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Abstract

The European School of High-Energy Physics is intended to give young experimental physicists an introduction
to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures
notes on field theory and the Standard Model, quantum chromodynamics, flavour physics and CP violation,
experimental aspects of CP violation in K and B decays, relativistic heavy-ion physics, and the scientific pro-
gramme of the Joint Institute for Nuclear Research. These core scientific topics are complemented by a lecture
about the physics of ski jumping.
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Preface

Ninety-seven students coming from thirty-three different countries attended the thirteenth in the new series
of the European School of High-Energy Physics which took place in Kitzbühel, Austria, from 21 August to
3 September 2005. The School was hosted in the beautiful Hotel Kitzhof, a Tyrolean style hotel, two hundred
metres from the city centre. According to the tradition of the School, the students shared twin rooms, mixing
nationalities and in particular Eastern participants with Western ones.

Emmerich Kneringer from the University of Innsbruck was the local director of the School, co-chaired by
Laurenz Widhalm from the Austrian Academy of Sciences, Vienna, with Manfred Jeitler, also from Vienna, as
the third member of the local committee. In addition Andreas Salzburger acted as a very efficient ‘assistant’ to
the local team.

Meinhart Regler together with Dietmar Kuhn helped in the initial phases of setting up the School and in
providing some of the funding.

Mr Otto Langer from the Kitzbühel Rotary Club helped to bring the School to Kitzbühel and provided
important links to the town authorities.

Our thanks go to the very efficient local team for their help and assistance and whose efforts contributed in
major ways to the success of the School.

Our thanks are also due to the lecturers and discussion leaders for their active participation in the School
and for making the scientific programme so stimulating. The students, who in turn manifested their good
spirits during two intense weeks, undoubtedly appreciated their personal contribution in answering questions
and explaining points of theory.

We are very grateful to Danielle Métral and Tatyana Donskova for their untiring efforts in the lengthy
preparations for and the day-to-day care of the School. Their efficient teamwork and continuous care of the
students and their needs were highly appreciated. Our special thanks also go to the hotel manager, Markus
Frischknecht, and to Susan and the hotel staff who were always ready to assist the school participants in a most
friendly manner.

The participants spent their free time hiking in the impressive mountains around Kitzbühel or swimming in
the Schwartzee, a few excursions were also organized. The first Wednesday afternoon featured a guided tour
of Kitzbühel. The tour, which was organized as a travel in time, was very interesting allowing the participants
to learn about the region’s history and the beautiful architecture of the town. Saturday saw a visit to Salzburg.
The city of Salzburg—and especially its historic city centre—is in fact one of the loveliest places in Europe,
winning international acclaim in 1997 when it was designated a World Heritage site by UNESCO.

Thanks go to the Austrian Academy of Sciences who sponsored the School and to Professor Rudi Grimm,
Dean of the University of Innsbruck, who offered the welcome drink. Our thanks are also due to Andreas and
his team who had set up and assisted in the running of an excellent PC centre for the School.

However, the success of the 2005 School was to a large extent due to the students themselves. Their posters
set up in and around the auditorium were of excellent quality both technically and in content, and throughout
the School they participated actively during the lectures, in the discussion sessions, and with genuine interest
in the different activities and excursions.

Egil Lillestøl
on behalf of the Organizing Committee
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Field theory and the Standard Model

W. Buchmüller and C. Lüdeling
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

Abstract
We give a short introduction to the Standard Model and the underlying con-
cepts of quantum field theory.

1 Introduction
In these lectures we shall give a short introduction to the Standard Model of particle physics with empha-
sis on the electroweak theory and the Higgs sector, and we shall also attempt to explain the underlying
concepts of quantum field theory.

The Standard Model of particle physics has the following key features:

– As a theory of elementary particles, it incorporates relativity and quantum mechanics, and therefore
it is based on quantum field theory.

– Its predictive power rests on the regularization of divergent quantum corrections and the renormal-
ization procedure which introduces scale-dependent ‘running couplings’.

– Electromagnetic, weak, strong and also gravitational interactions are all related to local symmetries
and described by Abelian and non-Abelian gauge theories.

– The masses of all particles are generated by two mechanisms: confinement and spontaneous sym-
metry breaking.

In the following chapters we shall explain these points one by one. Finally, instead of a summary,
we briefly recall the history of ‘The making of the Standard Model’ [1].

From the theoretical perspective, the Standard Model has a simple and elegant structure: it is a
chiral gauge theory. Spelling out the details reveals a rich phenomenology which can account for strong
and electroweak interactions, confinement and spontaneous symmetry breaking, hadronic and leptonic
flavour physics etc. [2, 3]. The study of all these aspects has kept theorists and experimenters busy for
three decades. Let us briefly consider these two sides of the Standard Model before we discuss the details.

1.1 Theoretical perspective
The Standard Model is a theory of fields with spins 0, 1

2 and 1. The fermions (matter fields) can be
arranged in a big vector containing left-handed spinors only:

ΨT
L =

(
qL1, u

C
R1, e

C
R1, d

C
R1, lL1, (n

C
R1)︸ ︷︷ ︸

1st family

, qL2, . . .︸ ︷︷ ︸
2nd

, . . . , (nCR3)︸ ︷︷ ︸
3rd

)
, (1)

where the fields are the quarks and leptons, all in threefold family replication. The quarks come in triplets
of colour, i.e., they carry an index α, α = 1, 2, 3, which we suppressed in the above expression. The
left-handed quarks and leptons come in doublets of weak isospin,

qαLi =

(
uα
Li

dα
Li

)
and lLi =

(
νLi
eLi

)
,

where i is the family index i = 1, 2, 3. We have included a right-handed neutrino nR because there is
evidence for neutrino masses from neutrino oscillation experiments.
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The subscripts L and R denote left- and right-handed fields, respectively, which are eigenstates
of the chiral projection operators PL or PR. The superscript C indicates the charge conjugate field (the
antiparticle). Note that the charge conjugate of a right-handed field is left-handed:

PLψL ≡
1− γ5

2
ψL = ψL , PLψ

C
R = ψCR , PLψR = PLψ

C
L = 0 , (2)

PRψR ≡
1 + γ5

2
ψR = ψR , PRψ

C
L = ψCL , PRψL = PRψ

C
R = 0 . (3)

So all fields in the big column vector of fermions have been chosen left-handed. Altogether there are
48 chiral fermions. The fact that left- and right-handed fermions carry different weak isospin makes the
Standard Model a chiral gauge theory. The threefold replication of quark-lepton families is one of the
puzzles whose explanation requires physics beyond the Standard Model [4].

The spin-1 particles are the gauge bosons associated with the fundamental interactions in the
Standard Model,

GAµ , A = 1, . . . , 8 : the gluons of the strong interactions , (4)

W I
µ , I = 1, 2, 3 , Bµ : the W and B bosons of the electroweak interactions. (5)

These forces are gauge interactions, associated with the symmetry group

GSM = SU(3)C × SU(2)W × U(1)Y , (6)

where the subscripts C , W , and Y denote colour, weak isospin and hypercharge, respectively.

The gauge group acts on the fermions via the covariant derivative Dµ, which is an ordinary partial
derivative, plus a big matrix Aµ built out of the gauge bosons and the generators of the gauge group:

DµΨL = (∂µ
�

+ gAµ) ΨL . (7)

From the covariant derivative we can also construct the field strength tensor,

Fµν = − i
g

[Dµ, Dν ] , (8)

which is a matrix-valued object as well.

The last ingredient of the Standard Model is the Higgs field Φ, the only spin-0 field in the theory.
It is a complex scalar field and a doublet of weak isospin. It couples left- and right-handed fermions
together.

Written in terms of these fields, the Lagrangian of the theory is rather simple:

L = −1

2
tr [FµνF

µν ] + ΨLiγµDµΨL + tr
[
(DµΦ)†DµΦ

]

+ µ2 Φ†Φ− 1

2
λ
(

Φ†Φ
)2

+

(
1

2
ΨT
LChΦΨL + h.c.

)
.

(9)

The matrix C in the last term is the charge conjugation matrix acting on the spinors, h is a matrix of
Yukawa couplings. All coupling constants are dimensionless, in particular, there is no mass term for any
quark, lepton or vector boson. All masses are generated via the Higgs mechanism which gives a vacuum
expectation value to the Higgs field,

〈Φ〉 ≡ v = 174 GeV . (10)

The Higgs boson associated with the Higgs mechanism has not yet been found, but its discovery is
generally expected at the LHC.
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1.2 Phenomenological aspects
The Standard Model Lagrangian (9) has a rich structure which has led to different areas of research in
particle physics:

– The gauge group is composed of three subgroups with different properties:

– The SU(3) part leads to quantum chromodynamics, the theory of strong interactions [5].
Here the most important phenomena are asymptotic freedom and confinement: The quarks
and gluons appear as free particles only at very short distances, probed in deep-inelastic
scattering, but are confined into mesons and baryons at large distances.

– The SU(2)× U(1) subgroup describes the electroweak sector of the Standard Model. It gets
broken down to the U(1)em subgroup of quantum electrodynamics by the Higgs mechanism,
leading to massive W and Z bosons which are responsible for charged and neutral-current
weak interactions, respectively.

– The Yukawa interaction term can be split into different pieces for quarks and leptons:

1

2
ΨT
LChΦΨL = hu ij ūRiqLjΦ + hd ij d̄RiqLjΦ̃ + he ij ēRilLjΦ̃ + hn ijn̄RilLjΦ , (11)

where i, j = 1, 2, 3 label the families and Φ̃a = εabΦ
∗
b . When the Higgs field develops a vacuum

expectation value 〈Φ〉 = v, the Yukawa interactions generate mass terms. The first two terms, mass
terms for up-type- and down-type-quarks, respectively, cannot be diagonalized simultaneously, and
this misalignment leads to the CKM matrix and flavour physics [6]. Similarly, the last two terms
give rise to lepton masses and neutrino mixings [7].

2 Quantization of fields
In this section we cover some basics of quantum field theory (QFT). For a more in-depth treatment, there
are many excellent books on QFT and its application in particle physics, such as Refs. [2, 3].

2.1 Why fields?
2.1.1 Quantization in quantum mechanics

q(t)

q̇(t)

Fig. 1: Particle moving in
one dimension

Quantum mechanics is obtained from classical mechanics by a method
called quantization. Consider, for example, a particle moving in one di-
mension along a trajectory q(t), with velocity q̇(t) (see Fig. 1). Its mo-
tion can be calculated in the Lagrangian or the Hamiltonian approach.
The Lagrange function L(q, q̇) is a function of the position and the ve-
locity of the particle, usually just the kinetic minus the potential energy.
The equation of motion is obtained by requiring that the action, the time
integral of the Lagrange function, be extremal, or, in other words, that its
variation under arbitrary perturbations around the trajectory vanishes:

δS = δ

∫
dtL (q(t), q̇(t)) = 0 . (12)

The Hamiltonian of the system, which corresponds to the total energy, depends on the coordinate q and
its conjugate momentum p rather than q̇:

H(p, q) = pq̇ − L (q, q̇) , p =
∂L

∂q̇
. (13)

3
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To quantize the system, one replaces the coordinate and the momentum by operators q and p
acting on some Hilbert space of states that we shall specify later. In the Heisenberg picture, the states are
time-independent and the operators change with time as

q(t) = eiHtq(0)e−iHt . (14)

Since p and q are now operators, they need not commute, and one postulates the commutation relation

[p(0), q(0)] = −i~ , (15)

where h = 2π~ is Planck’s constant. In the following we shall use units where ~ = c = 1. The
commutator (15) leads to the uncertainty relation

∆q ·∆p ≥ 1

2
. (16)

Note that on Schrödinger wave functions the operator q is just the coordinate itself and p is −i∂/∂q. In
this way the commutation relation (15) is satisfied.

As an example example of a quantum mechanical system, consider the harmonic oscillator with
the Hamiltonian

H =
1

2

(
p2 + ω2q2

)
, (17)

which corresponds to a particle (with mass 1) moving in a quadratic potential with a strength character-
ized by ω2. Classically, H is simply the sum of kinetic and potential energy. In the quantum system, we
can define new operators as linear combinations of p and q:

q =
1√
2ω

(
a+ a†

)
, p = −i

√
ω

2

(
a− a†

)
, (18a)

i.e. , a =

√
ω

2
q + i

√
1

2ω
p , a† =

√
ω

2
q − i

√
1

2ω
p . (18b)

a and a† satisfy the commutation relations
[
a, a†

]
= 1 . (19)

In terms of a and a† the Hamiltonian is given by

H =
ω

2

(
aa† + a†a

)
. (20)

Since Eqs. (18) are linear transformations, the new operators a and a† enjoy the same time evolution as
q and p:

a(t) = eiHta(0)e−iHt = a(0)e−iωt , (21)

where the last equality follows from the commutator of a with the Hamiltonian,

[H, a] = −ωa ,
[
H, a†

]
= ωa† . (22)

We can now construct the Hilbert space of states that the operators act on. We first notice that the
commutators (22) imply that a and a† decrease and increase the energy of a state, respectively. To see
this, suppose we have a state |E〉 with fixed energy, H|E〉 = E|E〉. Then

Ha|E〉 = (aH + [H, a])|E〉 = aE|E〉 − ωa|E〉 = (E − ω) a|E〉 . (23)
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i.e., the energy of the state a|E〉 is (E−ω). In the same way one findsHa†|E〉 = (E + ω)|E〉. From the
form of H we can also see that its eigenvalues must be positive. This suggests constructing the space of
states starting from a lowest-energy state |0〉, the vacuum or no-particle state. This state needs to satisfy

a|0〉 = 0 , (24)

so its energy is ω/2. States with more ‘particles’, i.e., higher excitations, are obtained by successive
application of a†:

|n〉 =
(
a†
)n
|0〉 , with H|n〉 =

(
n+

1

2

)
ω|n〉 . (25)

2.1.2 Special relativity requires antiparticles

A1→B1+e−

∆Q=1

(t1 ,~x1)

(t2 ,~x2)

A2+e−→B2

∆Q=−1

Fig. 2: Electron moving from A1 to A2

So far, we have considered non-relativistic quantum me-
chanics. A theory of elementary particles, however, has
to incorporate special relativity. It is very remarkable that
quantum mechanics together with special relativity implies
the existence of antiparticles. To see this (following an ar-
gument in Ref. [8]), consider two systems (e.g., atoms) A1

and A2 at positions ~x1 and ~x2. Assume that at time t1 atom
A1 emits an electron and turns into B1. So the charge of
B1 is one unit higher than that of A1. At a later time t2 the
electron is absorbed by atom A2 which turns into B2 with
charge lower by one unit. This is illustrated in Fig. 2.

According to special relativity, we can also watch the system from a frame moving with relative
velocity ~v. One might now worry whether the process is still causal, i.e., whether the emission still
precedes the absorption. In the boosted frame (with primed coordinates), one has

t′2 − t′1 = γ (t2 − t1) + γ~v (~x2 − ~x1) , γ =
1√

1− ~v 2
. (26)

Here t′2− t′1 must be positive for the process to remain causal. Since |~v| < 1, t′2− t′1 can only be negative
for spacelike distances, i.e., (t2 − t1)2 − (~x1 − ~x2)2 < 0. This, however, would mean that the electron
travelled faster than the speed of light, which is not possible according to special relativity. Hence, within
classical physics, causality is not violated.

A2→B2+e+

∆Q=−1

(t′2 ,~x
′
2)

(t′1 ,~x
′
1)

A1+e+→B1

∆Q=1

Fig. 3: Positron moving from A2 to A1

This is where quantum mechanics comes in. The un-
certainty relation leads to a ‘fuzzy’ light cone, which gives a
non-negligible propagation probability for the electron even
for slightly spacelike distances, as long as

(t2 − t1)2 − (~x1 − ~x2)2 & − ~
2

m2
. (27)

Does this mean causality is violated?

Fortunately, there is a way out: The antiparticle. In
the moving frame, one can consider the whole process as the
emission of a positron at t = t′2, followed by its absorption
at a later time t = t′1 (see Fig. 3). So we see that quantum mechanics together with special relativity
requires the existence of antiparticles for consistency. In addition, particle and antiparticle need to have
the same mass.

5
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In a relativistic theory, the uncertainty relation (16) also implies that particles cannot be localized
below their Compton wavelength

∆x ≥ ~
mc

. (28)

For shorter distances the momentum uncertainty ∆p > mc allows for contributions from multiparticle
states, and one can no longer talk about a single particle.

2.2 Multiparticle states and fields
In the previous section we saw that the combination of quantum mechanics and special relativity has
important consequences. First, we need antiparticles, and second, particle number is not well defined.
These properties can be conveniently described by means of fields. A field here is a collection of in-
finitely many harmonic oscillators, corresponding to different momenta. For each oscillator, we can
construct operators and states just as before in the quantum mechanical case. These operators will then
be combined into a field operator, the quantum analogue of the classical field. These results can be
obtained by applying the method of canonical quantization to fields.

2.2.1 States, creation and annihilation
The starting point is a continuous set of harmonic oscillators which are labelled by the spatial momentum
~k. We want to construct the quantum fields for particles of mass m, so we can combine each momentum
~k with the associated energy ωk = k0 =

√
~k2 +m2 to form the momentum 4-vector k. This 4-vector

satisfies k2 ≡ kµkµ = m2. For each k we define creation and annihilation operators, both for particles
(a, a†) and antiparticles (b, b†), and construct the space of states just as we did for the harmonic oscillator
in the previous section.

For the states we again postulate the vacuum state, which is annihilated by both particle and
antiparticle annihilation operators. Each creation operator a†(k) (b†(k)) creates a (anti)particle with
momentum k, so the space of states is

vacuum: |0〉 , a(k)|0〉 = b(k)|0〉 = 0

one-particle states: a†(k)|0〉 , b†(k)|0〉
two-particle states: a†(k1)a†(k2)|0〉 , a†(k1)b†(k2)|0〉 , b†(k1)b†(k2)|0〉

...

Like in the harmonic oscillator case, we also have to postulate the commutation relations of these oper-
ators, and we choose them in a similar way: operators with different momenta correspond to different
harmonic oscillators and hence they commute. Furthermore, particle and antiparticle operators should
commute with each other. Hence, there are only two non-vanishing commutators (‘canonical commuta-
tion relations’):

[
a(k), a†(k′)

]
=
[
b(k), b†(k′)

]
= (2π)3 2ωk δ

3
(
~k − ~k′

)
, (29)

which are the counterparts of relation (19). The expression on the right-hand side is the Lorentz-invariant
way to say that only operators with the same momentum do not commute [the (2π)3 is just convention].

Since we now have a continuous label for the creation and annihilation operators, we need a
Lorentz-invariant way to sum over operators with different momentum. The four components of k are
not independent, but satisfy k2 ≡ kµkµ = m2, and we also require positive energy, that is k0 = ωk > 0.

6

W. BUCHMÜLLER AND C. LÜDELING

6



Taking these things into account, one is led to the integration measure
∫

dk ≡
∫

d4k

(2π)4 2π δ
(
k2 −m2

)
Θ
(
k0
)

=

∫
d4k

(2π)3 δ
((
k0 − ωk

) (
k0 + ωk

))
Θ
(
k0
)

=

∫
d4k

(2π)3

1

2ωk

(
δ
(
k0 − ωk

)
+ δ
(
k0 + ωk

))
Θ
(
k0
)

=

∫
d3k

(2π)3

1

2ωk
.

(30)

The numerical factors are chosen such that they match those in Eq. (29) for the commutator of a(k) and
a†(k).

2.2.2 Charge and momentum
Now we have the necessary tools to construct operators which express some properties of fields and
states. The first one is the operator of 4-momentum, i.e., of spatial momentum and energy. Its construc-
tion is obvious, since we interpret a†(k) as a creation operator for a state with 4-momentum k. That
means we just have to count the number of particles with each momentum and sum the contributions:

P µ =

∫
dk kµ

(
a†(k)a(k) + b†(k)b(k)

)
. (31)

This gives the correct commutation relations:
[
P µ, a†(k)

]
= kµa†(k) ,

[
P µ, b†(k)

]
= kµb†(k) , (32a)

[
P µ, a(k)

]
= −kµa(k) ,

[
P µ, b(k)

]
= −kµb(k) . (32b)

Another important operator is the charge. Since particles and antiparticles have opposite charge,
the net charge of a state is proportional to the number of particles minus the number of antiparticles:

Q =

∫
dk
(
a†(k)a(k) − b†(k)b(k)

)
, (33)

and one easily verifies
[
Q, a†(k)

]
= a†(k) ,

[
Q, b†(k)

]
= −b†(k) . (34)

We have now confirmed our intuition that a†(k)
(
b†(k)

)
creates a particle with 4-momentum k

and charge +1 (–1). Both momentum and charge are conserved: The time derivative of an operator is
equal to the commutator of the operator with the Hamiltonian, which is the 0-component of P µ. This
obviously commutes with the momentum operator, but also with the charge:

i
d
dt
Q = [Q,H] = 0 . (35)

So far, this construction applied to the case of a complex field. For the special case of neutral
particles, one has a = b and Q = 0, i.e., the field is real.
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2.2.3 Field operator
We are now ready to introduce field operators, which can be thought of as the Fourier transform of
creation and annihilation operators:

φ(x) =

∫
dk
(
e−ikxa(k) + eikxb†(k)

)
. (36)

A spacetime translation is generated by the 4-momentum in the following way:

eiyPφ(x)e−iyP = φ(x+ y) . (37)

This transformation can be derived from the transformation of the a’s:

eiyPa†(k)e−iyP = a†(k) + iyµ
[
P µ, a†(k)

]
+O

(
y2
)

(38)

= (1 + iyk + · · · ) a†(k) (39)

= eiyka†(k) . (40)

The commutator with the charge operator is

[Q,φ(x)] = −φ(x) ,
[
Q,φ†

]
= φ† . (41)

The field operator obeys the (free) field equation,

(
�+m2

)
φ(x) =

∫
dk
(
−k2 +m2

) (
e−ikxa(k) + eikxb†(k)

)
= 0 , (42)

where � = ∂2/∂t2 − ~∇2 is the d’Alambert operator.

2.2.4 Propagator

(t1,~x1)
∆Q=+1

(t2,~x2)
∆Q=−1

t2>t1, Q=−1

t1>t2, Q=+1

Fig. 4: Propagation of a particle or an anti-
particle, depending on the temporal order

Now we can tackle the problem of causal propagation that
led us to introduce antiparticles. We consider the causal
propagation of a charged particle between xµ1 = (t1, ~x1)
and xµ2 = (t2, ~x2), see Fig. 4. The field operator creates
a state with charge ±1 ‘at position (t, ~x)’,

Qφ(t, ~x)|0〉 = −φ(t, ~x)|0〉 , (43)

Qφ†(t, ~x)|0〉 = φ†(t, ~x)|0〉 . (44)

Depending on the temporal order of x1 and x2, we
interpret the propagation of charge either as a particle go-
ing from x1 to x2 or an antiparticle going the other way. Formally, this is expressed as the time-ordered
product [using the Θ-function, Θ(τ) = 1 for τ > 0 and Θ(τ) = 0 for τ < 0]:

Tφ(x2)φ†(x1) = Θ(t2 − t1)φ(x2)φ†(x1) + Θ(t1 − t2)φ†(x1)φ(x2) . (45)

The vacuum expectation value of this expression is the Feynman propagator:

i∆F(x2 − x1) =
〈

0
∣∣∣Tφ(x2)φ†(x1)

∣∣∣ 0
〉

= i
∫

d4k

(2π)4

eik(x2−x1)

k2 −m2 + iε
,

(46)
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where we used the Θ-function representation

Θ(τ) = − 1

2πi

∫ ∞

−∞
dω

e−iωτ

ω + iε
. (47)

This Feynman propagator is a Green function for the field equation,

(
�+m2

)
∆F(x2 − x1) =

∫
d4k

(2π)4

(
−p2 +m2

)

p2 −m2 + iε
e−ip(x2−x1) = −δ4 (x2 − x1) . (48)

It is causal, i.e., it propagates particles into the future and antiparticles into the past.

2.3 Canonical quantization
All the results from the previous section can be derived in a more rigorous manner by using the method
of canonical quantization which provides the step from classical to quantum mechanics. We now start
from classical field theory, where the field at point ~x corresponds to the position q in classical mechanics,
and we again have to construct the conjugate momentum variables and impose commutation relations
among them.

Let us consider the Lagrange density for a complex scalar field φ. Like the Lagrangian in classical
mechanics, the free Lagrange density is just the kinetic minus the potential energy density,

L = ∂µφ
†∂µφ−m2φ†φ . (49)

The Lagrangian has a U(1)-symmetry, i.e., under the transformation of the field

φ→ φ′ = eiαφ , α = const. , (50)

it stays invariant. From Noether’s theorem, there is a conserved current jµ associated with this symmetry,

jµ = iφ†∂
↔µφ = i

(
φ†∂µφ− ∂µφ†φ

)
, ∂µj

µ = 0 . (51)

The space integral of the time component of this current is conserved in time:

Q =

∫
d3x iφ†∂

↔0φ , ∂0Q = 0 . (52)

The time derivative vanishes because we can interchange derivation and integration and then replace
∂0j

0 by ∂iji since ∂µjµ = ∂0j
0 +∂ij

i = 0. So we are left with an integral of a total derivative which we
can transform into a surface integral via Gauss’s theorem. Since we always assume that all fields vanish
at spatial infinity, the surface term vanishes.

Now we need to construct the ‘momentum’ π(x) conjugate to the field φ. Like in classical me-
chanics, it is given by the derivative of the Lagrangian with respect to the time derivative of the field,

π(x) =
∂L

∂φ̇(x)
= φ̇†(x) , π†(x) =

∂L

∂φ̇†(x)
= φ̇ . (53)

At this point, we again replace the classical fields by operators which act on some Hilbert space of
states and which obey certain commutation relations. The commutation relations we have to impose are
analogous to Eq. (15). The only non-vanishing commutators are the ones between field and conjugate
momentum, at different spatial points but at equal times,

[
π(t, ~x), φ(t, ~x′)

]
=
[
π†(t, ~x), φ†(t, ~x′)

]
= −iδ3

(
~x− ~x′

)
, (54)
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all other commutators vanish.

These relations are satisfied by the field operator defined in Eq. (36) via the (anti)particle creation
and annihilation operators. Its field equation can be derived from the Lagrangian,

∂µ
∂L

∂(∂µφ)
− ∂L

∂φ
=
(
�+m2

)
φ† = 0 . (55)

From the Lagrangian and the momentum, we can also construct the Hamiltonian density,

H = πφ̇+ π†φ̇† −L = π†π +
(
~∇φ†

)(
~∇φ
)

+m2φ†φ . (56)

Note that canonical quantization yields Lorentz-invariant results, although it requires the choice of a
particular time direction.

2.4 Fermions
Fermions make calculations unpleasant.

In the previous section we considered a scalar field which describes particles with spin 0. In the
Standard Model, there is just one fundamental scalar field, the Higgs field, which still remains to be
discovered. There are other bosonic fields, gauge fields which carry spin 1 (photons, W±, Z0 and the
gluons). Those are described by vector fields which will be discussed in Section 3. Furthermore, there
are the matter fields, fermions with spin 1

2 , the quarks and leptons.

To describe fermionic particles, we need to introduce new quantities, spinor fields. These are
four-component objects (but not vectors!) ψ, which are defined via a set of γ matrices. These four-by-
four matrices are labelled by a vector index and act on spinor indices. They fulfil the anticommutation
relations (the Clifford or Dirac algebra),

{γµ, γν} = 2gµν
�
, (57)

with the metric gµν = diag(+,−,−,−). The numerical form of the γ matrices is not fixed, rather, one
can choose among different possible representations. A common representation is the so-called chiral or
Weyl representation, which is constructed from the Pauli matrices:

γ0 =

(
0

�
2

�
2 0

)
, γi =

(
0 σi

−σi 0

)
. (58)

This representation is particularly useful when one considers spinors of given chiralities. However,
for other purposes, other representations are more convenient. Various rules and identities related to γ
matrices are collected in Appendix A.

The Lagrangian for a free fermion contains, just as for a scalar, the kinetic term and the mass:

L = ψi/∂ψ −mψψ . (59)

The kinetic term contains only a first-order derivative, the operator /∂ ≡ γµ∂µ. The adjoint spinor ψ is
defined as ψ ≡ ψ†γ0. (The first guess ψ†ψ is not Lorentz invariant.) To derive the field equation, one
has to treat ψ and ψ as independent variables. The Euler–Lagrange equation for ψ is the familiar Dirac
equation:

0 =
∂L

∂ψ
=
(
i/∂ −m

)
ψ , (60)

since L does not depend on derivatives of ψ 1.
1Of course one can shift the derivative from ψ to ψ via integration by parts. This slightly modifies the computation, but the

result is still the same.
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The Lagrangian again has a U(1) symmetry, the multiplication of ψ by a constant phase,

ψ → ψ′ = eiαψ , ψ → ψ′ = e−iαψ , (61)

which leads to a conserved current and, correspondingly, to a conserved charge,

jµ = ψγµψ , ∂µjµ = 0 , Q =

∫
d3xψγ0ψ . (62)

2.4.1 Canonical quantization of fermions
Quantization proceeds along similar lines as in the scalar case. One first defines the momentum πα
conjugate to the field ψα (α = 1, . . . , 4),

πα =
∂L

∂ψ̇α
= i
(
ψγ0

)
α

= iψ†α . (63)

Instead of imposing commutation relations, however, for fermions one has to impose anticommuta-
tion relations. This is a manifestation of the Pauli exclusion principle which can be derived from the
spin-statistics theorem. The relations are again postulated at equal times (‘canonical anticommutation
relations’):

{
πα(t, ~x), ψβ(t, ~x′)

}
= −iδαβδ3

(
~x− ~x′

)
, (64a){

πα(t, ~x), πβ(t, ~x′)
}

=
{
ψα(t, ~x), ψβ(t, ~x′)

}
= 0 . (64b)

In order to obtain creation and annihilation operators, we again expand the field operator in terms
of plane waves. Because of the four-component nature of the field, now a spinor u(p) occurs, where p is
the momentum four-vector of the plane wave:

(
i/∂ −m

)
u(p)e−ipx = 0 , (65)

which implies
(
/p−m

)
u(p) = 0 . (66)

This is an eigenvalue equation for the 4 × 4 matrix pµγµ, which has two solutions for p2 = m2 and
p0 > 0. They are denoted u(1,2)(p) and represent positive energy particles. Taking a positive sign in
the exponential in Eq. (65), which is equivalent to considering p0 < 0, we obtain two more solutions,
v(1,2)(p) that can be interpreted as antiparticles. The form of these solutions depends on the representa-
tion of the γ matrices. For the Weyl representation they are given in the Appendix.

The eigenspinors determined from the equations (i = 1, 2),
(
/p−m

)
u(i)(p) = 0 ,

(
/p+m

)
v(i)(p) = 0 , (67)

obey the identities:

u(i)(p)u(j)(p) = −v(i)(p)v(j)(p) = 2mδij , (68)
∑

i

u(i)
α (p)u

(i)
β (p) =

(
/p+m

)
αβ

,
∑

i

v(i)
α (p)v

(i)
β (p) =

(
/p−m

)
αβ

. (69)

These are the ingredients we need to define creation and annihilation operators in terms of the
spinor field ψ(x) and its conjugate ψ(x):

ψ(x) =

∫
dp
∑

i

(
bi(p)u

(i)(p)e−ipx + d†i (p)v
(i)(p)eipx

)
, (70a)
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ψ(x) =

∫
dp
∑

i

(
b†i (p)u

(i)(p)eipx + di(p)v
(i)(p)e−ipx

)
. (70b)

Here, as before,

dp =
d3p

(2π)3

1

2Ep
, Ep =

√
~p2 +m2 . (71)

Inverting Eq. (70a) one obtains

bi(p) =

∫
d3xu(i)(p)eipxγ0ψ(x) , (72)

and similar equations for the other operators.

