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ABSTRACT: In a way analogous to type-IIB supergravity, we give a covariant action for
the fermion field supplemented with a constraint which should be imposed on equations
of motion, in Berkovits’ open superstring field theory. From this action we construct
Feynman rules for computing perturbative amplitudes for fermions. We show that on-shell
tree level 4-point amplitudes computed by using these rules coincide with those of the first

quantization formalism.
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1. Introduction

In superstring theory supersymmetry plays crucial roles. Therefore it is very important
to consider the fermion sector as well as the boson sector. In this paper we consider this
issue in the open superstring field theory proposed by Berkovits [[[. In [[]] only the bosonic
part was given, and some attempts to introduce fermions have been made in [f], where
covariant equations of motion for the fermion field have been given, and unfortunately
it is impossible to write down an action from which those equations are derived. Some
noncovariant actions have also been given in [B. This has been achieved by introducing
two or more additional string fields, but those string fields consist of both bosons and
fermions, and the apparent forms of the bosonic parts of those actions are different from
that of [i.

This situation is reminiscent of ordinary field theories with self-dual forms: we can
easily write down field equations, but naive attempts to construct covariant actions from
which those equations are derived fail. [[J] (However introduction of an auxiliary field leads
to a successful formulation. [[l]) One of this kind of theory is type-IIB supergravity, which
has a 4-form with self-dual 5-form field strength. What we usually do in this theory is as
follows: we write down an action pretending that the 4-form has both the self-dual and
the anti self-dual part, and after we compute equations of motion for the self-dual field
and others we impose the self-duality condition on them. In this paper we will apply the
same procedure in the open superstring field theory. i.e. we introduce an additional string
field corresponding to the anti self-dual part, write down a covariant action, and impose a
constraint. We will show that the equations of motion derived from our action reduce to
those of [B] under the constraint. Then we will use the action for deriving Feynman rules
for computing perturbative amplitudes for fermions. We show that 4-point on-shell tree
level amplitudes with fermions computed according to these rules coincide with those of
the first quantization formalism.



2. A covariant action for fermions with a constraint

Let us recall type-1IB supergravity. This theory has a 4-form, and its field strength is self-
dual. In general the kinetic term of a (p—1)-form is given by F, ,,, ..., F#1#2#7 and when
F—#pz.pp

p is half of spacetime dimension D and D = 2 mod 4, this is equal to ZFJl Lty

where F/ ffl fizoopty ATE the self-dual and the anti self-dual part of the field strength respectively.
Since both parts appear in this form of kinetic term, it does not extend to the case with
only the self-dual part.

We usually detour around this problem by writing down an action assuming temporar-
ily that the 5-form field strength has both self-dual and anti self-dual part, and imposing
additional self-duality constraint after deriving equations of motion. The action for the

metric, dilaton, NSNS B-field, and RR forms C, is

1 . 1
S = ﬁ/dloxw—g e 2¢ <R+4g“”3u¢au¢— §|H3|2> -
1 ~ L=
-5 <|F1|2 +[F5? + §|F5|2> -
1
—@/04/\H3/\F3’ (21)

where H and F), 1 are field strengths of B and C,, respectively, and

ﬁg = F3 — Cy N\ Hg,
~ 1 1
Fs = F5 — 502/\H3+§B2/\F3. (22)

The self-duality condition is *ﬁg) = ﬁg). This is imposed on the solutions, and not on the
action. The equation of motion for C4 derived from the above action is d * ﬁ5 = H3 A\ I3
and this is reduced to the Bianchi identity under the self-duality condition.

