge. We find

z°° z” a2\ " 2\ P iky (—2y-+2y0)—
n=0p= 0< ) < );2(> /d3kXdky< )2:> el e "
95)(1255/12/\3 hd

n AN IS
PIDILE p( )(M_y> [ gt
n=0p=0 X

~ p
—95><-1255/;1,2/\3”1/2 °° ( ) oy —A2(y-yp)?
= bulk+ i L) Ae N7 (2.43)
MZ(2m)* Z;z P Mg

wherean = 21t/2(—2)"1(2n 4 1)!!. In the distributional sense this is therefore equal to

(@) x =
95x 1 255' 12
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Mg sz

© 2p
zzpay 5(y - y@]. (2.49)

where {, can be read off from{Z#3). The bulk one-logpdiagrams therefore gives rise to the higher-derivative
irrelevant corrections on the boundary

apN° [ O"
Si=S 4 d3xE qo( 0. (2.45)
7{ M2\ M2P




This result shows that the boundary irrelevant operatolisgenerically not appear in the combinatigh ¢d; ¢ —
©d2. This is a direct consequence of the fact that the boundagksrLorentz invariance. Examples which generate
the other two irrelevant operators are easily found. Theehjodt discussed will also genergte?* terms. A non-linear
sigma model will naturally havé d,@dn¢ corrections.

2.6.1. Minkowski space boundary conditions and irrele\apdrators

An important question therefore is how generic the occurenf irrelevant corrections is. In particular do fixed
points of boundary RG-flow, e.g. the Minkowski boundary dtinds or other ‘vacua’, still receive irrelevant correc-
tions? RG principles tell us that we should expect them.Jeshuse we are at a fixed point of RG-flow, does not mean
that irrelevant operators encoding a high-energy sectofabidden. In the context of boundary RG-flow, the con-
nection between boundary conditions and ‘vacua’, makessthitement somewhat surprising. In Minkowski space in
particular we do not expect that integrating out a high-gneector would change the vacuum state in the low-energy
effective theory even at the irrelevant le¥éBoth the general RG principles and the intuition that in Miniski space
high energy physics should not change the low-energy boyrataditions are true, as we will now illustrate. The
first point is evident from the two scalar theory at the beiigrof this section with the interactions given [0(2.33).
Integrating out the field exactly, clearly gives rise to the following irrelevaontributions to the low-energy effective
theory forg.

. 1 B
gf/v—energy = é/dsxdy— o(g+ Vé(y_YO))(Dch_M)Z() 1(9"‘ yo(y—Yo))®

bqu+Z) 74 ( b°*> o+ VZ¢<Db°X> 3(0)p. (2.46)

Herelpc, should be interpreted as acting on a complete set of eigetidunis with the boundary conditiorsx =
—k x that belong to the massive fie)fl To address the formal divergence of the delta functionsaoiiigin, 5(0),
recall first that in a cut-off theory, as we are consideritigdiatributions become smeared on the scale of the cut-off.
The 5(0) in the second term is therefore proportionaMg purely on dimensional grounds. Our cut-off scheme eq.
@22) indicates thab(x) = limp ... T Y2Ae"** §(0) = M7rY/2. This regularization only postpones the problem,
however. In|[12] we perform a computation, which indicateattthe 5(0) term arising from discontinuous field
redefinitions does not explicitly appear in bulk correlatfancions. Its sole function is to generalize all distribot

so that they obey the correct boundary conditigngy) = —k f(y).

Consistent with the principles of decoupling, we see thateter boundary conditions we choose goincluding
fixed points of RG flow, the boundary action will receive iaent corrections. How can this possibly square with
the idea that Minkowski space high energy physics shoulcdtaoect the vacuum choice, i.e. the Minkowski space
boundary conditions af? In this simple model it is fairly easy to see that the boupdanditions ofp change, because
the massive fielgyk does not have Minkowski space boundary conditions. Whinintegrated out, this reverberatesin
the low energy effective boundary action fprA naive way to see that is not at a fixed point of boundary RG-flow,
is to note that the full boundary condition fgrreadso,x = —k X — y@. The explicit dependence apmperturbs one
away from ax-sector fixed poinkiixeg. TO consider a fixed point in the-sector alone is inconsistent of course; the
full x-¢dynamics needs to be taken into account. But an exact ansegsiple because the theory is exactly solvable,
shows that this naive guess is qualitatively correct. Treceanswer is obtained by diagonalizing the theory to two
fields ®; and®d, with action

1 r 2 2
Souk = z/o|3xo|yq>1 <D—M)2(+49—M§) 1+ D, <D—m<2p+ 49—,\/%) ®+0(g)
I N 29v VOO g, o, (29 V3O o 4 518 0.7
Snound - 2% M2 1— W2 M2+ MA 2+ ( 7g 3g y)v
M2 = mg (2.47)

22 \We thank Jim Cline for emphasizing this point.



If we tuney andg such that one of the two fields has Minkowski boundary cood#tke, = —i w(l_<'7 Mo, ), we see that
the difference in masséds, ~ My andMg, ~ my, prevents the other from obeying Minkowski boundary codisi

At a very fundamental level these results are easily undedsiRecall that the Minkowski boundary conditions are
the only boundary conditions respecting Lorentz invarggnhis is what guarantees that the values of the boundary
couplings correspond to a fixed point. The explicit boundiaigractiong —yx ¢ ~ —% J O(y—Yo)yx @ breaks Lorentz
invariance, however. In the diagonal system viith @,, the Lorentz invariance is broken because one of the twasfield
does not obey Minkowski boundary conditions.

We have only shown that irrelevant operators will genelycagbpear in a situation where a field in the high energy
sector is not in the Minkowski vacuum. Lorentz symmetry dtd@uarantee the converse: that if all massive fields obey
Minkowski boundary conditions, no boundary RG-flow or boanydirrelevant operators can appear. Importantly, in
the setting of interest to us, FRW cosmology, Lorentz iraface is absent. It is therefore not clear that cosmological
boundary conditions, to which we turn now, are similarlytpated from RG-flow and irrelevant contributions from
high energy physics. Strictly applying the RG principles, shouldnot expect them to be protected.

3. BOUNDARY CONDITIONS IN COSMOLOGICAL EFFECTIVE LAGRANGI  ANS

We have seen that:

(1) a boundary action can encode the boundary conditionsvigiees to impose on the fields.

(2) This holds in full generality. The boundary need not espond to a physical obstruction or object. Completely
transparent boundary conditions exist that mimick theasitun as if there is no boundary. Introducing a boundary
action to account for initial conditions therefore placesadditional constraints on the theory.