The creation and annihilation operators inherit the anticommutator algebra from the field opera-
tors,

{
bi(~p), b†j(~p

′)
}

=
{
di(~p), d†j(~p

′)
}

= (2π)32Epδ
3
(
~p− ~p ′

)
, (73a)

{
bi(~p), dj(~p

′)
}

= all other anticommutators = 0 . (73b)

The momentum and charge operators are again constructed from the creation and annihilation
operators by ‘counting’ the number of particles in each state and summing over all states,

P µ =

∫
dk kµ

(
b†(k)b(k) + d†(k)d(k)

)
, (74)

Q =

∫
dk
(
b†(k)b(k) − d†(k)d(k)

)
. (75)

These operators have the correct algebraic relations, which involve commutators, since P µ and Q are
bosonic operators (not changing the number of fermions in a given state):

[
P µ, b†i (p)

]
= pµb†i (p) ,

[
P µ, d†i (p)

]
= pµd†i (p) , (76)

[
Q, b†i (p)

]
= b†i (p) ,

[
Q, d†i (p)

]
= −d†i (p) . (77)

An operator we did not encounter in the scalar case is the spin operator ~Σ . It has three components,
corresponding to the three components of an angular momentum vector2. Only one combination of these
components is, however, measurable. This is specified by a choice of quantization axis, i.e., a spatial unit
vector ~s. The operator that measures the spin of a particle is given by the scalar product ~s · ~Σ. Creation
operators for particles with definite spin satisfy the commutation relations

[
~s · ~Σ, d†±(p)

]
= ∓1

2
d†±(p) ,

[
~s · ~Σ, b†±(p)

]
= ±1

2
b†±(p) . (78)

In summary, all these commutation relations tell us how to interpret the operators d†±(p) (b†±(p)):
They create spin- 1

2 fermions with four-momentum pµ, charge +1 (−1) and spin orientation ± 1
2 (∓1

2 )
relative to the chosen axis ~s. Their conjugates d±(p) and b±(p) annihilate those particles.

This immediately leads to the construction of the Fock space of fermions: We again start from
a vacuum state |0〉, which is annihilated by the annihilation operators, and construct particle states by
successive application of creation operators:

vacuum: |0〉 , bi(p)|0〉 = di(p)|0〉 = 0

2Actually, Σ is constructed as a commutator of γ matrices and as such has six independent components. But three of these
correspond to Lorentz boosts which mix time and spatial directions. ~Σ is the spin operator in the rest frame.
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one-particle states: b†i (p)|0〉 , d
†
i (p)|0〉

two-particle states: b†i (p1)d†j(p2)|0〉 , . . .
...

At this point we can verify that the Pauli principle is indeed satisfied, on account of the choice of an-
ticommutation relations in Eq. (64). For a state of two fermions with identical quantum numbers, we
would get

b†i (p) b
†
i (p)︸ ︷︷ ︸

anticommuting

|X〉 = −b†i (p) b
†
i (p)|X〉 = 0 , (79)

where |X〉 is an arbitrary state. Had we quantized the theory with commutation relations instead, the
fermions would have the wrong (i.e., Bose) statistics.

The final expression we need for the further discussion is the propagator. By the same reasoning
as in the scalar case, it is obtained as the time-ordered product of two field operators. The Feynman
propagator SF for fermions, which is now a matrix-valued object, is given by

iSF(x1 − x2)αβ =
〈
0
∣∣Tψα(x1)ψβ(x2)

∣∣ 0
〉

= i
∫

d4p

(2π)4

(
/p+m

)
αβ

p2 −m2 + iε
e−ip(x1−x2) .

(80)

This completes our discussion on the quantization of free scalar and spinor fields.

2.5 Interactions
So far, we have considered free particles and their propagation. A theory of elementary particles ob-
viously needs interactions. Unfortunately, they are much more difficult to handle, and little is known
rigorously (except in two dimensions). Hence, we have to look for approximations.

By far the most important approximation method is perturbation theory where one treats the in-
teraction as a small effect, a perturbation, to the free theory. The interaction strength is quantified by
a numerical parameter, the coupling constant, and one expresses physical quantities as power series in
this parameter. This approach has been very successful and has led to many celebrated results, like the
precise prediction of the anomalous magnetic moment of the electron, despite the fact that important
conceptual problems still remain to be resolved.

2.5.1 φ4 theory
Let us consider the simplest example of an interacting theory, involving only one real scalar field with
a quartic self-interaction (a cubic term would look even simpler, but then the theory would not have a
ground state since the energy would not be bounded from below):

L = L0 + LI

=
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 .

(81)

L0 is the free Lagrangian, containing kinetic and mass term, while LI is the interaction term, whose
strength is given by the dimensionless coupling constant λ.

In perturbation theory we can calculate various physical quantities, in particular scattering cross-
sections for processes like the one in Fig. 5: n particles with momenta pi interact, resulting inm particles
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p1

...

pn

p′1

...

p′m

p1

...

pn

p2

p′1

pn

...

p′m

Fig. 5: Scattering of n incoming particles, pro-
ducing m outgoing ones with momenta p1, . . . , pn
and p′1, . . . , p

′
m, respectively

Fig. 6: A disconnected diagram: One particle
does not participate in the interaction

with momenta p′j . Since the interaction is localized in a region of spacetime, particles are free at infinite
past and future. In other words, we have free asymptotic states

|p1, . . . , pn , in〉 at , t = −∞ and
∣∣p′1, . . . , p′m , out

〉
at t = +∞ . (82)

The transition amplitude for the scattering process is determined by the scalar product of incoming and
outgoing states, which defines a unitary matrix, the so-called S-matrix (S for scattering),

〈
p′1, . . . , p

′
m , out

∣∣ p1, . . . , pn , in
〉

=
〈
p′1, . . . , p

′
m

∣∣S
∣∣ p1, . . . , pn

〉
. (83)

Detailed techniques have been developed to obtain a perturbative expansion for the S-matrix from
the definition (83). The basis is Wick’s theorem and the LSZ formalism. One starts from a generalization
of the propagator, the time-ordered product of k fields,

τ(x1, . . . , xk) = 〈0 |Tφ(x1), . . . φ(xk)| 0〉 . (84)

First, disconnected pieces involving non-interacting particles have to be subtracted (see Fig. 6), and the
blob in Fig. 5 decomposes into a smaller blob and straight lines just passing from the left to the right
side. From the Fourier transform

τ(x′1, . . . , x
′
m, x1, . . . , xn)

F.T.−→ τ̃(p′1, . . . , p
′
m, p1, . . . , pn) (85)

one then obtains the amplitude for the scattering process

〈
p′1, . . . , p

′
m

∣∣S
∣∣ p1, . . . , pn

〉
= (2π)4 δ4

(∑

out

p′i −
∑

in

pi

)
iM , (86)

where the matrix element M contains all the dynamics of the interaction. Because of the translational
invariance of the theory, the total momentum is conserved. The matrix element can be calculated pertur-
batively up to the desired order in the coupling λ via a set of Feynman rules. To calculate the cross-section
for a particular process, one first draws all possible Feynman diagrams with a given number of vertices
and then translates them into an analytic expression using the Feynman rules.

For the φ4 theory, the Feynman diagrams are all composed out of three building blocks: External
lines corresponding to incoming or outgoing particles, propagators, and 4-vertices. The Feynman rules
read:

i. p 1 External lines: For each external line, multiply by 1 (i.e., exter-
nal lines do not contribute to the matrix element in this theory).
However, one needs to keep track of the momentum of each parti-
cle entering or leaving the interaction. The momentum direction
is indicated by the arrow.
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ii. p i
p2 −m2 + iε

Propagators between vertices are free propagators corresponding
to the momentum of the particle. Note that particles of internal
lines need not be on-shell, i.e., p2 = m2 need not hold!

iii. −iλ Vertices yield a factor of the coupling constant. In this theory,
there is only one species of particles, and the interaction term
does not contain derivatives, so there is only one vertex, and it
does not depend on the momenta.

iv. ∫
d4p

(2π)4

The momenta of internal loops are not fixed by the incoming mo-
menta. For each undetermined loop momentum p, one integrates
over all values of p.

As an example, let us calculate the matrix element for the 2 → 2 scattering process to second
order in λ. The relevant diagrams are collected in Fig. 7.

p1

p2

p3

p4

(a) Tree graph

p1

p2

p3

p4

p p+ p1 − p3

p1

p2

p3

p4

p

p1

p2

p3

p4

p

p1 + p2 − p

(b) One-loop graphs

Fig. 7: Feynman graphs for 2 → 2 scattering in φ4 theory to second order. The one-loop graphs are all
invariant under the interchange of the internal lines and hence get a symmetry factor of 1

2 .

The first-order diagram simply contributes a factor of −iλ, while the second-order diagrams involve an
integration:

iM = −iλ+
1

2
(−iλ)2

∫
d4p

(2π)4

i
p2 −m2

i
(p+ p1 − p3)2 −m2

+
1

2
(−iλ)2

∫
d4p

(2π)4

i
p2 −m2

i
(p+ p1 − p4)2 −m2

+
1

2
(−iλ)2

∫
d4p

(2π)4

i
p2 −m2

i
(p1 + p2 − p)2 −m2

+O
(
λ3
)
.

(87)

The factors of 1
2 are symmetry factors which arise if a diagram is invariant under interchange of internal

lines. The expression forM has a serious problem: The integrals do not converge. This can be seen by
counting the powers of the integration variable p. For p much larger than incoming momenta and the
mass, the integrand behaves like p−4. That means that the integral depends logarithmically on the upper
integration limit,

∫ Λ d4p

(2π)4

i
p2 −m2

i
(p+ p1 − p3)2 −m2

p� pi,m−−−−−−−−−→
∫ Λ d4p

(2π)4

−1

p4
∝ ln Λ . (88)
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Divergent loop diagrams are ubiquitous in quantum field theory. They can be cured by regularization,
i.e., making the integrals finite by introducing some cutoff parameter, and renormalization, where this
additional parameter is removed in the end, yielding finite results for observables. This will be discussed
in more detail in the section on quantum corrections.

2.5.2 Fermions
We can augment the theory by adding a fermionic field ψ, with a Lagrangian including an interaction
with the scalar φ,

Lψ = ψ
(
i/∂ −m

)
ψ︸ ︷︷ ︸

free Lagrangian

− gψφψ︸ ︷︷ ︸
interaction

. (89)

There are additional Feynman rules for fermions. The lines carry two arrows, one for the momen-
tum as for the scalars and one for the fermion number flow, which basically distinguishes particles and
antiparticles. The additional rules are:

i.
p−→
p−→

u(p)

u(p)

Incoming or outgoing particles get a factor of u(p) or u(p), re-
spectively.

ii.
p−→
p−→

v(p)

v(p)

Incoming or outgoing antiparticles get a factor of v(p) or v(p),
respectively.

iii.
p−→ i

(
/p+m

)

p2 −m2 + iε
Free propagator for fermion with momentum p.

iv. −ig The fermion-fermion-scalar vertex yields a factor of the coupling
constant. Again, there is no momentum dependence.

3 Gauge theories
In addition to spin-0 and spin- 1

2 particles, the standard model contains spin-1 particles. They are the
quanta of vector fields which can describe strong and electroweak interactions. The corresponding theo-
ries come with a local (“gauge”) symmetry and are called gauge theories.

3.1 Global symmetries versus gauge symmetries
Consider a complex scalar field with the Lagrangian

L = ∂µφ
†∂µ − V

(
φ†φ
)
, (90)

which is a generalization of the one considered in Eq. (49). This theory has a U(1) symmetry under
which φ → φ′ = exp{iα}φ with constant parameter α. Usually it is sufficient to consider the variation
of the fields and the Lagrangian under infinitesimal transformations,

δφ = φ′ − φ = iαφ , δφ† = −iαφ† , (91)
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where terms O
(
α2
)

have been neglected. To derive the Noether current, Eq. (51), we compute the
variation of the Lagrangian under such a transformation:

δL =
∂L

∂φ
δφ+

∂L

∂φ†
δφ† +

∂L

∂ (∂µφ)
δ (∂µφ)︸ ︷︷ ︸
=∂µδφ

+
∂L

∂ (∂µφ†)
δ
(
∂µφ

†
)

=

(
∂L

∂φ
− ∂µ

∂L

∂ (∂µφ)

)

︸ ︷︷ ︸
=0 by equation of motion

δφ+

(
∂L

∂φ†
− ∂µ

∂L

∂ (∂µφ†)

)

︸ ︷︷ ︸
=0

δφ†

+ ∂µ

(
∂L

∂ (∂µφ)
δφ+

∂L

∂ (∂µφ†)
δφ†
)

= α∂µ

(
i∂µφ†φ− iφ†∂µφ

)

= −α∂µjµ .

(92)

Since the Lagrangian is invariant, δL = 0, we obtain a conserved current for solutions of the equations
of motion,

∂µj
µ = 0 . (93)

From the first to the second line we have used

∂L

∂ (∂µφ)
∂µδφ = ∂µ

(
∂L

∂ (∂µφ)
δφ

)
−
(
∂µ

∂L

∂ (∂µφ)

)
δφ (94)

by the Leibniz rule.

The above procedure can be generalized to more complicated Lagrangians and symmetries. The
derivation does not depend on the precise form of L , and up to the second line of (92), it is independent
of the form of δφ. As a general result, a symmetry of the Lagrangian always implies a conserved current,
which in turn gives a conserved quantity (often referred to as charge, but it can be angular momentum or
energy as well).

What is the meaning of such a symmetry? Loosely speaking, it states that “physics does not
change” under such a transformation. This, however, does not mean that the solutions to the equations of
motion derived from this Lagrangian are invariant under such a transformation. Indeed, generically they
are not, and only φ ≡ 0 is invariant.

As an example, consider the Mexican hat potential,

V (φ†φ) = −µ2φ†φ+ λ
(
φ†φ

)2
. (95)

This potential has a ring of minima, namely all fields for which |φ|2 = µ2/(2λ). This means that any
constant φ with this modulus is a solution to the equation of motion,

�φ+
∂V

∂φ

(
φ, φ†

)
= �φ− φ†

(
µ2 − 2λφ†φ

)
= 0 . (96)

These solutions are not invariant under U(1) phase rotations. On the other hand, it is obvious that any
solution to the equations of motion will be mapped into another solution under such a transformation.

This situation is analogous to the Kepler problem: A planet moving around a stationary (very
massive) star. The setup is invariant under spatial rotations around the star, i.e., the symmetries form
the group SO(3). This group is three-dimensional (meaning that any rotation can be built from three
independent rotations, e.g., around the three axes of a Cartesian coordinate system). Thus there are three
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conserved charges which correspond to the three components of angular momentum. The solutions of
this problem—the planet’s orbits—are ellipses in a plane, so they are not at all invariant under spatial
rotations, not even under rotations in the plane of motion. Rotated solutions, however, are again solutions.

In particle physics, most experiments are scattering experiments at colliders. For those, the state-
ment that “physics does not change” translates into “transformed initial states lead to transformed final
states”: If one applies the transformation to the initial state and performs the experiment, the result will
be the same as if one had done the experiment with the untransformed state and transformed the result.

There is a subtle, but important, difference between this and another type of symmetry, gauge
symmetry. A gauge transformation is also a transformation which leaves the Lagrangian invariant, but it
does relate identical states which describe exactly the same physics.

This might be familiar from electrodynamics. One formulation uses electric and magnetic fields
~E and ~B, together with charge and current densities ρ and ~j. These fields and sources are related by
Maxwell’s equations:

~∇× ~E +
∂ ~B

∂t
= 0 , ~∇ · ~B = 0 , (97a)

~∇× ~B − ∂ ~E

∂t
= ~j , ~∇ · ~E = ρ . (97b)

The first two of these can be identically solved by introducing the potentials φ and ~A, which yield ~E and
~B via

~E = −~∇φ− ∂ ~A

∂t
, ~B = ~∇× ~A . (98)

So we have reduced the six components of ~E and ~B down to the four independent ones φ and ~A.
However, the correspondence between the physical fields and the potentials is not unique. If some
potentials φ and ~A lead to certain ~E and ~B fields, the transformed potentials

~A′ = ~A+ ~∇Λ , φ′ = φ− ∂Λ

∂t
, (99)

where Λ is a scalar field, give the same electric and magnetic fields.

This transformation (98) is called gauge transformation. It is a symmetry of the theory, but it is
different from the global symmetries we considered before. First, it is a local transformation, i.e., the
transformation parameter Λ varies in space and time. Second, it relates physically indistinguishable field
configurations, since solutions of the equations of motion for electric and magnetic fields are invariant.
It is important to note that this gauge transformation is inhomogeneous, i.e., the variation is not multi-
plicative, but can generate non-vanishing potentials from zero. Potentials that are related to φ = 0 and
~A = 0 by a gauge transformation are called pure gauge.

Phrased differently, we have expressed the physical fields ~E and ~B in terms of the potentials φ
and ~A. These potentials still contain too many degrees of freedom for the physical fields ~E and ~B,
since different potentials can lead to the same ~E and ~B fields. So the description in terms of potentials
is redundant, and the gauge transformation (99) quantifies just this redundancy. Physical states and
observables have to be invariant under gauge transformations.

3.2 Abelian gauge theories
The easiest way to come up with a gauge symmetry is to start from a global symmetry and promote
it to a gauge one, that is, demand invariance of the Lagrangian under local transformations (where the
transformation parameter is a function of spacetime). To see this, recall the Lagrangian with the global
U(1) symmetry from the preceding section,

L = ∂µφ
†∂µφ− V (φ†φ) ,
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and the transformation

φ→ φ′ = eiαφ , δφ = φ′ − φ = iαφ .

If we now allow spacetime-dependent parameters α(x), the Lagrangian is no longer invariant. The
potential part still is, but the kinetic term picks up derivatives of α(x), so the variation of the Lagrangian
is

δL = i∂µα
(
∂µφ†φ− φ†∂µφ

)
= −∂µα jµ , (100)

the derivative of α times the Noether current of the global symmetry derived before.

The way to restore invariance of the Lagrangian is to add another field, the gauge field, with a
gauge transformation just like the electromagnetic potentials in the previous section, combined into a
four-vector Aµ = (φ, ~A):

Aµ(x)→ A′µ(x) = Aµ(x)− 1

e
∂µα(x) . (101)

The factor 1
e is included for later convenience. We can now combine the inhomogeneous transformation

of Aµ with the inhomogeneous transformation of the derivative in a covariant derivative Dµ:

Dµφ = (∂µ + ieAµ)φ . (102)

This is called covariant derivative because the differentiated object Dµφ transforms in the same way as
the original field,

Dµφ −→ (Dµφ)′ =
(
∂µ + ieA′µ

)
φ′

= ∂µ

(
eiα(x)φ

)
+ ie

(
Aµ(x)− 1

e
∂µα(x)

)
eiα(x)φ

= eiα(x)Dµφ .

(103)

So we can construct an invariant Lagrangian from the field and its covariant derivative:

L = (Dµφ)† (Dµφ)− V
(
φ†φ

)
. (104)

So far this is a theory of a complex scalar with U(1) gauge invariance. The gauge field Aµ,
however, is not a dynamical field, i.e., there is no kinetic term for it. This kinetic term should be gauge
invariant and contain derivatives up to second order. In order to find such a kinetic term, we first construct
the field strength tensor from the commutator of two covariant derivatives:

Fµν = − i
e

[Dµ, Dν ] = − i
e

[(∂µ + ieAµ) , (∂ν + ieAν)]

= − i
e

(
[∂µ, ∂ν ] + [∂ν , ieAν ] + [ieAµ, ∂ν ]− e2 [Aµ, Aν ]

)

= ∂µAν − ∂νAµ .

(105)

To check that this is a sensible object to construct, we can redecompose Aµ into the scalar and vector
potential φ and ~A and spell out the field strength tensor in electric and magnetic fields,

F µν =




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B2 0


 . (106)
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This shows that the field strength is gauge invariant, as are ~E and ~B. Of course, this can also be shown
by straightforward calculation,

δFµν = ∂µδAν − ∂νδAµ = −1

e
(∂µ∂ν − ∂ν∂µ)α(x) = 0 , (107)

so it is just the antisymmetry in µ and ν that ensures gauge invariance.

The desired kinetic term is now just the square of the field strength tensor,

Lgaugekin = −1

4
FµνF

µν , (108a)

or, in terms of ~E and ~B fields,

L =
1

2

(
~E2 − ~B2

)
. (108b)

The coupling to scalar fields via the covariant derivative can also be applied to fermions. To couple
a fermion ψ to the gauge field, one simply imposes the gauge transformation

ψ → ψ′ = eiαψ . (109)

In the Lagrangian, one again replaces the ordinary derivative with the covariant one. The Lagrangian for
a fermion coupled to a U(1) gauge field is quantum electrodynamics (QED), if we call the fields electron
and photon:

LQED = −1

4
FµνF

µν + ψ
(
i /D −m

)
ψ . (110)

Finally, let us note that for a U(1) gauge theory, different fields may have different charges under
the gauge group (as, for example, quarks and leptons indeed do). For fields with charge q (in units
of elementary charge), we have to replace the gauge transformations and consequently the covariant
derivative as follows:

ψq → ψ′q = eiqαψq , D(q)
µ ψq = (∂µ + iqeAµ)ψq . (111)

What have we done so far? We started from a Lagrangian, Eq. (90) with a global U(1) symmetry
(91). We imposed invariance under local transformations, so we had to introduce a new field, the gauge
field Aµ. This field transformed inhomogeneously under gauge transformations, just in a way to make
a covariant derivative. This covariant derivative was the object that coupled the gauge field to the other
fields of the theory. To make this into a dynamical theory, we added a kinetic term for the gauge field,
using the field strength tensor. Alternatively, we could have started with the gauge field and tried to
couple it to other fields, and we would have been led to the transformation properties (91). This is all
we need to construct the Lagrangian for QED. For QCD and the electroweak theory, however, we need a
richer structure: non-Abelian gauge theories.

3.3 Non-Abelian gauge theories
To construct non-Abelian theories in the same way as before, we first have to discuss non-Abelian groups,
i.e., groups whose elements do not commute. We shall focus on the groups SU(n), since they are most
relevant for the Standard Model. SU(n) is the group of n×n complex unitary matrices with determinant
1. To see how many degrees of freedom there are, we have to count: A n× n complex matrix U has n2

complex entries, equivalent to 2n2 real ones. The unitarity constraint, U †U =
�

, is a matrix equation,
but not all component equations are independent. Actually, U †U is Hermitian,

(
U †U

)†
= U †U , so
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the diagonal entries are real and the lower triangle is the complex conjugate of the upper one. Thus,
there are n+ 2 · 1

2n(n− 1) real constraints. Finally, by taking the determinant of the unitarity constraint,
det
(
U †U

)
= |detU |2 = 1. Hence, restricting to detU = 1 eliminates one more real degree of freedom.

All in all, we have 2n2 − n − 2 · 1
2n(n − 1) − 1 = n2 − 1 real degrees of freedom in the elements of

SU(n).

This means that any U ∈ SU(n) can be specified by n2−1 real parameters αa. The group elements
are usually written in terms of these parameters and n2 − 1 matrices T a, the generators of the group, as
an exponential

U = exp {iαaT a} =
�

+ iαaT a +O
(
α2
)
, (112)

and one often considers only infinitesimal parameters.

The generators are usually chosen as Hermitian matrices3. The product of group elements trans-
lates into commutation relations for the generators,

[
T a, T b

]
= ifabcT c , (113)

with the antisymmetric structure constants f abc, which of course also depend on the choice of generators.

In the Standard Model, the relevant groups are SU(2) for the electroweak theory and SU(3) for
QCD. SU(2) has three parameters. The generators are usually chosen to be the Pauli matrices, T a = 1

2σ
a,

whose commutation relations are
[
σa, σb

]
= iεabcσc. The common generators of SU(3) are the eight

Gell-Mann matrices, T a = 1
2λ

a.

To construct a model with a global SU(n) symmetry, we consider not a single field, but an n-
component vector Φi, i = 1, . . . , n (called a multiplet of SU(n)), on which the matrices of SU(n) act by
multiplication:

Φ =




Φ1
...

Φn


 −→ Φ′ = UΦ , Φ† =

(
Φ†1, · · · ,Φ†n

)
−→

(
Φ†
)′

= Φ†U † . (114)

Now we see why we want unitary matrices U : A product Φ†Φ is invariant under such a transformation.
This means that we can generalize the Lagrangian (90) in a straightforward way to include a non-Abelian
symmetry:

L = (∂µΦ)†(∂µΦ)− V
(

Φ†Φ
)
. (115)

If we allow for local transformations U = U(x), we immediately encounter the same problem as
before: The derivative term is not invariant, because the derivatives act on the matrix U as well,

∂µΦ→ ∂µΦ′ = ∂µ (UΦ) = U∂µΦ + (∂µU) Φ . (116)

To save the day, we again need to introduce a covariant derivative consisting of a partial derivative plus
a gauge field. This time, however, the vector field needs to be matrix-valued, i.e., Aµ = AaµT

a, where
T a are the generators of the group. We clearly need one vector field per generator, as each generator
represents an independent transformation in the group.

The transformation law of Aµ is chosen such that the covariant derivative is covariant,

(DµΦ)′ = [(∂µ + igAµ) Φ]′

=
(
∂µ + igA′µ

)
(UΦ)

= U
(
∂µ + U−1 (∂µU) + igU−1A′µU

)
Φ

!
= UDµΦ .

(117)

3Actually, the generators live in the Lie algebra of the group, and so one can choose any basis one likes, Hermitian or not.
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This requirement fixes the transformation of Aµ to be

A′µ = UAµU
−1 − i

g
U∂µU

−1 . (118)

In the Abelian case this reduces to the known transformation law, Eq. (101).

For infinitesimal parameters α = αaT a, the matrix U = exp{iα} = 1 + iα, and Eq. (118)
becomes

A′µ = Aµ −
1

g
∂µα+ i [α,Aµ] , (119)

or for each component

Aaµ
′ = Aaµ −

1

g
∂µα

a − fabcαbAcµ . (120)

Sometimes it is convenient to write down the covariant derivative in component form:

(DµΦ)i =
(
∂µδij + igT aijA

a
µ

)
Φj . (121)

Next we need a kinetic term, which again involves the field strength, the commutator of covariant
derivatives:

Fµν = − i
g

[Dµ, Dν ] = ∂µAν − ∂νAµ + ig [Aµ, aν ] = F aµνT
a ,

F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν .

(122)

Now we see that the field strength is more that just the derivative: There is a quadratic term in the
potentials. This leads to a self-interaction of gauge fields, like in QCD, where the gluons interact with
each other. This is the basic reason for confinement, unlike in QED, where the photon is not charged.

Furthermore, when we calculate the transformation of the field strength, we find that it is not
invariant, but transforms as

Fµν → F ′µν = UFµνU
−1 , (123)

i.e., it is covariant. There is an easy way to produce an invariant quantity out of this: the trace. Since
trAB = trBA, the Lagrangian

L = −1

2
tr (FµνF

µν) = −1

4
F aµνF

a µν (124)

is indeed invariant, as tr
(
UF 2U−1

)
= tr

(
U−1UF 2

)
= trF 2. In the second step we have used a

normalization convention,

tr
(
T aT b

)
=

1

2
δab , (125)

and every generator is necessarily traceless. The factor 1
2 is arbitrary and could be chosen differently,

with compensating changes in the coefficient of the kinetic term.

By choosing the gauge group SU(3) and coupling the gauge field to fermions, the quarks, we can
write down the Lagrangian of quantum chromodynamics (QCD):

LQCD = −1

4
GaµνG

a µν + q
(
i /D −m

)
q , (126)

where a = 1, . . . , 8 counts the gluons and q is a three-component (i.e. three-colour) quark.
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3.4 Quantization
So far we have discussed only classical gauge theories. If we want to quantize the theory and find the
Feynman rules for diagrams involving gauge fields, we have a problem: we have to make sure we do not
count field configurations of Aµ which are pure gauge, nor count separately fields which differ only by
a gauge transformation, since those are meant to be physically identical. On the more technical side, the
naïve Green function for the free equation of motion does not exist. In the Abelian case, the equation is

∂µF
µν = �Aν − ∂ν∂µAµ = (�gµν − ∂ν∂µ)Aµ = 0 . (127)

The Green function should be the inverse of the differential operator in brackets, but the operator is not
invertible. Indeed, it annihilates every pure gauge mode, as it should,

(�gµν − ∂ν∂µ) ∂µΛ = 0 , (128)

so it has zero eigenvalues. Hence, the propagator must be defined in a more clever way.

One way out would be to fix the gauge, i.e., simply demand a certain gauge condition like ~∇· ~A = 0
(Coulomb gauge) or nµAµ = 0 with a fixed 4-vector (axial gauge). It turns out, however, that the loss of
Lorentz invariance causes many problems in calculations.

A better way makes use of Faddeev–Popov ghosts. In this approach, we add two terms to the
Lagrangian, the gauge-fixing term and the ghost term. The gauge-fixing term is not gauge invariant,
but rather represents a certain gauge condition which can be chosen freely. The fact that it is not gauge
invariant means that now the propagator is well defined, but the price to pay is that it propagates too many
degrees of freedom, namely gauge modes. This is compensated by the propagation of ghosts, strange
fields which are scalars but which anticommute and do not show up as physical states but only as internal
lines in loop calculations. It turns out that gauge invariance is not lost but rather traded for a different
symmetry, BRST symmetry, which ensures that we get physically sensible results.

For external states, we have to restrict to physical states, of which there are two for massless
bosons. They are labelled by two polarization vectors ε±µ which are transverse, i.e., orthogonal to the
momentum four-vector and the spatial momentum, kµεµ = ~k~ε = 0.

The form of the gauge fixing and ghost terms depends on the gauge condition we want to take.
A common (class of) gauge is the covariant gauge which depends on a parameter ξ, which becomes
Feynman gauge (Landau/Lorenz gauge) for ξ = 1 (ξ = 0).

We now list the Feynman rules for a non-Abelian gauge theory (QCD) coupled to fermions
(quarks) and ghosts. The fermionic external states and propagators are listed in Section 2.5.2.

i. k−→
µ
k−→
µ

εµ(k)

ε∗µ(k)

For each external line one has a polarization vector.

ii. pµ ν
a b

−iδab

k2 + iε

×
(
gµν + (1− ξ)kµkν

k2

)

The propagator for gauge bosons contains the pa-
rameter ξ.

iii. k
a b

−iδab

k2 + iε
The propagator for ghosts is the one of scalar parti-
cles. There are no external ghost states.

iv. µ ieγµ In QED, there is just one vertex between photon and
electron.
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v. µ i g2γ
µλa In QCD, the basic quark–quark–gluon vertex in-

volves the Gell-Mann matrices.

vi.

b c
−→p

µ, a −gfabcpµ The ghosts couple to the gauge field.

vii. gfabckµ + permutations Three-gluon self-interaction.

viii. −1
4g

2fabcfadegµνgρσ

+permutations

Four-gluon self-interaction.

4 Quantum corrections
Now that we have the Feynman rules, we are ready to calculate quantum corrections [3, 5, 9]. As a
first example we consider the anomalous magnetic moment of the electron at one-loop order. This was
historically, and still is today, one of the most important tests of quantum field theory. The calculation
is still quite simple because the one-loop expression is finite. In most cases, however, one encounters
divergent loop integrals. In the following sections we shall study these divergences and show how to
remove them by renormalization. Finally, as an application, we shall discuss the running of coupling
constants and asymptotic freedom.

4.1 Anomalous magnetic moment
The magnetic moment of the electron determines its energy in a magnetic field,

Hmag = −~µ · ~B . (129)

For a particle with spin ~s, the magnetic moment is aligned in the direction of ~s, and for a classical
spinning particle of mass m and charge e, its magnitude would be the Bohr magneton, e/(2m). In the
quantum theory, the magnetic moment is different, which is expressed by the Landé factor ge,

~µe = ge
e

2m
~s . (130)

We now want to calculate ge in QED. To lowest order, this just means solving the Dirac equation
in an external electromagnetic field Aµ = (φ, ~A),

(
i /D −m

)
ψ = [γµ (i∂µ − eAµ)−m]ψ = 0 . (131)

For a bound non-relativistic electron a stationary solution takes the form

ψ(x) =

(
ϕ(~x)
χ(~x)

)
e−iEt , with

E −m
m

� 1 . (132)

It is convenient to use the following representation of the Dirac matrices:

γ0 =

( �
0

0 − �

)
, γi =

(
0 σi

−σi 0

)
. (133)
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p p′

q µ

=

p p′

q µ

+

p p′
k

q µ

+ · · ·

Fig. 8: Tree-level and one-loop diagram for the magnetic moment

One then obtains the two coupled equations

[(E − eφ)−m]ϕ−
(
−i~∇− e ~A

)
· ~σχ = 0 , (134a)

[
− (E − eφ)−m︸ ︷︷ ︸

≈−2m

]
χ+

(
−i~∇− e ~A

)
· ~σϕ = 0 . (134b)

The coefficient of χ in the second equation is approximately independent of φ, so we can solve the
equation to determine χ in terms of ϕ,

χ =
1

m

(
−i~∇− e ~A

)
· ~σϕ . (135)

Inserting this into (134a), we get the Pauli equation,
[

1

2m

(
−i~∇− e ~A

)2
+ eφ− e

2m
~B · ~σ

]
ϕ = (E −m)ϕ . (136)

This is a Schrödinger-like equation which implies (since ~s = 1
2~σ),

Hmag = −2
e

2m
~s~B . (137)

Hence, the Landé factor of the electron is ge = 2.

