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We express the mean square deflections of the ultra-high energy cosmic rays (UHECR) caused by
the random component of the Galactic magnetic field (GMF) in terms of the GMF power spectrum
and use recent measurements of the GMF spectrum to estimate them quantitatively. We find that
deflections due to the random field typically constitute 0.03 − 0.3 of the deflections which are due
to the regular component and depend on the direction on the sky. They are small enough not to
preclude the identification of UHECR sources, but large enough to be detected in the new generation
of UHECR experiments.

I. INTRODUCTION

The Galactic magnetic field (GMF) plays an important
role in the propagation of cosmic rays even at highest en-
ergies. Expected deflections — of order few degrees or
larger — are comparable or exceed the angular resolu-
tion of the existing cosmic ray experiments. Such deflec-
tions may therefore be observable. Their understanding
is crucial when searching for sources of the highest-energy
cosmic rays if the latter are charged particles.

The detailed study of deflections of ultra-high energy
proton primaries in the GMF is of importance provided
the deflections in extra-galactic magnetic fields are small.
According to the results of Refs. [1] this is likely to be
the case (see, however, Ref. [2]).

The Galactic magnetic field has been shown to have
both regular and turbulent components. The regular
component is thought to have a spiral structure remi-
niscent of the Galactic arms with one or more reversals
toward inner (and probably also outer) Galaxy and the
magnitude of order 3 µG in the vicinity of the Earth [3].
This means that protons with energy 4× 1019 eV can be
deflected in the regular GMF by ∼ 5◦. There are indi-
cations that such a coherent deflections may indeed be
present [4, 5, 6, 7] in the cosmic ray data.

The random component of GMF causes the spread of
arrival directions of UHECR around the mean position,
thus diluting (and potentially destroying) the informa-
tion about the actual location of the source. Under cer-
tain conditions on the magnetic field it may also lead to
the “lensing” of cosmic rays [8, 9] provided the number
of sources contributing to the observed UHECR flux is
small, as is favored by the statistics of clustering [11].
Both effects may give useful information on the cosmic
rays and GMF itself.

Observationally, the magnitude of the random com-
ponent of GMF is comparable to the magnitude of the
regular one. However, the deflections of cosmic ray pri-
maries in the random field depend upon the details of
its power spectrum. If the correlation length Lc of the
random component is much smaller than the propaga-
tion distance D, the deflections caused by the random

field are proportional to
√

DLc, see e.g. Ref. [12]. The
deflections in the regular field are then much larger as
they are proportional to the distance D instead.

If the correlation length diverges or is simply larger
than the propagation distance, the deflections are no
longer proportional to

√
DLc. In fact, several measure-

ments of the GMF power spectrum indicate that the cor-
relation length is large or infinite in some directions on
the sky. In those regions a dedicated study of UHECR
deflections is necessary.

In this paper we study propagation of ultra-high en-
ergy cosmic ray primaries in the turbulent component of
the Galactic magnetic field and obtain estimates of ex-
pected deflections using the observational knowledge of
GMF. To this end we derive the relation between the
mean square deflection and the power spectrum of the
GMF fluctuations. The result is most conveniently rep-
resented through the factor R defined as

δr

δu
=

Br

Bu,⊥
R , (1)

where δr and δu are deflections in the random and uni-
form components of GMF, respectively, Br is the rms
value of a random magnetic field strength and Bu,⊥ is
a projection of a uniform field onto direction orthogo-
nal to the line of sight. The factor R varies between 0
and 1 and is expressed in terms of the power spectrum
of the random field by Eq. (22). We show that existing
observations give a typical value of R in our Galaxy in
the range R ∼ 0.03 − 0.3. This implies typical deflec-
tions of a 4×1019 eV proton in the random field of order
0.2◦ − 1.5◦ depending on the direction.

The paper is organized as follows. In Sect. II we recall
the relations between the power spectrum and the cor-
relation length and introduce the notations. In Sec. III
we describe existing observations of the random magnetic
field, in particular, the random-to-uniform ratio and the
parameters of the power spectrum. In Sect. IV we turn to
the deflections of UHECR in the random magnetic field
and derive the expression for the coefficient R. Sect. V
summarizes our results.
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II. CORRELATION LENGTH AND POWER

SPECTRUM OF GMF

To introduce notations, consider the statistical proper-
ties of a random magnetic field Ba(r), where a = 1, 2, 3.
We define the Fourier components of the magnetic field
according to

Ba(r) =

∫

d3qBa(q)eirq.