Next we consider the fermion sector of Berkovits’ open superstring field theory [f]
corresponding to one single BPS D-brane. Extension to non-BPS D-branes or multiple
D-brane case is straightforward. A natural string field ¥ for fermions has n, = 1/2 and
ng = 0, where n, and ny are picture number and ghost number respectively. (For the
assignment of these numbers see, for instance, [f].) This field corresponds to ¢-charge
—1/2 vertex operators in the first quantization formalism. At the linearized level this field

should have the following gauge symmetry,
0 =QpAijs +mols/, (2.3)

where A, are parameters with (n,,ng) = (n,—1), and the equation of motion should be

Qpno¥ = 0.
In the oscillator expression this field is expanded by the following states, constructed
by acting indicated oscillators so that they have indicated n, and Grassmann parity:

m m_ . — A
SO{ﬁng—h Yn<0; bn§—17 Cn<0;, Lnﬁ—l? Gn§—17n9 = 0, Grassmann even} ‘9—1/2> ’



level states with & states with &y | states without &g |states without &g
(Lo — o /<:2) and without cg and with ¢ and without ¢g and with ¢

0 &o Qé1/2,/<:> none b_1 (Zf/2,k> none
L [€oBa1y0 (2 g0k ) [€ocoB1 Q4 5 k boo|Qhy, k none
£ob—170 Qél/wk §ocob_1 Qé1/27k B2 Qf/z,k

ok |04 . k boral Q) k
501#51 ﬁﬁ/wk 5717/’51 Qf/z’k
bosb 171 |y, k)
B_2b_1m ﬁf‘/Q,k‘>

Table 1: Low-lying states for the expansion of ¥ in the flat background.

. _ OA

fo{ﬁng—h%gm bp<—1, cn<o0, Ln<_1, Gpc_1;ng = 0, Grassmann Odd} ‘971/2> )
. — ™ A

{5n§72, Tn<l, bngfla Cn<0, ang—b G:Lngfla Ng = _1a Grassmann even} ‘91/2> )

{/BnS_Q,'YnSl, bpn<—1, cngo,Lgs_l, Gzlg_l; ng = —1, Grassmann odd} ‘(~2’14/2> , (2.4)

where Q) = c(0)e"?© £4(0)[0) and |Q24) = ¢(0)e"?© £4(0) |0). £4 and %4 are spin op-
erators with positive and negative chirality respectively. Note that on |24, /2> and \Qﬁl /2>,
B, v and G™ have integer mode numbers. The operators e29%4 and e~2954 should be
regarded as Grassmann odd and even respectively, then all the above states are Grass-
mann odd. We set the coefficients of these states Grassmann odd, so that they represent
fermions. Then ¥ is Grassmann even.

Table [l shows low lying states for the expansion of ¥ in the flat background. In the
table, [Q4, k) = c(0)e"¢© £4(0)exX(©) |0) and ‘ﬁg, k:> = ¢(0)e™* O TA(0) ek X(0) |0).

Naively kinetic term of ¥ is (((QpY¥)(no¥))), but this vanishes because of the picture
number conservation law. One may think we can introduce picture changing operators

to give correct kinetic term, but it is well known that this causes divergent contact term
problems [f], and modifies the equation of motion.

Thus it seems impossible to construct a consistent kinetic term for . However, as has
been done in [fl], we can construct a nonlinear extension of equations of motion:

(G (QBG)) = —(n¥)?, (2.5)
Qp(Gne¥)G™1) =0, (2.6)
and gauge symmetry:
0G = G(noA1 — {mo¥, Ay2}) + (QBA0)G, (2.7)
SW = noAsys + [¥,noM] + Qe + {GTH(QBG), Ay}, (2.8)

where G = e®, and ® is the string field for bosons.



level states with &g states with &g | states without &g | states without &g

(Lo — a'k?) and without c¢g and with ¢y| and without cg and with cg
0 &[0 k) Eocofhy [0 5. %) none none
1 €0Bov-1 |4 5, k €ocoB1 |45,k )| Bo1 |4 50k none
€oBoc—1 |45 5, k Socob—1 [Q45 5, k)| by QA 50k
&oaty Qég/gvk Eocofoc Qég/gak
Soty Qég/gvk Eocofoht ﬁég/g;k

Eoco(Bo)?v-1 Qég/ga k
&oco(Bo)?c1 Qég/ga k

Table 2: Low-lying states for the expansion of = in the flat background.