In QED, the magnetic moment is modified by quantum corrections. The magnetic moment is the
spin-dependent coupling of the electron to a photon in the limit of vanishing photon momentum. Dia-
grammatically, it is contained in the blob on the left side of Fig. 8, which denotes the complete electron–
photon coupling. The tree-level diagram is the fundamental electron–photon coupling. There are several
one-loop corrections to this diagram, but only the so-called vertex correction, where an internal photon
connects the two electron lines, gives a contribution to the magnetic moment. All other one-loop dia-
grams concern only external legs, such as an electron–positron bubble on the incoming photon, and will
be removed by wave-function renormalization.

The expression for the tree-level diagram is

iu(p′)eγµu(p) . (138)

Note that the photon becomes on-shell only for q → 0, so no polarization vector is included. The matrix
element of the electromagnetic current can be decomposed via the Gordon identity into convection and
spin currents,

u(p′)γµu(p) = u(p′)
(

(p+ p′)µ

2m
+

i
2m

σµν
(
p′ − p

)
ν

)
u(p) . (139)
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Here the first term can be viewed as the net flow of charged particles, the second one is the spin current.
Only this one is relevant for the magnetic moment, since it gives the spin-dependent coupling of the
electron.

In order to isolate the magnetic moment from the loop diagram, we first note that the corresponding
expression will contain the same external states, so it can be written as

iu(p′)eΓµ(p, q)u(p) , q = p′ − p , (140)

where Γµ(p, q) is the correction to the vertex due to the exchange of the photon. We can now decompose
Γµ into different parts according to index structure and extract the term∝σµν . Using the Feynman rules,
we find for Γµ in Feynman gauge (ξ = 1),

ieΓµ(p, q) = (−ie)3
∫

d4k

(2π)4

−igρσ
k2 + iε

γρ
i
(
/p′ − /k +m

)

(p′ − k)2 −m2 + iε
γµ

× i
(
/p− /k +m

)

(p− k)2 −m2 + iε
γσ .

(141)

This integral is logarithmically divergent, as can be seen by power counting, since the leading term is
∝ k2 in the numerator and ∝ k6 in the denominator.

On the other hand, the part ∝σµνqµ is finite and can be extracted via some tricks:

– Consider first the denominator of the integral (141). It is the product of three terms of the form
(momentum)2 −m2, which can be transformed into a sum at the expense of further integrations
over the so-called Feynman parameters x1 and x2,

1

A1A2A3
= 2

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

[A1x1 +A2x2 +A3 (1− x1 − x2)]3
. (142)

– After introducing the Feynman parameters, the next trick is to shift the integration momentum
k → k′, where

A1x1 +A2x2 +A3 (1− x1 − x2) =
(
k − x1p

′ − x2p
)

︸ ︷︷ ︸
k′

2 −
(
x1p
′ + x2p

)2
+ iε . (143)

Note that one must be careful when manipulating divergent integrals. In principle, one should first
regularize them and then perform the shifts on the regularized integrals, but in this case, there is
no problem.

– For the numerator, the important part is the Dirac algebra of γ matrices. A standard calculation
gives (see Appendix)

γν
(
/p ′ − /k +m

)
γµ
(
/p− /k +m

)
γν

= −2m2γµ − 4imσµν
(
p′ − p

)
ν
− 2/pγµ /p

′ +O(k) +O
(
k2
)
.

(144)

Here we have used again the Gordon formula to trade (p+ p′)ν for σνρqρ, which is allowed only
if the expression is sandwiched between on-shell spinors u(p′) and u(p).

– Now the numerator is split into pieces independent of k, linear and quadratic in k. The linear term
can be dropped under the integral. The quadratic piece leads to a divergent contribution which we
shall discuss later. The integral over the k-independent part in the limit qµ → 0 yields

∫
d4k

(2π)4

1
[
k2 − (x1 + x2)2 m2 + iε

]3 = − i
32π2

1

(x1 + x2)2 m2
. (145)

Now all that is left are the parameter integrals over x1 and x2.
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Finally, one obtains the result, usually expressed in terms of the fine structure constant α =
e2/ (4π),

ieu(p′)Γµu(p) = +ieu(p′)
(
α

2π

i
2m

σµνqν + · · ·
)
u(p) , (146)

where the dots represent contributions which are not ∝ σµνqν .

Comparison with the Gordon decomposition (139) gives the one-loop correction to the Landé
factor,

g = 2
(

1 +
α

2π

)
. (147)

This correction was first calculated by Schwinger in 1948. It is often expressed as the anomalous mag-
netic moment ae,

ae =
g − 2

2
. (148)

Today, ae is known up to three loops analytically and to four loops numerically [10]. The agreement of
theory and experiment is impressive:

aexp
e = (1159652185.9 ± 3.8) · 10−12 ,

ath
e = (1159652175.9 ± 8.5) · 10−12 .

(149)

This is one of the cornerstones of our confidence in quantum field theory.

4.2 Divergences
The anomalous magnetic moment we calculated in the last section was tedious work, but at least the result
was finite. Most other expressions, however, have divergent momentum integrals. One such example is
the vertex function Γµ we already considered. It has contributions which are logarithmically divergent.
We can isolate these by setting q = 0, which yields

Γµ(p, 0) = −2ie2

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫
d4k

(2π)2

γν /kγµ /kγν[
k2 − (x1 + x2)2m2 + iε

]3 . (150)

This expression is treated in two steps:

– First we make the integral finite in a step called regularization. In this step, we have to introduce
a new parameter of mass dimension 1. An obvious choice would be a cutoff Λ which serves
as an upper bound for the momentum integration. One might even argue that there should be a
cutoff at a scale where quantum gravity becomes important, although a regularization parameter
has generally no direct physical meaning.

– The second step is renormalization. The divergences are absorbed into the parameters of the theory.
The key idea is that the ‘bare’ parameters which appear in the Lagrangian are not physical, so they
can be divergent. Their divergences are chosen such as to cancel the divergences coming from the
divergent integrals.

– Finally, the regulator is removed. Since all divergences have been absorbed into the parameters
of the theory, the results remain finite for infinite regulator. Of course, one has to make sure the
results do not depend on the regularization method.

The cutoff regularization, while conceptually simple, is not a convenient method, as it breaks
Lorentz and gauge invariance. Symmetries, however, are very important for all calculations, so a good
regularization scheme should preserve as many symmetries as possible. We shall restrict ourselves to
dimensional regularization, which is the most common scheme used nowadays.
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4.2.1 Dimensional regularization
The key idea is to define the theory not in four, but in d = 4 − ε dimensions [9]. If ε is not an integer,
the integrals do converge. Non-integer dimensionality might seem weird, but in the end we shall take the
limit of ε → 0 and return to four dimensions. This procedure is well defined and just an intermediate
step in the calculation.

Let us consider some technical issues. In d dimensions, the Lorentz indices ‘range from 0 to d’,
in the sense that

gµνgνµ = d , (151)

and there are d γ-matrices obeying the usual algebra,

{γµ, γν} = 2gµν
�
, tr (

�
) = 4 . (152)

The γ-matrix contractions are also modified due to the change in the trace of gµν , such as

γµγνγµ = − (2− ε) γν , γµγνγργµ = 4gνρ − εγνγρ . (153)

The tensor structure of diagrams can be simplified as follows. If a momentum integral over k contains
a factor of kµkν , this must be proportional to gµνk2, since it is of second order in k and symmetric in
(µν). The only symmetric tensor we have is the metric (as long as the remaining integrand depends only
on the square of k and the squares of the external momenta pi), and the coefficient can be obtained by
contracting with gµν to yield

∫
d4k

(2π)4kµkνf
(
k2, p2

i

)
=

1

d
gµν

∫
d4k

(2π)4 k
2f
(
k2, p2

i

)
. (154)

The measure of an integral changes from d4k to ddk. Since k is a dimensionful quantity4 (of
mass dimension 1), we need to compensate the change in dimensionality by a factor of µε, where µ is
an arbitrary parameter of mass dimension 1. The mass dimensions of fields and parameters also change.
They can be derived from the condition that the action, which is the d-dimensional integral over the
Lagrangian, be dimensionless. Schematically (i.e., without all numerical factors), a Lagrangian of gauge
fields, scalars and fermions reads

L = (∂µAν)2 + e∂µA
µAνA

ν + e2 (AµA
µ)2

+ (∂µφ)2 + ψ
(
i/∂ −m

)
ψ + eψ /Aψ +m2φ2 + · · · .

(155)

The condition of dimensionless action, [S] = 0, translates into [L ] = d, since
[
ddx
]

= −d. Derivatives
have mass dimension 1, and so do masses. That implies for the dimensions of the fields (and the limit as
d→ 4),

[Aµ] =
d− 2

2
→ 1 , [φ] =

d− 2

2
→ 1 , (156)

[ψ] =
d− 1

2
→ 3

2
, [e] = 2− d

2
→ 0 . (157)

How do we evaluate a d-dimensional integral? One first transforms to Euclidean space replacing
k0 by ik4, so that the Lorentzian measure ddk becomes ddkE. In Euclidean space, one can easily convert

4In our units where ~ = c = 1, the only dimension is mass, so everything can be expressed in powers of GeV. The basic
quantities have [mass] = [energy] = [momentum] = 1 and [length] = [time] = −1, so [dxµ] = −1 and [∂µ] = 1.
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p
p− k

k

p = −iΣ (p)

(a) The electron self-energy

µ ν
qq

p+ q

p

= −iΠµν (q)

(b) The vacuum polarization

Fig. 9: One-loop corrections to the propagators of electron and photon

to spherical coordinates and perform the integral over the angular variables, which gives the ‘area’ of the
d-dimensional ‘unit sphere’,

∫
ddkE

(2π)d
f
(
k2
)

=

∫
dΩd

(2π)d︸ ︷︷ ︸
1

2d−1πd/2
1

Γ(d/2)

∫ ∞

0
dkE k

d−1
E f

(
k2
)
. (158)

The remaining integral can then be evaluated, again often using Γ functions. The result is finite for d 6= 4,
but as we let d → 4, the original divergence appears again in the form of Γ(2− d/2). The Γ function
has poles at negative integers and at zero, so the integral exists for non-integer dimension. In the limit
d→ 4, or equivalently, ε→ 0, one has

Γ

(
2− d

2

)
= Γ

( ε
2

)
=

2

ε
− γE +O (ε) , (159)

with the Euler constant γE ' 0.58.

As an example, consider the logarithmically divergent integral [cf. (150)]
∫

d4k

(2π)4

1

(k2 + C)2 , (160)

where C = (x1 + x2)2 m2. In d Euclidean dimensions, this becomes

µε
∫

d4kE

(2π)4

1
(
k2

E +C
)2 =

µεΓ
(
2− d

2

)

(4π)d/2 Γ(2)

1

C2−d/2 =
1

8π2

1

ε
+ · · · (161)

For the original expression (150) we thus obtain

Γµ (p, 0) =
α

2π

1

ε
γµ +O(1) . (162)

What have we achieved? In four dimensions, the result is still divergent. However, the situation
is better than before: We have separated the divergent part from the finite one and can take care of the
divergence before taking the limit ε→ 0. This is done in the procedure of renormalization.

There are more divergent one-loop graphs where we can achieve the same: the electron self-energy
Σ in Fig. 9(a) (linearly divergent) and the photon self-energy or vacuum polarization Πµν in Fig. 9(b)
(quadratically divergent). The self-energy graph has two divergent terms,

Σ(p) =
3α

2π

1

ε
m− α

2π

1

ε

(
/p−m

)
+O(1) , (163)
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which contribute to the mass renormalization and the wave function renormalization, respectively. The
vacuum polarization seems more complicated since it is a second rank tensor. However, the tensor
structure is fixed by gauge invariance which requires

qµΠµν (q) = 0 . (164)

Therefore, because of Lorentz invariance,

Πµν (q) =
(
gµνq

2 − qµqν
)

Π
(
q2
)
. (165)

The remaining scalar quantity Π(q2) has the divergent part

Π
(
q2
)

=
2α

3π

1

ε
+O(1) . (166)

4.2.2 Renormalization
So far we have isolated the divergences, but they are still there. How do we get rid of them? The crucial
insight is that the parameters of the Lagrangean, the ‘bare’ parameters, are not observable. Rather,
the sum of bare parameters and loop-induced corrections are physical. Hence, divergencies of bare
parameters can cancel against divergent loop corrections, leaving physical observables finite.

To make this more explicit, let us express, as an example, the QED Lagrangian in terms of bare
fields Aµ0 and ψ0 and bare parameters m0 and e0,

L = −1

4
(∂µA0 ν − ∂νA0 µ)

(
∂µA0 ν − ∂νA0 µ

)
+ ψ0 (γµ (i∂µ − e0A0µ)−m0)ψ0 . (167)

The ‘renormalized fields’ Aµ and ψ and the ‘renormalized parameters’ e and m are then obtained from
the bare ones by multiplicative rescaling,

A0µ =
√
Z3Aµ , ψ0 =

√
Z2ψ , (168)

m0 =
Zm
Z2

m , e0 =
Z1

Z2

√
Z3
µ2−d/2e . (169)

Note that coupling and electron mass now depend on the mass parameter µ,

e = e(µ) , m = m(µ) . (170)

In terms of the renormalized fields and parameters the Lagrangian (167) reads

L = −1

4
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ) + ψ (γµ (i∂µ − eAµ)−m)ψ + ∆L , (171)

where ∆L contains the divergent counterterms,

∆L = − (Z3 − 1)
1

4
FµνF

µν + (Z2 − 1)ψi/∂ψ

− (Zm − 1)mψψ − (Z1 − 1) eψ /Aψ .
(172)

The counter-terms have the same structure as the original Lagrangian and lead to new vertices in the
Feynman rules:

i.
µ

q

ν
−i (Z3 − 1)
×
(
gµνq

2 − qµqν
) Photon wave function counter-term (counter-terms are

generically denoted by ). It has the same tensor struc-
ture as the vacuum polarization.
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ii. p −i (Z2 − 1) /p Electron wave function counter-term.

iii. p −i (Zm − 1)m Electron mass counter-term.

iv. −ie (Z1 − 1) γµ Vertex counter-term.

The renormalization constants Zi are determined by requiring that the counter-terms cancel the
divergences. They can be determined as power series in α. The lowest order counter-terms are O (α)
and have to be added to the one-loop diagrams. Calculating, for example, the O (α) correction to the
electron–photon vertex, one has

+ = −ieγµ
(
α

2π

1

ε
+ (Z1 − 1) +O (1)

)
. (173)

Demanding that the whole expression be finite determines the divergent part of Z1,

Z1 = 1− α

2π

1

ε
+O (1) . (174)

Similarly, the O (α) vacuum polarization now has two contributions,

+ = −i
(
gµνq

2 − qµqν
)(2α

3π

1

ε
+ (Z3 − 1) +O (1)

)
, (175)

which yields

Z3 = 1− 2α

3π

1

ε
+O (1) . (176)

The other constants Z2 and Zm are fixed analogously. A Ward identity, which follows from gauge
invariance, yields the important relation Z1 = Z2. The finite parts of the renormalization constants
are still undetermined. There are different ways to fix them, corresponding to different renormalization
schemes. All schemes give the same results for physical quantities, but differ at intermediate steps.

Having absorbed the divergences into the renormalized parameters and fields, we can safely take
the limit ε → 0. The theory now yields well-defined relations between physical observables. Diver-
gences can be removed to all orders in the loop expansion for renormalizable theories [3, 9]. Quantum
electrodynamics and the Standard Model belong to this class. The proof is highly non-trivial and has
been a major achievement in quantum field theory!

4.2.3 Running coupling in QED
Contrary to the bare coupling e0, the renormalized coupling e(µ) depends on the renormalization scale
µ [cf. (169)],

e0 =
Z1

Z2

√
Z3
µ−2+d/2e(µ) = e(µ)µ−ε/2Z

− 1
2

3 ,

where we have used the Ward identity Z1 = Z2. It is very remarkable that the scale dependence is
determined by the divergences. To see this, expand Eq. (169) in ε and e(µ),

e0 = e(µ)
(

1− ε

2
lnµ+ · · ·

)(
1 +

1

ε

α

3π
+ · · ·

)

= e(µ)

(
1

ε

e2(µ)

12π2
+ 1− e2(µ)

24π2
lnµ+O

(
ε, e4(µ)

))
,

(177)
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where we have used α = e2/(4π). Since the bare mass e0 does not depend on µ, differentiation with
respect to µ yields

0 = µ
∂

∂µ
e0 = µ

∂

∂µ
e− e3

24π2
+O

(
e5
)
, (178)

and therefore

µ
∂

∂µ
e =

e3

24π2
+O

(
e5
)
≡ β(e) . (179)

This equation is known as the renormalization group equation, and the function on the right-hand side of
Eq. (179) is the so-called β function,

β(e) =
b0

(4π)2
e3 +O

(
e5
)
, with b0 =

2

3
. (180)

The differential equation (179) can easily be integrated. Using a given value of e at a scale µ1, the
coupling α at another scale µ is given by

α(µ) =
α (µ1)

1− α (µ1) b0
(2π) ln µ

µ1

. (181)

Since b0 > 0, the coupling increases with µ until it approaches the so-called Landau pole where the
denominator vanishes and perturbation theory breaks down.

What is the meaning of a scale-dependent coupling? This becomes clear when one calculates
physical quantities, such as a scattering amplitude at some momentum transfer q2. In the perturbative
expansion one then finds terms ∝ e2(µ) log

(
q2/µ2

)
. Such terms make the expansion unreliable unless

one chooses µ2 ∼ q2. Hence, e2
(
q2
)

represents the effective interaction strength at a momentum (or
energy) scale q2 or, alternatively, at a distance of r ∼ 1/q.

The positive β function in QED implies that the effective coupling strength decreases at large
distances. Qualitatively, this can be understood as the effect of ‘vacuum polarization’: Electron–positron
pairs etc. from the vacuum screen any bare charge at distances larger than the corresponding Compton
wavelength. Quantitatively, one finds that the value α(0) = 1

137 , measured in Thompson scattering,

increases to α
(
M2

Z

)
= 1

127 , the value conveniently used in electroweak precision tests.

4.2.4 Running coupling in QCD
Everything we did so far for QED can be extended to non-Abelian gauge theories, in particular to QCD
[5]. It is, however, much more complicated, since there are more diagrams to calculate, and we shall not
be able to discuss this in detail. The additional diagrams contain gluon self-interactions and ghosts, and
they lead to similar divergences, which again are absorbed by renormalization constants. Schematically,
these are

+ +  Z1 , (182)

+  Z2 , (183)

+ + +  Z3 . (184)
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The renormalized coupling can again be defined as in QED, Eq. (169),

g0 =
Z1

Z2

√
Z3
µ−2+d/2 g . (185)

The coefficients of the 1/ε-divergences depend on the gauge group and on the number of different
fermions. For a SU(Nc) gauge group with Nf flavours of fermions, one obtains the β function for
the gauge coupling g,

µ
∂

∂µ
g =

b0

(4π)2 g
3 +O

(
g5
)
, b0 = −

(
11

3
Nc −

4

3
Nf

)
. (186)

Note that forNf < 11Nc/4 the coefficient is negative! Hence, the coupling decreases at high-momentum
transfers or short distances. The calculation of this coefficient earned the Nobel Prize in 2004 for Gross,
Politzer and Wilczek. The decrease of the coupling at short distances is the famous phenomenon of
asymptotic freedom. As a consequence, one can treat in deep-inelastic scattering quarks inside the
proton as quasi-free particles, which is the basis of the parton model.

The coupling at a scale µ can again be expressed in terms of the coupling at a reference scale µ1,

α(µ) =
α (µ1)

1 + α (µ1) |b0|(2π) ln µ
µ1

. (187)

The analogue of the Landau pole now occurs at small µ or large distances. For QCD withNc = 3 and
Nf = 6, the pole is at the ‘QCD scale’ ΛQCD ' 300 MeV. At the QCD scale gluons and quarks are
strongly coupled and colour is confined [5]. Correspondingly, the inverse of ΛQCD gives roughly the size
of hadrons, rhad ∼ Λ−1

QCD ∼ 0.7 fm.

5 Electroweak theory
So far we have studied QED, the simplest gauge theory, and QCD, the prime example of a non-Abelian
gauge theory. But there also are the weak interactions, which seem rather different. They are short-
ranged, which requires massive messenger particles, seemingly inconsistent with gauge invariance. Fur-
thermore, weak interactions come in two types, charged and neutral current–current interactions, which
couple quarks and leptons differently. Charged-current interactions, mediated by the W ± bosons, only
involve left-handed fermions and readily change flavour, as in the strange quark decay s → ue−νe.
Neutral-current interactions, on the other hand, couple both left- and right-handed fermions, and flavour-
changing neutral currents are strongly suppressed.

Despite these differences from QED and QCD, weak interactions also turn out to be described by
a non-Abelian gauge theory. Yet the electroweak theory is different for two reasons: it is a chiral gauge
theory, and the gauge symmetry is spontaneously broken.

5.1 Quantum numbers
In a chiral gauge theory, the building blocks are massless left- and right-handed fermions,

ψL =
1

2

(
1− γ5

)
ψL , ψR =

1

2

(
1 + γ5

)
ψR , (188)

with different gauge quantum numbers. For one generation of Standard Model particles, we have seven
chiral spinors: Two each for up- and down-type quark and charged lepton, and just one for the neutrino
which we shall treat as massless in this section, i.e., we omit the right-handed one. The electroweak
gauge group is a product of two groups, GEW = SU(2)W × U(1)Y . Here the subscript W stands for
‘weak isospin’, which is the quantum number associated with the SU(2)W factor, and the U(1) charge is
the hypercharge Y .
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The assignment of quantum numbers, which corresponds to the grouping into representations
of the gauge group, is obtained as follows: The non-Abelian group SU(2)W has a chargeless one-
dimensional singlet (1) representation and charged multidimensional representations, starting with the
two-dimensional doublet (2) representation5 . We are not allowed to mix quarks and leptons, since weak
interactions do not change colour, nor left- and right-handed fields, which would violate Lorentz sym-
metry. The U(1)Y factor is Abelian, so it has only one-dimensional representations. This means we can
assign different hypercharges to the various singlets and doublets of SU(2)W .

Furthermore, we know that charged currents connect up- with down-type quarks and charged
leptons with neutrinos, and that the W± bosons couple only to left-handed fermions. This suggests to
form doublets from uL and dL, and from eL and νL, and to keep the right-handed fields as singlets. So
we obtain the SU(2)W multiplets

qL =

(
uL
dL

)
, uR , dR , lL =

(
νL
eL

)
, eR , (189)

with the hypercharges (which we shall justify later)

field: qL uR dR lL eR

hypercharge: 1
6

2
3 −1

3 −1
2 −1

. (190)

With these representations, we can write down the covariant derivatives. The SU(2)W has three
generators, which we choose to be the Pauli matrices, and therefore three gauge fields W I

µ , I = 1, 2, 3.
The U(1)Y gauge field is Bµ, and the coupling constants are g and g ′, respectively. The covariant
derivatives acting on the left-handed fields are

DµψL =
(
∂µ + igWµ + ig′Y Bµ

)
ψL , where Wµ = 1

2σ
IW I

µ , (191)

while the right-handed fields are singlets under SU(2)W , and hence do not couple to the W bosons,

DµψR =
(
∂µ + ig′Y Bµ

)
ψR . (192)

From the explicit form of the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (193)

we see that W 1
µ and W 2

µ mix up- and down-type quarks, while W 3
µ does not, like the U(1) boson Bµ.

It is often convenient to split the Lagrangian into the free (kinetic) part and the interaction La-
grangian, which takes the form (current) · (vector field). In the electroweak theory, one has

Lint = −gJ IW, µW I µ − g′JY, µBµ , (194)

with the currents

JIW,µ = qLγµ
1
2σ

IqL + lLγµ
1
2σ

I lL , (195)

JY, µ =
1

6
qLγµqL −

1

2
lLγµlL +

2

3
uRγµuR −

1

3
dRγµdR − eRγµeR . (196)

These currents have to be conserved, ∂µJµ = 0, to allow a consistent coupling to gauge bosons.

5Here we use ‘representation’ as meaning ‘irreducible representation’. Of course we can build reducible representations of
any dimension.
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5.1.1 Anomalies
Before considering the Higgs mechanism which will lead to the identification of the physical W±, Z
and γ bosons of the Standard Model, let us briefly discuss anomalies. We shall see that the choice of
hypercharges in (190) is severely constrained by the consistency of the theory.

Suppose we have a classical field theory with a certain symmetry and associated conserved cur-
rent. After quantizing the theory, the resulting quantum field theory might not have that symmetry any
more, which means the current is no longer conserved. This is called an anomaly. Anomalies are not
a problem for global symmetries, where the quantized theory just lacks that particular symmetry. For
gauge symmetries, however, the currents have to be conserved, otherwise the theory is inconsistent.

A ∝ JA

JB

JC

ψL

− JA

JB

JC

ψR

Fig. 10: The gauge anomaly is given by triangle diagrams with chiral fermions in the loop

Anomalies are caused by certain one-loop diagrams, the so-called triangle diagrams (see Fig. 10).
The left- and right-handed fermions contribute with different sign, so if they have the same quantum
numbers, the anomaly vanishes. This is the case in QED and QCD, which thus are automatically anomaly
free. In general, for currents JA, JB and JC , the anomaly A is the difference of the traces of the
generators TA, TB and TC in the left- and right-handed sectors,

A = tr
[{
TA, TB

}
TC
]
L
− tr

[{
TA, TB

}
TC
]
R

!
= 0 . (197)

Here the trace is taken over all fermions. For the electroweak theory, in principle there are four com-
binations of currents, containing three, two, one or no SU(2)W current. However, the trace of any odd
number of σI matrices vanishes, so we only have to check the SU(2)2

WU(1)Y and U(1)3
Y anomalies.

The SU(2)W generators are 1
2σ

I , whose anticommutator is
{

1
2σ

I , 1
2σ

J
}

= 1
2δ
IJ . Furthermore,

only the left-handed fields contribute, since the right-handed ones are SU(2)W singlets. Hence the
SU(2)2

WU(1)Y anomaly is

A = tr

[{
1

2
σI ,

1

2
σJ
}
Y

]

L

=
1

2
δIJ tr [Y ]L =

1

2
δIJ

(
3︸︷︷︸
Nc

·1
6
− 1

2

)
= 0 . (198)

We see that it vanishes only if quarks come in three colours!

The U(1)3
Y anomaly also vanishes:

A = tr [{Y, Y }Y ]L − tr [{Y, Y } Y ]R = 2
(

tr
[
Y 3
]
L
− tr

[
Y 3
]
R

)

= 2

(
3 · 2

(
1

6

)3

+ 2

(
−1

2

)3

− 3

(
2

3

)3

− 3

(
−1

3

)3

− (−1)3

)

= 0 .

(199)

This vanishing of the anomaly is again related to the number of colours. It does not vanish in either
the left- or right-handed sector, nor in the quark and lepton sector individually. Hence the vanishing of
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anomalies provides a deep connection between quarks and leptons in the Standard Model, which is a hint
to grand unified theories where anomaly cancellation is often automatic.

Anomaly cancellation is not restricted to the electroweak gauge currents, but applies to the strong
force and gravity as well: Mixed SU(3)C -U(1)Y anomalies vanish by the same argument as above:
Only the SU(3)2

CU(1)Y triangle contributes, but it is tr [Y ]L − tr [Y ]R = 0. The same is true for the
last possible anomaly, the gravitational one, where two non-Abelian gauge currents are replaced by the
energy-momentum tensor Tµν .

Hence, the Standard Model is anomaly free, as it should be. For this, all particles of one generation
with their strange hypercharges have to conspire to cancel the different anomalies. A ‘Standard Model’
without quarks, for instance, would not be a consistent theory, nor would a ‘Standard Model’ with four
colours of quarks. Note that a right-handed neutrino, suggested by neutrino masses, does not pose any
problem, since it is a complete singlet, without any charge, and thus it does not contribute to any gauge
anomaly.

5.2 Higgs mechanism
The electroweak model discussed so far bears little resemblance to the physics of weak interactions. The
gauge bosons W I

µ and Bµ are massless, implying long-range forces, because a mass term m2WµW
µ

would violate gauge invariance. Furthermore, the fermions are massless as well, again because of gauge
invariance: a mass term mixes left- and right-handed fermions,

mψψ = m
(
ψLψR + ψRψL

)
, (200)

and since these have different gauge quantum numbers, such a term is not gauge invariant. The way
out is the celebrated Higgs mechanism: Spontaneous symmetry breaking generates masses for the gauge
bosons and fermions without destroying gauge invariance. A simpler version of this effect is what hap-
pens in superconductors: the condensate of Cooper pairs induces an effective mass for the photon, so
that electromagnetic interactions become short-ranged, leading to the Meissner–Ochsenfeld effect where
external magnetic fields are expelled from the superconductor, levitating it.

The key ingredient for the Higgs mechanism is a complex scalar field Φ, which is a doublet under
SU(2)W with hypercharge − 1

2 , which has four real degrees of freedom. The crucial feature of the Higgs
field is its potential, which is of the Mexican hat form:

L = (DµΦ)† (DµΦ)− V
(

Φ†Φ
)
, (201)

with

DµΦ =

(
∂µ + igWµ −

i
2
g′Bµ

)
Φ ,

V
(

Φ†Φ
)

= −µ2 Φ†Φ +
1

2
λ
(

Φ†Φ
)2

, µ2 > 0 . (202)

This potential has a minimum away from the origin, at Φ†Φ = v2 ≡ µ2/λ. In the vacuum, the Higgs
field settles in this minimum. At first sight, the minimization of the potential only fixes the modulus
Φ†Φ, i.e., one of the four degrees of freedom. The other three, however, can be eliminated by a gauge
transformation, and we can choose the following form of Φ, which is often referred to as unitary gauge:

Φ =

(
0

v + 1√
2
H(x)

)
, H = H∗ . (203)

Here we have eliminated the upper component and the imaginary part of the lower one. We have also
shifted the lower component to the vacuum value, so that the dynamical field H(x) vanishes in the
vacuum.
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In unitary gauge, the Higgs Lagrangian (201) becomes

L =
λ

2
v4

+
1

2
∂µH ∂µH − λv2H2 +

λ√
2
vH3 +

λ

8
H4

+
1

4

(
v +

1√
2
H

)2 (
W 1
µ ,W

2
µ ,W

3
µ , Bµ

)




g2 0
0 g2 0

0 g2 gg′

gg′ g′2







W 1µ

W 2µ

W 3µ

Bµ


 .

(204)

The first line could be interpreted as vacuum energy density, i.e., a cosmological constant. However,
such an interpretation is on shaky grounds in quantum field theory, so we shall ignore this term6. The
second line describes a real scalar field H of mass m2

H = 2λv2 with cubic and quartic self-interactions.
The most important line, however, is the last one: It contains mass terms for the vector bosons! A closer
look at the mass matrix reveals that it only is of rank three, so it has one zero eigenvalue, and the three
remaining ones are g2, g2, and

(
g2 + g′2

)
. In other words, it describes one massless particle, two of

equal non-zero mass, and one which is even heavier, i.e., we have identified the physical γ, W± and Z
bosons.

The massless eigenstate of the mass matrix, i.e., the photon, is the linear com-
bination Aµ = − sin θWW

3
µ + cos θWBµ, the orthogonal combination is the Z boson,

Zµ = cos θWW
3
µ + sin θWBµ. Here we have introduced the Weinberg angle θW, which is defined

by

sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

. (205)

To summarize, the theory contains the following mass eigenstates:

– Two charged vector bosons W± with mass M 2
W = 1

2g
2v2,

– two neutral vector bosons with masses MZ = 1
2

(
g2 + g′2

)
v2 = M2

W cos−2 θW and Mγ = 0,
– and one neutral Higgs boson with mass m2

H = 2λv2.