(3) Generically the boundary conditions will be affected R flow, and suffer irrelevant corrections that are
controlled by the high energy physics.

We now use this knowledge to describe FRW cosmologies froragedngian point of view. The main issue in the
Hamiltonian description of FRW cosmologies is that of vaouselection. In the absence of a global time-like Killing
vector or asymptotic flatness, there is no unique vacuura.stéere are two preferred candidates, the Bunch-Davies
and the set of adiabatic vacuum states, which we review hélatvsome uncertainty remains. Both states, in fact, rely
on an asymptotic condition which ceases to be valid in thegiree of a finite Planck scale. We wish to emphasize,
however, that whichever state is the true one, points (1X2nhdbove tell us that we can account for this state by the
introduction of a specific boundary condition at an arbjttime t.

Our lack of knowledge of the specifics of the very early uréesand the high energy degrees of freedom dominating
at that time rather suggests to encode the initial statertaioty in a ‘past boundary’ for any cosmological theory.
With the boundary comes the Lagrangian translation of tleeiwen choice ambiguity: what boundary conditions to
impose? We will not give an answer to this long-standing tjoesWe will show, however, that whatever (local
relevant) boundary conditions one chooses, they are d¢ensia the sense that the backreaction is under control. The
countertermsappropriate to the boundary conditions specifibdt are necessary to render the Minkowski stress-tensor
finite, do so in cosmological setting as well. This confirnesitituition that the boundary conditions do not affect UV-
physics. And this continues to hold for any choice of cosmial initial conditions. This may come as a surprise.
The Hadamard condition — that at short distances the twotmairrelation function is the appropriate power of the
geodesic distance(x;,x2)%2 — has long been thought to be a consistency requirement fmnalmgical boundary
conditions. Only these correlation functions permit ‘renalization’ by the standard Minkowski stress tensor. The
lesson from sectioll 2, however, is that other short disthetavior does not necessarily signal an inconsistency, but
instead implies that the ‘boundary conditions’ need to m@rmalized as well. This returns to the front the question
which boundary conditions describe the physics of the realdybutnonethat can be deduced from local relevant
boundary interactions are intrinsically inconsistentisiib the power of the effective Lagrangian point of view.

Suppose for now that all choices for boundary conditiongenriitial surface of an FRW universe are indeed consis-
tent. Compared to Minkowski spacetime there is a new ingredirhe boundary condition needs to be covariantized.
This is done by the introduction of a unit vectdt normal to the boundary.

oh@=n"dyy=0, |guvnn’|=1 (3.2)
In the conformal frame,
d%RW:az(r’)(_dr’Z"'dx%fl)a (3.2)



the unit normal vector to the boundary scalesias Hence the boundary condition reads

1
aan Gln=no = —K®ln=nq - (3.3)

The explicit dependence on the scale faa@imply reflects that momenta redshift under cosmic exparfsido
construct the two-point correlation function for a massiealarg that satisfies this boundary condition, we need the
equation of motion in an FRW background. For simplicity welwssume that this background is pure de Sitter;
the results below generalize straightforwardly to povesv-inflation and are therefore truly generic. The equation of
motion is

1 v B B
\/T_gdu\/—_gg“ 2vp(x,1) — MP(x,N) =

1, a K2 2\ o

In the second step we Fourier transformed the spatial diret Substituting the constant de Sitter Hubble radius
a—2a’ = H, the explicit scale factaa = —1/Hn and making the conventional redefinitign= —y/k, we have a Bessel
equation forp = y—(@-1/2¢:;

(v 3,2+ 1 50 ) gty =o. 35)

The most general solution to the field equation is therefore
oo (K,n) = Gas+ +bePas—

d—2
bose = (b2 [ 2 (B) TR Ry v [ (3.6)

4k \ k 4 H2’
with Hy (y) the Hankel function satisfying ef.(8.5). The normalizatmd convention is such that in the lirkit—> oo

we recover the Minkowski space solutions. The boundary itiond (33) determiné, as in eq.[[Z25).
By construction the Green'’s function is giver?By

Gy (K, N1 K2, 12) = (27)38°% (ke + ko) A, ¢ (?ﬁb,(f (Ke, 11) b, (Ko, N2)0(N1— 112)
+ b, (K, N1)®b,, (k2,12)0(n2 — 01)) ; (3.7)

where k¢ characterizes the future boundary conditionsyat «. The normalizationfx, x is chosen such that
(0—nm?)G =i84/,/=a. This requires that

N 9, (&.1) O B, (K1) = i %(n) = ~i(~Hn)*2 (3.8)

23 Realizing that cosmological scaling induces RG-flow we sty see the previous claim that Dirichlet conditions tairgal IR-fixed points.
24 A ‘covariant’ Green'’s function is given by

trunc(ky )

Gar (s mifone) = @26 Fa+la) 5 (n) 1) ()
n

H2n? —mP + H2(d—1)2/4

wherek characterizes the future boundary conditiomat « and 1(n) is an easily determined measure. From this expression las that the
delta function therefore also obeys the boundary conditistheed the delta function is best viewed as a completeméstion for eigenfunctions
of the Laplaciarl¢y, = —k2¢ obeyingaalﬁ,7 (IJk|,70 = —K®x|n, i-€.

< (M1—1N2) = ZIJ ) @o.n(N1)Ppn(N2)



We find that
1

From here on we will again restrict our attentiordte- 4 spacetime dimensions.

=/VKf,K = (39)

3.1. Harmonic oscillator and shortest length boundary condions

A special set of boundary conditions are the covariantiradif the completely transparent “Minkowski” boundary
conditions of eq.[{Z27). We will call these “harmonic oktibr” boundary conditions. Recall that these correspond t

the boundary actiod @, /diz — m2g. Covariance requires that the scale factor should enterdsewell. We thus find
that thecosmologicaharmonic oscillator boundary condition is characterized b

k2
Kno = —I %4—”12 (3.10)

For the specific momentum dependent choice of boundaryitwcaf'(k) = —A/H|K| or equivalentlyag = [K| /A,
these boundary conditions correspond tmastanvalue for the physical parameterThey are therefore the boundary
conditions proposed ini[2] 9]. Underlying this inspired ideais the thought that in a cosmological theory there is an
‘earliest time’, where a physical momentyme R/a(n) reaches the cut-off scale (the shortest length). Whetleeeth
is truly an earliest time in cosmological theories is anresting question in its own right. It would be the natural
location for the boundary action, but as a consequence ciyttmenetry between boundary locatipgand coupling«
exposed in sectidnd.4, it is not directly relevant to useklit is easy to see that a momentum-independent coupling
Kno at ng"-(R) = —A/H|K| is equivalent to a boundary action on a standard time-glfoeith momentum-dependent
couplingks

~ 0¢:(ng) +bs9¢-(ng) _ Kno@®s (ngh) +9e; (N5
Ksp = — N 7 s b3|_— — SO SR (3.11)
®:(Ng) + bsLe-(ng) KHo®-(Ng-) +0¢-(ng")

In the limit A — o we recover the harmonic oscillator vacuunmat —. The couplingk’ encodes these harmonic
oscillator boundary conditions gy = — in terms of conditions af, pluscorrections that vanish as— c. As we
have seen in the previous section and will discuss in detdlieé next, these corrections therefore correspond to the
introduction ofspecific irrelevanboundary operators.

