
The Task Manager for
the LHCb On-Line Farm

LHCb Technical Note
Issue: 1
Revision: 1

Reference: LHCb 2004-099 DAQ
Created: 3 Nov. 2004
Last modified: 18 Aug. 2005

Prepared By: F. Bonifazi, D. Bortolotti, A. Carbone, D. Galli, D. Gregori, U. Marconi,
G. Peco, V. Vagnoni.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Table of Contents

page i

Abstract

The Task Manager is a utility to start, stop and list processes on the on-line farm. Each
process started by the Task Manager has a string environment variable set, named UTGID
(User defined unique Thread Group Identifier) which allows identifying the process. The
Task Manager uses the UTGID to list the running processes and to identify the processes
to be stopped. It has also the ability to start a process using a particular user name and to
set the scheduler type and the priority for the process itself. The Task Manager package
includes a Linux DIM server (tmSrv), four Linux command line DIM clients
(tmStart, tmLs, tmKill and tmStop) and a PVSS DIM client.

Document Status Sheet

Table 1 Document Status Sheet

1. Document Title: The Task Manager for the LHCb On-Line Farm

2. Document Reference Number: LHCb 2004-099 DAQ

3. Issue 4. Revision 5. Date 6. Reason for change

2 2 18 Aug. 2005 Version related with FMC-1.6 software

1 1 22 Nov. 2004 First released version

0 Draft 11 Nov. 2004 First version

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Table of Contents

page ii

Table of Contents

LHCB TECHNICAL NOTE..I

ISSUE: 1..I

ABSTRACT..I

DOCUMENT STATUS SHEET...I

TABLE 1 DOCUMENT STATUS SHEET..I

LIST OF FIGURES.. V

1. REQUIREMENTS... 1

2. IMPLEMENTATION.. 3

2.1. DIM... 3
2.2. THE UTGID MECHANISM .. 3
2.3. THE PROCESS ENVIRONMENT ... 4
2.4. STARTING A PROCESS .. 5
2.5. SENDING A SIGNAL TO A PROCESS .. 8
2.6. STOPPING A PROCESS .. 9
2.7. LISTING THE RUNNING PROCESSES ... 9
2.8. LOGGING AND LIST UPDATING ON PROCESS TERMINATION .. 10
2.9. THE TASK MANAGER SERVER’S THREADS ... 10
2.10. PROCESSES I/O REDIRECTION... 11

3. THE TASK MANAGER SERVER (TMS).. 12

3.1. SYNOPSIS ... 12
3.2. DESCRIPTION .. 12
3.3. COMMAND LINE OPTIONS .. 12
3.4. PUBLISHED DIM COMMAND AND SERVICES.. 14

3.4.1. CMD: /<HOSTNAME>/task_manager/start.. 14
1. Command String Synopsis .. 14
2. Description .. 14
3. Options .. 14
3.4.2. CMD: /<HOSTNAME>/task_manager/kill .. 17
1. Command String Synopsis .. 17
2. Description .. 17
3. Options .. 17
3.4.3. CMD: /<HOSTNAME>/task_manager/stop .. 17
1. Command String Synopsis .. 17
2. Description .. 17
3. Options .. 18
3.4.4. SVC: /<HOSTNAME>/task_manager/list.. 18
1. Description .. 18
3.4.5. SVC: /<HOSTNAME>/task_manager/log .. 18
1. Description .. 18

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Requirements

 page iii iii

3.4.6. SVC: /<HOSTNAME>/task_manager/server_version ... 19
1. Description .. 19
3.4.7. SVC: /<HOSTNAME>/task_manager/actuator_version... 19
1. Description .. 19
3.4.8. SVC: /<HOSTNAME>/task_manager/success ... 19
1. Description .. 19

3.5. ENVIRONMENT.. 19
3.6. EXAMPLES.. 20
3.7. SEE ALSO.. 21

4. THE TASK MANAGER COMMAND-LINE CLIENTS FOR LINUX ... 22

4.1. TMSTART.. 22
4.1.1. Synopsis ... 22
4.1.2. Description... 22
4.1.3. Options... 22
4.1.4. Environment ... 22
4.1.5. Warning ... 23
4.1.6. Examples.. 23

4.2. TMLS.. 23
4.2.1. Synopsis ... 23
4.2.2. Description... 24
4.2.3. Options... 24
4.2.4. Environment ... 24
4.2.5. Technical note .. 24
4.2.6. Warning ... 25
4.2.7. Examples.. 25
4.2.8. See Also.. 25

4.3. TMKILL .. 25
4.3.1. Synopsis ... 25
4.3.2. Description... 26
4.3.3. Options... 26
4.3.4. Environment ... 26
4.3.5. Warning ... 26
4.3.6. Examples.. 26
4.3.7. See Also.. 27

4.4. TMSTOP.. 27
4.4.1. Synopsis ... 27
4.4.2. Description... 27
4.4.3. Options... 27
4.4.4. Environment ... 28
4.4.5. Warning ... 28
4.4.6. Examples.. 28
4.4.7. See Also.. 29

5. THE TASK MANAGER PVSS CLIENT.. 30

5.1. START A PROCESS ... 30
5.2. SEND A SIGNAL TO A PROCESS ... 36
5.3. STOP A PROCESS.. 37

6. REFERENCES .. 39

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Requirements

page iv iv

List of Figures

Figure 1. The Task Manager deployment...2

Figure 2. The Process environment. ..4

Figure 3. Sequence diagram of the start procedure. ..7

Figure 4. Sequence diagram of the kill procedure. The running process does not catch
the SIGTERM signal..8

Figure 5. Sequence diagram, of the kill procedure. The running process catches the
SIGTERM signal and exit gracefully. ...8

Figure 6. Sequence diagram of the stop procedure. The running process catches the
SIGTERM and continue, but is stopped by the delayed SIGKILL...............................9

Figure 7. The simplest start command. ..30

Figure 8. Start command with working directory specification. The “Clear environment”
check-box and “Daemon” check-box are also set. ...31

Figure 9. Start command with the UTGID specification. ...31

Figure 10. Start command with the user specification. ...32

Figure 11. Start command with the scheduler specification..32

Figure 12. Start command with the TIME SHARING scheduler and the nice level
specification...33

Figure 13. Start command with the FIFO scheduler and the static priority specification. 33

Figure 14. Start command with the FIFO scheduler, the static priority specification and
the process-to-CPU affinity specification. ..34

Figure 15. Start command with the redirection of the standard error and standard output
of the started process to the Message Logger. ..34

Figure 16. Start command with additional environment variables. The “New” button
opens the pop-up window to set a new variable. ...35

Figure 17. Start command with additional environment variables. The new variable has
been added to the environment variable list...36

Figure 18. Sending a signal to a process (kill command). ..37

Figure 19. Stopping a process (stop command)...38

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Requirements

 page v v

Figure 20. Stopping a process with the SIGKILL delay specification.38

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Requirements

 page 1 1

1. Requirements

During the operation of the on-line farm, several processes have to be started and kept
running on the computing nodes and on the sub-farm controllers, including the event
builder, the trigger-related processes and the monitoring processes. One can foresee that
these processes could also need to be restarted, not only in case of lock or runtime errors,
but also if a change in the trigger algorithm configuration is requested.