The Higgs mechanism and the diagonalization of the vector boson mass matrix allow us to rewrite
the interaction Lagrangian (194), which was given in terms of the old fields W I

µ and Bµ and their cur-
rents (195) and (196), in terms of the physical field. The associated currents are separated into a charged
current (for W±µ ) and neutral currents (for Aµ and Zµ):

LCC = − g√
2

∑

i=1,2,3

(uLiγ
µdLi + νLiγ

µeLi)W
+
µ + h.c. , (206)

LNC = −gJ3
µW

3µ − g′JY µB
µ

= −eJem µA
m − e

sin 2θW
JZ µZ

µ ,
(207)

with the electromagnetic and Z currents

Jemµ =
∑

i=u,d,c,
s,t,b,e,µ,τ

ψiγµQiψi , with the electric charge Qi = T 3
i + Yi , (208)

6Generally, nothing prevents us from adding an arbitrary constant to the Lagrangian, obtaining any desired ‘vacuum energy’.
For example, the Higgs potential is often written as

`
Φ†Φ − v2

´2
, so that its expectation value vanishes in the vacuum. These

potentials just differ by the shift ∼ v4, and are indistinguishable within QFT.
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JZ µ =
∑

i=u,d,c,s,t,b
e,µ,τ,νe,νµ,ντ

ψiγµ
(
vi − aiγ5

)
ψi . (209)

Here the fermions ψi are the sum of left- and right-handed fields,

ψi = ψLi + ψRi . (210)

The coupling to the photon, the electric charge Q, is given by the sum of the third component
of weak isospin T 3 (±1

2 for doublets, zero for singlets) and the hypercharge Y . This reproduces the
known electric charges of quarks and leptons, which justifies the hypercharge assignments in (190). The
coupling constant e is related to the original couplings and the weak mixing angle:

e = g sin θW = g′ cos θW . (211)

The photon couples only vector-like, i.e., it does not distinguish between different chiralities. The Z bo-
son, on the other hand, couples to the vector and axial-vector currents of different fermions ψ i (i.e., their
left-and right-handed components) with different strengths. They are given by the respective couplings
vi and ai, which are universal for all families. In particular, the Z couples in the same way to all leptons,
a fact known as lepton universality.

The Higgs mechanism described above is also called spontaneous symmetry breaking. This term,
however, is somewhat misleading: Gauge symmetries are never broken, but only hidden. The La-
grangian (204) has only a manifest U(1) symmetry associated with the massless vector field, so it seems
we have lost three gauge symmetries. This, however, is just a consequence of choosing the unitary gauge.
The Higgs mechanism can also be described in a manifestly gauge-invariant way, and all currents remain
conserved.

The ‘spontaneous breaking of gauge invariance’ reshuffles the degrees of freedom of the theory:
Before symmetry breaking, we have the complex Higgs doublet (four real degrees of freedom) and four
massless vector fields with two degrees of freedom each, so twelve in total. After symmetry breaking
(and going to unitary gauge), three Higgs degrees of freedom are gone (one remaining), but they have
resurfaced as extra components of three massive vector fields7 (nine), and one vector field stays massless
(another two). So there are still twelve degrees of freedom.

5.3 Fermion masses and mixings
The Higgs mechanism generates masses not only for the gauge bosons, but also for the fermions. As
already emphasized, direct mass terms are not allowed in the Standard Model. There are, however,
allowed Yukawa couplings of the Higgs doublet to two fermions. They come in three classes, couplings
to quark doublets and either up- or down-type quark singlets, and to lepton doublet and charged lepton
singlets. Each term is parametrized by a 3× 3 matrix in generation space,

LY = (hu)ij qL iuR jΦ + (hd)ij qL idR jΦ̃ + (he)ij lL ieR jΦ̃ + h.c. , (212)

where Φ̃ is given by Φ̃a = εabΦ
∗
b .

These Yukawa couplings effectively turn into mass terms once the electroweak symmetry is spon-
taneously broken: A vacuum expectation value 〈ΦX〉 = v inserted in the Lagrangian (212) yields

Lm = (mu)ij uL iuR j + (md)ij dL idR j + (me)ij eL ieR j + h.c. . (213)

Here the mass matrices are mu = huv etc., and uL, dL and eL denote the respective components of the
quark and lepton doublets qL and lL.

7Remember that a massless vector has only two (transverse) degrees of freedom, while a massive one has a third, longitudi-
nal, mode.
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The mass matrices thus obtained are in general not diagonal in the basis where the charged current
is diagonal. They can be diagonalized by bi-unitary transformations,

V (u)†muṼ
(u) = diag(mu,mc,mt) , (214a)

V (d)†mdṼ
(d) = diag(md,ms,mb) , (214b)

V (e)†meṼ
(e) = diag(me,mµ,mτ ) , (214c)

with unitary matrices V ,

V (u)†V (u) =
�
, etc.

This amounts to a change of basis from the weak eigenstates (indices i, j, . . .) to mass eigenstates (with
indices α, β, . . .):

uL i = V
(u)
iα uLα , dL i = V

(d)
iα dL,α , uR i = Ṽ

(u)
iα uRα , dR i = Ṽ

(d)
iα dRα . (215)

The up- and down-type matrices V (u) and V (d) are not identical, which has an important consequence:
The charged-current couplings are now no longer diagonal, but rather

LCC = − g√
2
VαβuLαγ

µdL βW
+
µ + h.c. , (216)

with the CKM matrix

Vαβ = V (u)†
αiV

(d)
iβ , (217)

which carries the information about flavour mixing in charged-current interactions. Because of the uni-
tarity of the transformations, there is no flavour mixing in the neutral current.

We saw that the Higgs mechanism generates fermion masses since direct mass terms are not al-
lowed due to gauge invariance. There is one possible exception: a right-handed neutrino, which one may
add to the Standard Model to have also neutrino masses. It is a singlet of the Standard Model gauge
group and can therefore have a Majorana mass term which involves the charge conjugate fermion

ψC = CψT , (218)

where C = iγ2γ0 is the charge conjugation matrix. As the name suggests, the charge conjugate spinor
has charges opposite to the original one. It also has opposite chirality, PLψCR = ψR. Thus we can produce
a mass term ψCψ (remember that a mass term always requires both chiralities), which is gauge invariant
only for singlet fields.

So a right-handed neutrino νR can have the usual Higgs coupling and a Majorana mass term,

Lν,mass = hν ijlL iνR jΦ +
1

2
MijνR iνR j + h.c. , (219)

where i, j again are family indices.

The Higgs vacuum expectation value v turns the coupling matrix hν into the Dirac mass matrix
mD = hνv. The eigenvalues of the Majorana mass matrix M can be much larger than the Dirac masses,
and a diagonalization of the (νL, νR) system leads to three light modes νi with the mass matrix

mν = −mDM
−1mT

D . (220)

Large Majorana masses naturally appear in grand unified theories. ForM ∼ 1015 GeV, and mD ∼ mt ∼
100 GeV for the largest Dirac mass, one finds mν ∼ 10−2 eV, which is consistent with results from
neutrino oscillation experiments. This ‘see-saw mechanism’, which explains the smallness of neutrino
masses masses as a consequence of large Majorana mass terms, successfully relates neutrino physics to
grand unified theories.
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5.4 Predictions
The electroweak theory contains four parameters, the two gauge couplings and the two parameters of the
Higgs potential: g, g′, µ2 and λ. They can be traded for four other parameters, which are more easily
measured: The fine-structure constant α, the Fermi constant GF and the Z boson mass MZ, which are
known to great accuracy, and the Higgs mass mH which is not yet known.

W

f

f ′

(a)

Z

f

f

(b)

Fig. 11: Decays of the W
and Z bosons into two fermions.
In W decays, the fermion and
antifermion can have different
flavour. The grey blobs indicate
higher order corrections which
must be included to match the ex-
perimental precision.

At LEP, W and Z bosons were produced in huge numbers. There are many observables related to
their production and decay (Fig. 11). These include

– The W mass MW and the decay widths ΓW and ΓZ.
– Ratios of partial decay widths, for example, the ratio of the partial Z width into bottom quarks to

that into all hadrons,

Rb =
1

Γ(Z→ hadrons)
Γ
(
Z→ bb

)
. (221)

– Forward–backward asymmetries: In e+ + Pem → Z/γ → ff reactions, the direction of the
outgoing fermion is correlated with the incoming electron. This is quantified by the asymmetries
Affb,

Affb =
σff − σ

f
b

σff + σfb
, for f = µ, τ, b, c , (222)

where σff is the cross-section for an outgoing fermion in the forward direction, i.e., θ ∈ [0, π/2] in
Fig. 12, while σfb is the cross-section for backward scattering.

e−

e+

Z, γ

f

f

(a)

e−

e+

f

f

θ

(b)

Fig. 12: The forward–backward
asymmetry Afb: In the process
e+e− → Z/γ → ff , there is a
correlation between the directions
of the outgoing fermion and the
incoming electron. This asym-
metry has been measured for sev-
eral types of final-state fermions,
mostly at LEP with centre-of-
mass energy

√
s = MZ .

Also important are double, left–right and forward–backward asymmetries,

Afb
LR =

σfLf − σ
f
Lb − σ

f
Rf + σfRb

σfLf + σfLb + σfRf + σfRb

≡ 3

4
Af . (223)
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The reason for these asymmetries is the presence of the axial couplings ai in the Z boson cur-
rent (209), which lead to different cross-sections for the processes Z → fLfR and Z → fRfL.
Thus, one can deduce the ai and vi couplings for fermions from the forward–backward asymme-
tries, and finally the weak mixing angle, on which the vector and axial-vector couplings of the Z
boson depend,

sin2 θlept
eff =

1

4

(
1− vl

al

)
. (224)

– Electroweak measurements by now are very precise, and require the inclusion of W boson loops
in theoretical calculations, so that they test the non-Abelian nature of the electroweak theory. The
theoretical predictions critically depend on the the electromagnetic coupling at the electroweak
scale, α(mZ), which differs from the low energy value α(0) in particular by hadronic corrections,
∆αhad(mZ).
An important observable is the ρ parameter, defined by

ρ =
M2

W

M2
Z cos2 θW

. (225)

At tree level, ρ = 1. Loop corrections to the masses of the gauge bosons, and therefore to ρ, due
to quark or Higgs boson loops as in Fig. 13, are an important prediction of the electroweak theory.

W+ W+

b

t

Z Z

t

t

(a) Heavy quark corrections

W±,Z W±,Z

H

W±,Z W±,Z

H

(b) Higgs corrections

Fig. 13: Radiative corrections to the masses of the W and Z bosons, which depend on the masses of the
particles in the loop. Diagrams with gauge boson self-interactions have been omitted.

The tree-level value ρ = 1 is protected by an approximate SU(2) symmetry, called custodial
symmetry, which is only broken by the U(1)Y gauge interaction and by Yukawa couplings. Thus
the corrections depend on the fermion masses, and are dominated by the top quark, as in Fig 13(a).
The leading correction is

∆ρ(t) =
3GFm

2
t

8π2
√

2
∝ m2

t

M2
W

. (226)

This led to the correct prediction of the top mass from electroweak precision data before the top
quark was discovered at the Tevatron.
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e−

e+

νe

W−

W+

(a)

e−

e+

Z/γ

W−

W+

(b)

Fig. 14: The process e+e− →
W+W−. The diagrams of panel
(b) contain triple gauge boson
vertices, γWW and ZWW.

The correction due to the Higgs boson diagrams in Fig. 13(b) again depends on the Higgs mass,
but this time the effect is only logarithmic:

∆ρ(H) = −C ln
m2
H

M2
W

. (227)

From this relation, one can obtain a prediction for the mass of the Higgs boson. Clearly, the
accuracy of this prediction strongly depends on the experimental error on the top mass, which
affects ρ quadratically.
However, the Higgs mass (weakly) influences many other quantities, and from precision measure-
ments one can obtain a fit for the Higgs mass. This is shown in the famous blue-band plot, Fig. 21.

– A characteristic prediction of any non-Abelian gauge theory is the self-interaction of the gauge
bosons. In the electroweak theory, this can be seen in the process e+e−→W+W−.
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(a) W boson pair production cross-section at LEP2. Pre-
dictions which ignore the WWW vertex deviate substan-
tially.

708 S. Natale: W and Z pair production at LEP2
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Fig. 4. Combined WWγ cross section as a function of the
center-of-mass energy. Only L3 and DELPHI results are used

Fig. 5. NC02 diagrams for the production of Z–pair events

The results obtained by the DELPHI, L3 and OPAL
collaborations have been combined and they are shown in
Fig. 4. No statistically significant deviation is observed.

4 ZZ production

At LEP, the Z-pair final state is produced by means of
two main born level diagrams referred to as NC02 (Neutral
Current) and shown in Fig. 5. The signal definition for the
LEP combination is based on the NC02 set of diagrams,
including ISR corrections.

4.1 Selections and results

The experimental investigations of Z-pair production is
made difficult by its rather low cross section, compared
with competing processes that constitute large and some-
times irreducible backgrounds. All 12 visible Z-pair decay
combinations are analysed. In all cases multi-variate tech-
niques are used, to enhance the separation power against
the most important backgrounds, namely W-pair produc-
tion. The combination of the Z-pair cross sections as a
function of the center-of-mass energy is shown in Fig. 6.
The ratio R, described in the previous section, obtained
using YFSZZ [11] as theoretical prediction, is R = 0.962±
0.055. Good agreement with the Standard Model is ob-
served.

5 Conclusions

The amount of data collected by the LEP experiments
in the high energy running period is beeing extensively

0

0.5
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180 190 200

√s (GeV)

σ Z
Z
 (

pb
)

ZZTO and YFSZZ
LEP PRELIMINARY

11/07/2003

Fig. 6. Combined Z-pair cross sections compared to predicted
values using the YFSZZ Montecarlo program

analysed and provides a powerful tool to test the Standard
Model. In many cases, as for the W-pair cross section, the
level of accuracy has reached the sensitivity threshold for
radiative corrections. Although not yet final, the results
herein presented are based on the full available statistics
and don’t show deviations from the Standard Model.
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(b) For Z pair production, there is no triple Z vertex, which
agrees well with the experimental result.

Fig. 15: Gauge boson pair production cross-sections at LEP2 energies (from Ref. [11])

The tree-level diagrams are given in Fig. 14, and Fig. 15(a) shows the measured cross-section
from LEP, compared with theoretical predictions. Clearly, the full calculation including all dia-
grams agrees well with data, while the omission of the γWW and ZWW vertices leads to large
discrepancies. For the process e+e−→ ZZ, on the other hand, there is no triple gauge boson (ZZZ
or γZZ) vertex, so at tree level one only has the t-channel diagram which is similar to the diagram
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in Fig. 14(a), but with an electron instead of the neutrino. The agreement between theory and data
is evident from Fig. 15(b).

5.4.1 Fermi theory

µ−

νµ

e−

νe

Fig. 16: µ decay

The exchange of a W boson with momentum q in a Feynman diagram contributes

a factor of
(
M2

W − q2
)−2

to the amplitude. For low-energy processes like muon
decay (see Fig. 16), the momentum transfer is much smaller than the mass of
the W boson. Hence to good approximation one can ignore q2 and replace the
propagator byM−2

W . This amounts to introducing an effective four-fermion vertex
(see Fig. 17),

L eff
CC = −GF√

2
JµCCJ

†
CCµ , (228)

where GF is Fermi’s constant,

GF =
g2

4
√

2M2
W

=
1

2
√

2 v2
, (229)

which is inversely proportional to the Higgs vacuum expectation value v2. A four-fermion theory for
the weak interactions was first introduced by Fermi in 1934. Since it is not renormalizable, it cannot
be considered a fundamental theory. However, one can use it as an effective theory at energies small
compared to the W mass. This is sufficient for many applications in flavour physics, where the energy
scale is set by the masses of leptons, kaons and B mesons.

W
q2 �M2

W

Fig. 17: W boson exchange can be de-
scribed in terms of the Fermi theory, an
effective theory for momentum transfers
small compared to the W mass. The W
propagator is replaced by a four-fermion
vertex ∝ GF.

5.5 Summary
The electroweak theory is a chiral gauge theory with gauge group SU(2)W × U(1)Y . This symmetry is
spontaneously broken down to U(1)em by the Higgs mechanism which generates the gauge boson and
Higgs masses, and also all fermion masses, since direct mass terms are forbidden by gauge invariance.

The electroweak theory is extremely well tested experimentally, to the level of 0.1%, which probes
loop effects of the non-Abelian gauge theory. The results of a global electroweak fit are shown in Fig. 18.
There is one deviation of almost 3σ, all other quantities agree within less than 2σ.

This impressive agreement is only possible because of two properties of the electroweak interac-
tions: they can be tested in lepton–lepton collisions, which allow for very precise measurements, and
they can be reliably calculated in perturbation theory. QCD, on the other hand, requires hadronic pro-
cesses which are known experimentally with less accuracy and are also theoretically subject to larger
uncertainties.
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02767
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959
σhad [nb]σ0 41.540 ± 0.037 41.478
RlRl 20.767 ± 0.025 20.743
AfbA0,l 0.01714 ± 0.00095 0.01643
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1480
RbRb 0.21629 ± 0.00066 0.21581
RcRc 0.1721 ± 0.0030 0.1722
AfbA0,b 0.0992 ± 0.0016 0.1037
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.404 ± 0.030 80.376
ΓW [GeV]ΓW [GeV] 2.115 ± 0.058 2.092
mt [GeV]mt [GeV] 172.5 ± 2.3 172.9

Fig. 18: Results of a global fit to electroweak precision data. The right column shows the deviation of
the fit from measured values in units of the standard deviation. From Ref. [11].
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6 The Higgs profile
The only missing building block of the Standard Model is the Higgs boson. Spontaneously broken
electroweak symmetry, however, is a cornerstone of the Standard Model, and so the discovery of the
Higgs boson and the detailed study of its interactions is a topic of prime importance for the LHC and the
ILC.

The investigation of the Higgs sector can be expected to to give important insight also on physics
beyond the Standard Model. Since the Higgs is a scalar particle, its mass is subject to quadratically
divergent quantum corrections, and an enormous ‘fine-tuning’ of the tree-level mass term is needed to
keep the Higgs light (this is usually referred to as the ‘naturalness problem’ of the Higgs sector). Such
considerations have motivated various extensions of the Standard Model:

– Supersymmetry retains an elementary scalar Higgs (and actually adds four more), while radiative
corrections with opposite signs from bosons and fermions cancel.

– Technicolour theories model the Higgs as a composite particle of size 1/ΛTC, where ΛTC ∼ 1 TeV
is the confinement scale of a new non-Abelian gauge interaction. These theories generically have
problems with electroweak precision tests and the generation of fermion masses.

– A related idea regards the Higgs as a pseudo-Goldstone boson of some approximate global sym-
metry spontaneously broken at an energy scale above the electroweak scale. The Higgs mass is
then related to the explicit breaking of this symmetry.

– In theories with large extra dimensions new degrees of freedom occur, and the Higgs field can be
identified, for instance, as the fifth component of a five-dimensional vector field.

All such ideas can be tested at the LHC and the ILC, since the unitarity of WW scattering implies that the
Standard Model Higgs and/or other effects related to electroweak symmetry breaking become manifest
at energies below ∼ 1 TeV.

6.1 Higgs couplings and decay
Suppose a resonance is found at the LHC with a mass above 114 GeV and zero charge. How can one
establish that it indeed is the Higgs?

The Higgs boson can be distinguished from other scalar particles as they occur, for instance,
in supersymmetric theories, by its special couplings to Standard Model particles. All couplings are
proportional to the mass of the particle, since it is generated by the Higgs mechanism. Hence the Higgs
decays dominantly into the heaviest particles kinematically allowed, which are tt or, for a light Higgs,
bb and tt pairs. It also has a strong coupling ∝ mH to the longitudinal component of W and Z bosons.
The tree-level diagrams are given in Figs. 19(a) and 19(b). In addition, there are important loop-induced
couplings to massless gluons and photons [see Fig. 19(c)].

The tree-level decay widths in the approximation mH � mf ,MW are given by

Γ
(
H→ ff

)
=
GFmHm

2
f

4π
√

2
Nc , (230a)

Γ(H→ ZLZL) =
1

2
Γ(H→WLWL) =

GFm
3
H

32π
√

2
. (230b)

The branching fractions of the Higgs into different decay products strongly depend on the Higgs mass, as
shown in Fig. 20. For a heavy Higgs, with mH > 2MW , the decay into a pair of W bosons dominates.
At the threshold the width increases by two orders of magnitude, and it almost equals the Higgs mass
at mH ∼ 1 TeV where the Higgs dynamics becomes non-perturbative. For a light Higgs with a mass
just above the present experimental limit, mH > 114 GeV, the decay into two photons might be the best
possible detection channel given the large QCD background for the decay into two gluons at the LHC. It
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H

f

f

∝ mf

(a)

H

WL/ZL

WL/ZL

∝ mH

(b)

H

g/γ

g/γ

(c)

H

H

H

∝ mH

(d)

Fig. 19: Higgs boson decays. Tree-level couplings are proportional to masses, but there also are loop-
induced decays into massless particles. The cubic Higgs self-coupling can be probed at the ILC and
possibly at the LHC.

is clearly an experimental challenge to establish the mass dependence of the Higgs couplings, so the true
discovery of the Higgs is likely to take several years of LHC data!

Fig. 20: Left: Higgs branching ratios as function of the Higgs mass. Right: Higgs decay width as
function of the Higgs mass. It increases by two orders of magnitude at the WW threshold. From Ref. [12].
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6.2 Higgs mass bounds
We now turn to the issue of the Higgs mass. Within the Standard Model, m2

H = 2λv2 is a free parameter
which cannot be predicted. There are, however, theoretical consistency arguments which yield stringent
upper and lower bounds on the Higgs mass.

Before we present these arguments, we first recall the experimental bounds:

– The Higgs has not been seen at LEP. This gives a lower bound on the mass, mH > 114 GeV.
– The Higgs contributes to radiative corrections, in particular for the ρ parameter. Hence precision

measurements yield indirect constraints on the Higgs mass. The result of a global fit is shown in
the blue-band plot, Fig. 21. The current 95% confidence level upper bound is mH < 185 GeV, an
impressive result! One should keep in mind, however, that the loop corrections used to determine
the Higgs mass strongly depend on the top mass as well. A shift of a few GeV in the top mass,
well within the current uncertainties, can shift the Higgs mass best fit by several tens of GeV, as
can be seen by comparing the plots in Fig. 21.

Theoretical bounds on the Higgs mass arise, even in the Standard Model, from two consistency
requirements: (Non-)Triviality and vacuum stability. In the Minimal Supersymmetric Standard Model
(MSSM), on the other hand, the Higgs self-coupling is given by the gauge couplings, which implies the
upper bound mH . 135 GeV.

The mass bounds in the Standard Model arise from the scale dependence of couplings, as explained
in Section 4. Most relevant are the quartic Higgs self-coupling λ and the top quark Yukawa coupling ht

which gives the top mass via mt = htv. Other Yukawa couplings are much smaller and can be ignored.
The renormalization group equations for the couplings λ(µ) and ht(µ) are

µ
∂

∂µ
λ(µ) = βλ

(
λ, ht

)
=

1

(4π)2

(
12λ2 − 12h4

t + . . .
)
, (231a)

µ
∂

∂µ
ht(µ) = βλ

(
λ, ht

)
=

ht

(4π)2

(
9

2
h2

t − 8g2
s + . . .

)
. (231b)

These equations imply that ht decreases with increasing µ whereas the behaviour of λ(µ) depends on
the initial condition λ(v), i.e., on the Higgs mass.

For the Standard Model to be a consistent theory from the electroweak scale v up to some high-
energy cutoff Λ, one needs to satisfy the following two conditions in the range v < µ < Λ:

– The triviality bound: λ(µ) < ∞. If λ would hit the Landau pole at some scale µL < Λ, a finite
value λ(µL) would require λ(v) = 0, i.e., the theory would be ‘trivial’.

– The vacuum stability bound: λ(µ) > 0. If λ would become negative, the Higgs potential would
not be bounded from below any more, and the electroweak vacuum would no longer be the ground
state of the theory.

These two requirements define allowed regions in the mH–mt plane as a function of the cutoff Λ [see
Fig. (22a)]. For a given top mass, this translates into an upper and lower bound on the Higgs mass. For
increasing Λ, the allowed region shrinks, and for the known top quark mass and Λ ∼ ΛGUT ∼ 1016 GeV,
the Higgs mass is constrained to lie in a narrow region, 130 GeV < mH < 180 GeV [see Fig. (22b)].

The impressively narrow band of allowed Higgs masses, which one obtains from the triviality
and vacuum stability bounds, assumes that the Standard Model is valid up to ΛGUT, the scale of grand
unification. This might seem a bold extrapolation, given the fact that our present experimental knowledge
ends at the electroweak scale,∼ 102 GeV. There are, however, two indications for such a ‘desert’ between
the electroweak scale and the GUT scale: First, the gauge couplings empirically unify at the GUT scale,
especially in the supersymmetric Standard Model, if there are no new particles between ∼ 102 GeV and
ΛGUT; second, via the see-saw mechanism, the evidence for small neutrino masses is also consistent with
an extrapolation to ΛGUT without new physics at intermediate scales.
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Fig. 21: The blue-band plot showing the constraints on the Higgs mass from precision measurements.
The small plots show the same plot from winter conferences of different years: 1997, 2001, 2003 and
2005 (left to right). The big plot dates from winter 2006. The best fit and the width of the parabola vary,
most notable due to shifts in the top mass and its uncertainty. From Ref. [11].

7 History and outlook
Finally, instead of a summary, we shall briefly recall the history of ‘The making of the Standard Model’
following a review by S. Weinberg [1]. It is very instructive to look at this process as the interplay of
some ‘good ideas’ and some ‘misunderstandings’ which often prevented progress for many years.

1. A ‘good idea’ was the quark model, proposed in 1964 independently by Gell-Mann and Zweig.
The hypothesis that hadrons are made out of three quarks and antiquarks allowed one to understand
their quantum numbers and mass spectrum in terms of an approximate SU(3) flavour symmetry,
the ‘eightfold way’. Furthermore, the deep-inelastic scattering experiments at SLAC in 1968 could
be interpreted as elastic scattering of electrons off point-like partons inside the proton, and it was
natural to identify these partons with quarks.

But were quarks real or just some mathematical entities? Many physicists did not believe in quarks
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Fig. 22: Bounds on the Higgs and top mass from triviality and vacuum stability. Panel (a) shows the
combined bounds for different values of Λ (from Ref. [13]). Panel (b) gives the bounds on the Higgs
mass for the known top mass (from Ref. [14]).

since no particles with third integer charges were found despite many experimental searches.

2. Another ‘good idea’ was the invention of non-Abelian gauge theories by Yang and Mills in 1954.
The local symmetry was the isospin group SU(2), and one hoped to obtain in this way a theory of
strong interactions with the ρ-mesons as gauge bosons. Only several years later, after the V − A
structure of the weak interactions had been identified, did Bludman, Glashow, Salam and Ward
and others develop theories of the weak interactions with intermediate vector bosons.

But all physical applications of non-Abelian gauge theories seemed to require massive vec-
tor bosons because no massless ones had been found, neither in strong nor weak interactions.
Such mass terms had to be inserted by hand, breaking explicitly the local gauge symmetry and
thereby destroying the rationale for introducing non-Abelian local symmetries in the first place.
Furthermore, it was realized that non-Abelian gauge theories with mass terms would be non-
renormalizable, plagued by the same divergences as the four-fermion theory of weak interactions.

3. A further ‘good idea’ was spontaneous symmetry breaking: There can be symmetries of the La-
grangian that are not symmetries of the vacuum. According to the Goldstone theorem there must
be a massless spinless particle for every spontaneously broken global symmetry. On the other
hand, there is no experimental evidence for any massless scalar with strong or weak interactions.
In 1964 Higgs and Englert and Brout found a way to circumvent Goldstone’s theorem: The theo-
rem does not apply if the symmetry is a gauge symmetry as in electrodynamics or the non-Abelian
Yang–Mills theory. Then the Goldstone boson becomes the helicity-zero part of the gauge boson,
which thereby acquires a mass.

But again, these new developments were applied to broken symmetries in strong interactions, and
in 1967 Weinberg still considered the chiral SU(2)L × SU(2)R symmetry of strong interactions
to be a gauge theory with the ρ and a1 mesons as gauge bosons. In the same year, however, he
then applied the idea of spontaneous symmetry breaking to the weak interactions of the leptons
of the first family, (νL, eL) and eR (he did not believe in quarks!). This led to the gauge group
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SU(2)× U(1), massive W and Z bosons, a massless photon and the Higgs boson!

The next steps on the way to the Standard Model are well known: The proof by ’t Hooft and Veltman that
non-Abelian gauge theories are renormalizable and the discovery of asymptotic freedom by Gross and
Wilczek and Politzer. Finally, it was realized that the infrared properties of non-Abelian gauge theories
lead to the confinement of quarks and massless gluons, and the generation of hadron masses. So, by
1973 ‘The making of the Standard Model’ was completed!

Since 1973 many important experiments have confirmed that the Standard Model is indeed the
correct theory of elementary particles:

– 1973: discovery of neutral currents
– 1979: discovery of the gluon
– 1983: discovery of the W and Z bosons
– 1975–2000: discovery of the third family, τ, b, t and ντ

– During the past decade impressive quantitative tests have been performed of the electroweak theory
at LEP, SLC and Tevatron, and of QCD at LEP, HERA and Tevatron.

Today, there are also a number of ‘good ideas’ on the market, which lead beyond the Standard
Model. These include grand unification, dynamical symmetry breaking, supersymmetry and string the-
ory. Very likely, there are again some ‘misunderstandings’ among theorists, but we can soon hope for
clarifications from the results of the LHC.
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Appendix
A Vectors, spinors and γ algebra
A.1 Metric conventions
Our spacetime metric is mostly minus,

gµν = diag(+,−,−,−) , (A.1)

so timelike vectors vµ have positive norm vµv
µ > 0. The coordinate four-vector is xµ = (t, ~x) (with

upper index), and derivatives with respect to xµ are denoted by

∂µ =
∂

∂xµ
=

(
∂

∂t
, ~∇
)
. (A.2)

Greek indices µ, ν, ρ, . . . run from 0 to 3, purely spatial vectors are indicated by a vector arrow.

A.2 γ matrices
In four dimensions, the γ matrices are defined by their anticommutators,

{γµ, γν} = 2gµν
�
, µ = 0, . . . , 3 . (A.3)

In addition, γ0 = γ†0 is Hermitian while the γi = −γ†i are anti-Hermitian, and all γµ are traceless. The
matrix form of the γ matrices is not fixed by the algebra, and there are several common representations,
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like the Dirac and Weyl representations, Eqs. (133) and (58), respectively. However, the following
identities hold regardless of the representation.

The product of all γ matrices is

γ5 = iγ0γ1γ2γ3 (A.4)

which is Hermitian, squares to one and anticommutes with all γ matrices,
{
γ5, γµ

}
= 0 . (A.5)

The chiral projectors PL/R are defined as

PL/R =
1

2

(
1± γ5

)
, PLPR = PRPL = 0 , P 2

L/R = PL/R . (A.6)

To evaluate Feynman diagrams like for the anomalous magnetic moment, one often needs to con-
tract several γ matrices such as

γµγµ = 4 (A.7a)

γµγνγµ = −2γν (A.7b)

γµγνγργµ = 4gνρ (A.7c)

γµγνγργσγµ = −2γσγργν etc. (A.7d)

For a vector vµ we sometimes use the slash /v = γµvµ.

A.3 Dirac, Weyl and Majorana spinors
The solutions of the Dirac equation in momentum space are fixed by the equations

(
/p−m

)
u(i)(p) = 0

(
/p+m

)
v(i)(p) = 0 . (A.8)

Here it is convenient to choose the Weyl representation (58) of the Dirac matrices,

γ0 =

(
0

�
2

�
2 0

)
, γi =

(
0 σi

−σi 0

)
, ⇒ γ5 =

(
− �

2

0
�

2

)
.