3.2. The Bunch-Davies and adiabatic boundary conditions

In universes without a global timelike Killing vector, tleeis no clear concept of the vacuum as a lowest energy
state. Particle number is also not conserved and one canaothiguously define an ‘empty’ state either. Instead one
must specify a particular in-state characterizing theahgonditions. Two solutions to this vacuum choice ambigui
have become preferred. One is the Bunch-Davies vacuumvidhiadirectly constructed by requiring that for high
momentaf(/a > H the Green’s function reduces to the Minkowski one. The seéamresponds to the set ai-(h
order) adiabatic vacua, which is constructed by the reqerg that the number operator on the vacuum changes as
slowly as possible [13, 3G, For de Sitter space the infinite order vacuum and the BuncheB@ne are the same;
we shall therefore only discuss the latter.

The boundary conditions corresponding to the Bunch-Daxaesium are readily found. In the badiS3.6) we have
chosen, the Bunch-Davies-state corresponds to chobsin@, and hence

0
Kep = _M_ (3.12)
bds+.0

25 Referring to our earlier comment, we see why the definitidrts®BD and adiabatic state become ambiguous in the presércénite Planck
scale. For the former the strict highlimit does not existK/a < Mpjanck). For the latter the adiabaticity parameter (rougaly/k) is no longer
arbitrarily small.



Note that the Bunch-Davies boundary conditions are theogunals of the Minkowski boundary conditions in a
mathematical sense only. The flat space Minkowski boundanditions in eq.[[Z28) are easily recognized as

K,\f,l';tk P~ OnPMink +.0/ Pmink + 0 With Pmink + =~ 1%, Using the Bessel function recursion relation

v
AHy(y) = va(y) —Hysa, (3.13)

and the chain rulé, = —Rdy (recall thatd, = a*lﬁ,,) a straightforward calculation yields

Kk (ﬁm(—Rno) CEES 2v>

Kep = — — = =
a \ Hy(—kno) 2kno
20 \ Hy(—kno) 2
Knowing the asymptotes of the Hankel functions
. 1 2\" F(v) /2\"
z—0 : Hy(29)~ —sm VT A=) <z) =-i— (E) , (3.15)

z— o ~y = éZ* FVT-3m) (3.16)

we see that fong — —o the Bunch-Davies boundary condition reduces to harmomiti@®r boundary conditions
KBD =~ —

i (3.17)

of a massless field. (One cannot say that the boundary conslitend to Dirichlet, the diverginay is compensated
by the normal vector, see ef_{8.3).) The mass correctiombleading in this limit. We should keep in mind though
that this is a formal expression. ffp = —oo the induced boundary volume vanishes, and boundary conditiannot
easily be accounted for in terms of a boundary action.

3.3. Transparent, thermal, adiabatic boundary conditions fixed points of boundary RG
flow?

The most natural choice for the boundary conditions areariytthe ones which are transparent. If there is no real
interface at the boundary locatigg, no physical effects of its location should be noticeabted&fine transparency
we need a notion of incoming and outgoing waves. A clean defimbf such waves only exists in asymptotically
flat spaces. Suppose one establishes these and let us calttimeing wave (from the past)_ and the outgoing
¢.. The transparent boundary conditions are then thoselwith 0. Of course de Sitter space is hot asymptotically
flat, but based on the asymptotic behavior of the Bessel fumgtone can argue that the basis functiggs_ and
dqs+ defined in[[3B) correspond to in- and out-going waves resdyg In that sense the Bunch-Davies boundary
conditions are the transparent ones.

A definition which is more intrinsic to de Sitter is that the in-Davies boundary conditions are the thermal
boundary conditions. This emphasizes the existence of maogical horizon, and is probably tied to the notion of
transparency. From the Lagrangian point of view the truaivat should be a (UV) fixed point of boundary RG-
flow. In the presence of a global timelike Killing vector wighconserved quantum numbgtp = iE ¢ such a fixed
point is easily constructed following the Minkowski spacample in sectiof 2]5. In cosmological spacetimes it is
not clear what the fixed points of boundary RG-flow are or whethere are any. The absence of a unique vacuum
suggests that there may be none. If we recall that cosmabgigpansion induces RG-flow, the definition of the
adiabatic vacuum, i.e. that the number operator on the vaahange as slowly as possible, becomes very interesting.
It would be worthwhile to investigate these connectionsveen the transparent (i.e. Bunch-Davies), the thermal, and
the adiabatic vacuum in FRW backgrounds and fixed points ofitiary RG-flow further.



3.4. Backreaction and renormalizability for arbitrary bou ndary conditions

We shall now make a crucial point. Any cosmological boundanyditionk, provided it is a dimension-one analytic
function of the spatial momenta, is consistent in the seémsickreaction is under control. The divergences appgari
in the stress tensor must, of course, be regulated by thepfiaescounterterms of tleametheory. This includes the
boundary counterterms fgik ¢? and ¢ 11 @d,¢. Our review in sectiofl2 has made this clear. In a rather edashion
we can also see this directly from the FRW Green'’s functiotihelimit of high (spatial) momentum — in as far as
this limit exists in a cut-off theory. Using the asymptotalwes of the Hankel functions, the basis functi(p;ggs(ﬁ, n)
tend to massless Minkowski ones (the mass is negligibledihh momentum limit)

e L gemin(km)

TVE e oA
The coefficiento encoding the effective boundary conditions for high-motaenmodes therefore does not vanish,
but reads

—

K—oo qoi,ds(R,

(3.18)

K@y Minko + 899 @+ Minko — H @y winko
K@_ Minko + 8 0 @ mMinko — H@_ mink 0
apk —i|K| + apH

(3.19)

The last terms in the numerator and the denominator aregilggliin this limit |R| > aH. They are remnants of the
fact that the background breaks Lorentz invariance. Th#fic@mnt b thus does not vanish in the high momentum limit.
Because a non-zebomeans that there will be divergences in the thexsmigefrom the ‘Minkowski’-space divergences,

it appears that any choice of boundary conditions it 0 is in trouble. In sectiofil2 we reviewed, however, that
this is not so. The additional divergences are localizedhenbioundary surface where the boundary conditions are
imposed, and can be reabsorbed in a redefinition of the boyrdaplings. Any choice fob (descending from a
boundary coupling that is dimension one and analytic in the spatial momen)nsistent.