Here Ba refers to the fluctuating component of the to-
tal magnetic field; the regular part of GMF has to be
treated separately. In what follows we assume that the
fluctuations obey Gaussian statistics and are spatially
homogeneous and isotropic.

The last two assumptions deserve a comment. The
statistical characteristics of the magnetic field are differ-
ent in different sky patches. Our analysis and results
should be applied to each of these patches separately.
We assume that statistical properties of GMF are (ap-
proximately) constant over a single patch. Also, within
one patch the magnetic field fluctuations may not be
isotropic, with the preferred direction being set by the
regular component of GMF. The present data are not
sufficient to establish or rule out the isotropy of GMF
fluctuations. With the more precise data this assump-
tion may need to be reconsidered, and the analysis may
need to be refined.

With the above assumptions, all correlators of the
magnetic field can be expressed in terms of the two-point
correlation function, which can be written as

〈Ba(q)B∗
b (q′)〉 =

B(q)

2q3
(δab − nanb)δ

3(q − q′), (2)

where na = qa/q is a unit vector in the direction of q and
the projection tensor ensures the divergence-free nature
of the magnetic field, qaBa(q) = 0. The dimensionfull
normalization factors are chosen in such a way that the
power spectrum B(q) has physical units of B2, i.e. in
our case it is measured in the units of (Gauss)2. The
correlation function of the magnetic field fluctuations is
defined as

ξ(r) = 〈Ba(r0)Ba(r0 + r)〉 =

∫

d3q

q3
B(q) e−iqr

= 4π

∫ ∞

0

dq

q
B(q)

sin(qr)

qr
.

(3)

It determines the rms value of the field amplitude Br,

B2
r ≡ 〈BaBa〉 = ξ(0) , (4)

and the correlation length Lc,

Lc ≡
∫ ∞

0 dr ξ(r)

ξ(0)
. (5)

The energy density contained in a random component
of the magnetic field is related to the field variance as
ρB = B2

r/8π.

As will be discussed in Sect. III B, observations support
the power-law behavior of power spectrum of the mag-
netic field fluctuations in a certain range of momenta,

B(q) ∝ 1

qα−1
. (6)

Since the energy density in the magnetic field is finite,
there has to be a break in the pure power-law behavior,
which can be parameterized as

B(q) =



















A

(

qc

q

)α1−1

at q < qc

A

(

qc

q

)α2−1

at q > qc ,

(7)

where A is a normalization constant and qc is the mo-
mentum scale at which the break of the spectrum occurs.
(Note that abrupt ultraviolet and infrared cut-off can be
modeled as α2 → ∞ and α1 → −∞, respectively.) The
variance Br converges if α2 > 1 and α1 < 1. Summing
up contributions from both parts of the spectrum one
finds

B2
r = 4πA

α2 − α1

(α2 − 1)(1 − α1)
. (8)

Finiteness of the correlation length requires stronger con-
straint, α1 < 0. One then has

Lc =
π

2qc

(α1 − 1)(α2 − 1)

α1α2
. (9)

If 0 < α1 < 1, the correlation length diverges at small
momenta and is dominated by the largest possible dis-
tance scale in the problem. Deflections of cosmic rays
are most significant in this case.

III. OBSERVATIONS OF RANDOM

COMPONENT OF GMF

Current knowledge of the Galactic magnetic field is
based on: (i) Faraday rotation measurements of Galactic
and extragalactic radio sources, (ii) starlight polariza-
tion data, and (iii) observations of diffuse Galactic syn-
chrotron emission. Different methods are sensitive to the
magnetic field in regions with different physical condi-
tions. Faraday rotation is sensitive to a field in a warm
ionized medium, stellar polarization measurements sam-
ple the field in regions occupied by interstellar dust grains
(e.g., neutral media), while synchrotron radiation origi-
nates from regions containing fast electrons. The volume
occupied by the dust exceeds that of the warm ionized
medium; therefore, the stellar polarization data are likely
to be more close to the true volume average as compared
to RM. The synchrotron data sample even larger volume.

Faraday rotation measure (RM) is sensitive to the pro-
jection of the magnetic field on the line of sight. The field
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direction along the line of sight is given by the sign of RM.
The magnitude of the random field Br can be estimated
by analyzing the deviations of RM from the uniform field
along different directions.