In this basis, the spinors u(p) and v(p) are given by

us(p) =

(√
E

�
2 + ~p · ~σ ξs√

E
�

2 − ~p · ~σ ξs

)
, vs(p) =

( √
E

�
2 + ~p · ~σ ηs

−
√
E

�
2 − ~p · ~σ ηs

)
. (A.9)

Here ξ and η are two-component unit spinors. Choosing the momentum along the z-axis and e.g. ξ =
(1, 0)T , the positive-energy spinor becomes

u+ =




√
E + pz

0√
E − pz

0


 , (A.10)

which has spin + 1
2 along the z-axis. For ξ = (0, 1)T , the spin is reversed, and similar for η and the

negative energy spinors.
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The spinors considered so far are called Dirac spinors: They are restricted only by the Dirac
equation and have four degrees of freedom (particle and antiparticle, spin up and spin down). There are
two restricted classes of spinors, Weyl and Majorana spinors, which have only two degrees of freedom.

Weyl or chiral spinors are subject to the constraint

PLψL = ψL or PRψR = ψR (A.11)

and correspond to purely left- or right-handed fermions. In the language of u’s and v’s, chiral spinors
correspond to sums u± γ5v. Chiral spinors can have a kinetic term, but no usual mass term, since

(ψL) = PLψL = (PLψL)† γ0 = ψ†LPLγ
0 = ψLPR (A.12)

and hence

ψL ψL = ψL PRPL︸ ︷︷ ︸
=0

ψL = 0 . (A.13)

However, there is the possibility of a Majorana mass term via the charge conjugate spinor ψC :

ψC = CψT with the charge conjugation matrix C = iγ0γ2 . (A.14)

ψC is of opposite chirality to ψ, so it can be used to build a bilinear ψCψ for a mass term. However, this
term violates all symmetries under which ψ is charged, so it is acceptable only for complete singlets, like
right-handed neutrinos.
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Quantum chromodynamics

G. Ecker
Institute for Theoretical Physics, University of Vienna, Austria

Abstract
After a brief historical review of the emergence of QCD as the quantum field
theory of strong interactions, the basic notions of colour and gauge invariance
are introduced leading to the QCD Lagrangian. The second lecture is devoted
to perturbative QCD, from tree-level processes to higher-order corrections in
renormalized perturbation theory, including jet production in e+e− annihila-
tion, hadronic τ decays and deep inelastic scattering. The final two lectures
treat various aspects of QCD beyond perturbation theory. The main theme is
effective field theories, from heavy quarks to the light quark sector where the
spontaneously broken chiral symmetry of QCD plays a crucial role.

1 Introduction
Why do we still study QCD after more than 30 years?

– By decision of the Nobel Prize Committee in 2004 [1], QCD is the correct theory of the strong
interactions.

– The parameters of QCD, the coupling strength αs and the quark masses, need to be measured as
precisely as possible.

– Electroweak processes of hadrons necessarily involve the strong interactions.
– In searches for new physics at present and future accelerators, the ‘QCD background’ must be

understood quantitatively.
– Although QCD is under control for high-energy processes, many open questions remain in the

nonperturbative domain (confinement, chiral symmetry breaking, hadronization, etc.).
– Last but not least, QCD is a fascinating part of modern physics. The lectures will therefore start

with a brief historical review of the developments in particle physics in the 1960s and early 1970s.

The following lectures were given to an audience of young experimental particle physicists. Although the
lectures emphasize some of the theoretical aspects of QCD, the mathematical level was kept reasonably
low. The first two lectures cover the basics of QCD, from the concepts of colour and gauge invariance to
some applications of perturbative QCD. The last two lectures treat aspects of QCD beyond perturbation
theory. The main theme is effective field theories, from heavy quarks to the light quark sector where
spontaneously broken chiral symmetry plays a crucial role.

1.1 Historical background
Particle physics in the early 1960s was not in a very satisfactory state. Only for the electromagnetic
interactions of leptons was a full-fledged quantum field theory (QFT) available. Quantum electrodynam-
ics (QED) produced increasingly precise predictions that were confirmed experimentally. Nevertheless,
the methodology of renormalization, an essential aspect of the perturbative treatment of QED, was not
universally accepted. Even among the founding fathers of QFT, the dissatisfaction with “sweeping the
infinities under the rug” was widespread. At the Solvay Conference of 1961, Feynman confessed [2] that
he did not “subscribe to the philosophy of renormalization”.

What is the essence of this controversial procedure of renormalization that has turned out to be
crucial for the shaping of both QCD and the Standard Model? In the case of QED three main steps are
important.
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– Amplitudes A(pi; e0,m0; Λ) depend on the momenta pi of the particles involved, on the parame-
ters e0,m0 of the QED Lagrangian and on a cut-off Λ that cuts off the high-momentum modes of
the theory. The cut-off is essential because A(pi; e0,m0; Λ) diverges for Λ → ∞, rendering the
result meaningless.

– With the help of measurable quantities (cross-sections, particle four-momenta) one defines phys-
ical parameters e(µ),m(µ) that depend in general on an arbitrary renormalization scale µ. One
then trades e0,m0 for the physical e(µ),m(µ) to a given order in perturbation theory.

– The limit lim
Λ→∞

A(pi; e0(e,m,Λ),m0(e,m,Λ); Λ) = Â(pi; e(µ),m(µ)) is now finite and unam-

biguous for the chosen definitions of e(µ),m(µ).

Based on this procedure, the agreement between theory and experiment was steadily improving.

For the weak interactions, the Fermi theory (in the V −A version) was quite successful for weak
decays, but

– higher-order corrections were not calculable;
– for scattering processes the theory became inconsistent for energies E & 300 GeV (unitarity

problem).

The rescue came at the end of the 1960s in the form of the electroweak gauge theory of the Standard
Model.

Of all the fundamental interactions, the strong interactions were in the most deplorable state.
Although the rapidly increasing number of hadrons could be classified successfully by the quark model of
Gell-Mann and Zweig [3], the dynamics behind the quark model was a complete mystery. A perturbative
treatment was clearly hopeless and the conviction gained ground that QFT might not be adequate for the
strong interactions.

This conviction was spelled out explicitly by the proponents of the bootstrap philosophy (Chew et
al.). Under the banner of nuclear democracy, all hadrons were declared to be equal. Instead of looking for
more fundamental constituents of hadrons, the S-matrix for strong processes was investigated directly
without invoking any quantum field theory. Although the expectations were high, nuclear democracy
shared the fate of the student movement of the late 1960s: the promises could not be fulfilled.

A less radical approach assumed that QFT could still be useful as a kind of toy model. The
main proponent of this approach was Gell-Mann who suggested to abstract algebraic relations from a
Lagrangian field theory model but then throw away the model (“French cuisine program” [4]). The
usefulness of this approach had been demonstrated by Gell-Mann himself: current algebra and the quark
model were impressive examples. Until the early 1970s, Gell-Mann took his programme seriously in
declaring the quarks to be purely mathematical entities without any physical reality, a view shared by
many particle physicists of the time.

The decisive clue came from experiment. Started by the MIT–SLAC Collaboration at the end of the
1960s, deep inelastic scattering of leptons on nucleons and nuclei produced unexpected results. Whereas
at low energies the cross-sections were characterized by baryon resonance production, the behaviour
at large energies and momentum transfer was surprisingly simple: the nucleons seemed to consist of
noninteracting partons (Feynman). Obvious candidates for the partons were the quarks but this idea led
to a seeming paradox. How could the quarks be quasi-free at high energies and yet be permanently bound
in hadrons, a low-energy manifestation?

That the strength of an interaction could be energy dependent was not really new to theorists.
In QED, the vacuum acts like a polarizable medium leading to the phenomenon of charge screening.
However, contrary to what the deep inelastic experiments seemed to suggest for the strong interactions,
the effective charge in QED increases with energy: QED is ultraviolet unstable.

To understand the phenomenon of an energy-dependent interaction, we consider the dimensionless
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ratio of cross-sections

Re+e− =
σ(e+ + e− → hadrons)

σ(e+ + e− → µ+ + µ−)
. (1)

Beyond the leading-order value R0 (cf. Section 2.1), one finds to lowest order in the strong coupling
constants gs

Re+e− = R0

(
1 +

g2
s

4π2

)
. (2)

The general form to any order in gs (neglecting quark masses) is

Re+e− = Re+e−(E,µ, gs(µ)) (3)

where E is the centre-of-mass energy and µ is the renormalization scale. Since Re+e− is a measurable
quantity, it must be independent of the arbitrary scale µ:

µ
d

dµ
Re+e−(E,µ, gs(µ)) = 0 −→

(
µ
∂

∂µ
+ β(gs)

∂

∂gs

)
Re+e− = 0 , (4)

with the beta function

β(gs) = µ
dgs(µ)

dµ
. (5)

Dimensional analysis tells us that the dimensionless ratio Re+e− must be of the form

Re+e−(E,µ, gs(µ)) = f(
E

µ
, gs(µ)) . (6)

The seemingly uninteresting dependence on µ can therefore be traded for the dependence on energy or
on the dimensionless ratio z = E/µ :

(
− ∂

∂ log z
+ β(gs)

∂

∂gs

)
f(z, gs(µ)) = 0 . (7)

The general solution of this renormalization group equation is

f(z, gs(µ)) = f̂(gs(z, gs)) , (8)

i.e., a function of a single variable, the energy-dependent (running) coupling constant gs(z, gs) satisfying

∂gs
∂ log z

= β(gs) (9)

with the boundary condition gs(1, gs) = gs. For any gauge coupling, the leading one-loop result for the
β function is

β(x) = − β0

(4π)2
x3 (10)

implying

gs
2(E/µ, gs(µ)) =

g2
s(µ)

1 +
β0

(4π)2
g2
s(µ) logE2/µ2

. (11)

Expanding the denominator, we observe that the renormalization group equation has allowed us to sum
the leading logs

(
g2
s(µ) logE2/µ2

)n of all orders in perturbation theory. Even more importantly, the
energy dependence of the running coupling constant is determined by the sign of β0 in Eq. (10):
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β0 < 0: lim
E→0

g(E) = 0 infrared stable (QED)

β0 > 0: lim
E→∞

g(E) = 0 ultraviolet stable (QCD)

For the cross-section ratio Re+e− we get finally

Re+e− = R0

(
1 +

g2
s(E)

4π2
+O(g4

s (E))

)
(12)

in terms of g2
s(E) ≡ gs2(E/µ, gs(µ)).

The crucial question in the early 1970s was therefore whether QFT was compatible with ultravi-
olet stability (asymptotic freedom)? The majority view was expressed in a paper by Zee [5]: “ . . . we
conjecture that there are no asymptotically free quantum field theories in four dimensions.” While Cole-
man and Gross set out to prove that conjecture, their graduate students Politzer and Wilczek (together
with Gross) tried to close a loophole: the β function for non-Abelian gauge theories (Yang–Mills theo-
ries) was still unpublished and probably unknown to everybody except t’Hooft. In the spring of 1973,
the Nobel prize winning work of Politzer, Gross, and Wilczek [6] demonstrated that Yang–Mills theories
are indeed asymptotically free.

The crucial difference between QED and QCD is that photons are electrically neutral whereas the
gluons as carriers of the strong interactions are coloured. Further physical insight can be obtained by
taking up an analogy with the electrodynamics of continuous media [7]. Because of Lorentz invariance,
the vacuum of a relativistic QFT is characterized by

εµ = 1 (13)

for the product of permittivity ε and permeability µ. In QED, charge screening implies ε > 1 so that the
vacuum of QED acts like a diamagnet (µ < 1). In QCD, the colour charge screening of quarks (ε > 1)
is overcompensated by gluons (spin 1) acting as permanent colour dipoles (µ > 1). Because

βQCD
0 =

1

3
(11Nc − 2NF ) , (14)

the QCD vacuum is a (colour) paramagnet for NF < 11Nc/2 < 17 quark flavours (for Nc = 3).
Because of the general relation (13) this can also be interpreted as anti-screening (ε < 1).

The existence of three colours was already widely accepted at that time. Gell-Mann and collabora-
tors had been investigating a model of coloured quarks interacting via a singlet gluon (not asymptotically
free). In a contribution of Fritzsch and Gell-Mann in the Proceedings of the International Conference on
High-Energy Physics in Chicago in 1972 [8] one finds probably the first reference to non-Abelian glu-
ons: “Now the interesting question has been raised lately whether we should regard the gluons as well as
the quarks as being non-singlets with respect to colour (J. Wess, private communication to B. Zumino)”.
Although Gell-Mann is generally credited for the name QCD, the first published occurrence of QCD is
much less known (cf., for example, Refs. [1]). My own investigation of the early literature has produced
a footnote in a paper of Fritzsch, Gell-Mann and Minkowski in 1975 [9] suggesting “A good name for
this theory is quantum chromodynamics”.

1.2 Colour
Already before the arrival of QCD, there were a number of indications for the colour degree of freedom.

– Triality problem

In the original quark model, often called the naive quark model, the three quarks u, d, s give
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rise to mesonic bound states of the form qq. All of the nine expected bound states had already
been observed suggesting an attractive force between all quarks and antiquarks. The baryons fit
nicely into qqq bound states. If the strong force is purely attractive why do antiquarks not bind
to baryons? The resulting objects of the form qqqq would have fractional charge and have never
been observed. Introducing three colours for each quark and antiquark allows for 9 × 9 = 81
combinations of qq, only nine of which had been found. The remaining 72 combinations are not
bound states invalidating the previous argument.

– Spin-statistics problem
Consider the state

|∆++(Sz = 3/2)〉 ∼ |u ↑ u ↑ u ↑〉 . (15)

Since the spin-flavour content is completely symmetric, Fermi statistics for quarks seems to require
an antisymmetric spatial wave function. On the other hand, for every reasonable potential the
ground state is symmetric in the space variables. Colour solves this problem because the state
(15) is totally antisymmetric in the colour indices respecting the generalized Pauli principle with a
spatially symmetric wave function.

– Renormalizability of the Standard Model

With the usual charges of quarks and leptons, the Standard Model is a consistent gauge invariant
QFT only if there are three species of quarks in order to cancel the so-called gauge anomalies.

– π0 → 2 γ decay

The by far dominant contribution to the decay amplitude is due to the chiral anomaly (exact for
massless quarks). The observed rate can only be understood if there are again three species of
quarks.

– Momentum balance in deep inelastic scattering

The momentum sum rule indicates that only about 50% of the nucleon momentum is carried by
valence quarks. The remainder is mainly carried by gluons.

– Quark counting
After the advent of QCD, many more direct confirmations of the colour degree of freedom were
obtained. One of the first confirmations was provided by the total cross-section σ(e+ + e− →
hadrons) already discussed in the previous subsection.

– Hadronic τ decays
As we shall discuss in the next lecture, hadronic τ decays not only give clear evidence for Nc = 3
but they also provide an excellent opportunity for extracting αs = g2

s/4π.

W

e

e  ,    , d  

,      , u

τ

ν

θ

µ

τ

−

−

− µ−

ν ν

Fig. 1: Feynman diagram for τ− → ντ +X

Rτ =
Γ(τ− → ντ + hadrons)

Γ(τ− → ντ e−νe)
(16)

= Nc

(
|Vud|2 + |Vus|2

)
(1 +O(αs)) .

1.3 Gauge invariance
Gauge invariance is a main ingredient not only of QCD but of the Standard Model as a whole. We start
with the Lagrangian for a single free Dirac fermion:

L0 = ψ(x) i /∂ ψ(x)−mψ(x)ψ(x) , /a := γµaµ . (17)
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This Lagrangian and the resulting Dirac equation are invariant under a phase transformation (global
U(1))

ψ(x) −→ ψ′(x) = e−iQ εψ(x) (18)

with Qε an arbitrary real constant. One may now pose the question whether the phase in the trans-
formation law (18) must really be the same here and ‘behind the moon’, as is the case in (18) with a
space–time-independent phase Qε. Instead of experimenting behind the moon, we replace the constant
ε with an arbitrary real function ε(x) and see what happens. As is easily checked, the mass term in (17)
remains invariant but not the kinetic term because

∂µψ(x) −→ e−iQε(x) (∂µ − iQ∂µε(x))ψ(x) . (19)

The conclusion is that the phase must indeed be the same here and behind the moon for the theory to be
invariant under transformations of the form (18).

However, there is a well-known procedure for enforcing local invariance, i.e., invariance for a
completely arbitrary space–time-dependent phase ε(x). We enlarge the theory by introducing a spin-1
vector field Aµ that has precisely the right transformation property to cancel the obnoxious piece in (19)
with ∂µε(x). The idea is to replace the ordinary derivative ∂µ by a covariant derivative Dµ:

Dµψ(x) = (∂µ + iQAµ(x))ψ(x) , (20)

with

Aµ(x) −→ A′µ(x) = Aµ(x) + ∂µε(x) . (21)

It is easy to check that Dµψ transforms covariantly,

Dµψ(x) −→ (Dµψ)′(x) = e−iQε(x)Dµψ(x) , (22)

so that the enlarged Lagrangian

L = ψ(x)
(
i /D −m

)
ψ(x) = L0 −QAµ(x)ψ(x) γµψ(x) (23)

is invariant under local U(1) transformations (gauge invariance).

The most important feature of this exercise is that the requirement of gauge invariance has gener-
ated an interaction between the fermion field ψ and the gauge field Aµ. Introducing a kinetic term for
the gauge field to promote it to a propagating quantum field, the full Lagrangian

L = ψ
(
i /D −m

)
ψ − 1

4
FµνF

µν (24)

is still gauge invariant because the field strength tensor Fµν = ∂µAν − ∂νAµ is automatically gauge
invariant. Setting Q = −e for the electron field, we have ‘deduced’ QED from the free electron theory
and the requirement of gauge invariance. For completeness, we take note that a mass term of the form
M2
γAµA

µ is forbidden by gauge invariance, implying massless photons.

1.4 SU(3)c and the QCD Lagrangian
As we have seen, quarks come in three colours. Suppressing all space–time dependence, the free quark
Lagrangian for a single flavour has the form

L0 =

3∑

i=1

qi
(
i /∂ −mq

)
qi . (25)
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Assuming the three quarks with different colours to have the same mass mq (different flavours have
different masses, of course), we can ask for the global invariances of L0. All transformations that leave
L0 invariant are of the form

qi −→ q′i = Uijqj , U U † = U † U =
�

(26)

with arbitrary unitary matrices Uij . Splitting off a common phase transformation qi → e−iεqi treated
previously and generating electromagnetic interactions that we know to be colour-blind, we are left with
the special unitary group SU(3) comprising all three-dimensional unitary matrices with unit determinant.

In contrast to the U(1) case treated before, we now have eight independent transformations in
SU(3) (an 8-parameter Lie group). Therefore, continuing in the same spirit as before, it is not just a
question of demanding gauge invariance but we also have to find out which part of SU(3) should be
gauged. With hindsight, the following two criteria lead to a unique solution.

i. The three colours are not like three arbitrary electric charges but are instead intimately connected
through gauge transformations. This requires the quarks to be in an irreducible three-dimensional
representation leaving only two possibilities: either all of SU(3) or one of the SU(2) subgroups
must be gauged.

ii. Quarks and antiquarks transform differently under gauge transformations (3 6= 3∗ ). This closes
the case and implies that all SU(3) transformations must be gauged.

The above requirements guarantee that both qq and qqq contain colour singlets = hadrons,

3∗ ⊗ 3 = 1⊕ 8, 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 , (27)

but neither qq nor qqqq or other exotic combinations.

Every three-dimensional unitary matrix with detU = 1 can be written as

U(εa) = exp{−i
8∑

a=1

εa
λa
2
} (28)

with eight parameters εa and with eight traceless Hermitian Gell-Mann matrices λa. Their commutation
relations define the Lie algebra of SU(3):

[λa, λb] = 2i fabcλc , (29)

with real, totally antisymmetric structure constants fabc.

The gauge principle demands invariance of the theory for arbitrary space–time-dependent func-
tions εa(x). Instead of a single gauge field Aµ, we now need eight vector fields Gµ

a(x) entering the
covariant derivative

(Dµq)i =

(
∂µδij + i gs

8∑

a=1

Gµa
λa,ij

2

)
qj =: {(∂µ + igsG

µ)q}i . (30)

The real coupling constant gs measures the strength of the quark–gluon interaction just as the charge
Q is a measure of the electromagnetic interaction. Using the convenient matrix notation (summation
convention implied)

Gµij := Gµa
λa,ij

2
, (31)

the covariant derivative now transforms as

Gµ −→ G′µ = U(ε)GµU
†(ε) +

i

gs
(∂µU(ε))U †(ε) (32)
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in order for (Dµq)i to transform like the qi themselves (covariance requirement).

Because of the non-Abelian character of SU(3), the transformation laws are more complicated
than in the electromagnetic case. The differences can already be seen in the infinitesimal transformations
of the gluon fields Gµ

a following from (32):

Gµa −→ Gµ′a = Gµa +
1

gs
∂µεa + fabcεbG

µ
c +O(ε2) . (33)

In order to have propagating gluon fields, we need an analogue of the electromagnetic field strength
tensor Fµν . The simplest approach is to calculate the commutator of two covariant derivatives:

[Dµ, Dν ] = [∂µ + i gsGµ, ∂ν + i gsGν ] =: i gsGµν . (34)

The non-Abelian field strength tensor Gµν = Gµνa
λa
2

has the explicit form

Gµν = ∂µGν − ∂νGµ + igs [Gµ, Gν ] (35)

Gµνa = ∂µGνa − ∂νGµa − gsfabcGµbGνc

and it transforms covariantly under SU(3) gauge transformations:

Gµν −→ G′µν = U(ε)GµνU
†(ε) . (36)

The gauge-invariant colour trace

tr(GµνG
µν) =

1

2
Gµνa Gaµν (37)

has the right structure for a gluon kinetic term leading immediately to the SU(3)c invariant QCD La-
grangian for f = 1, . . . , NF quark flavours:

LQCD = −1

2
tr(GµνG

µν) +

NF∑

f=1

qf
(
i /D −mf

�
c

)
qf . (38)

As in the U(1) case, gauge invariance requires massless gluons. Writing out the Lagrangian (38) in
detail, one finds three types of vertices instead of a single one for QED:

qqG GGG GGGG

Fig. 2: Basic vertices of QCD

In addition to the quark masses, QCD has a single parameter describing the strength of the strong inter-
actions, the strong coupling constant gs (αs = g2

s/4π.
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Experimental group theory

Can experimentalists determine more than a single coupling strength αs in a strong process? All the
information is contained in the vertices: in addition to gs, the vertices also contain the two matrices

(tFa )ij =
1

2
(λa)ij , (tAa )bc = −ifabc , (39)

defining the fundamental and adjoint representations of (the Lie algebra of) SU(3):

[ta, tb] = i fabctc . (40)

Let us pretend for a moment that we do not know that there are three colours and eight gluons. For a
general (compact Lie) group of symmetry transformations, the vertices are again determined by quark
and gluon representation matrices tFa , t

A
a . The combinations that actually appear in measurable quantities

are the following traces and sums:

tr(tRa t
R
b ) = TRδab,

∑

a

(tRa )ij(t
R
a )jk = CRδik (R = F,A) , (41)

with TR: Dynkin index for the representation R;
CR: (quadratic) Casimir for R.

For a dR-dimensional representation, one derives from the definitions (41) the general relation

dR CR = nG TR (42)

where nG is the number of independent parameters of G. Restricting the discussion to SU(n), the two
cases of interest are
R = A (adjoint representation):

dA = nG −→ CA = TA = n for SU(n);

R = F (fundamental representation of SU(n)):

dF = n, nG = n2 − 1, TF = 1/2 −→ CF =
n2 − 1

2n

and for the special case of SU(3): CF =
4

3
, CA = TA = Nc = 3 .

The independent quantities that can be measured are CF and CA. A combined jet analysis in e+e−

annihilation at LEP found [10]

CF = 1.30 ± 0.01(stat)± 0.09(sys), CA = 2.89 ± 0.03(stat)± 0.21(sys) (43)

in manifest agreement with SU(3).

Feynman diagrams are constructed with the vertices and propagators of the QCD Lagrangian (38).
The problem here is the same as in QED: because of the gauge invariance of (38), the gluon propagator
does not exist. At least for perturbation theory, the inescapable consequence is that gauge invariance
must be broken in the Lagrangian! Or, in a more euphemistic manner of speaking, the gauge must be
fixed. In the simplest and widely used version (covariant gauge with real parameter ξ) the Lagrangian
(38) is replaced by

LQCD −→ LQCD −
ξ

2
(∂µG

µ
a)2 + Lghost . (44)

The gluon propagator now exists (ξ = 1: Feynman gauge):

∆µν
ab (k) = δab

−i
k2 + iε

(
gµν + (ξ−1 − 1)

kµkν

k2

)
ξ=1
= δab

−i gµν
k2 + iε

. (45)

The additional ghost Lagrangian Lghost repairs the damage done by gauge fixing: although Green func-
tions are now gauge dependent, observable S-matrix elements are still gauge invariant and therefore
independent of ξ (Feynman, Faddeev, Popov, BRST, etc.).
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2 Perturbative QCD
2.1 QCD at tree level
The calculation of tree amplitudes in QCD is straightforward but

– to compare theory with experiment, we must have hadrons rather than quarks and gluons in the
initial and final states;

– amplitudes and cross-sections are in general infrared divergent for massless gluons.

The general recipe is to consider infrared safe quantities, the more inclusive the better. A good example
is once more e+e− → hadrons. The sum over all hadronic final states can be expressed in terms of the

e–

e+

γ, Z

hadrons

q

q

Fig. 3: e+e− → hadrons

imaginary (absorptive) part of the two-point function of electromagnetic currents (photonic case), the
hadronic vacuum polarization:

Πµν
em(q) = i

∫
d4x eiq · x〈0|TJµem(x)Jνem(0)|0〉 =

(
−gµνq2 + qµqν

)
Πem(q2) . (46)

The sum over all intermediate states can be performed either with quarks and gluons or with hadrons.

q
e– e–

e+ e+

γ γ
σ~

q

Fig. 4: Hadronic vacuum polarization

Since there are no massless hadrons, the hadronic vacuum polarization is infrared safe.

To lowest order in QCD, the amplitude for

e+e− → γ∗(Z∗) → qq (47)

is in fact independent of the strong coupling constant gs. Except for the charges, masses and multiplicities
of quarks, it is the same calculation as for e+e− → µ+µ− in QED. Therefore, for quarks with given
flavour f and colour i the amplitude is (neglecting me, mµ, mq)

A(e+e− → qifq
i
f ) =

Qf
e
A(e+e− → µ+µ−) . (48)
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Quarks and antiquarks with different colour and flavour are in principle distinguishable so that the total
hadronic cross-section, normalized to σ(e+e− → µ+µ−), is

Re+e− =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=
∑

i,f

Q2
f/e

2 = Nc

∑

f

Q2
f/e

2 . (49)

As shown in Fig. 5, this is a good approximation to the experimental data between quark thresholds.

10
-1

1

10

10 2

10 3

1 10 10
2

ρ

ω
φ

ρ

J/ψ ψ(2S) ZR

S    GeV

Fig. 5: Experimental data for Re+e− taken from Ref. [11]

A similar result is obtained for the hadronic width of the Z:

RZ = Γ(Z → hadrons)/Γ(Z → e+e−) = Nc(1 + δEW)
∑

f

(v2
f + a2

f )/(v2
e + a2

e) , (50)

where vF , aF are the (axial-)vector couplings for Z → FF .

e+ e− → jets

At high energies, the two-jet structure from e+e− → qq dominates, being the only process at O(α0
s). At

O(αs) and omitting Z exchange, we have in addition gluon bremsstrahlung off quarks giving rise to a
three-jet structure:

e+(q1)e−(q2)→ q(p1)q(p2)G(p3) . (51)

e–

e+

q

q

γ
G +

Fig. 6: Leading-order diagrams for three-jet production

The calculation is again identical to QED bremsstrahlung except for a factor (sum over all final
states in the rate)

∑

a

tr(tFa t
F
a ) = TF

∑

a

δaa = TF nSU(3) = dFCF = 3CF = 4 . (52)
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With the kinematics specified by

s = (q1 + q2)2, (pi + pj)
2 = (q1 + q2 − pk)2 =: s(1− xk) (53)

x1 + x2 + x3 = 2, CMS : xi = 2Ei/
√
s ,

the double differential cross-section (for massless quarks) is found to be

d2σ

dx1 dx2
=

2αsσ0

3π

x2
1 + x2

2

(1− x1)(1 − x2)
with σ0 =

4πα2

s

∑

f

(Qf/e)
2 . (54)

The problem with this cross-section is that it diverges for xi → 1 (i = 1, 2). This infrared divergence is
due to the singular behaviour of the quark propagator and it happens even for massive quarks:

(p2 + p3)2 −m2
q = 2p2 · p3 = s(1− x1) . (55)

mq > 0 : x1 → 1 only possible for p3 → 0 (soft gluon singularity);

mq = 0 : x1 = 1 also possible for p3 || p2 (collinear singularity) .

To understand the origin of infrared divergences, we first take the viewpoint of an experimentalist
measuring three-jet events where the jets stand for the quarks and the gluon in the final state.

– Depending on the detector resolution, a quark and a soft gluon cannot be distinguished from a
single quark. In that case, the event will be counted as a two-jet event.

– Two collinear massless particles can never be resolved: they always stay together.

From the viewpoint of a theorist, we recall that perturbation theory is built on the assumption that par-
ticles do not interact when they are sufficiently far apart. This assumption is not really satisfied for
massless quanta like photons or gluons that give rise to long-range forces. In other words, an electron (a
quark) can never be separated from its cloud of soft photons (gluons).

The practitioner’s solution of the infrared problem is well understood:

– One must define criteria to distinguish between (in the present case) two- and three-jet events (jet
algorithms).

– Virtual gluon (loop) corrections for the process e+e− → qq must be included.

2.2 Higher-order corrections and renormalization
The loop corrections of O(αs) for e+e− → qq are calculated from the Feynman diagrams below. The
resulting amplitudes are both infrared and ultraviolet divergent.

e–

e+

q

q

γ
+ +

Fig. 7: One-loop diagrams for e+e− → qq

In contrast to infrared divergences, ultraviolet divergences are due to the high-momentum compo-
nents of the particles in loops. Common sense tells us that those components can not influence physics at
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low energies. If this were the case we would have to give up all hopes of being able to make predictions
at currently accessible energies.

The recipe to handle ultraviolet divergences is also well understood. One first has to choose a
method to cut off the high-momentum components. There are infinitely many ways to do that, so the
question is legitimate whether the final amplitudes will depend on that procedure rendering the result
completely arbitrary. The answer is that the cut-off procedure (regularization) must always be accom-
panied by renormalization. Before choosing a suitable regularization procedure let us therefore try to
understand the idea of renormalization, using the most naive regularization method.

To simplify matters as much as possible, we consider the elastic scattering of two particles in
massless scalar φ4 theory (Lint ∼ λφ4):

φφ→ φφ , (56)

with scattering amplitude A(s, t) in terms of the usual Mandelstam variables. We now define what we
mean by the physical (renormalized) coupling constant. The definition should be applicable at every
order of perturbation theory and it should coincide with the constant λ in the Lagrangian at tree level. A
possible definition in scalar φ4 theory is

λr(µ) := A(s = −t = µ2) (57)

with an arbitrary renormalization scale µ. At tree level, A(s, t) is momentum independent and with the
proper normalization we have indeed λr(µ) = λ.

Beyond tree level, the amplitude has an ultraviolet divergence that we regularize with a simple
momentum cut-off Λ here. The relevant diagrams up to one loop are shown in Fig. 8.

= + + ⋅⋅⋅

Fig. 8: Scattering amplitude for φφ→ φφ to one-loop order

Setting s = −t = µ2, one finds (β0 is a constant)

λr(µ) = A(s = −t = µ2) = λ+ β0λ
2 log Λ/µ (58)

+ µ−independent terms of O(λ2) +O(λ3) .

Since λr(µ) is finite, being equal to the physical scattering amplitude at some fixed point in phase
space, the bare coupling λ diverges as the cut-off Λ → ∞. However, the bare coupling is not related to
any physical quantity. Therefore, we are free to “sweep the infinities under the rug” as long as this is
done in a transparent and controllable way.