One is tempted to conclude that for any boundary conditiqggoised at)g = —oo, the high spatial momentum limit
of b vanishes. This is true in the sense that if we keefixed our flat space intuition, that boundary effects vanish
when the boundary is moved off to infinity, continues to hdldwever, this goes against the principles behind the
framework we advocate here. In the sense of the symmetryeleetlvoundary location and boundary couplingas
explained in sectiofi’ 2.4, it is only the specific combinatignwhich matters. At what locationg one imposes the
boundary conditiong is immaterial to the physics.

The conclusion is that the answer to the question “what bapncbnditions should we impose on quantum fields in
FRW backgrounds” requires physics input rather than imtieronsistency. The Bunch-Davies vacuum certainly seems
the closest analogue of Minkowski boundary conditionsndateugh it is not the naive covariantization of them. The
similarity suggests that the Bunch-Davies boundary camtitmay correspond to a fixed point of boundary RG-flow.
At the same time Lorentz symmetry is still broken. If they serormalized, it would suggest that they are not special
in any sense.

Let us emphasize again that we have shown consistency,mandestly finite backreaction. The observed energy
density of our current universe will or will not agree wittetpredictions for the backreaction based on using different
boundary conditions. This, however, is precisely the ptg/giput that is needed. Only a measurement can decide the
correct boundary conditions to be used in any situation.

4. TRANSPLANCKIAN EFFECTS IN INFLATION

Inflationary cosmologies are the leading candidates toestte horizon and flatness problems of the Standard
Model of Cosmology. Consistency with the observed spectutitamperature fluctuations in the Cosmic Microwave
Background (CMB) provides an estimate of the Hubble parant¢tduring inflation. Depending on the modél,

can be as high as ¥bGeV. With the string scaltsiring = 10'® GeV as the scale of new physics, this means that the
suppression factdd /M of irrelevant operators could optimistically be at the grezeent level. This opens a window
of opportunity toexperimentally witnessffects of Planck scale physics [1]. Besides its theorktippeal, inflation



is also the leading candidate for early universe cosmologg@erimental grounds. The most precise cosmological
measurements to date, the temperature fluctuations in thB, @Gelvocate inflation. The CMB measurements are
therefore also the most promising arena where remnantao$ptanckian physics could show up. In inflationary
cosmologies the CMB temperature fluctuations originatesemgum fluctuations during the inflationary era. The issue
of vacuum selection in cosmological settings thus has iniaedonsequences for CMB predictions. At the classical
level the Bunch-Davies choice is, for reasons reviewed @npfrevious section, the preferred one; it is the closest
analogue to the Minkowski boundary conditions. Previowggtigations into effects of Planck scale physics suggest
that the CMB fluctuation spectrum is affected at leading pilél /Mpjanck and that this effect is precisely due to the
choice of vacuum_[2.19]. Due to our ignorance of the detail®lainck scale physics (i.e. our lack of understanding
of string theory in time-dependent settings), decouplimgffective field theory is arguably the framework in which
transplanckian corrections must ultimately be undersfdp @y the addition of an arbitrary boundary action encegdin
the boundary conditions, we have put the issue of vacuunats@beon a consistent footing with the ideas of effective
field theory. In this comprehensive formulation, we can dedsystematically what the effect of Planck scale physics
is on boundary conditions (vacuum selection) and whetkeaffect on CMB predictions is indeed leading compared
to bulk correctiong®

The Planck scale physics is encoded in irrelevant operaldrs leading bulk irrelevant operatq-/}z [
consistent with the symmetries is dimension six. In se@i@we constructed and derived the four leading irrelevant
boundary operators in flat space

1 1 - 1 1
= Jdxgt, = fdxoipag, —7{d3xa @, — $AX PO . 4.1
M FAXO s fA X000,y pd XNohe, G Pd X Ponch¢ (4.1)
compatible with unbrokefSQO(3) symmetry. In a cosmological setting this is the requireneértomogeneity and
isotropy. These operators are all dimension four and asxpkce scaling shows, they are expected to be dominant
over the leading bulk irrelevant operator. In curved spdeese operators are covariantized. For a scalar feld
covariantization has only a significant effect on the lagtrapr in [Z1). A new coupling is needed which provides
the connection for the covariant normal derivative

1 1
Mf\/ﬁn“n" (@0, 0vp— (prpwap(g)(p) = M%x/ﬁn“n"D“a\,q). 4.2)

Herehjj = guvdix*9;x" is the induced metric on the boundary, adits unit normal vector. In FRW cosmology with
the metric in the conformal gauge,

dstrw = a%(n)(—dn?+dxg) , (4.3)
and an initial timeslic&) = ng as boundary, the induced metric, connection coefficients rmrmal vector are
hj = a3(d)),
o= ael,
M = aHodj, My =aHod] , My =aoHo. (4.4)

Hereag = a(no) andHo = H(no) is the Hubble radiusl = a~2d,a atn = no. Substituting these values we obtain the
FRW version of the irrelevant operator

%f.agq’(an—H)dn(P- (4.5)

We shall compute the effect of the leading irrelevant omesabn the two-point correlator ap. In inflationary
cosmologies, the latter determines the power spectrum dB @ihsity perturbations. We will assume we can treat

26 The object of our study is an external scalar field in a fixed FBMkground. Strictly speaking only the gravitational terifuctuations are
effectively described by such a model. However, our argusheimould apply to the scalar-metric fluctuations as welgesithese only differ by an
amplification factor of the inverse slow-roll parameter.



the four-point bulkA ¢* and (irrelevant) boundary interactigip* perturbatively and will ignore them to first order.
Combining the remaining irrelevant boundary operatorséoraection to the FRW boundary action, one obtains

irrop. | 3 BL . B Be

°“”d_.7€7:nod xao[ 2M0 @0 @ oM On @0 @ oM @Dndho| . (4.6)
The precise value of a coupling constafitds determined bytwo parts. (1) It is determined by the details of the
transplanckian physics; e.g. if transplanckian physiasfiee sector, decoupling is exact gfid= 0 (for dynamical
gravity the sectors are never decoupled of course), buh@)ouplings3; are also covariant under the symmetry
between boundary location and coupling. If we would havemated the irrelevant corrections to a boundary condition
at a different locationy,, we would have found different valugswhich upheld that all physical quantities only depend
on the choice of boundary location through a specific contluind, g..