Comparing this with ordinary field theories with self-dual forms, we notice that we are
in a similar situation: We have equations of motion, but cannot write down an covariant
action, in particular kinetic term, which reproduces them. Then it is natural to think
about doing the same thing as in type-1IB supergravity. i.e. adding an additional field
corresponding to the anti self-dual part, writing down an action, and impose a constraint
corresponding to the self-duality condition. Let us call the additional string field =, and
we infer the action at the linearized level is given by the product of =Z and V¥ just as the
kinetic terms of forms are given by the product of the self-dual and the anti self-dual part:

1

Sp = T3 (((@BE)(n0¥))) - (2.9)

From this we can see that = has (np,ng) = (—1/2,0), and is Grassmann even. In the
oscillator expression = is expanded by the following states:

fo{ﬂngo,*yng_l, bn<—1;Cn<0s Lin< 1, Gp<_13ng = 0, Grassmann odd} ‘Qf‘3/2> ,
fo{ﬂngoﬁng—l, bn<—1, n<os Lin<—1, Gp<_1;ny = 0, Grassmann even} ‘ﬁi‘3/2> ,
{Bng—l,’)/ngo, bn<—1,Cn<0, Ln< 1, Gp<_13ng = —1, Grassmann odd} ‘Qf1/2> ,
{ﬂng—lﬁngoa bn<—1,Cn<0s Ln< 1, Gp<_1;ng = —1, Grassmann even} ‘§é1/2> . (2.10)

Table P shows low lying states for the expansion of = in the flat background.
The equations of motion for ¥ and Z are

QBnOE = 0, (211)
Qpno¥ = 0. (2.12)

We have to put the following constraint to eliminate the superfluous degrees of freedom
and to make the equation of motion of ¥ or = trivial.

RBE=no¥. (2.13)

This condition means that the “self-dual” and “anti self-dual” part correspond to %(Q B= &+
o), rather than ¥ and =.



The above action is easily extended to a nonlinear interacting system:

S =5+ Sk, (2.14)
1

$5= 55 <<G1<QBG>G1<noG> - /0 diGy (OG{G (@G, Gy 1<”°Gt)}>> (2:19)

S = ~503 ((@eDGMVIEY) (216)

where Gy = €!®. Sp is the bosonic part given in (-
The equations of motion for ®, ¥ and = are

(G QBC) = — NG QBDG ~ G QEDEY),  (217)
(G~ HQBE)G) = 0, (2.18)
Qp(Gn¥)G™") = 0. (2.19)

The constraint is extended to
QBE = G(n¥)G . (2.20)

Under this constraint either of the equations of motion for ¥ and = can be regarded as
trivial, and the three equations of motion are reduced to eq. (R.) and eq. (R.6).
The action (R.14) has the following gauge symmetry.

6G = G(noA1) + (@BA0)G, (2.21)
0¥ = noAzse + [V, o], (2.22)
0E = Q@BA_12 + [@BAo, E]. (2.23)
This symmetry is consistent with the constraint:
§(QBE — G(noW)G™1) = [QBAo, QBE — G(no¥)G™ Y. (2.24)

However eq. (R.H) and eq. (R.6) have larger gauge symmetry: the transformations of G
and ¥ have an extra parameter A;/. The action (B14) does not have this symmetry.
Thus we have an enhanced symmetry when we impose the constraint. Again this is similar
to type-IIB supergravity: (Fermionic extension of) the action (.1]) does not have local
supersymmetry, but under the self-duality constraint the equations of motion do.

3. Feynman rules and tree level 4-point amplitudes

One of the advantages of having an action, even though it must be supplemented with the
constraint, is that we can construct Feynman rules for computing perturbative amplitudes.
This is somewhat similar to what has been done for self-dual fields in [f].