It is therefore needed a task management system which allows to monitor the processes
running on the farm nodes and to stop and/or restart them, following a central command
or an automatic control procedure.

We explicitly distinguish between the Task Manager System, which has the mere
ability to start and stop a process and to list the processes started on any node of the farm
on the one hand, and on the other hand the Process Controller System, which has the
responsibility to keep a process running, restarting it (by means of the Task Manager) in
case of abnormal process termination. This note concerns only the Task Manager System,
while the Process Controller System will be a subject of a separate note.

The Task Manager System must be able to keep track of the started processes and
distinguish each other, even if they are different instances of the same executable image,
in order to be able to monitor and, if needed, to stop them properly.

The Task Manager must also be able to set the scheduling policy, the priority and the
process-to-CPU affinity of the started processes. As a matter of fact, the on-line farm
must manage a very large amount of data and therefore must operate in real-time mode.
For example, the L1 process must respond with a very low latency and therefore must
never be pre-empted by the HLT process. This can be achieved by running both the
processes with the real-time FIFO scheduler and assigning to the L1 process a higher
priority than the HLT one. Besides, to optimize L1 processes performance, it is desirable
that the process remains stuck to the same CPU in multiprocessor nodes, in order to
avoid, as far as possible, context switches and register pop out.

Moreover, the Task Manager must be able to set the UID (user identifier) of the started
process to a user different from root. In fact, the started processes don’t need to have root
privileges, which could be dangerous for unwanted actions which could damage the
system installation. Root privileges are usually necessary to run a process at a high
priority or to use a real-time scheduler; however this target can also be achieved by
starting a process as root and changing then the UID, after the scheduler/priority has been
set.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Requirements

page 2 2

Furthermore the Task Manager must be able to redirect the standard error and/or the
standard output of the started process to a logger in order to retrieve error messages sent
by the started application. Even if it is always better that the application itself sends its
messages to a logging facility instead of stderr/stdout, nevertheless we must
remember that important debugging messages are sent to stderr by system utilities like
the dynamic linker (e.g.: “/opt/SFM/tm/examples/counter: error while
loading shared libraries: libdim.so: cannot open shared
object file: No such file or directory”).

Finally, the Task Manager must react to a process termination, by updating
immediately the published process list (to allow the Process Controller to restart the
process immediately, if requested) and logging a message with the exit status or the
number of signal that caused the child process to terminate.

In this paper, following the Linux threads implementation, we use the term “task” to
design a general scheduling entity or a general execution flow (an instance of a program
in execution), which could be a stand-alone process or a lightweight process (i.e. a thread
of a multithreaded process). The terms “process” and “thread group” are interchangeable
in this paper as are the acronyms PID (Process Identifier) and TGID (Thread Group
Identifier), due to the fact that, since kernel 2.4, processes are implemented as thread
groups.

Figure 1. The Task Manager deployment.

New process

Running process

Running process

Farm Node

Start

Stop/Kill
List

TMS
Task Manager Server

[tmSrv]

New process

Running process

Running process

Farm Node

Start

Stop/Kill
List

TMS
Task Manager Server

[tmSrv]

Monitor PC

TMC
Task Manager Client

[tmKill]

TMC
Task Manager Client

[tmStop]

TMC
Task Manager Client

[tmLs]

TMC
Task Manager Client

[tmStart]

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Implementation

 page 3 3

2. Implementation

2.1. DIM

The Task Manager is based on the DIM (Distributed Information Management System)
inter-process communication layer [1]. DIM has client/server architecture and uses a
Name Server mechanism to publish/subscribe services.

Each farm node runs a Task Manager Server (TMS, whose executable name is
tmSrv), which registers commands (process start, kill and stop) and services (process
list) with the DIM Name Server and makes them available to the control client.

The client asks the DIM Name Server which server makes the required commands and
services available, then contacts directly the server to subscribe to services (to bring itself
up-to-date about the process list) and requires command execution.

2.2. The UTGID mechanism

In order to be able to monitor and to stop or restart the running processes, the task
management system must be able to keep track of the started processes.

The Linux operating system identifies processes (for scheduling purposes) using the
integer number TGID (Thread Group Identifier, the thread-epoch version of the old PID,
Process Identifier). Associated with the TGID there is the COMMAND string, that is the
file name of the process executable image.

None of these two identifiers, taken separately, is however suitable for process
tracking: the TGID is an integer number assigned sequentially, so that the same process is
assigned a different TGID when it is restarted; COMMAND on the other hand is the same
for two different instances of the same process. For process tracking purposes a process
could be identified by a combination of TGID and COMMAND, but such a combination
does not help to remember which work the different instances of COMMAND are doing.

An alternative approach consists in assigning one more identifier to each process
started by the TMS, called UTGID (User assigned unique Thread Group Identifier).
UTGID is a string (possibly but not necessarily composed by the COMMAND string and
an instance counter) which must be unique on a PC: the same UTGID cannot be used for
more than one process on the same PC.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Implementation

page 4 4

In multithreaded processes, the same UTGID environment variable is set for all the
threads of the process; however only thread groups (i.e. processes) are listed by the list
service and only thread groups are sent signals.

2.3. The process environment

The UTGID string should be stuck to its process (in order to survive the TMS) but must
be accessible by the TMS from outside the process (once the process has been started),
because the TMS must be able to associate a TGID to the UTGID to stop a process (the
kill(2) system call takes the TGID as argument).

The UTGID string is therefore stored by the Task Manager among the process
environment variables.

When a process is started, in the initial process stack, together with the command line
arguments array (char **argv), each process is also passed an environment list, which
is a null-terminated array of character pointers to null-terminated C strings. All these
environment null-terminated C strings are stored in contiguous memory locations,
terminated by a null string (see Figure 2). The address of the array of pointers is stored in
the global variable char **environ, while the location of the first character of the
contiguous strings is referenced by the i-node /proc/<tgid>/environ (see Figure
2). By convention the environment consists of strings having the format:
“NAME=VALUE”.