Two of the operators in eqC{4.6) contain normal derivatives discussed in sectidd 2, such operators can be

removed by a discontinuous field redefinition and a changhefémaining boundary couplings. Doing 50l [12] we
find that to lowest order i /M, eq. [£5) is equivalent to a boundary interaction (if thafxary coupling:=0)

irr leading  __ " 33 _ﬁ I_(E(BH_BC) KZBL_BCmZ_ 3B:H
S _jgaOdXZla%M+M MM |

4.7)

wheren? is the mass of the scalar field. Fourier transforming alomgttbundary, the leading irrelevant correction
thus amounts to a change in the boundary condkiduy?’

KB —F:) , k3B, PP |, 3hcH
agM M M OM

Keff =Ko+ (4.8)

We clearly see that the leading correction to the low-enefégctive action occurs at ordék /apM andH /M. For
CMB physics the momentum scale of interesfkig anorcrossing~ H, and both are of the same order. The conclusion

that the|R| dependent operators are suppressed by a fagt@horcrossingis incorrect, when we recall that the location
of the boundary is arbitrary.

For a given FRW universe the Green’s function, includinghh@ correction to the boundary condition, can now
simply be read off from eqd(3.6)=(B.7). We can thus strdiagtvardly compute the leading transplanckian effect on
the power spectrum of inflationary perturbations. The tagteelated to the equal time Green'’s function with= k-

- K L

PKk = #TOﬁGKf:E,K(karli—k,rl)

K |, (k.n)[?

= lim — "= 4.9

10272 (1—|og]2) (4.9
where ¢y, (R,n) is a solution to the (free) equation of motion, normalizedarding to the inner produdi(3.8), and
with boundary conditio@h$ | = —k ¢ |. Note that the basis functiors, only depend on the location of the boundary
through the physical combination bThis ‘independence’ of the location of the boundary guéean that the power-
spectrum — a physical quantity — is so as wEbr an infinitesimal change in the boundary conditionve can
treat the verte>¢’—%6kqo2 perturbatively, and the change in the power spectrum sirapipunts to computing the
following Feynman diagram.

~—~

| (4.10)

27 Because the coupling is subject to renormalization, its value is fixed by a rendization condition and an experimental measurement. An
important question therefore is, whether the effects @lésrant operators are experimentally measurable. Thelatarstory, that (1) measured
couplings always include all relevant and irrelevant odioms, and that (2) the contribution of each couplBds an independent contribution to
the precise running of coupling:¢ () under RG-flow, should apply. A very precise measurementeétialing behaviour af should reveal the
contributions of high energy physics encoded in the irai\operators. This is explained in detail in the next submeZ.



This immediately illustrates that 8k is of orderH /M, the change in the power spectrum will be of ortigiM. For
completeness, we compute the power spectrum by de Sittankaydiagrams in [12]. With the effective changein
corresponding to the contributions of the irrelevant ofies3; known, we can also simply expand the exact solution
for the power spectrum for ary. Choosing the Hankel functions as basis as in[egl (3.6),dlwiens ¢y, are given

by
_ K$i0+0hd 0

= bed_ ., b = ) 4.11
Boc = Bebepo b=~ m T (4.11)
For an infinitesimal shifdék the power spectrum is thus
- K b _, )
PKkisk = P(K«k +,I7'Lnoﬁ [mmk +c.c.] +0(db%) . (4.12)
Substituting the de Sitter values computed in the previeasan, and using that asymptotically (SEE{B.15))
. _(1-b)
we find that
- B 1 (1-b)
PK)kiox = Pk <1+ A= [bP)?2 {&O(b—l) +c.c.D . (4.14)
Recall from eq.[[Z26) that
6b: 6K¢+,0 6K¢*,O(K¢+,O+a¢+,0) ) (415)

Ko+ 0nd_0 (K$p_ 0+ 0nd_0)?

We see explicitly that the change in the power spectrum @ladear inH /M.
For the preferred Bunch-Davies vacuum choice, witere0, the corrections thus become

o)
K +c.c. . (4.16)

—@_00h@; 0+ P 0GP0

It appears we have introduced a dependence on the boundatioly, but we should not forget thak intrinsically
depends oy as well. The combination above is guaranteed to be indepenéithe boundary location. We recognize
in the denominator the normalization conditiénl3.8) (with= a*ld,,). The expression therefore simplifies to

Papiok(K) = I:’BD<1+

oK q_ﬁ’% +c.c.

—iay

Pepisk = Psp <1+

+ ﬁ(5K2)> . (4.17)

Restricting our attention to de Sitter space, we insert Xpdi@t expressions for the basis functiops from eq. [3.5),
and obtain, using that = k/Hyp,

ds ds [ 3kHY (yo)
PSSioc = PSS(1-(g5) |——L2>+cel ) - (4.18)

Substituting the irrelevant operator induc&e from eq. [£3B), we compute the following corrections to thosvpr
spectrum

—2 72 2
H - e 3BH
Pg|§+6:<: ng <1— % [ vi(yO) [ l(i%M BC) + KBI\DABL — B(;\A — KBD [;;I + C.C. ) ,
(4.19)
with (eq. [3IH%))
Kep = d-—1+2v K Hyia(yo) (4.20)

2 ~a Hy(yo)

This is our final result. Let us stress again, that the appalgpendence on the boundary location is only that. The
boundary coupling$; by construction compensate thedependence and the whole expression is independggt of



4.1. An earliest time in cosmological effective actions.
The inflationary power spectrum

We have repeatedly stressed that the location where on¢hseb®undary conditions is immaterial. To compare
the theoretical predictions with experiment one must ofrseichoose a specific moment. Naively in cosmological
spacetimes with a past singularity, there is an ‘earliesttiwvhich would be the logical candidate. We will show here
that the boundary effective action supplies a ‘mathemhtieanifestion’ of the concept of an ‘earliest time’. It wileb
very clear, however, that this ‘earliest time’ is an obsedgpendent choice. The existence of the shift-symmetry is
therefore essential for consistert€y.