First let us expand Sp

Sr = ~53({ (@62 ®) ~ {QZ)Nm W) + (W) (@52} -
- 5{(@o)0¥) - (WHQENPD+ QEDUMVP+-+- ) (3.)
— 5 X Qe ) (32)
n>0,m>0



From cubic and higher terms of this expansion we can read off interaction vertices. Since

the “anti self-dual” part should decouple, we project out the component which does not

satisfy the linearized constraint Qp= = ngV. i.e. @p= and noV in these vertices should be

replaced by w = %(Q BE+no¥). Then we can see that only those with odd ®s survive:
For even N,

o SR = Ay

_2—92 nlm!
n>0,m>0,n+m=N
1 1
e D D 1 e CE VO R O 0
9 n>0,m>0,n+m=N
=0. (3.3)

For odd N,

1 =™
T2 > o (WeMwd™)) =
n>0,m>0,n+m=N

- Ly ey - o wereeny)
29 m>n>0,n+m=N
Loy O ey (3.4)

g2 n!m/!
m>n>0n+m=N

If w is connected to an external leg, we can safely replace it by ng¥. Then we can
see easily that the 3-point vertex reproduces 3-point tree level amplitudes in the first
quantization formalism.

We have to give the propagators for = and ¥ to complete the Feynman rules. First let
us recall the propagator for ®. [f] A convenient gauge fixing condition for the linearized
gauge transformation is Gy ® = éaq) =0, where G, = by, éa ={Q@pB,J; }and J; =
¢ &2p(2)€(2). Under this condition the propagator P = P& is given by P = (LBOt)_QGaéa.

2711

_—

L** is the total Virasoro operator. For Z and ¥, since the same gauge fixing condition
cannot be imposed on the action, the kinetic term in the action cannot be used directly
to compute the propagator under this gauge fixing condition, but it helps us to guess the
correct form of the propagators: Only Eu\I/ and \I/E are nonzero. Since propagating degrees
of freedom should satisfy the constraint, we can think the same gauge fixing condition can
be effectively imposed on = and ¥, and therefore the propagator is given by the same one
as &: Eu\IJ = \IE = —2P. The factor —2 comes from the difference of the coefficients of the
kinetic terms in S and Sp.
Strictly speaking, these propagators are given by

12 - 257 (b)) (3w o (-3 (53]
=8 = o37[o (-30) (o (-4l e S (3 (b)) o0
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Figure 1: 1-loop tadpole diagrams.

where {|i,(n,m))} are bases for (ny,ng) = (n,m) states satisfying the gauge fixing condi-
tion, and {(, (n,m)|'} are conjugate bases satisfying (i, (—n — 1, —m + 2)|" |7, (n,m)) = ;.
The strips corresponding to these propagators have the Ramond boundary condition. Since
we set |i,n) Grassmann odd, we have an additional minus sign for each fermion loop.

Practically we need the propagator between ws:

ww = ~(@QBE)(0Y) + (V) (Q5E)). (3.6)

[ 4 [I [

As an immediate check of these rules, let us calculate 1-loop tadpoles. As is indicated
in figure [, we have bosonic loop and fermionic loop contributions. We show fermions by
shaded strips, and bosons by unshaded strips. Noting that the bosonic 3-point vertex is
given by —¢ ((2{(Qp®)(n0®) + (n0®)(Qp®)})), the contribution of the bosonic loop is

(-4) 3 {{t@u) + i @ujen)) &

The contribution of the fermion loop is

1 - -
(=1)- 7 - (({Qe0) (3 + Z) Qs ¥)} 1)) (3.8)
By =¥ = U= = —2 ®®P, we can see the above two contributions are in the same form. The
LJ LJ L

differences are the signs and the boundary conditions on the boundary of the loops. This
coincides with the expected result.

Next let us calculate on-shell 4-point tree level amplitudes with fermions. In [B] it
has been shown that the bosonic part of the superstring field theory reproduces tree level
on-shell 4-boson amplitude in the first quantization formalism. Therefore we expect that
our Feynman rules reproduce fermion amplitudes. Since we take external legs on-shell,
they satisfy the linearized equations of motion Qpne® = Qpne¥ = 0. In the following
we mostly follow the notation of [f], and we do not explain each step of the calculation in
detail here, because much of the details is parallel to the argument in [f].