The process environment variables can be accessed in 4 different ways in the Linux
OS:

1. Through the call to the library functions: putenv(3), setenv(3),

/proc/<tgid>/environ

A = 1 B = 2 \0 \0 \0

 \0

envp
environ

Figure 2. The Process environment.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Implementation

 page 5 5

clearenv(3), unsetenv(3), getenv(3) from inside the process itself.

2. Through the global variable: "extern char **environ" (see manual pages for
environ(5)) from inside the process itself;

3. Through the third argument (envp) of the main function: int main(int argc,
char **argv, char **envp) from inside the process itself;

4. From the i-node /proc/<tgid>/environ from inside and outside the process
by all the processes which are running on the computer having the same UID of the
process or the UID equals to 0 (root).

Although anyone of these four methods can be used, in principle, to access the process
environment variables, a certain caution must however be used. As a matter of fact, the
environment seen by methods (1), (2) and (3) can be modified by calling putenv(3)or
setenv(3), or, equivalently, by allocating in the stack a new string (using
alloca(3)) and making envp/environ pointing to the new string, while the
environment seen using method (4) comes out unmodified. Only upon the execution of
execve(2)system call the initial process stack is rewritten, so that the environment
strings pointed by envp/environ became again contiguous in memory and the
environment seen by the methods (4) became the same seen by the other methods.

This makes impossible the change of the environment variables referenced by
/proc/<tgid>/environ from inside a running program. The only way to set an
environment variable stored in /proc/<tgid>/environ in a new process is to call
setenv(2) between the fork(2) and execve(2) system calls at process start-up.

2.4. Starting a process

The creation of a new task in Linux is achieved by the fork(2), vfork(2) and
clone(2) system calls.

The clone(2) system call is used to create processes which need to share parts of
their execution context with the calling process, such as the memory space, the table of
file descriptors, and the table of signal handlers; it is therefore suited to create lightweight
processes.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Implementation

page 6 6

The vfork(2) system call is used to create new processes without copying the page
tables of the parent process and is therefore suited to create processes which immediately
issue an execve(2) in performance sensitive interactive applications (since process
start is faster). The limitation of vfork(2) is the fact that the parent execution is
suspended until the child makes a call to execve(2) or _exit(2). The vfork(2)
call is also tricky to use (details of the signal handling are obscure) and its usage is
discouraged; moreover its advantage in process starting performance is not so sensible
under Linux, since fork(2)is implemented using copy-on-write pages (virtual memory
will only be copied when one of the two processes tries to write to it; any virtual memory
that is not written to, even if it can be, will be shared between the two processes without
any harm occurring), so that the only penalty incurred by fork(2) is the time and
memory required to duplicate the parent’s page tables and to create a unique task
structure for the child (under Linux, fork(2) does not require to make a complete copy
of the caller’s data space).

The fork(2) system call is therefore the most appropriate to create a new
heavyweight process and to set its process environment (broadly speaking) before issuing
the execve(2) call.

Several settings have to be made between the fork(2) and the execv(3) call (the
library call which in turn invoke the execve(2) system call) by the TMS as can be seen
in Figure 3:

1. If required, the environment of the new process must be cleared in order that it
does not inherit from the parent useless environment variables
[clearenv(3) library call].

2. Some process-specific environment variables must be set [putenv(3) library
call].

3. The UTGID environment variable must be set [setenv(3) library call].

4. All open file descriptors must be closed [close(2) system call]. The
standard file descriptor STDIN_FILENO must then be re-opened on
/dev/null. The standard file descriptors STDOUT_FILENO and
STDERR_FILENO must either be re-opened on /dev/null (to discard every
write performed by the process) or, if required, be re-opened on the DIM
logger’s FIFO (to redirect output/error messages to the DIM logger utility)
[open(2) and dup(2) system calls].

5. The process-to-CPU affinity mask must be set [sched_setaffinity(2)
system call].

6. The scheduling policy required to run the process must be set. If the chosen
scheduler is a real-time scheduler, the static priority of the process must be set
[sched_setscheduler(2) system call].

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Implementation

 page 7 7

7. If the process is scheduled by the default time-sharing scheduler, the nice level
(used to compute the dynamic priority of the process) must be set
[setpriority(2) system call].

8. The user identifier of the user which will be the owner of the process must be
set [setuid(2) system call].

If the process has to be started as a daemon process, additional settings have to be made:

1. The umask of the process must be reset [umask(2) system call]. The umask
modifies the file permissions of the newly-created files, which is set to the
bitwise AND of the permission set with the open(2) call with the bitwise
negation of the umask.

2. Create a new process session (process group) and set the process as a process
group leader [setsid(2) system call].

chdir(wd)
close file descriptors

fork()

tmSrv

start
DIM CMD

new
process

umask(0)
if(asDaemon)

setsid()

redirect stdout to logger
if(doRedirectStdout)

else
redirect stdout to /dev/null

redirect stderr to logger
if(doRedirectStderr)

else
redirect stderr to /dev/null

clearenv()
if(doClearenv)

putenv(eP)

loop over new environment variables eP

setenv("UTGID",utgid,1)
setenv("PWD",getcwd(NULL,0),1)
sched_setaffinity()
sched_setscheduler()
setpriority()
setuit()
execv()

Figure 3. Sequence diagram of the start procedure.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Implementation

page 8 8

2.5. Sending a signal to a process

Usually a signal is sent to a process either to stop it or to trigger a reload of one or more
configuration files. In Linux, signals to other processes are sent using the kill(2)
system call. If the process implements a signal handler, it is executed asynchronously on
signal reception (the handler could trigger a configuration reload or gracefully terminate
the process), otherwise, if the signal is not masked, the process terminates.

Upon process termination, since the TMS (the parent process) remains alive, the
exiting process turns into a “zombie” process and sends a SIGCHLD signal to TMS.
TMS, in turn, implements a SIGCHLD signal handler which calls waitpid(2) to
release all the resources used by the process.

Figure 4. Sequence diagram of the kill procedure. The running process does not catch
the SIGTERM signal.

SIGTERM

SIGTERM handler

tmSrv

kill
DIM CMD

running
process

kill()

waitpid()SIGCLD handler
zombie

SIGCLD

running

exit()

Figure 5. Sequence diagram, of the kill procedure. The running process catches the
SIGTERM signal and exit gracefully.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Implementation

 page 9 9

2.6. Stopping a process

The stop command handler on the TMS is designed to stop a process in the most general
way. It sends a signal to the process (default SIGTERM, but another signal can also be
sent) and schedules the deferred execution of the finishOffPs() function.

The finishOffPs() function controls whether the process is already dead,
otherwise sends a second signal (this time a SIGKILL signal) to the process. This way
the process is left the chance to exit gracefully on a SIGTERM reception, but, if it fails, it
is stopped abruptly by a SIGKILL signal after a certain delay.