To do this, we change the renormalization scale by a small amount δµ:

λr(µ+ δµ)− λr(µ) = β0λ
2 log

(
Λ

µ+ δµ

µ

Λ

)
+O(λ3)

= β0λ
2
r log

µ

µ+ δµ
+O(λ3

r) = −β0λ
2
r
δµ

µ
+O[(δµ)2] +O(λ3

r) . (59)

The bare coupling and the cut-off have disappeared in the last equation. Expanding λr(µ + δµ) around
µ and letting δµ→ 0, we recover the β function of φ4 theory to one-loop order:

µ
dλr(µ)

dµ
= −β0λ

2
r(µ) +O(λ3

r) = β(λr(µ)) . (60)
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Unlike in Yang–Mills theories, β0 < 0 so that φ4 theory is ultraviolet unstable like all quantum field
theories except non-Abelian gauge theories [5,12]. However, for understanding the essence of renormal-
ization the important observation is that physical quantities do not depend on the bare coupling constant
λ nor on the cut-off Λ (for Λ → ∞) but only on the renormalized coupling λr(µ). For the purpose of
comparing theory with experiment at present energies, we shall never notice the stuff that was swept
under the rug.

We now turn to the choice of a regularization scheme. Although there are infinitely many possi-
bilities, some choices are clearly better than others. The main criteria are

– The regularization method should respect symmetries of the theory as much as possible. In this re-
spect, the previously employed momentum cut-off is as bad as it gets violating Poincaré symmetry,
gauge invariance, etc.

– The scheme should violate only those symmetries that are necessarily violated by quantum effects
(anomalies).

– The method should be simple to handle in practice.

From the practitioner’s point of view, dimensional regularization is the almost unique choice fulfilling
these criteria. Let us demonstrate the method with a simple example, electronic vacuum polarization
(setting me = 0).

q

k

k-q

q

Fig. 9: Vacuum polarization at one loop

Gauge invariance, guaranteed by dimensional
regularization, implies the same structure as in
the hadronic case:

Πµν(q) =
(
−gµνq2 + qµqν

)
Π(q2) (61)

Π(q2) =
8e2Γ(ε)

(4π)2−ε

∫ 1

0

dxx(1− x)

[−q2x(1− x)]ε

Γ(x) = 1/x− γ +O(x), 2ε = 4− d .

Since dimensional regularization works in d dimensions, there is a small problem here: there is no
scale for log (−q2) that will appear in the explicit form of Π(q2). To solve the problem, we insert unity
(the scale µ and the constant c are completely arbitrary) in the expression and expand the second factor
in ε:

1 = (cµ)−2ε(cµ)2ε = (cµ)−2ε
[
1 + ε log µ2 + 2ε log c+O(ε2)

]
. (62)

Various schemes on the market differ by the constant c:
MS c = 1

MS log c = (γ − log 4π)/2 .

Using the most popular scheme (MS), the final result is

Π(q2) =
e2

12π2

{
(cµ)−2ε

ε
− log (−q2/µ2) +

5

3

}
+O(ε)

= ΠMS
div (ε, µ)− e2

12π2

{
log (−q2/µ2)− 5

3

}
. (63)

The divergent part ΠMS
div (ε, µ) has been isolated and it will be absorbed by wave function renormalization

of the photon field contributing to charge renormalization. We also notice that the coefficients of 1/ε and
− log (−q2/µ2) are identical: the β function can be extracted from the divergent part. The stuff under
the rug is useful after all.
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Back to the loop corrections of Fig. 7, we observe that the diagrams give rise to an amplitude
proportional to g2

s , whereas A(e+e− → qqG) ∼ gs. How can the infrared divergences cancel among
amplitudes of different order in gs? The answer is that they can not cancel on the level of amplitudes
because the final states are different. Not the amplitudes but the rates must be added. Interference with
the tree amplitude produces an O(αs) term in σ(e+e− → qq) that can and will cancel the infrared
divergence in σ(e+e− → qqG). For details of the calculation I refer to the monograph [13], an excellent
source for applications of perturbative QCD in general.

The easier part are the loop corrections for σ(e+e− → qq). With dimensional regularization to
regularize the infrared divergences, one finds

σinterference
qq = σ0CF

αs
4π
H(ε)

{
− 4

ε2
− 6

ε
− 16 +O(ε)

}
, H(0) = 1 . (64)

The less familiar part is the three-body phase space integration in d dimensions giving rise to

σqqG = σ0CF
αs
4π
H(ε)

{
4

ε2
+

6

ε
+ 19 +O(ε)

}
. (65)

The infrared divergences cancel as expected.

Adding the lowest-order cross-section, one obtains finally

σ(e+e− → hadrons) = σ0

(
1 + 3CF

αs
4π

+O(α2
s)
)

= σ0

(
1 +

αs
π

+O(α2
s)
)
, (66)

with σ0 defined in Eq. (54). The cross-section σ(e+e− → hadrons) is nowadays known up to O(α3
s).

Replacing αs by the renormalization group improved running coupling αs(
√
s), the general result for

Re+e− can be written

Re+e−(s) = Nc

∑

f

Q2
f/e

2



1 +

∑

n≥1

Cn

(
αs(
√
s)

π

)n


 (67)

= R
(0)
e+e−

{
1 +C1

αs(µ)

π
+

[
C2 − C1

β0

4
log (s/µ2)

](
αs(µ)

π

)2

+ . . .

}
.

The normalization is such that C1 = 1, the coefficients C2, C3 being also known.

In principle, Re+e−(s) is independent of the arbitrary scale µ by construction. In reality, the
unavoidable truncation of the perturbative series introduces a scale dependence. Although there is no
unique prescription for the optimal choice of µ, the obvious choice here is µ2 = s to avoid large log-
arithms. If the perturbative expansion is to make sense, we expect higher orders to mitigate the scale
dependence. This is nicely demonstrated in Fig. 10 taken from Ref. [13] where the deviation (in per
cent) of Re+e−(

√
s = 33 GeV) from R

(0)
e+e− is plotted as a function of µ. As expected, µ2 = s is indeed

a very reasonable choice already at O(αs) (L).

2.3 Measurements of αs
How should one characterize the coupling strength of QCD? After all, the scale µ is arbitrary and, in
addition, αs(µ) is in general scheme dependent. For qualitative purposes, one may introduce a scale
ΛQCD that is independent of the renormalization scale µ. The drawback is that this quantity is scheme
independent only at leading (one-loop) order:

αs(E) =
4π

β0 log (E2/Λ2
QCD)

. (68)
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Fig. 10: Improvement of the scale dependence in higher orders of perturbation theory for Re+e−(
√
s = 33 GeV)

(taken from the book of Ellis, Stirling and Webber [13]).

The coefficient β0 is defined by rewriting the β function for αs (instead of for gs as in Section 1.1):

µ
dαs(µ)

dµ
= 2β(αs) = − β0

2π
α2
s −

β1

4π2
α3
s + . . . (69)

The β function is known up to four loops (coefficient β 3) but only the first two coefficients

β0 = 11− 2NF /3 , β1 = 51− 19NF /3 (70)

are scheme and gauge independent.

Since the scheme dependence is unavoidable, the coupling strength is nowadays usually given in
the form of αMS

s (MZ). Of course, this fixes αMS
s (µ) at any scale via the integral

log (µ2
2/µ

2
1) =

∫ αs(µ2)

αs(µ1)

dx

β(x)
. (71)

To get a first rough estimate of αs, consider the leading-order prediction

Re+e−(MZ) = R
(0)
e+e−(MZ)

(
1 +

αs(MZ)

π

)
. (72)

Comparing the combined LEP result [14] Re+e−(MZ) = 20.767 ± 0.025 with the tree-level prediction
R

(0)
e+e−(MZ) = 19.984, one obtains

αs(MZ) = 0.123 ± 0.004 , (73)

close to the full three-loop result and not bad at all for a first estimate. A compilation of results can
be found in the Review of Particle Physics [14]. In Figs. 11 and 12, the most recent data compiled by
Bethke [15] are shown.

The first impression is the remarkable agreement among experiments and with theory. However,
for determining the best value of αs(MZ), the following two problems must be kept in mind:
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jets & shapes 161 GeV
jets & shapes 172 GeV

0.08 0.10 0.12 0.14
(((( ))))s Z

-decays [LEP]

xF [ -DIS]
F [e-, µ-DIS]

decays

(Z --> had.) [LEP]

e e [ ]+ had
_

e e [jets & shapes 35 GeV]+ _

(pp --> jets)

pp --> bb X

0

QQ + lattice QCD

DIS [GLS-SR]

2
3

pp, pp --> X

DIS [Bj-SR]

e e [jets & shapes 58 GeV]+ _

jets & shapes 133 GeV

e e [jets & shapes 22 GeV]+ _

e e [jets & shapes 44 GeV]+ _

e e [ ]+
had

_

jets & shapes 183 GeV

DIS [pol. strct. fctn.]

jets & shapes 189 GeV

e e [scaling. viol.]+ _

jets & shapes 91.2 GeV

e e F+ _
2

e e [jets & shapes 14 GeV]+ _

e e [4-jet rate]+ _

jets & shapes 195 GeV
jets & shapes 201 GeV
jets & shapes 206 GeV

DIS [ep –> jets]

Fig. 11: Compilation of data for the extraction of
αMS
s (MZ) by Bethke [15]

Fig. 12: Energy dependence of the running coupling
constant αMS

s (Q) [15]

– Different observables are known with different theoretical accuracy: next-to-leading order (NLO)
vs. next-to-next-to-leading order (NNLO). Not only the scale dependence but also different scheme
dependences must be taken into account.

– Theoretical errors are not normally distributed.

Using only NNLO results, Bethke found [15]

αs(MZ) = 0.1182 ± 0.0027 , (74)

very similar to the PDG average [14] (using a different procedure)

αs(MZ) = 0.1187 ± 0.0020 . (75)

All values in this paragraph refer to αMS
s (MZ).

2.4 Hadronic τ decays
A remarkably precise value for αMS

s (MZ) comes from hadronic τ decays. At first sight, this is quite
surprising because at the natural scale µ = mτ one has approximately αs(mτ ) ' 0.35. Can one ex-
pect reasonable convergence of the perturbative series for such a large coupling and how big are the
nonperturbative corrections?
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The first systematic investigation of Rτ = Γ(τ− → ντ + hadrons)/Γ(τ− → ντe
−νe) was

performed by Braaten, Narison and Pich [16]. The analysis is similar to the one for R e+e− , with obvious
modifications: the electromagnetic current (coupling to e+e−) must be replaced by the charged weak
current (coupling to τντ ).

We start again with the two-point function (of weak currents L µ = uγµ(1− γ5)dθ):

Πµν
L (q) = i

∫
d4x eiq · x〈0|TLµ(x)Lν(0)†|0〉

=
(
−gµνq2 + qµqν

)
Π

(1)
L (q2) + qµqνΠ

(0)
L (q2) , (76)

with dθ the Cabibbo-rotated d-quark field. One major difference to the electromagnetic case is that one
has to integrate over the neutrino energy or, equivalently, over the hadronic invariant mass s:

Rτ = 12π

∫ m2
τ

0

ds

m2
τ

(
1− s

m2
τ

)2{(
1 + 2

s

m2
τ

)
ImΠ

(1)
L (s) + ImΠ

(0)
L (s)

}
. (77)

The problem is that the integration extends all the way down to s = 0 (for mu = md = 0) where pertur-
bation theory is certainly not applicable.

However, QFT provides information about the analytic structure of two-point functions that can
be used in a standard manner to circumvent the problem. The invariant functions Π

(0,1)
L (s) are known to

be analytic in the complex s-plane with a cut on the positive real axis. Therefore, Cauchy’s theorem tells
us that the contour integral in Fig. 13 vanishes.

Im s

m

Re s

2
τ

Fig. 13: Contour in the complex s-plane for the two-point functions Π
(0,1)
L (s)

One can now trade the integral along the cut of

ImΠ
(0,1)
L (s) =

1

2i

[
Π

(0,1)
L (s+ iε)−Π

(0,1)
L (s− iε)

]
(78)

for an integral along the circle |s| = m2
τ in the complex s-plane. It turns out that the nonperturbative

corrections are now manageable, being suppressed as (ΛQCD/mτ )
6. Very helpful in this respect is the

factor
(

1− s

m2
τ

)2

in the integrand that suppresses potentially big contributions near the endpoint of the

cut. The final result can be written in the form [16]

Rτ = 3
(
|Vud|2 + |Vus|2

)
SEW

{
1 + δ′EW + δpert + δnonpert

}
(79)
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with leading and nonleading electroweak corrections SEW = 1.0194 and δ′EW = 0.0010, respectively.
The perturbative QCD corrections of interest for the extraction of αs are contained in

δpert =
αs(mτ )

π
+

(
C2 +

19

48
β0

)(
αs(mτ )

π

)2

+ . . . (80)

=
αs(mτ )

π
+ 5.2

(
αs(mτ )

π

)2

+ 26.4

(
αs(mτ )

π

)3

+O(αs(mτ )
4) .

Finally, the best estimates of nonperturbative contributions, using QCD sum rules and experimen-
tal input, yield

δnonpert = −0.014 ± 0.005 . (81)

From the PDG fit for Rτ one then obtains αs(mτ ) = 0.35±0.03. More interestingly, running this
value down to MZ with the help of the four-loop β function, one finds

αs(MZ) = 0.121 ± 0.0007(exp)± 0.003(th), (82)

not only compatible but in fact very much competitive with other high-precision determinations.

2.5 Deep inelastic scattering
From the conception of QCD till today, deep inelastic scattering of leptons on hadrons has had an enor-
mous impact on the field. It is also a classic example for the factorization between long- and short-
distance contributions.

Let us start with the kinematics of (in)elastic electron–proton scattering e−(k) + p(p)→ e−(k′)+
X(pX) shown in Fig. 14. In the case of elastic scattering (X = p), we have

W 2 = m2 , Q2 = 2mν , x = 1 (83)

and the usual two variables are s = (p+ k)2, Q2 with the differential cross-section dσ(s,Q2)/dQ2.

For the inclusive scattering, there is a third independent variable: a convenient choice is s, x, y
with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. In general, we distinguish different types of deep inelastic scattering:

type exchange

neutral current (NC) DIS γ, Z, γZ-interference

charged current (CC) DIS W±

For these lectures I restrict the discussion to photon exchange and to unpolarized (spin-averaged) DIS.

The matrix element for the diagram in Fig. 14 has the structure e l(epton)µ
gµν

Q2
e h(adron)ν , with

leptonic and hadronic current matrix elements l(epton)µ and h(adron)ν , respectively. The resulting
double differential cross-section is of the form

d2σ

dxdy
= x(s−m2)

d2σ

dxdQ2
=

2πyα2

Q4
Lµν H

µν (84)

Lµν = 2(kµk
′
ν + k′µkν − k · k′gµν)

Hµν(p, q) =
1

4π

∫
d4zeiq · z〈p, s|

[
Jµelm(z), Jνelm(0)

]
|p, s〉 .
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e– e–

γ

X

P

q = k − k′, Q2 = −q2 > 0, p2 = m2

ν = p · q/m = E −E ′ (target rest frame)

x =
Q2

2mν
, y =

p · q
p · k = 1−E′/E

W 2 = p2
X = (p+ q)2 = m2 + 2mν −Q2 ≥ m2 .

Fig. 14: Deep inelastic scattering

One now performs a Lorentz decomposition of the hadronic tensorH µν and contracts it with the leptonic
tensor Lµν (setting me = 0). The differential cross-section then depends on two invariant structure
functions F1, F2 (in the photon case), which are themselves functions of the scalars p.q, q2 or ν,Q2 or
x,Q2:

d2σ

dxdy
=
Q2

y

d2σ

dxdQ2
=

4πα2

xyQ2

{(
1− y − x2y2m2

Q2

)
F2(x,Q2) + y2xF1(x,Q2)

}
. (85)

Deep inelastic scattering corresponds to Q2 � m2 and W 2 � m2. While the cross-section shows a
rather complicated behaviour at low and intermediate momentum transfer, the structure functions exhibit
an originally unexpected simple behaviour in the so-called Bjorken limit

Q2 � m2, ν � m with x =
Q2

2mν
fixed . (86)

As shown for F2 in Fig. 15, in the Bjorken limit the structure functions seem to depend on the variable x
only:

Fi(x,Q
2) −→ Fi(x) . (87)

This scaling behaviour suggested that the photon scatters off point-like constituents (no scale) giving rise
to the quark parton model (QPM).

Fig. 15: Evidence for Bjorken scaling taken from Ref. [13]

QPM in the Breit frame

The characteristics of the QPM can best be visualized in the so-called Breit frame where the proton and
the virtual photon collide head-on.

The nucleon is pictured as a bunch of partons with negligible transverse momenta. Each parton
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p
q

Breit frame

p ' (P, P, 0, 0) with P � m

q = (0,−
√
Q2, 0, 0)

Fig. 16: DIS in the Breit frame

carries a fractional momentum ξ p. Since the scattered quark is massless (compared to P ), we have

(q + ξp)2 ' −Q2 + 2ξp.q = 0 (88)

and therefore

ξ = x , P =

√
Q2

2x
, q + xp = (xP,−

√
Q2/2, 0, 0) . (89)

The struck parton scatters with momentum q + xp backwards, i.e., in the direction of the virtual photon,
justifying a major assumption of the QPM: the virtual photon scatters incoherently on the partons.

The fundamental process of the QPM is elastic electron–quark scattering

e−(k) + q(ξp)→ e−(k′) + q(ξp+ q) . (90)

Since there are now only two independent variables, the double differential cross-section in Eq. (85)
contains a δ-function setting x equal to ξ:

d2σ(q)

dxdy
=

4πα2

yQ2

[
1 + (1− y)2

] Q2
q

2
δ(x− ξ) . (91)

In the notation of Eq. (85),

F2(q) = xQ2
qδ(x− ξ) = 2xF1(q) . (92)

The incoherent sum of partonic cross-sections amounts to an integral over quark distribution functions
q(ξ), q(ξ):

F2(x) =
∑

q,q

∫ 1

0
dξ q(ξ)xQ2

q δ(x− ξ) =
∑

q,q

Q2
q x q(x) , (93)

implying the Callan–Gross relation [17]

F2(x) = 2xF1(x) (94)

that is due to the spin-1/2 nature of quarks. The so-called longitudinal structure function F L = F2−2xF1

therefore vanishes in the QPM.

It was already known at the beginning of the seventies, before the advent of QCD, that exact
scaling in the sense of the QPM was incompatible with a nontrivial QFT. QCD must therefore account
for the systematic deviation from scaling that is clearly seen in the data (e.g., in Fig. 17): with increasing
Q2, the structure function F2 increases (decreases) at small (large) x. Qualitatively, scaling violation is
due to the radiation of (hard) gluons generating transverse momenta for the quarks. More gluons are
radiated off when Q2 increases, leading to logarithmic scaling violations in the structure functions and to
scale-dependent parton distribution functions (pdf) qi(x, µ2), g(x, µ2) as we shall now discuss in more
detail.
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Fig. 17: Experimental evidence for the violation of Bjorken scaling taken from Ref. [18]

DIS in QCD

In QCD at leading order in gs, the same diagrams need to be considered as the ones in Figs. 6, 7 relevant
for e+e− → hadrons except for crossing.

Previously, the sum of real and virtual gluon emission was infrared finite because a sum over all
final-state quarks and gluons was involved. In DIS the situation is different because the initial state con-
tains a quark. Since different incoming quark momenta are in principle distinguishable, gluons collinear
with the incoming quark generate in fact an infrared divergence. How to get rid of this divergence will
be discussed later but for now we regulate the infrared divergence with a cut-off on the transverse quark
momentum k2

⊥ ≥ κ2. Adding the contribution to F2(q) from real gluon emission (ξ = 1 for simplicity)
one finds

F2(q)(x,Q
2) = Q2

q x

[
δ(1 − x) +

αs
2π

(
Pqq(x) log

Q2

κ2
+ Cq(x)

)]
. (95)

Introduction of the cut-off κ has produced a logarithmic dependence onQ2. This dependence is governed
by the so-called quark–quark splitting function Pqq(x). This function is universal, in contrast to the non-
logarithmic coefficient function Cq(x) that is scheme dependent.

The origin of the scheme-independent logQ2 can be understood as follows. The struck quark

acquires a transverse momentum k⊥ with probability αs
dk2
⊥

k2
⊥

. Since k2
⊥ cannot be bigger than Q2,

integrating over all k⊥ produces the term αs logQ2/κ2. Virtual gluon contributions (diagrams in Fig. 7)
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must still be added and they are ultraviolet finite as before. Since this is a contribution from elastic
scattering it must be proportional to δ(1 − x). Altogether, the quark–quark splitting function at leading
order is

Pqq(x) =
4

3

(
1 + x2

[1− x]+

)
+ 2 δ(1 − x) . (96)

Also the first part of Pqq(x) is actually a distribution. The distribution [F (x)]+ is defined in such a way
that for every sufficiently regular (test) function f(x) one has

∫ 1

0
dx f(x) [F (x)]+ =

∫ 1

0
dx (f(x)− f(1))F (x) . (97)

It is then straightforward to show that Pqq(x) in Eq. (96) can also be written as

Pqq(x) =
4

3

[
1 + x2

(1− x)

]

+

. (98)

The problem remains how to interpret (or rather get rid of) the infrared cut-off κ. Up to now, we
have only considered the quark structure function F2(q)(x,Q

2). To get F2(x,Q2) for the nucleon, we

convolute F2(q)(
x

ξ
,Q2) with a (bare) pdf q0(ξ):

F2(x,Q2) = x
∑

q,q

Q2
q

[
q0(x) +

αs
2π

∫ 1

x

dy

y
q0(y)

{
Pqq(x/y) log

Q2

κ2
+Cq(x/y)

}]
. (99)

One now absorbs the collinear singularity ∼ log κ2 into q0(x) at a factorization scale µ to define a
renormalized pdf q(x, µ2):

q(x, µ2) = q0(x) +
αs
2π

∫ 1

x

dy

y
q0(y)

{
Pqq(x/y) log

µ2

κ2
+ C ′q(x/y)

}
. (100)

The interpretation of q(x, µ2) is straightforward: the soft part k2
⊥ ≤ µ2 is now included in the pdf. Since

the scale µ is arbitrary, the renormalized pdf is necessarily scale dependent, in complete analogy with
the renormalization of ultraviolet divergences. As a small aside, we note that the coefficient function C ′q
need not be the same as Cq in Eq. (95), both being scheme dependent. The final form for the nucleon
structure function F2 in the MS scheme (except for a contribution from the gluon pdf) is then

F2(x,Q2) = x
∑

q,q

Q2
q

∫ 1

x

dy

y
q(y, µ2)

[
δ(1 − x/y) +

αs
2π

{
Pqq(x/y) log

Q2

µ2
+ CMS

q (x/y)

}]

= x
∑

q,q

Q2
q

∫ 1

x

dy

y
q(y,Q2)

[
δ(1− x/y) +

αs
2π
CMS
q (x/y)

]
. (101)

This factorization formula can be proven to all orders in αs, separating the calculable hard part from
the soft part contained in the scale-dependent pdfs. The pdfs q(x, µ2), q(x, µ2), g(x, µ2) describe the
composition of nucleons and are, of course, not calculable in perturbation theory. They can be extracted
from experimental data with the help of appropriate parametrizations (cf., for example, Ref. [13]) but the
question remains what the factorization result (101) is actually good for.

The answer is that even though the functional dependence of the pdfs can not be calculated their
scale dependence is calculable in QCD perturbation theory. The derivation of the so-called DGLAP
evolution equations [19] is very similar to the derivation of the β function in Section 1.1, starting from
the observation that the measurable structure function must be scale independent:

µ2 dF2(x,Q2)

dµ2
= 0 −→ µ2dq(x, µ

2)

dµ2
=
αs(µ)

2π

∫ 1

x

dy

y
Pqq(x/y, αs(µ))q(y, µ2) (102)
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Pqq(x, αs(µ)) = P (0)
qq (x) +

αs(µ)

2π
P (1)
qq (x) + . . . (103)

With P (0)
qq (x) given by Eq. (98), the evolution equation at leading order takes the explicit form

µ2 dq(x, µ
2)

dµ2
=

2αs(µ)

3π

∫ 1

x

dz

z
q(x/z, µ2)

1 + z2

1− z −
2αs(µ)

3π
q(x, µ2)

∫ 1

0
dz

1 + z2

1− z . (104)

Owing to soft gluons, both terms on the right-hand side are divergent: the first term with positive sign is
due to quarks with momentum fraction larger than x radiating off gluons whereas the second term leads
to a decrease from quarks with given x that radiate gluons. The overall result is finite.

At O(αs) also the gluon pdf enters via γ∗ + g → q + q. At any order, the DGLAP equations are
in general (2NF + 1)-dimensional matrix equations for qi(x, µ2), qi(x, µ2) (i = 1, . . . , NF ), g(x, µ2)
with splitting functions Pqq(x), Pqg(x), Pgq(x) and Pgg(x). The analytic calculation of these splitting
functions to next-to-next-to-leading order (three loops) has just been completed [20] allowing for precise
tests of scaling violations. Finally, we note that the longitudinal structure function FL(x,Q2) that was
zero in the QPM is generated in QCD already at O(αs).

For more applications of perturbative QCD I refer once again to the book of Ellis, Stirling and
Webber [13]: jets in e+e− and hadroproduction, vector boson production (Drell–Yan), heavy quark
production and decays, Higgs production at the LHC, etc.

3 Heavy and light quarks
3.1 Effective field theories
Unlike QED, QCD is valid down to shortest distances because of asymptotic freedom. However, at long
distances where quarks and gluons are practically invisible, perturbative QCD is not applicable and a
nonperturbative approach is needed. Many models can be found in the literature that are more or less
inspired by QCD. Qualitative insights into the structure of the strong interactions have been found from
model studies but quantitative predictions require methods that can be related directly to QCD. There are
essentially only two approaches that satisfy this criterion.

– Lattice QCD has already scored impressive results and may in the long run be the most predictive
method. At present, the range of applicability is still limited.

– Effective field theories (EFTs) are the quantum field theoretical formulation of the “quantum lad-
der”: the relevant degrees of freedom depend on the typical energy of the problem. EFTs become
practical tools for phenomenology when the characteristic energy scales are well separated.

Let a given step of the quantum ladder be characterized by an energy scale Λ. The region E > Λ is the
short-distance region where the fundamental theory is applicable. At long distances (E < Λ), on the
other hand, an effective QFT can and sometimes must be used. By definition, the notions “fundamental”
and “effective” only make sense for a given energy scale Λ. As we probe deeper into the physics at short
distances, today’s fundamental theory will become an effective description of an even more fundamental
underlying theory.

To understand the different effective field theories that are being used in particle physics, it is
useful to classify them according to the structure of the transition between the fundamental and the
effective level.

– Complete decoupling

The heavy degrees of freedom (heavy with respect to Λ) are integrated out, i.e., they disappear
from the spectrum of states that can be produced with energies < Λ. Correspondingly, the effective
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Lagrangian contains only light fields (once again, light stands for masses < Λ) and may be written
symbolically as

Leff = Ld≤4 +
∑

d>4

1

Λd−4

∑

id

gidOid . (105)

The first part Ld≤4 contains all the renormalizable couplings for the given set of fields. The
best-known example for such a Lagrangian is the Standard Model itself. The second part of the
Lagrangian (105) contains the nonrenormalizable couplings having operator dimension d > 4.
The best-known example here is the Fermi theory of weak interactions with d = 6 and Λ = MW .
For the Standard Model, on the other hand, we do not know the scale where new physics will
appear. Present experimental evidence implies Λ > 100 GeV but there are good reasons to expect
new physics around Λ ∼ 1 TeV.

– Partial decoupling
In this case, heavy fields do not disappear completely in the EFT. Via so-called field redefini-
tions, only the high-momentum modes are integrated out. The main application of this scenario in
particle physics is for heavy quark physics.

– Spontaneous symmetry breaking (SSB)
In the previous two classes, the transition from the fundamental to the effective level was smooth.
Some of the fields or at least their high-energy modes just drop out and the effective description
involves the remaining fields only. In the present case, the transition is more dramatic and involves
a phase transition: SSB generates new degrees of freedom, the (pseudo-)Goldstone bosons asso-
ciated with spontaneously broken symmetries (to be discussed in more detail in Section 3.4). The
prefix pseudo accounts for the frequent case where the symmetry in question is not only spon-
taneously but also explicitly broken. Goldstone bosons in the strict sense are massless and the
associated SSB relates processes with different numbers of Goldstone bosons. As a consequence,
the distinction in the Lagrangian (105) between renormalizable (d ≤ 4) and nonrenormalizable
(d > 4) terms becomes meaningless. Therefore, EFTs in this category are generically nonrenor-
malizable. An important but maybe too simple exception is the Higgs model for electroweak SSB.
The generic EFT Lagrangian is organized in the number of derivatives of Goldstone fields and in
the number of terms with explicit symmetry breaking. An important concept is universality: it
turns out that EFTs describing different physical situations have very similar structure. In QCD,
the symmetry in question is chiral symmetry that becomes exact in the limit of massless quarks.
In the real world, SSB of chiral symmetry generates pseudo-Goldstone bosons that are identified
with the pseudoscalar mesons π,K, η.

We are used to deriving quantitative predictions from renormalizable QFTs in the framework of pertur-
bation theory but how should we treat nonrenormalizable EFTs? The clue to the answer is Goldstone’s
theorem [21] that makes two crucial predictions. The first prediction is well known: SSB implies the
existence of massless Goldstone bosons. The second consequence of Goldstone’s theorem is not that
well known but very important as well: Goldstone bosons decouple when their energies tend to zero.
In other words, independently of the strength of the underlying interaction (the strong interaction in our
case), Goldstone bosons interact only weakly at low energies. This important feature allows for a system-
atic expansion of strong amplitudes even in the confinement regime, which is precisely the low-energy
regime of QCD.

However, in contrast to the decoupling case (e.g., in heavy quark physics), the coupling constants
of the low-energy EFT cannot be obtained by perturbative matching with the underlying theory of QCD.
Other methods have to be used to get access to the low-energy couplings.
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3.2 Heavy quarks
Quarks can not be put on a balance, or more realistically, their energies and momenta can not be measured
directly. How do we then determine their masses? Two methods have been used.

– The first approach ignores confinement and calculates the pole of the quark propagator just as
we determine, at least in theory, the mass of the electron. This looks rather artificial because the
full quark propagator should have no pole because of confinement. Going ahead nevertheless, one
expects those pole masses to be very much affected by nonperturbative infrared effects. In practice,
this method is only used for the top quark with [14]

mt = 174.3 ± 5.1 GeV . (106)

– Quark masses are parameters of the QCD Lagrangian just like the strong coupling constant gs. One
therefore studies the influence of these parameters on measurable quantities and extracts specific
values for the masses by comparison with experimental measurements. As for the strong coupling
constant, renormalization is crucial and introduces a scale dependence also for quark masses. The
scale dependence is governed by a differential equation very similar to the renormalization group
equations (9) or (69) for the strong coupling:

µ
dmq(µ)

dµ
= −γ(αs(µ))mq(µ) (107)

where the anomalous dimension γ is nowadays known up to four-loop accuracy:

γ(αs) =
4∑

n=1

γn

(αs
π

)n
. (108)

The solution of this renormalization group equation for mq(µ) is flavour independent (in the MS
scheme):

mq(µ2) = mq(µ1) exp

{
−
∫ αs(µ2)

αs(µ1)
dx

γ(x)

2β(x)

}
. (109)

Since γ(αs) is positive, quark masses decrease with increasing scale µ, e.g.,

mq(1 GeV)

mq(MZ)
= 2.30 ± 0.05 . (110)

Different methods have been used to determine the quark masses: H(eavy) Q(uark) E(ffective)
T(heory) (see below), QCD sum rules (Section 3.3), lattice QCD, etc. The current state is summarized
in Fig. 18 taken from Ref. [22]. All values correspond to the MS scheme: light quarks are given at the
scale 2 GeV whereas the heavy quarks mc,mb are listed as mq(mq).

Heavy quark effective theory (HQET)

Why should one use an EFT for b-quark physics? After all, QCD is still accessible in perturbation theory
for µ = mb. The main arguments in favour of HQET are the following.