Stellar and synchrotron polarization data contain in-
formation about the field perpendicular to the line of
sight. This property is convenient for our purposes since
the plane-of-the-sky component of the magnetic field de-
termines also the deflections of UHECR primary par-
ticles. The ratio of the amplitudes of the random to
the uniform magnetic field components can be estimated
along a single direction. To extract the power spectrum
one has to study angular correlation function of the po-
larization data.

A. The relative strength of uniform and random

fields

Synchrotron emission. The total magnetic field
strength is related to the synchrotron emissivity, while
the polarization of the Galactic diffuse synchrotron back-
ground offers a method for determining the ratio of uni-
form to random field strengths. Namely, the observed
fractional polarization pobs along a given direction obeys
[13]

pobs

pmax
=

B2
u,⊥

B2
u,⊥ + B2

r,⊥

, (10)

where the subscript ⊥ on Bu and Br refers to the plane-
of-the-sky components of uniform and random field, re-
spectively. In Eq. (10) pmax is the fractional polariza-
tion that would be observed for a perfectly uniform field,
pmax ≈ 0.72. The fractional polarization of pobs ≈ 35%
was found in Ref. [14] to be a typical maximum for our
Galaxy. This implies

Bu,⊥/Br,⊥ ≈ 1 . (11)

Note that this ratio depends upon direction. For in-
stance, in the direction of the Galactic anti-center pobs ≈
20% (being averaged over −20◦ < b < 20◦), which cor-
responds to Bu,⊥/Br,⊥ ≈ 0.62. The typical coherence
length was estimated in Ref. [14] to be less than 75 pc,
while the distance to the region where polarized emission
originates was found to be about ∼ 0.5 kpc.

Starlight polarization. Polarization in starlight appears
because of selective absorption by interstellar dust grains
whose minor axis is aligned with the magnetic field B.
The same expression, Eq. (10), is valid for the starlight
polarization data as well (with pmax being related to dust
extinction). The resulting magnitude of the random com-
ponent of magnetic field derived from the starlight polar-
ization data is consistent with Eq. (11). For example, the
estimate of Ref. [15] reads Bu,⊥/Br,⊥ ≈ 0.8.

Faraday rotation. Unlike polarization data, the Fara-
day rotation measure is sensitive to the magnetic field

component parallel to the line of sight. Another disad-
vantage of this method is that it does not allow to find
the ratio of random to uniform components of the mag-
netic field along a given direction. However, this infor-
mation can be extracted from the residuals of a fit to
a uniform field provided RMs in many neighboring di-
rections are known. For instance, such kind of study
for a particular region of the sky of about 10◦ × 10◦

centered at (l, b) ≈ (140◦,−40◦) was carried out in
Ref. [16]. It was found that Br ≈ Bu, in agreement
with Eq. (11). The power spectrum of magnetic field
fluctuations was also determined. The scale of the break
of the Kolmogorov turbulence, Eq. (7), was found to be
2π/qc = (3.6 ± 0.2) pc.

B. The power spectrum of magnetic field

fluctuations

Three-dimensional power spectrum of the magnetic
field fluctuations, B(q), is not measured directly. In-
stead, one measures the two-dimensional angular correla-
tion function K(θ) of some physical observable (e.g., the
intensity of the synchrotron radiation) or the correspond-
ing two-dimensional power spectrum Cl. (The multipole
l corresponds to a typical angular scale of θ = π/l.) In
the case of the power-law behavior, Eq. (6), the angular
correlation functions K and Cl also follow power laws,
K ∝ θβ and Cl ∝ l−γ. In the absence of observational
systematic effects (e.g., Faraday depolarization and finite
beam width) these exponents are related as

β = α,

γ = α + 2 , (12)

provided the relevant integrals converge.
The momentum scale qc at which the break in B(q)

occurs is not observed directly either. Instead, one ob-
serves the break in the power-law behavior of K(θ) (or of
Cl) at some angular scale θc. This scale qc is estimated
as

qc =
2π

θcD
, (13)

where D is the distance over which the magnetic field
extends along a given line of sight. It is convenient to
express the results in terms of the observable parameter
θc.