2.7. Listing the running processes

The list service handler in TMS is designed to get an updated list of the running processes
which have the UTGID defined. The list is obtained by the TMS, by accessing all the
i-nodes /proc/<tgid>/environ and looking at them for the UTGID variables.

The list published by TMS is updated not only periodically (every 10 seconds), but
also whenever a TMS command is executed and one second after a TMS command has
been executed.

The published list is also updated on spontaneous process termination (i.e. a process
termination not triggered by the Task Manager).

SIGTERM

SIGKILL

tmSrv
I/O

thread

stop
DIM CMD

tmSrv
timer

thread

kill()

waitpid()

kill()

SIGCLD handler

SIGCLD

finishOffPs() SIGTERM handler

running
process

zombie

running

does not exit()

Figure 6. Sequence diagram of the stop procedure. The running process catches the
SIGTERM and continue, but is stopped by the delayed SIGKILL.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Implementation

page 10 10

By means of this service, the Process Controller is able to check if the processes listed
in the configuration database are running and, if they are not, to start or restart them.

2.8. Logging and list updating on process termination

When a process (started by the TMS) terminates, either spontaneously (main()
function’s return, exit(3) call, exception, signal reception, etc.) or because it is killed
by the Task Manager, the TMS process (which is its parent process) remains alive, so that
the exiting process is turned into a “zombie” process and a SIGCHLD signal is sent to
TMS.

The TMS, in turn, implements a SIGCHLD signal handler which:

• calls waitpid(2) to free all resources used by the process and to expunge it
from the process list;

• sends a message to the logger facility with the exit status or the number of signal
that caused the child process to terminate;

• updates immediately the published process list (to allow the Process Controller to
restart the process immediately if requested).

2.9. The Task Manager Server’s threads

Like all the DIM servers, the TMS process is multi-threaded and is composed of 3 light-
weight processes (threads): the main thread (which runs the main control loop that
schedules list service updates and cleans-up “zombies”), the I/O thread (which manages
DIM commands and services) and the timer thread (which manages timers and delayed
executions).

The scheduling policy for the TMS threads and the static (real-time) priority of each
TMS thread can be set through the TMS command line, using the switches:
--schedpol, --mainprio, --ioprio and --timerprio.

While there are no particular prescriptions in running the TMS with the Linux standard
time-sharing scheduler (the static priority of the three threads cannot be different from
zero and the started processes cannot be run with real-time schedulers), more attention
must be put in running the TMS with real-time schedulers (fifo or round-robin): the I/O
thread will probably have the highest priority, the main thread will probably have an
intermediate priority and the timer thread will probably have the lowest priority. By
default, TMS is run using the real-time round-robin scheduler and the static priorities are
set to 80 (main thread), 93 (I/O thread) and 10 (timer thread).

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
Implementation

 page 11 11

The TMS forbids spawning a process with a static priority equal or higher than
the TMS I/O thread, to avoid starting a process that the TMS could not be able to kill
(e.g., a process which never relinquish the CPU, running with fifo scheduler and a static
priority equal or higher than the TMS, does never give the TMS the chance to kill it).
Thus a TMS running using the time-sharing scheduler (zero static priority) cannot start a
real-time process (static priority greater than zero) .

2.10. Processes I/O redirection

The processes started by the Task Manager run in background on the farm nodes and
cannot perform terminal I/O. If a process, started by the TMS, try to write a message to
STDOUT_FILENO or to STDERR_FILENO (e.g., using a printf(3)), by default
messages are sent to /dev/null, and therefore are lost forever. The -o and -e
switches on the command string processed by the TMS start service allow instead
redirecting these messages to the DIM logger.

Even if it is always better that the application itself sends its messages directly to the
DIM logger (using the DIM logger API), instead of writing to stderr/stdout,
nevertheless we must remember that important debugging messages are sent to stderr
by system utilities like the dynamic linker (a typical error message from the dynamic
linker is, e.g., “/opt/SFM/tm/examples/counter: error while loading
shared libraries: libdim.so: cannot open shared object file:
No such file or directory”).

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager Server (TMS)

page 12 12

3. The Task Manager Server (TMS)

The TMS, whose executable image name is tmSrv, runs on each node of the sub-farm. It
is recommended to run the Task Manager as user root and to limit the root access as
desired by means of –p flag. Running the Task Manager as a user different from root
allows only starting processes as such a user and listing and stopping processes owned by
such a user. The Task Manager could be started by init process, using the respawn
inittab option, in order to insure that it is always alive.

3.1. Synopsis

tmSrv [-l logger][-p permission][-d default_user]
[--schedpol scheduling_policy]
[--mainprio main_thread_priority]
[--ioprio I/O_thread_priority]
[--timerprio timer_thread_priority]

tmSrv [-h]

3.2. Description

Starts the TMS on the node and sends its log messages to a logger.

3.3. Command line options

-h Print the program usage and exit immediately.

-l logger
Use logger as error logger. Values allowed for logger are in the range 0...7. The
value is the result of a bitwise OR of the following values:
0x0 NOLOG Don't write log at all (default).
0x1 DIMLOGGER Send log to DIM logger.
0x2 STDERRLOG Send log to stderr.
0x4 DIMSVC Send log to a specific DIM service.

-d default_user

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager Server (TMS)

 page 13 13

Starts the processes as the user default_user, by default. If permission is
greater then 0 (i.e. if permission is equal to 1 or 2), using the -n DIM command
option, a process can also be started as a user different from default_user.

-p permission

Allowed values for permission are in the range 0...2. The meaning of this
parameter is the following:

0. Processes can only be started as the user default_user.

1. Process can be started as a user different from default_user (by using -n
DIM command option) but not as the user root.

2. Process can be started as a user different from default_user (by using -n
DIM command option) including the user root.

--schedpol scheduling_policy

Run the TMS using the scheduling policy scheduling_policy. Allowed values
for scheduling_policy are: 0 (SCHED_OTHER, the standard Linux time
sharing scheduler), 1 (SCHED_FIFO, the real-time fifo scheduler) and 2
(SCHED_RR, the real-time round-robin scheduler). Default value: 2.

--mainprio main_thread_priority

Run the TMS with the priority of the main thread (the thread which runs the main
control loop that schedules list service updates and cleans-up “zombies”) equal to
main_thread_priority. Allowed values: 0 for SCHED_OTHER scheduling
policy, 1…99 for SCHED_FIFO and SCHED_RR scheduling policy. Default value:
80.

--ioprio I/O_thread_priority

Run the TMS with the priority of the I/O thread (the thread which manages DIM
commands and services) equal to I/O_thread_priority. Allowed values: 0 for
SCHED_OTHER scheduling policy, 1…99 for SCHED_FIFO and SCHED_RR
scheduling policy. Default value: 93.