Perturbative effective actions are intrinsically limitedtheir range of validity to scales below the physical cut-
off M. In an FRW cosmology, this is manifest in the momentum exjpansf the bulk low energy effective action.
The metric contributes a scale factor, so that the smallrpater is precisely the ratio of the physical momentum
to the cutoff:k/a(t)M = Pphyst)/M. What is novel for cosmological effective actions is that toundary effective
action parametrizing the initial conditions is an expansiotheblueshiftednomentum: It is in terms of the physical
momentum at the time where the initial conditions arelg&toM = Pphysto)/M. The momentum expansion therefore
has not one but two small parameters and breaks down whear eith

k k
aM Lor a(t)M
Physically this bounds mean the following. If the physicabgesses we are are interested occur at co-moving
momentum scalegco, then we immediately see that an FRW effective action is walig up to the ‘scale’

=1. (4.21)

_ R
as is conventional, but it is also only valid up to a ‘time’
ap = Heo/M . (4.23)

We see here the confirmation of our intuition that we can onlgttlow energy effective cosmological theories up to
the ‘Planck time’. So far this has always been lacking.

As stated, this 'earliest time’ is then of course the logipkice to locate to boundary action to set the initial
conditions. Doing so, we can refine our analysis for whiclugalof3 andH/M changes in the power spectrum
are of the right order of magnitude to be potentially obskleaNote that for higﬁ( all irrelevant boundary operators
reduce to a single one

gir, leading highk _ %a8d3x _ £E¢2 (4.24)

whereB = B — 31 — .. We will focus on this single one for simplicity. This opesainduces a correction to the
power spectrum of a massless field£ 3/2)

RIS+ oP
ds
Peb
The maximal change in the power spectrum naturally occuthiélargest possible value uf max= Kmaxobserved @H .
This is simply a consequence of the fact that we are studhimeffects of an irrelevant operators whose size increases
with k. The existence of an ‘earliest time’ — the moment where wertalonger trust the boundary effective action

— suggests that we chooag = kmaxy/M (we cannotchoose arag smaller than that; we could choose a larger one).
Henceyy max= M/H. For this value of we see that the change in the power speaqurals

PSS+ 6P TBH [. M2
BDT Yomay = 1+ 4 I3
Pso H

(yo) =1+ TP

7 | Y3H3200) +cc (4.25)

yRv H3/»(M/H)+c.c.
1+ Bsin(2M/H) (4.26)

1R

28 The results in this section were obtained together with BiRenel[40].



Note: thought the chance in the power spectrum is pararadjrid /M as argued before, its maximal change is in fact
quite independent of their values — if one s&is= kmax/M < Yo max= M/H. For this value ofy, it becomes linearly
dependent on the size of the irrelevant operftdie have shown these results in figllre 1. The observed winultvei
CMB is four orders of magnitude frofymax to 10-%yomax Clearly for small values o8 and moderately large values
of M/H the change in the power spectrum is far larger than the pegjel®6 uncertainty in future measurements. We
have a solid case that for a large enough valud g¥1 future CMB measurements are sensitive to high-energy pysi
through irrelevant corrections to the initial conditions.
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FIGURE 1. The left panel shows the change in the (amplitude of the) pewectrum due to the presence of the leading order
irrelevant operatoﬁ(ir‘. ©)? as a function of the physical momentum in units of the sizénefttorizon at the "earliest time’. (Only
for one specific choice is the full oscillatory Bessel funntbehaviour plotted.) This graph should be read as foll@wgen the
scale of new physicM and the Hubble constaht during inflation (or more precisely at the time when the higghmodekmyax of
interest exits the horizon) the earliest time up to which am. trust the effective action is wheg max = kmax/@gminH = M/H

(see subsection). Anything to the right Wfmax should be discarded as untrustworty. Preciselypaax the change in the power
spectrum is linearly dependent on the valugofhe values oM /H andf3 corresponding to the various curves can thus be read of
from the intersection of the plumblines to the upper andtragtis. The right panel shows an exclusion plot foas a function of
H/M. The 4% lines (black) correspond to the backreaction bouhdsk4 @723) (continuous for zeroth order in slow roll, dashed
for first order in slow roll, dotted for second order in slovilyaThe 6@ lines (green) correspond to the order of magnitude estimate
made in|[31]. The upper horizontal line is an order of magitetestimation of the current error to which we have a neawdyesc
invariant spectruni[11]. The lower horizontal line is an@rdf magnitude estimate of the cosmic variance limitat@igsolution.
Finally the vertical line denotes a maximal valuetbfM consistent with observatiom /Mpjanck is extracted from the observed
amplitude of the power spectrum and we haveMet 1016 GeV. This leaves the shaded region aswfiedow of opportunityto
observe transplanckian physics in the CMB.

Moreover, figurddl clearly shows that the current sensjtiwiith which the power spectrum is measured already
constrains the allowed values fBrandH /M in nature. A coarse extrapolation from the WMAP results [hifjcates
that the observed power spectrum is scale invariant withcaaracy of around 10%. A value of B ~ 0.2 and
H/M ~ 0.01 would already imply a 20% change at the upper end of the pspextrum, inconsistent with the data.
The point of principle that the power spectrisrsensitive to irrelevant corrections has therefore beeabéshed.

Naturally, all other — measured — cosmological quantitidsalso be affected by the irrelevant boundary operators
and observability therefore hinges on whether other phemmhogical constraints are mild enough to allow a large
enough change to the power spectrum. In particular, an efdaagnitude estimate of the gravitational backreaction

29 Actual data show a small scale dependence. The power speistinversely proportional to a slow roll parameRer 1/, which is measured
with an accuracy of about 10%. We are extrapolating that érece to a hypothetical pure de Sitter phase of inflation.



[31] argued that such constraints are quite signifiédithese constraints are not in conflict with our arguments in
sectior 3. As stressed there, this is input into what theecbinitial conditions are, from the observed energy égns
driving the inflationary expansion.

A forthcoming article will discuss the computation of thegitational backreaction in detail. The resulting pertur-
bative bound on the coefficieftof the leading irrelevant boundary operator,

M2H2
B2 < <12n>2<Mf: °>, (4.27)
string
plus the constraints from the observed inflationary sloparameter€,pser Nobserv
M2H2
|B|2 < 2(67T)2|€0bser\.l <ME—O> (4.28)
string
2 2 M%Hg
IBI* < (67)|€obsen| [Nobsend v (4.29)
string

entail relatively mild backreaction constraints. For tglibut optimistic values foH ~ 104 GeV, the scale of new
physicsMstring ~ 10'® GeV and the reduced Planck mads ~ 10'° GeV they allow a significant observational
window of opportunity (see figufd 1). The mildness resultsrfithe fact that the backreaction is only significantly
affected asecondorder in the irrelevant correction. (This had earlier beguad by Tanakea [6) 8]. Indeed compared
to the order of magnitude estimate|[31] the above three @nsasre effectively the same wifB? substituted for
B.) The backreaction due to the first order correction, thougthzero, is essentially localized on the boundary and
therefore subject to the substraction prescription @ilito renormalize the theory. The localization is a consecele
of the highly oscillatory nature of the first order power-sfpem. When integrated all contributions cancel except
on the boundary. The second order effect which remains amdrdaes is the ‘time-averaged’ energy stored in the
oscillatory behaviour itself. This grows as the square efamplitude rather than linear, and it is this which accounts
for the appearance 8|2 rather thariB| in eqgs. [Z27)-[4-49) above.