– Although the hard effects are calculable in QCD perturbation theory, there are inevitably incal-
culable soft effects because hadrons rather than quarks and gluons appear in the final states of B
decays. The necessary separation between perturbative and nonperturbative contributions is much
easier to achieve in an EFT description. The keyword is the same as in deep inelastic scattering:
factorization.
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Fig. 18: The values of quark masses taken from the 2004 Review of Particle Physics [22]. The most recent data
points are at the top of each plot.

– Approximate symmetries that are hidden in full QCD become manifest in an expansion in 1/mQ.
– Explicit calculations simplify in general, in particular the resummation of large logs via renormal-

ization group equations.

The physics behind HQET can be understood by an analogy with atomic physics. The spectrum of the
hydrogen atom is to a good approximation insensitive to the proton mass. In fact, the atomic spectra of
hydrogen and deuterium are practically identical. The implementation of this analogy is most straight-
forward for hadrons with a single heavy quark (b or c). In the hadron rest frame the heavy quark ‘just sits
there’ acting as a colour source just as the proton acts as a Coulomb source in the hydrogen atom.

We decompose the momentum of the heavy quark as

pµ = mQv
µ + kµ , (111)

where v is the hadron velocity normalized to v2 = 1 (v = (1, 0, 0, 0) in the hadron rest frame). The
residual quark momentum k is then expected to be ofO(ΛQCD) only. Starting from the QCD Lagrangian
for a heavy quark Q,

LQ = Q(i /D −mQ)Q , (112)

we decompose the quark field Q(x) into two fields hv(x) and Hv(x) by using energy projectors P±v =
(1± /v)/2 and applying (shift) factors e imQv·x:

Q(x) = e−imQv·x (hv(x) +Hv(x)) (113)
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hv(x) = eimQv·xP+
v Q(x) , Hv(x) = eimQv·xP−v Q(x) .

It is easy to check that in the hadron rest frame the fields hv and Hv are just the upper (big) and lower
(small) components of the spinor field Q, respectively. Expressing LQ in terms of hv and Hv , one finds

LQ = Q(i /D −mQ)Q

= hv iv ·Dhv −Hv(iv ·D + 2mQ)Hv + mixed terms . (114)

For the purpose of illustration, we use the field equation (i /D − mQ)Q = 0 to eliminate Hv in this
Lagrangian:

LQ = hv iv ·Dhv + hv i /D⊥
1

iv ·D + 2mQ − iε
i /D⊥hv with Dµ

⊥ = (gµν − vµvν)Dν . (115)

The heavy quark mass mQ has disappeared from the kinetic term of the shifted field hv and has moved
to the denominator of a nonlocal Lagrangian that is in fact the starting point for a systematic expansion
in 1/mQ.

The Lagrangian for b and c quarks to leading order in 1/mQ is therefore

Lb,c = bv iv ·D bv + cv iv ·D cv . (116)

This Lagrangian exhibits two important symmetries. The symmetries are only approximate because the
Lagrangian (116) is not full QCD but the first approximation in an expansion in 1/mQ. The symmetries
are manifest in (116) but they are hidden in full QCD.

– A heavy-flavour symmetry SU(2) relates b and c quarks moving with the same velocity.
– Because there is no Dirac matrix in the Lagrangian (116), both spin degrees of freedom couple to

gluons in the same way. Together with the flavour symmetry, this leads to an overall spin-flavour
symmetry SU(4).

The simplest spin-symmetry multipletM consists of a pseudoscalar M and a vector meson M ∗. One of
the first important applications of spin-flavour symmetry was for the semileptonic decays B → D (∗)lνl.
In general, there are several form factors governing the two matrix elements (for D and D∗). To leading
order in 1/mQ, all those form factors are given up to Clebsch–Gordan coefficients by a single function
ξ(v · v′) called Isgur–Wise function:

〈M(v′)|hv′Γhv |M(v)〉 ∼ ξ(v · v′) . (117)

Moreover, hvγµhv is the conserved current of heavy-flavour symmetry. Similar to electromagnetic form
factors that are normalized at q2 = 0 due to charge conservation, the Isgur–Wise function is fixed in the
no-recoil limit v = v′ to be

ξ(v · v′ = 1) = 1 . (118)

Of course, there are corrections to this result valid only in the symmetry limit, both of O(αs) and in
general ofO(1/mQ). For the decayB → D∗lνl, the leading mass corrections turn out to be ofO(1/m2

Q)
only. HQET provides the standard method for the determination of the CKM matrix element Vcb (see
Ref. [23] for reviews).

HQET has been extended in several directions.

– Soft collinear effective theory (SCET)
HQET can not be applied to decays like B → Xsγ or B → ππ where the light particles in the
final state can have momenta of O(mQ). SCET accounts for those energetic light states but it is
more complicated than HQET. Because of the presence of several scales, several effective fields
must be introduced by successive field transformations. A major achievement is again the proof
of factorization that is for instance crucial for a reliable extraction of the CKM matrix element Vub
from experiment.
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– Nonrelativistic QCD (NRQCD)
This extension of HQET includes quartic interactions to treat heavy quarkonia b b and c c. In this
case, three widely separate scales are involved: the heavy mass mQ, the bound-state momentum
p ∼ mQv (v � 1) and the kinetic energy E ∼ mQv

2. Applications include the analysis of the q q
potential and the production and decay of quarkonia [24].

3.3 QCD sum rules
The general idea of QCD sum rules is to use the analyticity properties of current correlation functions
to relate low-energy hadronic quantities to calculable QCD contributions at high energies. We recall the
example of the two-point functions Π

(0,1)
L (q2) in hadronic τ decays discussed in Section 2.4.

In general, the QCD contribution consists itself of two different parts,

– a purely perturbative part and
– a partly nonperturbative part that is important at intermediate energies and makes use of the oper-

ator product expansion (OPE, another case of factorization).

Altogether, a typical two-point function (QCD sum rules are not restricted only to two-point functions,
however) has the form

Π(q2) = Πpert(q
2) +

∑

d

Cd(q
2)〈0|Od|0〉 . (119)

The so-called Wilson coefficients Cd(q2) are calculable perturbatively and they depend on the two-point
function under consideration. Up to logs, they decrease for large |q2| as (q2)−n(d) with some positive
integer n(d). The vacuum condensates 〈0|Od|0〉, on the other hand, are universal and they absorb long-
distance contributions with characteristic momenta <

√
|q2|.

Three main types of applications of QCD sum rules can be distinguished.

– Using experimental data as input for the low-energy hadronic part, one can extract universal QCD
parameters: αs, quark masses, condensates, etc.

– With QCD parameters known, one can predict hadronic quantities: hadron masses, decay con-
stants, amplitudes, etc.

– The compatibility of low-energy data with QCD can be checked. I shall discuss a recent example
of topical interest, the spectral data relevant for the leading hadronic contribution to the anomalous
magnetic moment of the muon.

(g − 2)µ

The biggest source of uncertainty in the calculation of the anomalous magnetic moment of the muon
aµ = (gµ − 2)/2 in the Standard Model is at present the lowest-order hadronic vacuum polarization

ahad,LO
µ = avac.pol.

µ =

∫ ∞

4M2
π

dtK(t)σ0(e+e− → hadrons)(t) (120)

depicted in Fig. 19. The kernel K(t) is a known function [25]. Although the integral extends from
threshold to infinity, about 73% of ahad,LO

µ are due to the ππ intermediate state in Fig. 19, governed by
the pion form factor. Moreover, 70% of ahad,LO

µ come from the region t ≤ 0.8 GeV2. Therefore, by far
the most important part is not calculable in QCD perturbation theory.
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Fig. 19: Lowest-order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon

A few years ago, Alemany, Davier and Höcker [26] suggested to use not only data from e+e− →
π+π− to extract the pion form factor but also from the decay τ− → π0π−ντ . In the isospin limit, it is
straightforward to derive the relation

σ0(e+e− → π+π−)(t) = h(t)
dΓ(τ− → π0π−ντ )

dt
(121)

with a known function h(t) where t is the two-pion invariant mass squared.

At the level of precision required for comparison with experiment (better than 1% for ahad,LO
µ ),

isospin violating and electromagnetic corrections are mandatory [27, 28]. The status until recently was
summarized by Höcker at the High-Energy Physics Conference in Beijing [29].

– There was a significant discrepancy between the τ and e+e− data, mainly above the ρ resonance
region, as shown in Fig. 20.
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Fig. 20: Comparison between e+e− and τ data for the pion form factor from Ref. [29]; plotted is the difference of
the form factors squared normalized to the τ data

– Isospin violation cannot explain the difference.
– The e+e− data from the KLOE experiment confirm the previous trend of the CMD-2 data although

the agreement among the e+e− data is not impressive.

The widely accepted recommendation at the Beijing Conference was to ignore the τ data until the origin
of the discrepancy is understood [29].

30

G. ECKER

84



The situation has changed both on the theoretical and on the experimental side. The theoretical
clarification is due to Maltman [30] who checked the consistency of experimental data with QCD by
investigating sum rule constraints for the two spectral functions relevant for the e+e− and the τ case,
respectively:

ρem(s) = Im Πelm(s) and ρI=1
V (s) = Im ΠL,ud(s) .

By using a contour integral in the complex s-plane as in Fig. 13, withm2
τ replaced by an a priori arbitrary

s0, one derives a so-called F(inite)E(nergy)S(um)R(ule)
∫ s0

0
w(s)ρ(s)ds = − 1

2π

∮

|s|=s0
w(s)Π(s)ds . (122)

Π(s), ρ(s) refer to the two cases considered (electromagnetic currents in the e+e− case, charged currents
for τ ) and w(s) is an analytic function (actually a polynomial) that will be chosen conveniently.

The right-hand side of the FESR can be estimated in QCD as exemplified by Eq. (119). The purely
perturbative part is known up to α3

s , with estimates of theO(α4
s) contribution available. For not too small

s0 the purely perturbative part dominates the right-hand side depending only on αs(MZ). The d = 2 part
is completely negligible in the τ case and it depends only on the mass of the strange quark in the elec-
tromagnetic case. The d = 4 contributions involve the quark condensates 〈0|mqqq|0〉(q = u, d, s) (very
well known from chiral perturbation theory, cf. Section 3.5) and the gluon condensate 〈0|αsGaµνGµνa |0〉
(less well but sufficiently well known from charmonium sum rules). For d ≥ 6, the relevant condensates
are practically unknown. However, by using the pinching trick (w(s0) = 0) appropriately, Maltman
eliminates the d = 6 OPE contributions to Π(s) altogether. The negligible effect of d ≥ 8 contributions
can be checked by varying s0.

Turning now to the left-hand side of the FESR (122), Maltman uses the most precise experimen-
tal data for the spectral functions: ALEPH (compatible with CLEO and OPAL) for ρI=1

V (s), CMD-2
for ρem(s). As a first test, he fits αs(MZ) (keeping the remaining OPE input fixed) from the exper-
imentally determined left-hand side of the FESR. The outcome is, quite independently of the weight
function w(s) that is always chosen positive and monotonically increasing for 0 ≤ s ≤ s0, that the fitted
value of αs(MZ) is systematically lower than the high-energy determination dominated by LEP in the
electromagnetic case while there is perfect agreement in the τ case. This is a first indication that the
electromagnetic spectral density is too low.

A second test, largely independent of the value of αs(MZ), compares the slopes of the OPE parts
and spectral integrals with respect to s0. The results are shown in Figs. 21, 22.

The situation is similar to before. While the slopes differ between data and QCD by& 2.5σ in the
electromagnetic case, there is perfect agreement in the τ case. The previous conclusion is reinforced: the
e+e− spectral data are systematically too low whereas the τ data are completely consistent with QCD,
both in normalization and in the slopes. The QCD sum rule tests clearly favour the τ over the e+e− data
for the pion form factor.

The most recent development is again an experimental one. Only two months before the School
new data on e+e− → π+π− were released by the SND Collaboration from Novosibirsk. Their results
disagree with both CMD-2 and KLOE and they go in the right direction towards reconciling the e+e−

with the τ data. The discrepancies between the three data sets in e+e− annihilation remain to be under-
stood. Based on τ data for the 2π and 4π channels in the hadronic vacuum polarization, the calculation
of the anomalous magnetic moment of the muon in the Standard Model [31] compares well with the
measured value [32]:

aexp
µ − aSM

µ = (7.6± 8.9) · 10−10 . (123)

There is at present no evidence for a discrepancy between the Standard Model and experiment.
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Fig. 21: Slopes with respect to s0 in the e+e− case for
a specific weight function w6(s). The dashed lines de-
note the central values for the OPE input and the solid
lines indicate the error bands. The spectral integrals are
shown for several points, error bars included.

Fig. 22: Same as in the previous figure for the τ data.
Both figures are taken from Ref. [30].

3.4 Chiral symmetry
By construction, QCD is a gauge theory with gauge group SU(3)c. However, the QCD Lagrangian

LQCD = −1

2
tr(GµνG

µν) +

NF∑

f=1

qf
(
i /D −mf

�
c

)
qf (124)

possesses additional symmetries. As in QED, the theory is parity invariant because of the absence of γ5

(vector couplings only). Moreover, the coupling constant gs and the quark masses mf are real so that
QCD conserves also CP, ignoring the so-called strong CP problem here.

Are there still additional symmetries in the QCD Lagrangian (124)? To answer this question, we
first have a look at the quark kinetic term only (with NF = 6 flavours):

Lkin = i

6∑

f=1

qf /D qf = i

6∑

f=1

{
qfL /D qfL + qfR /D qfR

}
, (125)

with chiral components

qL =
1

2
(1− γ5)q, qR =

1

2
(1 + γ5)q . (126)

Since the qfL and the qfR do not talk to each other in (125), they can be rotated separately implying the
maximal global flavour symmetry U(6) × U(6). However, this is a symmetry of the kinetic term only.
In the full quark Lagrangian (colour indices will be suppressed from now on)

Lq =

6∑

f=1

{
qfL i /D qfL + qfR i /D qfR −mf (qfRqfL + qfLqfR)

}
(127)

qfL and qfR can in general not be rotated separately any longer because of the quark masses. The actual
flavour symmetry therefore depends on the quark mass matrix

Mq = diag (mu,md,ms,mc,mb,mt) . (128)
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In order to find all even only approximate symmetries of QCD, we distinguish several cases de-
pending on the specific values of the quark masses.

i. In the real world, all quark masses are non-zero and they are all different from each other. In this
case, the remaining flavour symmetry amounts to the phase transformations qf L,R → e−iεf qf L,R
(f = 1, . . . , 6) where the phase εf for a given flavour must be the same for qfL and qfR. The
symmetry group reduces to the product U(1) × U(1) × · · · × U(1) = U(1)6 leading to the well-
known conserved flavour quantum numbers Nu, Nd, Ns,Nc, Nb and Nt. All these symmetries are
broken by the weak interactions, except their sum (baryon number)

B = (Nu +Nd +Ns +Nc +Nb +Nt) /3 . (129)

ii. In some approximation, the quark masses are still non-zero but nF of them are equal (nF < NF =
6). In this case, the maximal symmetry group U(6) × U(6) reduces to

U(nF )× U(1)6−nF ' SU(nF )× U(1)× U(1)6−nF . (130)

The only realistic cases are nF = 2 or 3 and they lead to well-known approximate symmetries:
nF = 2: mu = md −→ isospin SU(2)

nF = 3: mu = md = ms −→ flavour SU(3) .
iii. A much more radical approximation consists in setting some of the quark masses to zero: mf = 0

(f = 1, . . . , nF ). In this case, nF of the qfL and qfR can again be rotated separately implying the
chiral symmetry

SU(nF )L × SU(nF )R × U(1)V × U(1)A
[
×U(1)6−nF ] . (131)

To set nF = 2 of the quark masses to zero is a reasonable approximation in view of mu,d �
ΛQCD, whereas nF = 3 (setting alsoms = 0) is certainly more daring. U(1)V is again responsible
for baryon number conservation. The factor U(1)A is actually not a symmetry of full QCD at the
quantum level (Abelian anomaly).

We are familiar with isospin and flavour SU(3) that we see at least approximately realized in the hadron
spectrum. But what are the consequences of the approximate chiral symmetry of QCD? If chiral symme-
try would manifest itself in the hadron spectrum, each hadron would have to have a partner of opposite
parity of approximately the same mass. That is obviously not the case: chiral symmetry appears to be
more hidden than isospin, for example. In order to understand the manifestations of chiral symmetry, we
have to recall the main features of

Spontaneous symmetry breaking

There are many examples of SSB in physics and the best-known example in particle physics is the
spontaneously broken electroweak symmetry (see the lectures of W. Buchmüller at this School).

The mechanism was first realized in condensed-matter physics and a good example for our purpose
is the ferromagnet. The underlying theory of the ferromagnet (eventually QED) is certainly rotationally
invariant. The Hamiltonian (e.g., of the Heisenberg model) does not single out any direction in space.
Nevertheless, in the ground state of the ferromagnet the spins align in a certain direction. The direction
is arbitrary and there is no trace of it in the Hamiltonian. In this sense rotational symmetry is ‘sponta-
neously’ broken. It is certainly not manifest in the ground state but it has other important consequences
such as the existence of excitations (called magnons or spin waves in this case) with a very special disper-
sion law. The dispersion law is the dependence of the frequency ω on the wave length λ or on the wave
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number k = 2π/λ. SSB in condensed-matter physics implies that for some excitations the frequency
tends to zero for infinite wave length:

lim
k→0

ω(k) = lim
λ→∞

ω(k) = 0 . (132)

This property of magnons in particular is easy to visualize as shown in Fig. 23. In the ground state
of the ferromagnet spins are aligned. A typical spin wave is displayed in the second line: the wave length
is the distance between spins pointing in the same direction. In the limit λ → ∞, the spins become
again aligned, albeit in a different direction in general. Since by the assumed rotational symmetry of the
theory each direction is as good as any other, the configurations in the first and in the last line must have
the same energy as expressed by Eq. (132). Put in another way, magnons do not have an energy gap in
their spectrum. What is the analogy in a relativistic QFT like QCD? The frequency is replaced by the

ground state

spin wave: finite λ

spin wave: λ → ∞

Fig. 23: Spin directions in the (one-dimensional) ferromagnet: ground state, spin wave with finite wave length and
a spin wave with infinite wave length

energy of the particle, with the three-momentum instead of the wave number. The dispersion law is just
the relativistic energy-momentum relation E =

√
p2 +m2. The energy tends to zero for p → 0 if and

only if the particle is massless:

lim
p→0

E = lim
p→0

√
p2 +m2 = 0 ⇐⇒ m = 0 . (133)

How can we distinguish if a symmetry is realized in the usual way (like isospin) or if it is spontaneously
broken? The crucial question is what the conserved charge Q =

∫
d3xJ0(x) associated with a symmetry

current Jµ(x) (∂µJµ = 0) does when applied to the ground state (vacuum). In a relativistic quantum
field theory, there are only two options:

Goldstone alternative

Q|0〉 = 0 ||Q|0〉|| =∞
Wigner–Weyl Nambu–Goldstone

linear representation nonlinear realization
degenerate multiplets massless Goldstone bosons

exact symmetry spontaneously broken symmetry

The left column describes the more familiar case (Wigner–Weyl) where states are grouped in multiplets
(irreducible representations of the symmetry group). The vacuum is annihilated by the charge and the
states in a given multiplet all have the same mass (degeneracy). In the other possible realization (Nambu–
Goldstone), applying the charge to the vacuum is, strictly speaking, not defined. There are no degenerate
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multiplets (therefore we do not see the symmetry in the spectrum) but there must be massless particles
in the theory (Goldstone bosons). Although the charge can not be applied to the vacuum directly, the
following matrix element called an order parameter of SSB may be well defined:

〈0|[Q,A]|0〉 (134)

where A is some operator. If we can find an order parameter that is different from zero, the symmetry
associated with the charge Q is necessarily spontaneously broken. This is easy to understand: because
of the commutator in (134) the order parameter vanishes if Q annihilates the vacuum. In the familiar
example of electroweak symmetry breaking, scalar field operators ϕi take the place of A with [Q,ϕi] =
cijϕj . If cij〈0|ϕj |0〉 6= 0 (Higgs vacuum expectation value), the electroweak symmetry is spontaneously
broken. This is also a good example that the argument goes in one direction only. Even if all scalars
have zero vacuum expectation values or if there are no scalar fields at all the symmetry may still be
spontaneously broken. The mechanism could involve some other operator A in the order parameter
(134).

For each spontaneously broken symmetry Goldstone’s theorem implies the existence of a massless
state |G〉 with

〈0|J0(0)|G〉〈G|A|0〉 6= 0 . (135)

A necessary and sufficient condition for SSB is that the

Goldstone matrix element 〈0|J 0(0)|G〉 6= 0

implying also that the Goldstone state |G〉 has the same quantum numbers as J 0(0)|0〉. The following
remarks are useful:

– The state |G〉 need not correspond to a physical particle. This can only happen in the case of a
spontaneously broken gauge symmetry as in electroweak theory.

– J0(0) is usually a rotationally invariant bosonic operator and thus |G〉 carries spin 0.
– Spontaneous breaking of discrete symmetries does not give rise to Goldstone bosons.

The main features of SSB can be discussed in the original Goldstone model. It has a single complex
scalar field φ(x) with the Lagrangian

LGoldstone = ∂µφ∂
µφ† − λ(φφ† − v2

2
)2 (λ, v real and positive) , (136)

symmetric with respect to global U(1) transformations φ(x)→ eiαφ(x). The minimum of the Mexican

hat potential occurs at φφ† =
v2

2
. Decomposing the complex field φ(x) into two Hermitian fields

R(x), G(x) with

φ(x) = (R(x) + iG(x))/
√

2 (137)

〈0|R(x)|0〉 = v, 〈0|G(x)|0〉 = 0 ,

the Lagrangian expressed in terms of the fields R(x), G(x) displays the following spectrum at tree level:

Goldstone boson field G(x) MG = 0

massive field H(x) = R(x)− v MH =
√

2λ v .

Denoting the four-momenta of Goldstone particles generically as pG, one finds an unexpected behaviour
for scattering amplitudes: they vanish for pG → 0, e.g.,

A(GG→ GG) = O(p4
G), A(GH → GH) = O(p2

G) (138)
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for arbitrary values of non-Goldstone momenta pH . More generally, Goldstone bosons decouple when
their energies tend to zero.

This behaviour looks mysterious at first, but it can be understood by choosing a different set of
fields. Instead of the fields G(x) and H(x), we choose another representation (polar decomposition) that
may be familiar from electroweak theory:

φ(x) =
1√
2

[h(x) + v]eig(x)/v . (139)

In terms of the Hermitian fields g(x), h(x) the Goldstone Lagrangian takes the form

LGoldstone =
1

2
(∂µg)

2 +
1

2v2
(h2 + 2vh)(∂µg)

2 (140)

+
1

2
(∂µh)2 − λv2h2 − λ

4
(h4 + 4vh3) .

A general theorem of QFT ensures that the fields G,H on one side and g, h on the other side produce
the same S-matrix elements although the Green functions are in general different.

The main consequences are the following.

– The particle spectrum is unchanged:
Goldstone field g(x) Mg = 0

massive field h(x) Mh =
√

2λ v .
– The Goldstone field g has only derivative couplings implying for the scattering amplitudes consid-

ered previously:
lim
pG→0

A(pG) = 0 . (141)

The important lesson is very general and not restricted to the Goldstone model. S-matrix elements
with only Goldstone states vanish for pG → 0. When other non-Goldstone particles participate in the
initial and final states, the statement remains true for some matrix elements like for elastic scattering
GH → GH . In general, the interactions of Goldstone bosons among themselves and with other matter
become arbitrarily weak for small momenta.

3.5 Chiral perturbation theory
We start from a theorist’s paradise (copyright H. Leutwyler), QCD in the chiral limit where nF = 2 [or
3] quarks u, d [, s] are massless:

L0
QCD = qLi /DqL + qRi /DqR + Lheavy quarks + Lgauge (142)

with
q> = (u d [s]) .

As explained in the previous section, this Lagrangian has a global symmetry

SU(nF )L × SU(nF )R × U(1)V × U(1)A
[
×U(1)6−nF ] . (143)

The non-Abelian factor G = SU(nF )L × SU(nF )R is called the chiral group.

Although not yet proven from QCD alone, there is strong evidence, both from phenomenology and
from theory, that chiral symmetry is spontaneously broken. The spontaneous breaking does not affect all
of G but, roughly speaking, half of it: G −→ H = SU(nF )V . The so-called vectorial subgroup H of
G is nothing but isospin (for nF = 2) or flavour SU(3) (for nF = 3) and it is realized in the familiar
way à la Wigner–Weyl. Some arguments in favour of this spontaneous breakdown are as follows.
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– As already emphasized before, there are no parity doublets in the hadron spectrum.
– There is no other convincing argument why the pseudoscalar mesons are the lightest hadrons.

Spontaneous chiral symmetry breaking implies that they would be massless in the chiral limit
(pseudo-Goldstone bosons).

– The vector and axial-vector spectral functions are very different (ρ vs. a1).
– The so-called anomaly matching conditions together with confinement require that G be sponta-

neously broken for nF ≥ 3.
– Under very reasonable assumptions, SU(nF )V is not spontaneously broken. It is of course expli-

citly broken by the differences between quark masses.

Even if it has not been possible so far to prove directly from QCD that chiral symmetry is spontaneously
broken, we can ask for possible order parameters. It turns out (more details can be found in Ref. [33], for
instance) that the simplest such order parameter involves the pseudoscalar operators Ab = qγ5λbq (a =
1, . . . , 8) giving rise to the quark condensate 〈0|q q|0〉. There is evidence both from lattice QCD and from
phenomenology that the quark condensate is non-zero, implying spontaneous chiral symmetry breaking.
As will be discussed in Section 3.7, the quark condensate is in fact the dominant order parameter of
spontaneous chiral symmetry breaking, in a sense to be specified later.

From Goldstone’s theorem we know (still in the chiral limit) that there are n2
F − 1 massless Gold-

stone bosons:

nF n2
F − 1 Goldstone bosons

2 3 π
3 8 π,K, η

Although the real world is not a theorist’s paradise, we still expect low-energy amplitudes to be domi-
nated by the exchange of pseudoscalar mesons, which are the lightest hadrons also in the real world. In
order to calculate such amplitudes, we construct an effective field theory with only Goldstone fields. As
already explained in Section 3.1, the Lagrangian of Goldstone fields is nonrenormalizable and it is in
fact even nonpolynomial. The underlying physical reason is that we can add any number of sufficiently
soft pions (still massless!) to a hadron state without appreciably changing its energy. Therefore, we have
degenerate states with different numbers of particles that are related by chiral symmetry transformations.
For the Lagrangian this argument implies that the symmetry transformations are nonlinear in the pion
fields. Starting from a Lagrangian with fixed powers in the Goldstone fields, successive nonlinear trans-
formations generate any number of fields in the Lagrangian. Since the Lagrangian is to be symmetric
under such transformations it must necessarily be nonpolynomial.

The basic building block of chiral Lagrangians is therefore a nonpolynomial matrix function of
the Goldstone fields, e.g., the exponential function (for nF = 3)

U(φ) = exp (i
√

2Φ/F ), Φ =




π0

√
2

+
η8√

6
π+ K+

π− − π
0

√
2

+
η8√

6
K0

K− K0 −2η8√
6




(144)

where F is the pion decay constant in the chiral limit characterizing the size of the Goldstone matrix
element 〈0|J0(0)|G〉.

Chiral Lagrangians are organized according to the number of derivatives of the fields. The unique
lowest-order Lagrangian of O(p2) with two derivatives is the so-called nonlinear σ model:

L(0)
2 =

F 2

4
trnF

(
∂µU∂

µU †
)

=:
F 2

4
〈∂µU∂µU †〉 = ∂µπ

+∂µπ− +
1

2
∂µπ

0∂µπ0 +O(π4) , (145)
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using a bracket notation for nF -dimensional traces.

So much for the paradise. Back to reality, we must admit that there is no chiral symmetry in
nature! In the Standard Model, it is explicitly broken in two different ways.

– Chiral symmetry is explicitly broken by nonvanishing quark masses. This should be a small mod-
ification for two, a more pronounced one for three flavours:

mu,md � Mρ nF = 2
ms < Mρ nF = 3 .

– Also the electroweak interactions break chiral symmetry. If electroweak effects are to be included,
they can be taken into account perturbatively in α,GF .

The main assumption of chiral perturbation theory (CHPT) is that an expansion around the chiral
limit (the theorist’s paradise) makes sense. Therefore, even in the absence of electroweak interactions,
chiral Lagrangians are organized in a two-fold expansion.

i. Spontaneous chiral symmetry breaking gives rise to an expansion in derivatives of the fields leading
to an expansion of amplitudes in the momenta of pseudo-Goldstone bosons.

ii. Explicit symmetry breaking suggests an expansion also in the quark masses mq.

The two expansions can be related via the meson masses. As will be discussed in the next subsection,
the squares of the meson masses start out linear in the quark masses:

M2
M ∼ mq +O(m2

q) . (146)

The standard chiral counting therefore amounts to treating quark masses like the second power of mo-
menta:

mq = O(M2
M ) = O(p2) . (147)

The effective Lagrangian (for pseudoscalar mesons) is therefore of the form [34]

Leff = L2 + L4 + L6 + . . .

L2 =
F 2

4
〈∂µU∂µU † + χU † + χ†U〉 (148)

where χ represents the quark masses: χ = 2BMq = 2B diag(mu,md[,ms]). The lowest-order La-
grangian contains only two parameters F,B that are related to physical quantities as

Fπ = F [1 +O(mq)] , 〈0|uu|0〉 = −F 2B [1 +O(mq)] . (149)

The lowest-order amplitudes of CHPT are of O(p2) and they correspond to the current algebra
amplitudes of 40 years ago. The tree-level amplitudes can be read off directly from the Lagrangian (148)
depending only on Fπ and M2

M [M2
π = B(mu + md), . . . ]. For instance, the elastic ππ scattering

amplitude of O(p2) is given by

A2(s, t, u) =
s−M2

π

F 2
π

. (150)

Contrary to symmetries like isospin that relate different amplitudes, the spontaneously broken chiral
symmetry makes an absolute prediction for this scattering amplitude. It was left as an exercise to the
audience to explain why that is possible.

The lowest-order results we have been discussing so far were already known in the late 1960s and
early 1970s (current algebra, phenomenological Lagrangians). After an influential paper by Weinberg
[35], but especially with the work of Gasser and Leutwyler [34] the systematic treatment of QCD at

38

G. ECKER

92



low energies became a respectable theory. The first step was to construct the Lagrangian of next-to-
leading order L4 that contains 10 (7) additional coupling constants (usually called LECs for low-energy
constants) for SU(3) (SU(2)). With a Hermitian Lagrangian tree amplitudes are necessarily real but we
know that unitarity and analyticity require complex amplitudes. It is not difficult to convince oneself that
imaginary parts occur first atO(p4). The consequence is that a systematic low-energy expansion requires
a loop expansion beyond lowest order [35]. But loop amplitudes have a tendency to be divergent. For a
bona fide QFT we therefore need both regularization and renormalization. As strange as it may sound,
nonrenormalizable theories also can and in fact must be renormalized to qualify as respectable QFTs.

A nonrenormalizable QFT like CHPT has many common features with the more standard renor-
malizable theories.

– Divergences are absorbed by the coupling constants in the higher-order Lagrangians L4,L6, . . . .
Unlike in renormalizable theories, new LECs occur at every order of the chiral expansion.

– The renormalized LECs are scale dependent just like the strong coupling constant gs(µ). They
can be interpreted as describing the effect of all heavy hadronic states that are not represented by
explicit fields in the Lagrangian.

– Renormalization ensures that there is no dependence on some artificial cut-off.

For phenomenological applications, we have to know the values of the various LECs. In principle, QCD
fixes those constants but a matching between QCD and CHPT is not possible in perturbation theory. This
was already discussed in Section 3.1 for general EFTs with SSB but it is also easy to understand in the
present case: CHPT can only be applied for energies E � Mρ whereas perturbative QCD only makes
sense for E & 1.5 GeV. The most successful approaches bridging this gap to get information on the
LECs are resonance saturation (based on the properties of QCD for large Nc, i.e., for a fictitious world
with many colours) and lattice QCD.