--timerprio timer_thread_priority

Run the TMS with the priority of the timer thread (the thread which manages timers
and delayed executions) equal to I/O_thread_priority. Allowed values: 0 for

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager Server (TMS)

page 14 14

SCHED_OTHER scheduling policy, 1…99 for SCHED_FIFO and SCHED_RR
scheduling policy. Default value: 10.

3.4. Published DIM command and services

3.4.1. CMD: /<HOSTNAME>/task_manager/start

1. Command String Synopsis

"[-c][-D NAME=value...][-d][-s scheduler][-p nice_level]
[-r rt_priority][-a cpu_num...][-n user_name][-u utgid]
[-w wd][-e][-o] path [arg...]"

2. Description

Start a new process on the node, using the executable file located in path and the
arguments specified in arg. In the environment of the started process tmSrv puts a new
string variable, called UTGID (User assigned unique Thread Group Identifier).

By default, before starting the process, all file descriptors are closed and standard file
descriptors (STDIN_FILENO, STDOUT_FILENO and STDERR_FILENO) are reopened
on /dev/null.

UTGID can be defined by the user (using -u option) or can be generated automatically
(omitting -u options) by appending to the command name (the name of the executable
image) an underscore followed by an instance counter.

3. Options

-c Clear the process environment. If this flag is specified, the process environment is
cleaned and only the variable UTGID (set as specified in option -u) and PWD
(pointing to the working directory specified with option -w) are set. If this flag is
not specified, the environment of tmSrv process is inherited, the variable PWD is
changed to point to the working directory specified with option -w, and the variable
UTGID (set as specified in option -u) is added.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager Server (TMS)

 page 15 15

-D NAME=value

(Repeatable). Set the environment variable NAME to the value value. More than
one of these options can be present in the same command. They have to be used to
set the environment variables which are specific for the particular starting process.
Environment variables which are common for many processes can be set, more
conveniently, in the tmSrv environment (see sections 3.5 and 3.6).

-d Run process as daemon. If this flag is specified, process umask is changed into 0
and program is run in a new session as process group leader (setsid()).

-s scheduler

Set scheduler as the scheduler for the process. This option can also be specified
for processes which run as a user different from root (in fact scheduler is set before
uid). Allowed values for scheduler are (see sched_setscheduler(2)
manual page for more details):

0 (SCHED_OTHER) The default time-sharing Linux scheduler, with a dynamic
priority based on the nice level.

1 (SCHED_FIFO) The static-priority real-time fifo scheduler, without time
slicing. A SCHED_FIFO process runs until either it is blocked
by an I/O request, it is preempted by a higher priority process,
or it calls sched_yield().

2 (SCHED_RR) The static-priority real-time round-robin scheduler. It differs
from SCHED_FIFO because each process is only allowed to
run for a maximum time quantum. If a SCHED_RR process
has been running for a time period equal to or longer than the
time quantum, it will be put at the end of the list for its
priority.

-p nice_level

Set the nice level of the process to nice_level. This value is used by the
SCHED_OTHER time-sharing Linux scheduler to compute the dynamic priority.
Allowed values for nice_level are in the range –20...19 (–20 corresponds to the
most favorable scheduling; 19 corresponds to the least favorable scheduling). Nice
level may be lowered also for processes which run as a user different from root (in
fact the nice_level is set before uid). See manual pages for nice(1) and
setpriority(2) for details).

-r rt_priority

Set the static real-time priority of the process to rt_priority. Only value 0 for
rt_priority is allowed for scheduler SCHED_OTHER (the default time-sharing
Linux scheduler). For SCHED_FIFO and SCHED_RR real-time schedulers, allowed

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager Server (TMS)

page 16 16

values are in the range 1...99 (1 is the lowest priority, 99 is the highest priority). See
manual pages for sched_setscheduler(2) for more details.

-a cpu_num...

(Repeatable). Add the CPU cpu_num to the process-to-CPU affinity mask. More
than one of these options can be present in the same command to add more than one
CPU to the affinity mask. Started process is allowed to run only on the CPUs
specified in the affinity mask. Omitting this option, process is allowed to run on any
CPU of the node. Allowed cpu_num depend on the PC architecture: e.g., in a
single-processor PC with Huper-Threading activated or in a dual processor PC
without Hyper-Threading cpu_num can be 0 or 1; in a dual processor PC with
Hyper-Threading activated cpu_num can be 0, 1, 2 or 3.

-n user_name

Set the effective UID, the real UID and the saved UID of the process to the UID of
user user_name. If tmSrv was started with "-p 0" command line option only
default_user can be specified as user_name. If tmSrv was started with "-p
1" command line option, any existing user name different from root can be
specified as user_name. If tmSrv was started with "-p 2" command line option,
any existing user name including root can be specified as user_name.

-u utgid

Set the string utgid as the process UTGID (User assigned unique Thread Group
Identifier). The UTGID is set as a process environment variable, accessible, from
inside the process using getenv(3) library call, global variable environ (see
environ(5) manual page) or envp argument of program's main() function, and
from outside the process, using the i-node /proc/<TGID>/environ.

-w wd

Set the string wd as the process working directory. File open by the process without
path specification are sought by the process in this directory.

-e

Redirect the standard error to the DIM logger. Omitting this option, the standard
error is thrown in /dev/null.

-o

Redirect the standard output to the DIM logger. Omitting this option, the standard
output is thrown in /dev/null.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager Server (TMS)

 page 17 17

3.4.2. CMD: /<HOSTNAME>/task_manager/kill

1. Command String Synopsis

"[-s sig] utgid_pattern"

2. Description

Send the signal sig (default: signal 15, i.e. SIGTERM, if the -s flag is omitted) to all
the processes whose UTGID matches the POSIX.2 wildcard pattern utgid_pattern
on the node.

3. Options

-s sig

Send the signal sig. If not specified signal 15 (SIGTERM) is sent.

3.4.3. CMD: /<HOSTNAME>/task_manager/stop

1. Command String Synopsis

"[-s sig][-d delay] utgid_pattern"

2. Description

Send the signal sig (default: signal 15, i.e. SIGTERM, if the -s flag is omitted) to all
the processes whose UTGID matches the POSIX.2 wildcard pattern utgid_pattern
on the node. If some of the processes which receive the signal are still alive after delay
seconds, a signal 9 (SIGKILL) is sent to them.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager Server (TMS)

page 18 18

3. Options

-s sig

Send the signal sig. If not specified signal 15 (SIGTERM) is sent.