The bounds on the coefficiefitdue to the one-loop backreaction are in fact so mild that #ieysuperseded by the
direct sensitivity of the power spectrum for larjlgM. Combining the various sensitivities in figuke 1, we see how
the aforementioned existence of an 'earliest time’ anddatecommittant bound off < 0.1 implies that backreaction
poseso constraints at all iH /M is large enough. The bounds grfrom backreaction are all weaker than the direct
‘search’ upper bound from the power-spectrum. Hence thekéson.

Whether the future data will be of sufficient accuracy to hesahe contributions of irrelevant corrections to the
initial conditions from other contributions to scale degence in the power spectrum is a different question all
together. What these results do show is that such an inedistigshould be carried out.

5. CONCLUSION AND OUTLOOK

The recent successes in CMB measurements exemplified byhddd made the computation of inflationary density
perturbations a focal point of research. The computatiothe$e density perturbations suffers from a fundamental
deficiency, however, that is at the same time a wondrous t&ypity. The enormous cosmological redshifts push
the energy levels beyond the bound of validity of generatigty, the framework in which these computations are
done. From a field theoretic point of view general relativign be viewed as the low energy effective action of
a more fundamental consistent theory of quantum gravitis €ffective action has higher order corrections which
when re-included increase its range of validity. These digitder corrections encode the physics that is specific to
guantum gravity. Hence understanding the way these higlter @orrections affect the computation of inflationary
density perturbations is both needed to restore consigtertbe computation, and provides an opportunity to witness
glimpses of Planck scale physics in a measurable quantity.

30 That backreaction effects in this context could be impdress also emphasized id [6] (see alfo [7]). Other phenorogiual constraints on
initial state modifications have been discussed!in [8]. Mormal arguments against the use of non-standard inigéstcan be found inl[4.132].



However, an action by itself is not sufficient to extract thggics of quantum fields. One must in addition specify
a set ofboundary conditionsWhich boundary conditions to impose is always a physicaktjan. In the Hamiltonian
language boundary conditions correspond to a choice ofwraatate. In cosmological settings, due to the lack of
symmetries the correct choice of vacuum, i.e. boundary itiond, is ambiguous. A number of proposals, though,
exist for the correct state. What we have discussed hefgatghis vacuum choice ambiguity can be framed in terms
of the arbitrariness of a boundary action. This puts thefisics in the form of a naturally coherent effective action
Deriving the power spectrum of inflationary density peratitins within this framework, the lowest order corrections
are irrelevant boundary operators of oréetMpanck. Because we are able to use the language of effective fiadaythe
not only is the parametric dependence of the inflationaryupleation spectrum on high-energy physics known, the
coefficients are also in principle computable from the héglergy sector that has been integrated out. RG-principles
tell us thatgenericallythis coefficient will be non-zero, except for very speciabices of initial conditions and high
energy completions of the low energy theory. In cosmoldgpacetimes in particular the Lorentz symmetry which
forbids the appearance of such corrections in flat Minkowgkice is absent. This makes the prediction that we can
potentially observe Planck scale physics in the cosmic skiggtrong, or equivalently the absence of these effects
would constrain the possible high energy completionsstring theory?*

Several earlier investigations have shown that the effetd$ed to a choice of initial conditions are not the only way
in which high-energy physics can show up in cosmologicalsusaments. Effects due to a non-vanishing classical
expectation value of hight[IL0] or low-energy [3] fields, omadified dispersion relation (see, elg. [1]) can be of the
same order. The former two should fit into our framework byekplicit introduction of sources. The latter presumes
an all-order effective action, which is finite and therefbas a specific kinetic ter (/). The subleading effects
in A obviously change the two-point correlation function anddethe power spectrum. In RG-terms a specific choice
of regulator function ((J/A\) corresponds to a specific choice of UV-completion of the thethe relevant behaviour
is universal and independent of the choice®f1/A), but the irrelevant corrections are not, of course.

The introduction of a boundary action to account for thdahitonditions, and its behaviour under RG-flow includ-
ing irrelevant corrections begs for a comparison with theaidf holography. The latter suggests that (gravitational)
theories ind-dimensional de Sitter space have a dual formulation as ditean boundary) conformal field theory of
dimensiond — 1 [34,135]. The cosmological implications of this conjeetticorrespondence underline the universality
and robustness of predictions for inflationary densityyrbdtions precisely because they are related to RG characte
istics in the duat — 1 dimensional theory [14, B5,137]. These qualitative sintilzs are striking, but there are crucial
differences with the approach put forth here. Holographgrzhanges the IR and UV properties of the dual theories.
The UV physics of a three-dimensional Euclidean field themnyesponds to the IR of the four-dimensional de Sitter
gravity and vice versa. The holographic screen where thefalc theory lives corresponds to a boundary action in
the de Sitter future. Its precise position defines the UVaftitn the Euclidean field theory that should completely
describe the infinite interior (i.e. the past) of the de $itielk gravity theory. Time evolution in the bulk is then inte
preted as RG-flow in the boundary field theory, and so the IRigkyn the field theory corresponds to the infinite past
in the bulk. Instead the boundary actions considered ingher are introduced only to encode the initial conditions
in the past of the four dimensional de Sitter gravity thed@ihey are not dual descriptions of the bulk de Sitter theory,
but are merely introduced as effective tools to describénitial conditions in the bulk. Nevertheless, it would baywe
interesting to study how the results described in this papeuld be interpreted from the point of view of a putative
dual three-dimensional Euclidean field theory.

The boundary effective action encoding the initial corhis finally answers the longstanding open question: do cut-
off theories in a cosmological setting cease to be valid bdym earliest time? Naively this is so. The results here show
that the blueshifted momentum expansion on the boundagegtefé action supplies the mathematical underpinning
for this intuition. This time, though clearly a fiducial oniga natural location for our boundary action. The freedom,
however, remains to impose initial conditions where-ever wishes. We may have chosen any other fiducial point as
long as the momentum expansion stays under control. Whhgds is that the choice of this point is immaterial to the
issue of boundary conditions in FRW universes. This factasleimanifest in the symmetiy {2126) between boundary
locationyp and boundary coupling. Physics depends only on the invariant combinabpyy). With the effective
field theory description in mind, and the idea that ‘vacua’lboundary RG fixed points, a truly interesting question is
whether such boundary conditions exist, and if so, how theyelated to the known cosmological vacuum choices.