Synchrotron emission. The statistical properties of po-
larized synchrotron emission depend upon direction on
the sky and are different for different observables. In
Ref. [17] the angular power spectra (APS) of the Parkes
survey of the Southern Galactic plane at 2.4 GHz was
analyzed. It was found that in the multipole range
40 < l < 250 (0.7◦ < θ < 5◦) the APS of the polarized
intensity is fitted by γ = 2.37, while the power spectrum
of E and B components of the polarized signal has the
slope γ ≈ 1.5, and the power spectrum of polarization
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angle corresponds to γ ≈ 1.7. At the multipole order
l > 250 (θ < 0.7◦) the derived power spectra were af-
fected by the beam cut-off. Similar results were found
in Refs. [18, 19] for other Galactic latitudes. In partic-
ular, while being close to 1.5 on average, the slope of
E and B components was found [18] to be in the range
1 < γ < 2.7 depending on the particular region of the
sky and the survey used in the multipole range l < 1000
(θ > 10′).

Negative values of α (derived with the use of Eq.(12),
if applicable) indicate that the correlation length of mag-
netic field exists and is small in many sky patches.

Starlight polarization. The angular power spectrum
of the starlight polarization for the Galactic plane data
(|b| < 10◦) is consistent with γ ≈ 1.5 for all angular scales
θ > 10′ (or l < 1000), see Ref. [15].

Faraday rotation. Small-scale variations of the rota-
tion measure of extragalactic radio sources were studied
in Refs. [16, 20, 21]. Three different sky patches were
considered in Ref. [20]. In two patches the index β of the
correlation function of rotation measure was found to be
consistent with zero (or slightly negative) on large angu-
lar scales > 2◦, while in the third positive β was observed.
There is a clear drop in the correlation function on small
angular scales θ < 0.1◦, [21]. Therefore, the break in the
spectrum has to be at angular scales 0.1◦ < θc < 2◦ (θc

cannot be quantified more precisely as there are no data
points at these intermediate angular scales).

Fluctuations in electron density were factored out in
Ref. [16] and the power spectrum of fluctuating mag-
netic field was determined for a particular region with
previously mapped emission measure of warm ionized
medium. The spectrum of random magnetic field de-
rived in Ref. [16] can be parameterized by Eq. (7) with
A ≈ 4.5 × 10−2 µG2. At large scales the angular cor-
relation function is consistent with the two-dimensional
turbulence, α1 = 2/3, while at small scales q > qc

the spectrum coincides with the Kolmogorov turbulence
α2 = 5/3. The break in the spectrum occurs at θc ∼
0.07◦ which corresponds to 2π/qc ≈ 3.6 pc assuming
D = 3 kpc. With the parameters found in Ref. [16],
Eq. (8) gives Br ≈ 1.6 µG. Note that for the uniform
component of the magnetic field in the same region one
has Bu ≈ 2.2 µG and Bu,|| ≈ −0.8 µG. The slope of
α1 = 2/3 was measured up to 2π/qc ∼ 80 pc. Thus, in
this particular sky patch the correlation length of mag-
netic field fluctuations either diverges or is larger than
80 pc.

The steepening of APS at small angular scales was re-
cently detected in high resolution studies of Refs. [22, 23]
for several sky patches near the Galactic plane. The
exponent γ for correlation function of RM derived in
Ref. [22] is consistent with zero or slightly negative, while
θc ≈ 0.3◦. However, in this case the synchrotron emission
was observed at low frequencies, so that the observation
length is small, D ∼ 600 pc, resulting in 2π/qc ≈ 3.9 pc,
consistent with Ref. [16]. (Note that with the full prop-
agation distance θc would have been smaller than 0.3◦.)

Finally, the parameters derived in Ref. [23] are γ = 0.2
and θc = 0.07◦.

IV. UHECR DEFLECTIONS IN THE RANDOM

MAGNETIC FIELD

In this section we show that the knowledge of the ra-
tio Bu,⊥/Br, the exponents α1 and α2 and the angular
scale θc is sufficient to quantify the spread of deflections
of UHECR primaries caused by the random component
of GMF. As we have seen in Sect. III A, existing obser-
vations suggest that the magnitudes of the random and
uniform components of GMF are comparable. In what
follows it will be convenient to normalize the deflection
due to the random field to the deflection δu which would
occur in the uniform field over the same distance and at
the same particle energy and charge. After traveling the
distance D in a uniform magnetic field, a particle with
the electric charge Ze and energy E is deflected by an
angle

δu =
ZeD

E
Bu,⊥ . (14)

This has to be compared to the mean square deflection
angle δr in the random component of the Galactic mag-
netic filed.