-d delay

Use delay as the delay between the first signal (SIGTERM or signal specified with
-s option) and the second signal (SIGKILL). If not specified a one second delay is
assumed.

3.4.4. SVC: /<HOSTNAME>/task_manager/list

1. Description

Return an array of NULL-terminated strings, containing the list of the processes which
have the UTGID environment variable set. If there are no running processes with the
UTGID variable defined, the service returns the string “(none)”. The list is updated not
only periodically (every 10 seconds), but also whenever a TMS command is executed,
one second after a TMS command has been executed and immediately after a process
started by the current TMS has terminated.

3.4.5. SVC: /<HOSTNAME>/task_manager/log

1. Description

This service publishes DEBUG/INFO/WARNING/ERROR/FATAL messages sent by the
task manager.

This service is published only if the TMS is started with the option -l 4, -l 5, -l 6
or -l 7.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager Server (TMS)

 page 19 19

3.4.6. SVC: /<HOSTNAME>/task_manager/server_version

1. Description

This service publishes the RCS Identification string of the TMS main program source file,
containing version and last modification time.

3.4.7. SVC: /<HOSTNAME>/task_manager/actuator_version

1. Description

This service publishes the RCS Identification string of the TMS actuator function source
file, containing version and last modification time.

3.4.8. SVC: /<HOSTNAME>/task_manager/success

1. Description

This dummy service is always returns 1. It is used by PVSS-DIM to check if tmSrv
process is running.

3.5. Environment

The program tmSrv needs the two environment variables:

DIM_DNS_NODE

hostname.domain of DIM dns node.

LD_LIBRARY_PATH

Variable, in PATH format, which must contain the path of the shared
libraries libdim.so, libSFMutils.so and libproc-3.2.3.so.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager Server (TMS)

page 20 20

The Task Manager environment is inherited by all the processes started by the task
manager, unless the -c option is specified as start argument.

Therefore all common environment variable needed by many processes started by the task
manager has to be in tmSrv environment. Process-specific environment variable can be set
using “–D” command option (see section 3.4.1.3).

A further environment variable

deBug

the debug level.

can be set to 1 or more to make the TMS sending to the DIM logger more debugging
messages.

3.6. Examples

The task manager server tmSrv can be started using the inittab, writing in
/etc/inittab an entry like:

 <Id>:<run_level>:respawn:/opt/SFM/sbin/startTmSrv.sh

where <Id> is a unique sequence of 1-4 characters which identifies an entry in inittab,
<run_level> lists the run-levels for which the Task Manager have to run, and
startTmSrv.sh is a shell script like this:

#!/bin/sh
DIM_DNS_NODE=lhcbos1.lhcb-bo.infn.it
LD_LIBRARY_PATH=/opt/dim/linux:/opt/SFM/lib
export DIM_DNS_NODE LD_LIBRARY_PATH
put here other common environment variable
needed by many started processes
pkill tmSrv > /dev/null 2>&1
sleep 1
/opt/SFM/sbin/tmSrv -l 1 -p 1 -d online

With this script, process are started by default as user online (which must exist on the
systems) but can also be stared as other users except user root. Messages are logged
only to the DIM logger (the DIM service: /<hostname>/logger/log).

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager Server (TMS)

 page 21 21

3.7. See also

setuid(2), nice(1), setpriority(2), sched_setaffinity(2),
sched_setscheduler(2), setsid(2), fork(2), umask(2),
waitpid(2), chdir(2), clearenv(3), setenv(3), execv(3),
kill(2), signal(7), glob(7), fnmatch(3), argz_add(3),
dup2(2).

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager command-line clients for Linux

page 22 22

4. The Task Manager command-line clients for Linux

4.1. tmStart

4.1.1. Synopsis

tmStart [-m hostname_pattern] TMS_Start_Command_String

tmStart [-h]

4.1.2. Description

Send the command string TMS_Start_Command_String to the CMD
/<HOSTNAME>/task_manager/start of the TMSs of all the nodes whose
hostname matches the POSIX.2 wildcard pattern hostname_pattern.

See 3.4.1 for a description of the TMS_Start_Command_String synopsis.

4.1.3. Options

-h Print the program usage and exit immediately.

-m hostname_pattern

(If present, it must be the first option). Send the command string
TMS_Start_Command_String only to the nodes whose hostname matches the
POSIX.2 wildcard pattern hostname_pattern. If not specified, signal is sent to
all nodes on which the server tmSrv is running. hostname_pattern can contain
'*', '?', character classes [...], ranges [0-4], and complementation. See glob(7).

4.1.4. Environment

The program tmStart needs the two environment variables:

DIM_DNS_NODE

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager command-line clients for Linux

 page 23 23

hostname.domain of DIM dns node.

LD_LIBRARY_PATH

Variable, in PATH format, which must contain the path of the shared
libraries libdim.so, libSFMutils.so and libproc-3.2.3.so.

4.1.5. Warning

The wildcards in the command line must be escaped (by means of back-slash or by
means of a couple of double quotation marks) in order to avoid the shell expansion.

4.1.6. Examples

tmStart /opt/SFM/tm/examples/counter
tmStart -m lxplus003 /opt/SFM/tm/examples/counter
tmStart -m "lxplus*" /opt/SFM/tm/examples/counter
tmStart -m lxplus* /opt/SFM/tm/examples/counter
tmStart -m "lxplus00?" /opt/SFM/tm/examples/counter
tmStart -m lxplus00\? /opt/SFM/tm/examples/counter
tmStart -m "lxplus0[3-7]0" /opt/SFM/tm/examples/counter
tmStart -m "lxplus0[3-7]?" /opt/SFM/tm/examples/counter
tmStart -m lxplus003 -d -w /opt/SFM/tm/examples ./counter
tmStart -m lxplus003 -c -u myps -w /bin ps -e –f
tmStart -d /opt/SFM/tm/examples/counter
tmStart -d -s 1 -r 1 /opt/SFM/tm/examples/counter
tmStart -d -p -10 -n galli /opt/SFM/tm/examples/counter
tmStart -c -d –D LD_LIBRARY_PATH=/opt/dim/linux:/opt/SFM/lib
-D DIM_DNS_NODE=pcdom.fastwebnet.it
/opt/SFM/tm/examples/counter
tmStart –m lxplus003 –e –o /opt/SFM/tm/examples/counter
tmStart –m lxplus003 –a 0 –a 2 /opt/SFM/tm/examples/counter

4.2. tmLs

4.2.1. Synopsis

tmLs [-m hostname_pattern][utgid_pattern]

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager command-line clients for Linux

page 24 24

tmLs [-h]

4.2.2. Description

List the processes whose UTGID matches the POSIX.2 wildcard pattern
utgid_pattern on all the nodes whose host-name matches the POSIX.2 wildcard
pattern hostname_pattern. If utgid_pattern is not specified, it is set to "*".