31 A recent article examing non-Gaussian correlations in tep spectrum resulting from boundary interactions is ith support of this
conclusion|[33]



5.1. A comparison with previous results and the discussionroa-states

Much discussion has taken place in the recent literaturderonsistency of so-callagtstates in de Sitter space
[4,132]. Initial investigations into the sensitivity of iationary perturbations to high energy physics found thatire
de Sitter the leadingl /M corrections to the power spectrum can be interpreted assaimpthe harmonic oscillator
vacuum (sectiof311) at the naive earliest tipaék) = —A/H k| where the theory makes sense, rather than the Bunch-
Davies choicel]2,/9]. Imposing such boundary conditiongiregle Sitter can equivalently be interpreted as selecting a
non-trivial de Sitter invariant vacuum state calledeastate [9]. Strictly speaking, the Shortest Length (SL)rwmbary
conditions are only imposed on momentum modes below theftstale/\ of the theory, and they are not true de
Sitter a-states. Subject to this distinction, the purported in@iaacy of a-states, particularly with respect to the
decoupling of Planck scale physics|[32], therefore wouldehmajor consequences (see, howevel, [38]x-Htates
and other boundary conditions are all inconsistent, atitégergy physics would have to be encoded in bulk irrelevant
operators. This would put transplanckian effects in the QMBurbation spectrum beyond observational reach.

Let us put first, that our results form solid evidence for thespnce oH /M effects affecting inflationary predictions
for the CMB perturbation spectrum. As the explicit expresgi.I®) we derive for the power spectrum shows, our
results, though qualitatively similar, are quantitativédr more general from having ‘chosen’ an (cut-offjstate.
The coherent effective Lagrangian approach followed héresga precise answer which differs in general from
the (earliest-timelr-state approach, but upholds the qualitative validity. @ae certainly ask to what choice of
‘vacuum state’ our results correspond; given the physiaedmeteby this is straightforward to work out. The answer
may be interesting from the point of view of Hamiltonian dymies, but as we have shown here, in the Lagrangian
language of boundary conditions, any initial state which lsa described by a local relevant boundary coupérig
consistentThere is no need to know whethesstates are consistent to study transplanckian correstiorinflationary
perturbations.

At the same time, vacuum choices;states included, do correspond to boundary condittdésnd boundary
conditions should not spoil decoupling, although theré bel new effects, as we reviewed in sectidn 2. Taking this
lesson to heart, it is hard to see how (earliest-timestates could be inconsistent. A recent article [39] argfim the
consistency ofr-vacua does not exactly follow the approach outlined hereisbvery much in the spirit of introducing
boundary counterterms. An answer, however, is providedusgying the discussion in sectibnl3.1 further. The (cut-
off) a-vacua correspond to choosing earliest-time boundaryitond in an effective theory below scal¢ with the
physical parametdns, a constant number. The precise relation is that= e”. One then readily derives that an
a-vacuum corresponds to a boundary coupling (sed’eql(3.11))

/ /
ke, — _ %9+ (o) +05100¢ (o) (5.1)

@ (ng) +bsLe-(ng)

Recall thatbg is constant. To analyze the high spatial momentum behawiermay therefore approximate the
modefunctionsp. (ng) by their Minkowski counterparts. In this limit the boundamgupling ks, encodinga-states
becomes

k| &KIno — pg ek

K| — , K ~ I—— — . 5.2
Ko kst 80 G + bge 1K; 52)
The boundary couplings, therefore has an infinite set of poles
- =1 .
|kl = 2—”,((2n+ Dr+iln(bs)), neZ, (5.3)
0

in the momentum plane. Clearly this boundary coupling aoads to a non-local action. Cut-offstates, i.e. shortest
length boundary conditions, therefore fall outside thelaf local relevant boundary conditions we study here. But
are they inconsistent? Recall that the original studie€]2rgue thata-vacua should encode (first order) effects
of high-energy physics in the spectrum of inflationary digngerturbations. This point of view therefore states that
by construction the boundary couplirg, includes the effects of irrelevabbundary operatorsWe are therefore

32 \We are grateful to Brian Greene both for emphasizing the itapace in explicitly discussing the consistencyoefacua and his help in resolving
the issue.



instructed to treat the non-local nature of the boundanpling ks, in the low-energy effective action in the usual
way. One expands around the oriqfiah: 0 in the momentum plane generating a series of higher deeviatelevant
boundary operators with specific leading coefficight®’ This expansion is valid as long as we limit the range of our
effective action to the location of the first pgle = 2‘%& V/|m+ilnbgs|?, i.e. physical momenta are constrained to the

range|po| = |£| < Hlinbsy|. (Eq. [ZIP) gives ubs ~ H/2Me 2M/M-1T/2 and we recover the cut-ofp| < M.)
The fact that the complicated pole structure of boundaryplings of alpha-vacua is highly specific (they ensure
that (non-cut-off)a-vacua are invariant under de Sitter isometries) is not ¢éoptbint in this perspective. It is then
also clear whya-vacua are not renormalizable, in particular in the senaettte bare backreaction, the divergence
in the stress tensor, is to leading order not identical to ithéinkowski space. Irrelevant operators correspond to
non-renormalizable terms in the action. Because the poletste of the boundary coupling reveals thatr-states
are correctly to be interpreted as encoding specific carttabs from irrelevant operators, any correlation funetio
computed with respect to the@-vacuum, includes the contribution from these irrelevgmrators. It is therefore
expectedo be non-renormalizable. Obviously this does not meanttiatr-vacua are inconsistent. As always in
effective actions one must ‘neglect’ any contributionsrcélievant operators for the purposes of renormalizatibeyT
only make sense in a theory with a manifest cut-bfi [28]. Reimg the cut-off, removes the irrelevant operators.
Indeed thex-states proposed inl[2, 9] withs; ~ H/2M are naturally in accordance with this precept.

In this sense, the (cut-offj-vacua are therefore manifestly consistent in the framlkeyat forth here. They simply
correspond to a specific choice of leading and higher ireglebboundary operators. Whatever they are is not very
interesting from the perspective of effective field thefnp specific choice for the irrelevant operators means having
chosen a specific form for the high-energy transplanckianpietion of the theory. But what this physics is, is
precisely the knowledge we are after.
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