A. Mean square deflection in terms of magnetic

field power spectrum

Propagation and deflections of UHECR primaries by
random magnetic field were studied in many papers, see
e.g. Refs. [24, 25, 26, 27, 28, 29, 30, 31]. However, usually
the main focus is the diffusive regime in the extra-galactic
magnetic field. Deflections in turbulent component of
GMF were studied in Refs. [8, 9], but with the emphasis
on the possibility of magnetic field reconstruction with
future high statistics cosmic ray data and assuming small
correlation length. The turbulent component of GMF
with a simplifying assumption of a cell-like structure was
also included in Monte-Carlo simulations of Ref. [32]. To
our knowledge, the ballistic regime of small deflections
in the situation when the coherence length might be not
small, relevant for the case of realistic GMF, was not
studied in detail.

Propagation of UHECR primaries is quasi-rectilinear,
with typical deflection angles not exceeding 10◦−20◦ even
for lowest energies. The contribution of turbulent field in
these deflections is expected to be even smaller. There-
fore, a ballistic approximation gives a good description
of UHECR propagation. In this regime, the deflection
angles are characterized by the following line integrals,

δi =
Ze

E

∫ D

0

dz ǫikBk(z) , (15)
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where the axis z is chosen along the particle trajectory
and indices i, k = 1, 2 label two orthogonal directions.
The mean square deflections are

δ2
r ≡ 〈δiδ

i〉 =
Z2e2

E2

∫∫ D

0

dz dz′ ǫikǫjp〈Bk(z)Bp(z
′)〉 .

(16)
Here the average is taken over the ensemble of different
realizations of the turbulent magnetic field Ba(x). For a
statistically homogeneous random field the correlator in
Eq. (16) is the function of r = z′ − z

ǫikǫjp〈Bk(z)Bp(z
′)〉 = ξ11(r) + ξ22(r) ≡ ξ⊥(r) , (17)

where ξii(r) ≡ 〈Bi(z)Bi(z + r)〉 (no summation over i).
Using Eq. (2) which enforces the divergence-free con-
straint one finds

ξ⊥(r) = 4π

∫ ∞

0

dq

q
B(q)

[

sin(qr)

qr
+

cos(qr)

q2r2
− sin(qr)

q3r3

]

.

This relation implies

∫ ∞

0

dr ξ⊥(r) =
1

2

∫ ∞

0

dr ξ(r) . (18)

Note that the assumption of chaotically oriented mag-
netic cells, which is often made, would give instead
ξ⊥(r) = (2/3) ξ(r). However, this assumption is incon-
sistent with the divergence-free nature of the magnetic
field, qaBa(q) = 0.

Changing variables in Eq. (16) from z, z′ to r and
u = (z + z′) one obtains

δ2
r =

2Z2e2

E2
B2

r

∫ D

0

du

∫ u

0

dr
ξ⊥(r)

ξ(0)
, (19)

where Eq. (4) was used. It is convenient to represent
the result as a ratio of rms deflections in random field to
the deflection in the uniform field δu given by Eq. (14).
Thus, we arrive at Eq. (1) where the dimensionless factor
R is

R2 ≡ 2

D2

∫ D

0

du

∫ u

0

dr
ξ⊥(r)

ξ(0)
. (20)

This factor varies between zero and one.
If the correlation length Lc defined by Eq. (5) is much

smaller than the propagation distance D, the upper limit
in the integral over r can be extended to infinity. One
then finds

R2 =
Lc

D
. (21)

In the general case, the expression Eq. (20) can be
brought to the form

R2 =
4π

Dξ(0)

∫ ∞

0

dq

q2
B(q) f(Dq) , (22)

where

f(x) = Si(x) +
cosx

x
− sinx

x2
, (23)

and Si(x) =
∫ x

0
dy sin(y)/y is the integral sine function.

At small arguments the function f(x) grows linearly as
f(x) = 2x/3+O(x3), while at x ∼> 2π it rapidly converges
to the asymptotic value π/2.