4.2.3. Options

-m hostname_pattern

List only the processes on all the nodes whose host-name matches the POSIX.2
wildcard pattern hostname_pattern. If not specified, processes running on all
nodes on which the server tmSrv is running are listed.

4.2.4. Environment

The program tmLs needs the two environment variables:

DIM_DNS_NODE

hostname.domain of DIM dns node.

LD_LIBRARY_PATH

Variable, in PATH format, which must contain the path of the shared
libraries libdim.so, libSFMutils.so and libproc-3.2.3.so.

4.2.5. Technical note

tmLs command contacts tmSrv DIM service

/<HOSTNAME>/task_manager/list

which publishes the list of the UTGIDs of the processes running on the node which have
UTGID variable set. list service on tmSrv lists only thread groups, not single threads
to avoid duplicate UTGIDs in the list (all threads owning to the same thread group have
the same UTGID set).

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager command-line clients for Linux

 page 25 25

The list is updated not only periodically (every 10 seconds), but also whenever a TMS
command is executed, one second after a TMS command has been executed and
immediately after a process started by the current TMS has terminated.

4.2.6. Warning

The wildcards in the command line must be escaped (by means of back-slash or by
means of a couple of double quotation marks) in order to avoid the shell expansion.

4.2.7. Examples

tmLs
tmLs counter_0
tmLs "count*"
tmLs count*
tmLs "count*[2-5]"
tmLs -m lxplus003
tmLs -m "lxplus*"
tmLs -m lxplus*
tmLs -m "lxplus0[3-7]?"
tmLs -m "lxplus*" "count*"
tmLs -m lxplus* count*
tmLs -m "lxplus0[3-7]?" "count*[2-5]"

4.2.8. See Also

glob(7).

4.3. tmKill

4.3.1. Synopsis

tmKill [-m hostname_pattern] TMS_Kill_Command_String

tmKill [-h]

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager command-line clients for Linux

page 26 26

4.3.2. Description

Send the command string TMS_Kill_Command_String to the CMD
/<HOSTNAME>/task_manager/kill of the TMSs of all the nodes whose hostname
matches the POSIX.2 wildcard pattern hostname_pattern.

See 3.4.2 for a description of the TMS_Kill_Command_String synopsis.

4.3.3. Options

-m hostname_pattern

(If present, it must be the first option). Send the command string
TMS_Kill_Command_String only to the nodes whose hostname matches the
POSIX.2 wildcard pattern hostname_pattern. If not specified, signal is sent to
all nodes on which the server tmSrv is running. hostname_pattern can contain
'*', '?', character classes [...], ranges [0-4], and complementation. See glob(7).

4.3.4. Environment

The program tmKill needs the two environment variables:

DIM_DNS_NODE

hostname.domain of DIM dns node.

LD_LIBRARY_PATH

Variable, in PATH format, which must contain the path of the shared
libraries libdim.so, libSFMutils.so and libproc-3.2.3.so.

4.3.5. Warning

The wildcards in the command line must be escaped (by means of back-slash or by
means of a couple of double quotation marks) in order to avoid the shell expansion.

4.3.6. Examples

tmKill counter_0
tmKill "count*"
tmKill count*

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager command-line clients for Linux

 page 27 27

tmKill "count*[2-5]"
tmKill -m lxplus003 counter_0
tmKill -m "lxplus*" "count*"
tmKill -m lxplus* count*
tmKill -m "lxplus0[3-7]?" "count*[2-5]"
tmKill -s 2 counter_0
tmKill -s 2 "count*[2-5]"
tmKill -m lxplus003 -s 2 count_0
tmKill -m "lxplus*" -s 2 "count*"
tmKill "*"
tmKill *
tmKill -s 2 "*"
tmKill -s 2 *
tmKill -m "lxplus00[1357]" count_0

4.3.7. See Also

glob(7), signal(7).

4.4. tmStop

4.4.1. Synopsis

tmStop [-m hostname_pattern] TMS_Stop_Command_String

tmStop [-h]

4.4.2. Description

Send the command string TMS_Stop_Command_String to the CMD
/<HOSTNAME>/task_manager/stop of the TMSs of all the nodes whose hostname
matches the POSIX.2 wildcard pattern hostname_pattern.

4.4.3. Options

-m hostname_pattern

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager command-line clients for Linux

page 28 28

(If present, it must be the first option). Send the command string
TMS_Stop_Command_String only to the nodes whose hostname matches the
POSIX.2 wildcard pattern hostname_pattern. If not specified, signal is sent to
all nodes on which the server tmSrv is running. hostname_pattern can contain
'*', '?', character classes [...], ranges [0-4], and complementation. See glob(7).

4.4.4. Environment

The program tmStop needs the two environment variables:

DIM_DNS_NODE

hostname.domain of DIM dns node.

LD_LIBRARY_PATH

Variable, in PATH format, which must contain the path of the shared
libraries libdim.so, libSFMutils.so and libproc-3.2.3.so.

4.4.5. Warning

The wildcards in the command line must be escaped (by means of back-slash or by
means of a couple of double quotation marks) in order to avoid the shell expansion.

4.4.6. Examples

tmStop counter_0
tmStop "count*"
tmStop count*
tmStop "count*[2-5]"
tmStop -m lxplus003 counter_0
tmStop -m "lxplus*" "count*"
tmStop -m lxplus* count*
tmStop -m "lxplus0[3-7]?" "count*[2-5]"
tmStop -s 2 counter_0
tmStop -s 2 "count*[2-5]"
tmStop -m lxplus003 -s 2 counter_0
tmStop -m "lxplus*" -s 2 "count*"
tmStop -m lxplus003 -s 2 -d 4 counter_0
tmStop -m "lxplus*" -s 2 -d 4 "count*"
tmStop "*"
tmStop *

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager command-line clients for Linux

 page 29 29

tmStop -s 2 -d 4 "*"
tmStop -s 2 -d 4 *
tmStop -m "lxplus00[1357]" counter_0

4.4.7. See Also

glob(7), signal(7).

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager PVSS client

page 30 30

5. The Task Manager PVSS client

The PVSS Task Manager Client is the lowest level graphical interface which is able to
start, stop and list processes on servers which have the TMS running.

5.1. Start a process

The simplest command to start a process consists in typing in the field “Path” the path of
the executable image to be run, and press the “Confirm” button, as shown in Figure 7.