First we calculate the 4-fermion amplitude Apppr. We sum up those with 4 external
fermion legs in the order of U4¥1WsW3 and its cyclic permutations, and compare with
the corresponding one in the first quantization formalism. Those in other orders can



Figure 2: 4-fermion interaction.

be considered similarly. Since we have no 4-point vertex with fermions, our task is to

compute “s-channel” contribution A% ppp and “t-channel” contribution AtFF rp indicated

in figure P In the 4-boson case the 4-boson vertex played a crucial role when we combine

s- and t-channel contributions into one single integral. In the present case we expect that

A% ppp + AL itself is expressed by one single integral. Let us see if this is the case.
The s-channel contribution is

Apprr = 977 {(0%a) (109 1)®)) (P (n0¥2) (110 3)))

= g 2 (V1) (oW 1) P(no¥2)(noVs))yy - (3.9)
Then we deform off the contour of
dz .
Q= § 5=il2)

in

P = (L5 26y Gy = (L") Gy {@m, 75}
away from J~~(z), effectively replacing P by (L{")~1J;
Arprr = 92 ((n0¥4) 770\111)(Lmt)flJo__(UO‘I/z)(no‘I’g»W

g / d7< M 770‘1’4)(770‘1’1)(770‘1’2)(770\113)> (3.10)

21 W

=g / </£%J )770\114(—041)770\111(—(1)?70\112(04)770\113(041)>-

21 dw

Readers can find the definitions of 7, «, §, ¢, ¢, w = w(z) and W in [§].

Similarly,
Apprr = 97" ({0 W3)(10Wa)®)) ((P(10W1)(110¥2))) (3.11)
! T z z
=g / da ;l—a< C%j_wJ(2)770\1!3(a1)770\1!4(_a1)770\1/1(_&)7’0\1!2(0‘)>'

We see that the sum of A% .. and A%y is one single integral over the moduli space,
and coincides with the amplitude in the first quantization formalism:

oY dr dz dz . _ _
Apprr = —g 2/ da@< — T (2)noVa(—a oW1 (—a)meUa ()P s(a 1)>
0

270 dw

1
= —92/ do </d z,ua(z,z)J(z)no\Il4(—al)no\Ill(—a)no\Ilz(a)no\Ilg(a1)>,
0
(3.12)
where p4(z, 2) is the Beltrami differential corresponding to the o modulus.
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Figure 3: 2-boson 2-fermion interaction in the order of ®,¥;U,P3.

The second example is the 2-boson 2-fermion amplitude Apppp in the order of
D, U Wy®P3, indicated in figure E The “s-channel” contribution is

Fres = 9 ((2a(n0W1)w)) ({w(0P2) P3))
1

= —5972 [<(QB‘I’4)(770‘1’1)13(770‘1’2)(770‘1’3)>w + <(770‘1>4)(770‘I’1)P(Wo‘l’z)(QB‘I’:s))W]

_2mmi dw

é
- 507 daj—;< () [Qsa(—a ¥ () Ba(a)mo®s(a) +

+ 770@4(—6171)770‘1’1(—0)770‘1’2((1)623‘53(071)} > (3.13)

In the second line we deformed off contours of Qp = % jB(z) and ny = %n(z) away
from ¥ and = in the propagators to other fields.

Similarly the “t-channel” contribution is

A = 3+ (=5 ) a7 (WP T D (@{QB) D) + (m22)(QaP0))

= L (1 01) (10 W) P{(Qp®3) (10®4) + (10®3) (Q5Pa) Py

2
1
Zég /56104 < %S—ZJ" 2)|QpPa(—a oW1 (—a)neWa(a)ne®s(e ") +
- 770‘1>4(—071)770‘1’1(—0)770‘1’2(04)@3‘1)3((171)] > (3.14)

Again the sum of these contributions is expressed by one single integral and gives the
amplitude of the first quantization formalism:

ArrBB = % / </;—;j—;J" 2)|QPa(—a oW1 (—a)neWa(a)ne®s(e ") +
+ 770‘1>4(—04_1)770‘1’1(—0)770‘1’2(04)@3‘1)3((1_1)] > (3.15)

1
g2 / daj—T< & e Qpa(—a >now1<—a>now2<a>noq>3<a—1>>
0 8]

& 2T dw

1
) 92/0 da< /d2zua(z 2 (2)Qp%a(a )770‘1’1(—0‘)770‘1’2(04)7704)3@1)>.
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Figure 4: 2-boson 2-fermion interaction in the order of ¥, ®oW3P,.

In the second equality we exchanged Qg and 79 on ®3 and ®4 in the second term of the
first equality by contour deformation. This manipulation leaves a total derivative term
with respect to «, but by the canceled propagator argument we can drop it.

Finally we compute the 2-boson 2-fermion amplitude Apprp in the order of ¥, ®oW3d,
indicated in figure fJ.

Fre=—9" (2a(m¥1)w)) (wa(110P3)))

= 3972[<(QB‘I>4)(770‘1’1)P(qu’z)(ﬁo%»w + ((1n0®a) (0 ¥1) P(QBY2)(10¥3)) ]

1 o dr dz dz
el I - By(—a oW (—a)ne® Uy(a?
59 /0 ada< 2mde (2)|Q@BPa(—a " )moW1(—a)noP2(a)neV¥s(a )+

+ 770‘1>4(—04_1)770‘1’1(—a)QB‘Pz(OZ)Uo‘I’s(OZ_l)} > (3.16)
Abpprp=—9" ({(noW1)Paw)) {{w (10 W3)Ps))

= 3972[<(770‘I’1)(770‘1>2)P(770‘I’3)(QB‘I’4)> + ((n0¥1)(QBP2) P(10¥s3)(n0Pa))]

1
——507 daj—;< o () [Qua(—a W (~a)maa)moWs(a )

& 27t dw
+ 770@4(—a71)770‘1’1(—Q)QB%(OZ)UO‘I’?,(OTI)} > (3.17)
Again we reproduce the amplitude in the first quantization formalism:
1 dz dz
Apppp=—=g"2 ey [ o Uy (—a)® Wy(a !
FBFB= 59 / < 5l de QpPa(—a o ¥1(—a)no@2(a)no¥s(a™ )+
+ 770(1)4(_0‘_1)770\111(_O‘)QB(I)Z(O‘)UO\I/?»(OC_l)} > (3.18)

1
=—g /d 3—;< C%j—;J"(z)QB<I>4(—a_1)770\1/1(—a)no<1>z(a)no\lfs(a_1)>

:—9_2/0 da</d2z,ua(z z2)J T (2)QpPs(— )770\111(—a)notbg(a)no\ll3(a_1)>.

Thus all types of 4-point tree level amplitude coincide with those of the first quantization
formalism.

,10,



4. Discussion

Led by the analogy to type-1IB supergravity, we have given a covariant action for the
fermion field with a constraint, and construct Feynman rules for it. We have calculated
on-shell tree level 4-point amplitudes with fermions and have seen that they coincide with
those of the first quantization formalism.

In our calculation of amplitudes we used only 3-point and 4-point vertices. (In fact the
4-point vertices with fermions are absent. Therefore our calculation shows the correctness
of their absence.) To confirm the correctness of higher vertices, we have to compute higher
correlators.

To compute loop amplitudes we need fermions, even if all the external legs are bosons,
because fermions circulate through loops. Now that we have Feynman rules for fermions,
in principle we can calculate any loop amplitude. It is very interesting to see whether
any cancellation expected from supersymmetry occurs among loop amplitudes. Another
interesting issue is to compute anomalies which come from fermion loops.

Pursuing the analogy to field theories with self-dual fields further, it is natural to con-
sider PST formalism-like formulation [[] i.e. introducing auxiliary fields and constructing
an action without any constraint. It is intriguing to see if such formulation is possible in
the open superstring field theory.
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