B. Mean square deflections in the random

component of GMF

In those Galactic regions where the correlation length
exists and satisfies Lc ≪ D, Eq. (21) can be used. In the
case 0 < α1 < 1 when the correlation length Lc defined
by Eq. (5) diverges, or when α1 < 0 but the condition
Lc ≪ D does not hold, Eq. (21) is not applicable. In
these cases Eq. (22) has to be used instead. Assuming
that the power-law spectrum of the turbulent magnetic
field is given by Eq. (7) as supported by the existing
observations, we obtain

R2 =
(α2 − 1)(1 − α1)

(α2 − α1)
× (24)

[

(Dqc)
α1−1

∫ Dqc

0

dyf(y)

y1+α1

+ (Dqc)
α2−1

∫ ∞

Dqc

dyf(y)

y1+α2

]

,

where f(y) is defined in Eq. (23). As one can see, the
final result depends on the product Dqc. Therefore, with
the use of Eq. (13) it can be rewritten in terms of the
single directly observable scale θc = 2π/Dqc.

In the case Dqc ≫ π and α1 < 0 (when both integrals
are saturated at y = Dqc), we recover Eq. (21),

R =

√

Lc

D
=

√

θc

4

(α1 − 1)(α2 − 1)

α1α2
. (25)

For α1 varying within 0.2 < α1 < 0.8 and α2 = 5/3
(which corresponds to the Kolmogorov turbulence), there
exists an approximate analytic expression for R which
holds with an accuracy of about 10%,

R ≈ (Dqc)
(α1−1)/2 = (θc/2π)(1−α1)/2 . (26)

In the general case the factor R has to be calculated
numerically. Its dependence on α1 for α2 = 5/3 in three
cases θc = 6◦, θc = 0.6◦ and θc = 0.06◦ is shown in
Fig. 1 by the dotted, dashed and solid lines, respectively.
We recall now that in many “low” resolution studies the
steepening of APS is not detected, up to large multipoles,
l ∼ 1000. This suggests that θc < 10′ and the dashed line
in Fig. 1 should serve as a good upper limit for R.

The diamonds and bars on the same figure represent
the coefficient R for the cases where the break in the APS
was (possibly) detected, as discussed in Section III B.
The corresponding survey regions are shown in Fig. 2 as
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 0.01
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−0.4

FIG. 1: The coefficient R as a function of α1 is shown by
dotted, dashed and solid curves for θc = 6◦, 0.6◦ and 0.06◦

respectively. The data-points correspond to the APS derived
for sky regions A-D, as discussed in the text. These regions
are displayed in Fig. 2.

−30

60−

180

D

C A

30

60

60

300

B

FIG. 2: Regions A-D in Galactic coordinates where the break
in the APS was detected. Corresponding values of R for these
regions are shown as data-points in Fig. 1.

colored patches A (Ref. [22]), B (Ref. [21]), C (Ref. [23])
and D (Ref. [16]).

Small observed values of (or upper limits for) θc indi-
cate that either the scale 2π/qc is small, or the extent of
GMF along given direction, D, is large. In either case
the resulting coefficient R is small, 0.02 < R < 0.2.

V. CONCLUSIONS

Deflections of UHECR in the random component of the
Galactic magnetic field are usually discussed in the limit

when the correlation length exists and is much smaller
than the propagation distance. However, avaliable GMF
data suggest that these assumptions may not be valid
uniformly all over the sky. We have calculated deflec-
tions in a more general approach which does not require
correlation length to exist and relies directly on the power
spectrum of GMF fluctuations. We have shown that the
ratio of the deflections in the random and uniform com-
ponents of GMF, Eq. (1), is expressed in terms of the
factor R which depends on the spectrum of the magnetic
field fluctuations as given by Eq. (22). We have calcu-
lated this factor for the power law spectrum with a single
break, Fig. 1.

Using the measurements of the GMF power spectrum
in the sky regions where it is available, we have shown
that the deflections in the random component are small,
0.03 − 0.3 of the deflections in the uniform field. This is
sufficiently small not to preclude identification of sources
of UHECR using methods of Refs. [4, 7]. For instance,
the deflection of a proton with energy E = 4 × 1019 eV
due to the random component of GMF is expected to
be about 0.2◦ − 1.5◦. This is below the resolution of
the AGASA experiment, but can be above the resolution
of the HiRes detector in the stereo mode and the ex-
pected resolution of the Pierre Auger experiment. Thus,
the detailed study of the random component of GMF
is particularly important for the interpretation of data
which will be collected by the new generation of UHECR
experiments. To this end, the all-sky map of the essen-
tial parameters determining the power spectra of GMF is
highly desirable. These maps may be obtained from the
measurements of Faraday rotation and maps of diffuse
polarized synchrotron Galactic emission. The wealth of
relevant information is expected to be provided by the
WMAP satellite.
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