If the program to be started needs to open a file, specified as relative path, the process
working directory must be set (by default the working directory is set to “/”), as shown in
Figure 8, by setting the “Working directory” check-box and filling the “Working
directory” text-field. In the example shown in Figure 8 also the “Clear Environment”
check-box and the “Daemon” check-box are set: the first makes the process environment
to be cleared (only the variables UTGID and PWD are set); the second makes the process
running as daemon (process umask is reset, program is run in a new session as process
group leader (setsid())).

Starting a process as shown in Figure 7 and Figure 8 makes the Task Manager Server
assign to the process an automatically generated UTGID string, which is build as
COMMAND+”_”+<instance_number>. In the example, UTGID will be counter_0
for the first instance, counter_1 for the second instance and so on.

Figure 7. The simplest start command.

�

�

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager PVSS client

 page 31 31

Sometimes is desirable to assign a more mnemonic UTGID, for example to remember
that the process is related to the L1 trigger. This can be achieved, as shown in Figure 9, by
checking the “UTGID” check-box and filling the “UTGID” text-field.

To start the process as a user different from the TMS default user (Figure 10), the “User”
check-box must be set and the “User” text-field must be filled with the name of a user
(which must be defined on the node on which the TMS is running). The choice of the user

Figure 8. Start command with working directory specification. The “Clear environment”
check-box and “Daemon” check-box are also set.

Figure 9. Start command with the UTGID specification.

�

�

�

�

�

�

�
�

�

�

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager PVSS client

page 32 32

must be compatible with the policy defined in the TMS (see section 3.3), otherwise the
process is not started and an error message is written to the logger.

The PVSS Task Manager client is also able to set the scheduler, the priority and the CPU
affinity for the new process (the default is the TIME SHARING scheduler with 0 nice
level and the process allowed to run on any CPU).

Figure 10. Start command with the user specification.

Figure 11. Start command with the scheduler specification.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager PVSS client

 page 33 33

In Figure 11 is shown the “Scheduler” check-box set, and the “Scheduler” combo-box
opened. If the TIME SHARING scheduler is chosen, the “Nice Level” check-box can be
set to activate the “Nice Level” combo-box to choose the process nice level, as shown in
Figure 12. If the FIFO or the ROUND ROBIN scheduler is chosen, the “Static Priority”

Figure 12. Start command with the TIME SHARING scheduler and the nice level
specification.

Figure 13. Start command with the FIFO scheduler and the static priority specification.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager PVSS client

page 34 34

check-box can be set to activate the “Static Priority” combo-box to choose the process
static priority, as shown in Figure 13.

To bind the process execution to one ore more specified CPUs, the process-to-CPU
affinity mask can be set-up by checking the “Enable Cpu Affinity” check-box and then
setting the check-boxes corresponding to the chosen CPU, as shown in Figure 14.

Figure 14. Start command with the FIFO scheduler, the static priority specification and
the process-to-CPU affinity specification.

Figure 15. Start command with the redirection of the standard error and standard
output of the started process to the Message Logger.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager PVSS client

 page 35 35

The standard output and the standard error of the started process, by default, are thrown in
/dev/null. To redirect instead stdout and/or stderr of the started process to the
Message Logger (/tmp/logSrv.fifo), the “Redirect STDOUT” and/or “Redirect
STDERR” check-boxes can be set, as shown in Figure 15.

A further control regards the process environment variables. We have already seen that
the “Clear Environment” check-box can be used to choose whether the started process
must inherit or not the environment variables set for the Task Manager process itself. If a
group of environment variables is needed by many processes to be started, the easiest
solution is to add these variables to the tmSrv start-up script and to make the started
process inherit them.

It is possible, however, to set additional environment variables, specific for the started
process, by using the 3 buttons in the “Environment Variables” frame. To add a new
environment variable for the process to be started, you can press the “New” button, fill
the two text-fields in the pop-up window (Variable Name and Variable Value) and then
press the “OK” button, as you can see in Figure 16. As a result you will se the new
variable inserted in the “Environment Variables” list (Figure 17). All the variables set in
the “Environment Variables” list will be passed to the started process. The “Edit” button
can be then used to modify an environment variable previously set; the “Delete” button
can be used to remove an environment variable previously set.

Figure 16. Start command with additional environment variables. The “New” button
opens the pop-up window to set a new variable.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager PVSS client

page 36 36

5.2. Send a signal to a process

To send a signal to a process, in the Task Manager panel the “Stop/Kill” tabbed pane
must be chosen, the “kill” check-box (in the “Action Type” frame) must be set, and the
process (or the processes) which must receive the signal must be chosen from the list.

If a signal different from SIGTERM (signal number 15) must be sent, the “Signal”
check-box must be set and the appropriate signal must be chosen from the “Signal”
combo-box. Finally the “Kill Process” button must be pressed (Figure 18).

Figure 17. Start command with additional environment variables. The new variable has
been added to the environment variable list.

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager PVSS client

 page 37 37

5.3. Stop a process

To stop a process, in the Task Manager panel the “Stop/Kill” tabbed pane must be
chosen, the “stop” check-box (in the “Action Type” frame) must be set, and the process
(or the processes) which must receive the signal must be chosen from the list.

If a signal different from SIGTERM (signal number 15) must be used as first signal to
stop the process, the “Signal” check-box must be set and the appropriate signal must be
chosen from the “Signal” combo-box. Finally the “Stop Process” button must be pressed
(Figure 19). This way the chosen signal is sent to the chosen processes and the deferred
execution of finishOffPs() function is scheduled. After one second, finishOffPs() function
controls whether the process (or the processes) are already dead, otherwise a second
signal (a SIGKILL signal this time) is sent to the processes which are still alive.

The delay of execution of finishOffPs() function (default one second) can be changed
by setting the “Delay” check-box and writing the appropriate delay (in seconds) in the
“Delay” text-field (Figure 20).

Figure 18. Sending a signal to a process (kill command).

�
�

�

�

�

�

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
The Task Manager PVSS client

page 38 38

Figure 19. Stopping a process (stop command).

Figure 20. Stopping a process with the SIGKILL delay specification.

�
�

�

�

�

�

�
�

�

�
�

�
�

�

The Task Manager for the LHCb On-Line Farm Reference: LHCb 2004-099 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 18 Aug. 2005
References

 page 39 39

6. References

[1] C. Gaspar, DIM, Distributed Information Management System: see URL
http://dim.web.cern.ch/dim/.

[2] C. Gaspar, PVSS - DIM Integration: see URL
http://clara.home.cern.ch/clara/fw/FwDim.html.

[3] LHC Experiments Joint COntrol Project: see URL
http://itco.web.cern.ch/itco/Projects-Services/JCOP/welcome.html.

[4] PVSS Service: see URL http://itcobe.web.cern.ch/itcobe/Services/Pvss/.