The chiral expansion is an expansion in p2/(4πF )2 where p is a characteristic momentum for the
process in question. Therefore, the chiral expansion should and does work better for SU(2) than for
SU(3):

nF = 2 :
p2

(4πF )2
= 0.014

p2

M2
π

, nF = 3 :
p2

(4πF )2
= 0.18

p2

M2
K

. (151)

Most amplitudes and form factors for realistic processes have been calculated at least to next-to-
leading order. There is an easy-to-use Mathematica program to generate both strong and nonleptonic
weak transitions up to O(p4) that is described in Ref. [36] and is available for general use. The state of
the art is next-to-next-to-leading order or O(p6). A short introduction can be found in Ref. [33].

3.6 Light quark masses
In CHPT, the light quark masses always appear in the combination Bmq ∼ mq 〈0|u u|0〉. Since there
are no quarks or gluons in CHPT, only QCD scale-invariant quantities can appear. As we discussed in
Section 3.2, quark masses are scale dependent whereas the product mq 〈0|u u|0〉 is not. The consequence
is that CHPT can only provide methods for extracting the ratios of quark masses.

The lowest-order expressions for the meson masses in terms of quark masses can be read off
directly from the Lagrangian (148):

M2
π+ = 2m̂B , M 2

π0 = 2m̂B +O
[
(mu −md)

2/(ms − m̂)
]

M2
K+ = (mu +ms)B , M2

η8
=

2

3
(m̂+ 2ms)B +O

[
(mu −md)

2/(ms − m̂)
]

M2
K0 = (md +ms)B , m̂ :=

1

2
(mu +md) . (152)
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Several well-known relations follow from these expressions:

Gell-Mann–Oakes–Renner F 2
πM

2
π = −2m̂〈0|ū u|0〉

GMOR, Weinberg B =
M2
π

2m̂
=

M2
K+

ms +mu
=

M2
K0

ms +md

Gell-Mann–Okubo 3M 2
η8

= 4M2
K −M2

π (isospin limit)

The relations (152) are also the basis for the so-called current algebra mass ratios

mu

md
= 0.55 ,

ms

md
= 20.1 ,

ms

m̂
= 25.9 . (153)

These ratios are subject to higher-order corrections, most importantly of O(p4) = O(m2
q) and O(e2ms).

Because of an accidental symmetry at O(p4), the ratios ms/md, mu/md cannot be extracted separately
from S-matrix elements but only in the combination known as Leutwyler’s ellipse [37] shown in Fig. 24.

mu/md

ms/md

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Fig. 24: Constraints on light quark mass ratios [37]

In addition to the full boundaries following directly from CHPT (the difference is due to uncertain-
ties in the electromagnetic corrections), information is also available from η − η ′ mixing (dotted lines),
baryon mass splittings and ρ−ω mixing (dashed lines). The overall conclusion is that the corrections of
O(p4) are small for the ratios. The next-to-next-to-leading corrections of O(p6) are also known [38] but
there are at the moment too many unknown LECs for quantitative conclusions.

Table 1: Quark mass ratios to O(p4) [37]

mu/md ms/md ms/m̂

O(p2) 0.55 20.1 25.9

O(p4) 0.55 ± 0.04 18.9 ± 0.8 24.4 ± 1.5

Absolute values of the quark masses are less well known than the ratios. The main methods
are QCD sum rules and lattice simulations, most recently with full (unquenched) QCD. From the Re-
view of Particle Physics [14], the combined result of lattice determinations of the strange quark mass is
ms(2 GeV) = (100 ± 25) MeV. More results are reproduced in Fig. 18.
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3.7 Pion–pion scattering
Pion–pion scattering has a privileged status in CHPT. It is the fundamental scattering process of CHPT
and it involves only pions. The low-energy expansion can therefore be set up in the framework of
chiral SU(2) and it can be expected to converge well. The scattering amplitude is very sensitive to the
mechanism of spontaneous chiral symmetry breaking giving access to the quark condensate in particular.

The following review of recent developments will be restricted to the isospin limit (mu = md)
in the absence of electromagnetic corrections. In this case, the information for all possible scattering
channels is contained in a single amplitude A(s, t, u) (with s+ t+ u = 4M 2

π ).

The lowest-order amplitude of O(p2) was already shown in Eq. (150):

A2(s, t, u) =
s−M2

π

F 2
π

.

At the same order, the quark mass ratio r =
ms

m̂
=

2M2
K

M2
π

− 1 ' 26, as also shown in Table 1. As the

mass ratio r, the S-waves also are very sensitive to the quark condensate. In a modified version of CHPT
(Generalized CHPT [39]), one can tune the quark condensate. As an example, I show the leading-order
results for the I = 0 S-wave scattering length a0

0 and for the quark mass ratio r for both the standard and
for a very small value of the quark condensate:

a0
0 r B(ν = 1 GeV)

0.16 26 1.4 GeV (standard value)
0.26 10 Fπ

At next-to-leading order, the scattering amplitude was calculated in 1983 [40]. It turns out that especially
the S-wave scattering lengths are quite sensitive to chiral corrections (chiral logs). For instance, a0

0

increases from 0.16 at O(p2) to 0.20 at O(p4), an increase of 25% and thus quite a bit larger than the
natural estimate in Eq. (151). Since the favoured experimental value of a0

0 at that time was 0.26 (with a
25% error), it seemed mandatory to perform one more step in the chiral expansion. From the amplitude
to O(p6) [41] it was clear that a value a0

0 = 0.26 was not compatible with QCD. To narrow down
the uncertainties related to the LECs appearing in the ππ amplitude, the chiral amplitude was finally
combined with dispersion theory (Roy equations) [42].

CHPT together with dispersion theory predicts not only the S-wave scattering lengths with amaz-
ing precision [42],

a0
0 = 0.220 ± 0.005 , a2

0 = −0.0444 ± 0.0010 , (154)

but also the S- and P-wave phase shifts. As a by-product, the pionium lifetime is predicted to be τ =
(2.9 ± 0.1) · 10−15. A short history of the S-wave scattering lengths is shown in Fig. 25.

There is a small caveat here. All the results have been derived in the standard framework of CHPT
that assumes a large quark condensate. With recent experimental information on the pion–pion phase
shift difference δ0

0 − δ1
1 from Ke4 decays, even this last loophole could be closed. Using the correlation

between a2
0 and a0

0 implied by the Roy equations, the measured phase shift difference [43] can be used
to determine a0

0 as shown in Fig. 26. The fitted value [44] a0
0 = 0.221 ± 0.026 is in perfect agreement

with the prediction (154) from the combined analysis of CHPT and Roy equations.

The precise determination of the ππ scattering amplitude has several important implications. One
application concerns the chiral expansion of the pion mass in terms of the light quark masses mu,md:

M2
π = M2 − l̄3

32π2F 2
M4 +O(M6) (155)

M2 = (mu +md)|〈0|uu|0〉|/F 2 .
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A by-product of the analysis of ππ scattering is a precise determination of LECs like l̄3, which implies in
turn that more than 94% of Mπ are in fact due to the leading term (the Gell-Mann–Oakes–Renner term)
confirming the standard mechanism of spontaneous chiral symmetry breaking [44]. In other words, the
quark condensate is indeed the dominant order parameter of chiral symmetry breaking.

0.16 0.18 0.2 0.22 0.24 0.26
a00

-0.06

-0.05

-0.04

-0.03

a20 1966
1983 1996

Universal Band
tree, one loop, two loops
low energy theorem for scalar radius
prediction based on Roy equations

Fig. 25: Predictions for S-wave scattering lengths from
current algebra till today, taken from Ref. [42]
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Fig. 26: Ke4 data translated into a determination of the
I = 0 S-wave scattering length a0

0 [44]

The precise knowledge of the ππ scattering amplitude from CHPT and dispersion theory has more
recently (after the School) produced another important insight. The much discussed scalar isoscalar state
now called f0(600) by the Particle Data Group [14], but more commonly known as the σ meson, was
analysed by Caprini, Colangelo and Leutwyler [45] by extending the Roy equations to complex values
of the Mandelstam variable s. The result is an astonishingly precise determination of mass and width of
the lightest hadronic resonance:

Mσ = 441 +16
−8 MeV , Γσ = 544 +25

−18 MeV . (156)

The σ resonance has the quantum numbers of the vacuum and it corresponds to an unambiguous pole on
the second sheet of the scalar isoscalar partial wave. Its real part is close to threshold but the pole is quite
far from the real axis. Although not as straightforward as its position in the complex energy plane, the
most appealing interpretation of the σ is a quasi-bound state of two pions, quite different from a member
of a standard q q meson nonet [42, 45].

3.8 Kl3 decays and Vus
The Cabibbo–Kobayashi–Maskawa (CKM) matrix Vij determines the structure of the hadronic charged
weak current. The matrix elements are fundamental parameters of the Standard Model. Together with the
quark and lepton masses, the CKM matrix and the corresponding lepton mixing matrix contain informa-
tion about the mechanism of mass generation. Anticipating forthcoming LHC data to unveil the secrets
of mass generation (Higgs sector), both masses and mixing angles should be measured as precisely as
possible.

With three generations of quarks, the CKM matrix must be a unitary matrix. For some time, a
possible problem with CKM unitarity has been discussed. With the PDG values of 2004 [14],

|Vud| = 0.9738(5) , |Vus| = 0.2200(26) , (157)

unitarity appeared to be violated at the 2.2 σ level by the elements of the first row Vuj (j = d, s, b):
∑

j=d,s,b

|Vuj|2 − 1 = −0.0033(15) . (158)
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At this level of accuracy, the element Vub is still negligible. On the other hand, the required precision for
Vud and Vus calls for reliable isospin violating and electromagnetic corrections.

The most accurate determination of Vus, both experimentally and theoretically, comes from Kl3

decays that can be treated in the framework of CHPT. The decay amplitude is governed by two form
factors f+(t) and f−(t) with t = (pK − pπ)2:

〈π−(pπ)|s̄γµu|K0(pK)〉 = fK
0π−

+ (t) (pK + pπ)µ + fK
0π−

− (t) (pK − pπ)µ . (159)

Both form factors are known to next-to-next-to-leading order in CHPT. For the extraction of Vus, the
crucial quantity is f+(0). The chiral expansion is of the form

fK
0π−

+ (0) = 1 + fp4 + fe2 p2 + fp6 +O[(mu −md)p
4, e2 p4] . (160)

The status of the various contributions is as follows:

fp4 −0.0227 (no uncertainty) Gasser, Leutwyler [46]
fe2 p2 radiative corrections Cirigliano, Neufeld, Pichl [47]
fp6 loop contributions Bijnens, Talavera [48]; Post, Schilcher [49]

tree contributions LECs L2
5, C12 + C34

As a first test, we look at the ratio

r+0 =

(
2 Γ(K+

e3(γ))M
5
K0 IK0

Γ(K0
e3(γ))M

5
K+ IK+

)1/2

=
|fK+π0

+ (0)|
|fK0π−

+ (0)|
. (161)

This ratio is independent of fp6 in Eq. (160) and it can therefore be predicted quite accurately [47, 50]:

rth
+0 = 1.023 ± 0.003 , (162)

to be compared with the experimental value [51]:

rexp
+0 = 1.036 ± 0.008 . (163)

What could be the origin of a possible discrepancy that is also suggested by the compilation of recent
data in Fig. 27?

– In the past, radiative corrections have not always been state of the art. Nowadays, also experimen-
talists should only use the modern CHPT treatment [47].

– Measurements of the K+ and KL lifetimes should still be improved.
– On the theory side, an unlikely but in principle still possible explanation could be that the error

due to effects of O[(mu −md)p
4, e2 p4] is underestimated.

The contribution fp6 is the sum of a loop and of a tree-level part:

fL=1,2
p6 (Mρ) = 0.0093 ± 0.0005 Bijnens,Talavera [46] (164)

f tree
p6 (Mρ) = 8

(
M2
K −M2

π

)2

F 2
π

[
(Lr5(Mρ))

2

F 2
π

−Cr12(Mρ)−Cr34(Mρ)

]

= −
(
M2
K −M2

π

)2

2M4
S

(
1− M2

S

M2
P

)2

. (165)
large-Nc matching

Cirigliano et al. [52]

The last equation is based on a large-Nc estimate of Ref. [52]. As can be seen in Fig. 28, two
terms interfere, destructively weakening the overall dependence on the scalar resonance mass MS . The
same interference leads to a rather modest scale dependence of the result for Mη ≤ µ ≤ 1 GeV.
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Fig. 27: Present experimental and theoretical status of f+(0) |Vus| taken from Ref. [53]
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Fig. 28: Tree-level contribution of O(p6) to fK
0π−

+ (0) and its two components [52]

The final result, including the uncertainty due to a possible second pseudoscalar multiplet P ′,
is [52]

f tree
p6 (Mρ) = −0.002 ± 0.008 1/Nc ± 0.002MS

+0.000
−0.002 P ′

fp6 = 0.007 ± 0.012

fK
0π−

+ (0) = 0.984 ± 0.012 . (166)

With our large-Nc estimate of the tree-level contribution of O(p6), fp6 is dominated by the loop part
(164). It exhibits less SU(3) breaking than the well-known result of Leutwyler and Roos [54] and
a recent lattice estimate [55]. Taking the most recent value of Vud and assuming unitarity of the CKM
matrix, the predictions can be compared directly with the experimental results as shown in Fig. 27. A new
result for the neutron lifetime [56] would imply a shift of all theoretical values in Fig. 27 to the left but
the corresponding accuracy of Vud is not yet competitive with super-allowed nuclear Fermi transitions.
Another way to read Fig. 27 is that the estimate of Ref. [52] leads to a value of Vus,

|Vus| = 0.2208 ± 0.0027f+(0) ± 0.0008exp , (167)

that is a bit smaller than the unitarity prediction.
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Finally, the slope of the scalar form factor that also depends on the LECs C12, C34 can also be
predicted [52] and it is in good agreement with the recent most precise experimental value [57]:

λ0 = (13± 3) · 10−3 Cirigliano et al. [52]

λ0 = (13.72 ± 1.31) · 10−3 KTeV [57]
(168)

4 Summary and epilogue
There is an amazing richness contained in the simple Lagrangian that we ‘derived’ from the existence of
colour and from the gauge principle:

LQCD = −1

2
tr(GµνG

µν) +

NF∑

f=1

qf
(
i /D −mf

�
c

)
qf .

There is in fact no better summary for these lectures.

It may seem a long way from the naive quark model to QCD but it all happened in less than ten
years. On the asymptotically free side, perturbative QCD is a complete success and it will be especially
needed for understanding the background for new physics at the LHC and beyond.

There is much more left to be understood at the other end of the scale. If confinement is really
forever, we would witness the first case in the history of physics when new constituents of matter have
been identified beyond reasonable doubt and yet they can never be isolated. The question sounds prepos-
terous but it is well supported: have we already arrived at the innermost structure of hadrons? Or put in a
different way, is there no further structure to be expected before strings and quantum gravity eventually
take over? In a short time, once the LHC produces its first results, we may learn how to rephrase the
question.
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Flavour physics and CP violation

R. Fleischer
CERN, Geneva, Switzerland

Abstract
The starting point of these lectures is an introduction to the weak interactions
of quarks and the Standard-Model description of CP violation, where the cen-
tral role is played by the Cabibbo–Kobayashi–Maskawa matrix and the corre-
sponding unitarity triangles. Since the B-meson system will govern the stage
of (quark) flavour physics and CP violation in this decade, it will be our main
focus. We shall classify B-meson decays, introduce the theoretical tools to
deal with them, investigate the requirements for non-vanishing CP-violating
asymmetries, and discuss the main strategies to explore CP violation and the
preferred avenues to enter for physics beyond the Standard Model. This for-
malism is then applied to discuss the status of important B-factory benchmark
modes, where we focus on puzzling patterns in the data that may indicate new-
physics effects, as well as the prospects for B-decay studies at the LHC.

1 Introduction
The history of CP violation, i.e., the non-invariance of the weak interactions with respect to a combined
charge-conjugation (C) and parity (P) transformation, goes back to 1964 when this phenomenon was
discovered through the observation of KL → π+π− decays [1] which exhibit a branching ratio at the
10−3 level. This surprising effect is a manifestation of indirect CP violation, which arises from the
fact that the mass eigenstates KL,S of the neutral kaon system, which shows K0–K̄0 mixing, are not
eigenstates of the CP operator. In particular, the KL state is governed by the CP-odd eigenstate, but has
also a tiny admixture of the CP-even eigenstate, which may decay through CP-conserving interactions
into the π+π− final state. These CP-violating effects are described by the following observable:

εK = (2.280 ± 0.013) × 10−3 × eiπ/4 . (1)

On the other hand, CP-violating effects may also arise directly at the decay-amplitude level, thereby
yielding direct CP violation. This phenomenon, which leads to a non-vanishing value of a quantity
Re(ε′K/εK), was established in 1999 through the NA48 (CERN) and KTeV (FNAL) Collaborations [2];
the final results of the corresponding measurements are given by

Re(ε′K/εK) =

{
(14.7 ± 2.2)× 10−4 (NA48 [3])
(20.7 ± 2.8)× 10−4 (KTeV [4]) .

(2)

In this decade, there are huge experimental efforts to further explore CP violation and the quark-
flavour sector of the Standard Model (SM). In these studies, the main actor is the B-meson system,
where we distinguish between charged and neutral B mesons, which are characterized by the following
valence-quark contents:

B+ ∼ ub̄, B+
c ∼ cb̄, B0

d ∼ db̄, B0
s ∼ sb̄,

B− ∼ ūb, B−c ∼ c̄b, B̄0
d ∼ d̄b, B̄0

s ∼ s̄b .
(3)

In contrast to the charged B mesons, their neutral counterparts Bq (q ∈ {d, s}) show —in analogy to
K0–K̄0 mixing—the phenomenon of B0

q–B̄0
q mixing. The asymmetric e+e− B factories at SLAC and

KEK with their detectors BaBar and Belle, respectively, can only produce B+ and B0
d mesons (and
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their anti-particles) since they operate at the Υ(4S) resonance, and have already collected O(108) BB̄
pairs of this kind. Moreover, first B-physics results from Run II of the Tevatron were reported from the
CDF and D0 Collaborations, including also B+

c and B0
s studies, and second-generation B-decay studies

will become possible at the Large Hadron Collider (LHC) at CERN, in particular thanks to the LHCb
experiment, starting in the autumn of 2007. For the more distant future, an e+–e− ‘super-B factory’
is under consideration, with an increase of luminosity by up to two orders of magnitude with respect
to the currently operating machines. Moreover, there are plans to measure the very ‘rare’ kaon decays
K+ → π+νν̄ and KL → π0νν̄, which are absent at the tree level in the Standard Model (SM), at CERN
and KEK/J-PARC.

In 2001, CP-violating effects were discovered in B decays with the help of Bd → J/ψKS modes
by the BaBar and Belle Collaborations [5], representing the first observation of CP violation outside the
kaon system. This particular kind of CP violation, which is by now well established, originates from
the interference between B0

d–B̄0
d mixing and B0

d → J/ψKS, B̄0
d → J/ψKS decay processes, and is

referred to as ‘mixing-induced’ CP violation. In the summer of 2004, direct CP violation was detected in
Bd → π∓K± decays [6], thereby complementing the measurement of a non-zero value of Re(ε ′K/εK).

Studies of CP violation and flavour physics are particularly interesting since ‘new physics’ (NP),
i.e., physics lying beyond the SM, typically leads to new sources of flavour and CP violation. Further-
more, the origin of the fermion masses, flavour mixing, CP violation etc. lies completely in the dark and
is expected to involve NP, too. Interestingly, CP violation offers also a link to cosmology. One of the
key features of our Universe is the cosmological baryon asymmetry of O(10−10). As was pointed out
by Sakharov [7], the necessary conditions for the generation of such an asymmetry include also the re-
quirement that elementary interactions violate CP (and C). Model calculations of the baryon asymmetry
indicate, however, that the CP violation present in the SM seems to be too small to generate the observed
asymmetry [8]. On the one hand, the required new sources of CP violation could be associated with
very high energy scales, as in ‘leptogenesis’, where new CP-violating effects appear in decays of heavy
Majorana neutrinos [9]. On the other hand, new sources of CP violation could also be accessible in the
laboratory, as they arise naturally when going beyond the SM.

Before searching for NP, it is essential to understand first the picture of flavour physics and CP
violation arising in the framework of the SM, where the Cabibbo–Kobayashi–Maskawa (CKM) matrix—
the quark-mixing matrix—plays the key role [10, 11]. The corresponding phenomenology is extremely
rich [12]. In general, the key problem for the theoretical interpretation is related to strong interactions,
i.e., to ‘hadronic’ uncertainties. A famous example is Re(ε′K/εK), where we have to deal with a subtle
interplay between different contributions which largely cancel [13]. Although the non-vanishing value
of this quantity has unambiguously ruled out ‘superweak’ models of CP violation [14], it currently does
not allow a stringent test of the SM.

In the B-meson system, there are various strategies to eliminate the hadronic uncertainties in the
exploration of CP violation (simply speaking, there are many B decays). Moreover, we may also search
for relations and/or correlations that hold in the SM but could well be spoiled by NP. These topics will be
the focus of this lecture, which is complemented by the dedicated lectures on the experimental aspects
of K- and B-meson decays in Refs. [15] and [16], respectively. The outline is as follows: in Section 2,
we discuss the quark mixing in the SM by having a closer look at the CKM matrix and the associated
unitarity triangles. The main actors of this lecture—the B mesons and their weak decays—will then be
introduced in Section 3. There we shall also move towards studies of CP violation and shall classify
the main strategies for its exploration, using amplitude relations and the phenomenon of B 0

q–B̄0
q mixing

(q ∈ {d, s}). In Section 4, we illustrate the former kind of methods by having a closer look at clean
amplitude relations between B± → K±D and B±c → D±s D decays, whereas we discuss features of
neutral Bq mesons in Section 5. In Section 6, we address the question of how NP could enter, and then
apply these considerations in Section 7 to the B-factory benchmark modes B 0

d → J/ψKS, B0
d → φKS

and B0
d → π+π−. Since the data for certain B → πK decays have shown a puzzling pattern for several
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Fig. 1: CP-conjugate charged-current quark-level interaction processes in the SM

years, we have devoted Section 8 to a detailed discussion of this ‘B → πK puzzle’ and its interplay
with rare K and B decays. In Section 9, we focus on b → d penguin processes, which are now coming
within experimental reach at the B factories, thereby offering an exciting new playground. Finally, in
Section 10, we discuss B-decay studies at the LHC, where the physics potential of the B 0

s -meson system
can be fully exploited. The conclusions and a brief outlook are given in Section 11.

For detailed discussions and textbooks dealing with flavour physics and CP violation, the reader
is referred to Refs. [17]– [21], alternative lecture notes can be found in Refs. [22, 23], and a selection of
more compact recent reviews is given in Refs. [24]– [26]. The data used in these lectures refer to the
situation in the spring of 2006.

2 CP violation in the Standard Model
2.1 Weak interactions of quarks and the quark-mixing matrix
In the framework of the Standard Model of electroweak interactions [27, 28], which is based on the
spontaneously broken gauge group

SU(2)L × U(1)Y
SSB−→ U(1)em , (4)

CP-violating effects may originate from the charged-current interactions of quarks, having the structure

D → UW− . (5)

Here D ∈ {d, s, b} and U ∈ {u, c, t} denote down- and up-type quark flavours, respectively, whereas
the W− is the usual SU(2)L gauge boson. From a phenomenological point of view, it is convenient to
collect the generic ‘coupling strengths’ VUD of the charged-current processes in (5) in the form of the
following matrix:

V̂CKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 , (6)

which is referred to as the Cabibbo–Kobayashi–Maskawa (CKM) matrix [10, 11].

From a theoretical point of view, this matrix connects the electroweak states (d ′, s′, b′) of the
down, strange and bottom quarks with their mass eigenstates (d, s, b) through the following unitary
transformation [27]: 


d′

s′

b′


 =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 ·




d
s
b


 . (7)

Consequently, V̂CKM is actually a unitary matrix. This feature ensures the absence of flavour-changing
neutral-current (FCNC) processes at the tree level in the SM, and is hence at the basis of the famous
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Glashow–Iliopoulos–Maiani (GIM) mechanism [29]. We shall return to the unitarity of the CKM ma-
trix in Section 2.6, discussing the ‘unitarity triangles’. If we express the non-leptonic charged-current
interaction Lagrangian in terms of the mass eigenstates appearing in (7), we arrive at

LCC
int = − g2√

2

(
ūL, c̄L, t̄L

)
γµ V̂CKM




dL
sL
bL


W †µ + h.c., (8)

where the gauge coupling g2 is related to the gauge group SU(2)L, and the W (†)
µ field corresponds to the

charged W bosons. Looking at the interaction vertices following from (8), we observe that the elements
of the CKM matrix describe in fact the generic strengths of the associated charged-current processes, as
we have noted above.

In Fig. 1, we show the D → UW− vertex and its CP conjugate. Since the corresponding CP
transformation involves the replacement

VUD
CP−→ V ∗UD , (9)

CP violation could—in principle—be accommodated in the SM through complex phases in the CKM
matrix. The crucial question in this context is, of course, whether we may actually have physical complex
phases in that matrix.

2.2 Phase structure of the CKM matrix
We have the freedom to redefine the up- and down-type quark fields in the following manner:

U → exp(iξU )U, D → exp(iξD)D . (10)

If we perform such transformations in (8), the invariance of the charged-current interaction Lagrangian
implies the following phase transformations of the CKM matrix elements:

VUD → exp(iξU )VUD exp(−iξD) . (11)

Using these transformations to eliminate unphysical phases, it can be shown that the parametrization of
the general N ×N quark-mixing matrix, where N denotes the number of fermion generations, involves
the following parameters:

1

2
N(N − 1)
︸ ︷︷ ︸
Euler angles

+
1

2
(N − 1)(N − 2)
︸ ︷︷ ︸

complex phases

= (N − 1)2. (12)

If we apply this expression to the case of N = 2 generations, we observe that only one rotation
angle—the Cabibbo angle θC [10]—is required for the parametrization of the 2×2 quark-mixing matrix,
which can be written in the following form:

V̂C =

(
cos θC sin θC

− sin θC cos θC

)
, (13)

where sin θC = 0.22 can be determined from K → π`ν̄ decays. On the other hand, in the case of N = 3
generations, the parametrization of the corresponding 3 × 3 quark-mixing matrix involves three Euler-
type angles and a single complex phase. This complex phase allows us to accommodate CP violation
in the SM, as was pointed out by Kobayashi and Maskawa in 1973 [11]. The corresponding picture is
referred to as the Kobayashi–Maskawa (KM) mechanism of CP violation.
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In the ‘standard parametrization’ advocated by the Particle Data Group (PDG) [30], the three-
generation CKM matrix takes the following form:

V̂CKM =




c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13


 , (14)

where cij ≡ cos θij and sij ≡ sin θij . Performing appropriate redefinitions of the quark-field phases,
the real angles θ12, θ23 and θ13 can all be made to lie in the first quadrant. The advantage of this
parametrization is that the generation labels i, j = 1, 2, 3 are introduced in such a manner that the
mixing between two chosen generations vanishes if the corresponding mixing angle θij is set to zero. In
particular, for θ23 = θ13 = 0, the third generation decouples, and the 2 × 2 submatrix describing the
mixing between the first and second generations takes the same form as (13).

Another interesting parametrization of the CKM matrix was proposed by Fritzsch and Xing [31]:

V̂CKM =




susdc+ cucde
−iϕ sucdc− cusde

−iϕ sus
cusdc− sucde

−iϕ cucdc+ susde
−iϕ cus

−sds −cds c


 . (15)

It is inspired by the hierarchical structure of the quark-mass spectrum and is particularly useful in the
context of models for fermion masses and mixings. The characteristic feature of this parametrization is
that the complex phase arises only in the 2 × 2 submatrix involving the up, down, strange and charm
quarks.

Let us finally note that physical observables, for instance CP-violating asymmetries, cannot de-
pend on the chosen parametrization of the CKM matrix, i.e., have to be invariant under the phase trans-
formations specified in (11).

2.3 Further requirements for CP violation
As we have just seen, in order to be able to accommodate CP violation within the framework of the
SM through a complex phase in the CKM matrix, at least three generations are required. However, this
feature is not sufficient for observable CP-violating effects. To this end, further conditions have to be
satisfied, which can be summarized as follows [32, 33]:

(m2
t −m2

c)(m
2
t −m2

u)(m2
c −m2

u)(m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)× JCP 6= 0, (16)

where
JCP = |Im(ViαVjβV

∗
iβV

∗
jα)| (i 6= j, α 6= β) . (17)

The mass factors in (16) are related to the fact that the CP-violating phase of the CKM matrix
could be eliminated through an appropriate unitary transformation of the quark fields if any two quarks
with the same charge had the same mass. Consequently, the origin of CP violation is closely related to
the ‘flavour problem’ in elementary particle physics, and cannot be understood in a deeper way, unless
we have fundamental insights into the hierarchy of quark masses and the number of fermion generations.

The second element of (16), the ‘Jarlskog parameter’ JCP [32], can be interpreted as a measure
of the strength of CP violation in the SM. It does not depend on the chosen quark-field parametriza-
tion, i.e., it is invariant under (11), and the unitarity of the CKM matrix implies that all combinations
|Im(ViαVjβV

∗
iβV

∗
jα)| are equal to one another. Using the standard parametrization of the CKM matrix

introduced in (14), we obtain
JCP = s12s13s23c12c23c

2
13 sin δ13 . (18)

The experimental information on the CKM parameters implies JCP = O(10−5), so that CP-violating
phenomena are hard to observe. However, new complex couplings are typically present in scenarios for
NP [34]. Such additional sources for CP violation could be detected through flavour experiments.
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Fig. 2: Hierarchy of the quark transitions mediated through charged-current processes

2.4 Experimental information on |VCKM|
In order to determine the magnitudes |Vij | of the elements of the CKM matrix, we may use the following
tree-level processes:

– Nuclear beta decays, neutron decays⇒ |Vud|.
– K → π`ν̄ decays⇒ |Vus|.
– ν production of charm off valence d quarks⇒ |Vcd|.
– Charm-tagged W decays (as well as ν production and semileptonic D decays)⇒ |Vcs|.
– Exclusive and inclusive b→ c`ν̄ decays⇒ |Vcb|.
– Exclusive and inclusive b→ u`ν̄ decays⇒ |Vub|.
– t̄→ b̄`ν̄ processes⇒ (crude direct determination of) |Vtb|.

If we use the corresponding experimental information, together with the CKM unitarity condition, and
assume that there are only three generations, we arrive at the following 90% C.L. limits for the |V ij| [30]:

|V̂CKM| =




0.9739–0.9751 0.221–0.227 0.0029–0.0045
0.221–0.227 0.9730–0.9744 0.039–0.044
0.0048–0.014 0.037–0.043 0.9990–0.9992


 . (19)

In Fig. 2, we have illustrated the resulting hierarchy of the strengths of the charged-current quark-level
processes: transitions within the same generation are governed by CKM matrix elements of O(1), those
between the first and the second generation are suppressed by CKM factors of O(10−1), those between
the second and the third generation are suppressed by O(10−2), and the transitions between the first and
the third generation are even suppressed by CKM factors of O(10−3). In the standard parametrization
(14), this hierarchy is reflected by

s12 = 0.22 � s23 = O(10−2) � , s13 = O(10−3) . (20)

2.5 Wolfenstein parametrization of the CKM matrix
For phenomenological applications, it would be useful to have a parametrization of the CKM matrix
available that makes the hierarchy arising in (19)—and illustrated in Fig. 2—explicit [35]. In order to
derive such a parametrization, we introduce a set of new parameters, λ, A, ρ and η, by imposing the
following relations [36]:

s12 ≡ λ = 0.22, s23 ≡ Aλ2, s13e
−iδ13 ≡ Aλ3(ρ− iη) . (21)

If we now go back to the standard parametrization (14), we obtain an exact parametrization of the CKM
matrix as a function of λ (and A, ρ, η), allowing us to expand each CKM element in powers of the small
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parameter λ. If we neglect terms of O(λ4), we arrive at the famous ‘Wolfenstein parametrization’ [35]:

V̂CKM =




1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4) , (22)

which makes the hierarchical structure of the CKM matrix very transparent and is an important tool for
phenomenological considerations, as we shall see throughout these lectures.

For several applications, next-to-leading order corrections in λ play an important role. Using
the exact parametrization following from (14) and (21), they can be calculated straightforwardly by
expanding each CKM element to the desired accuracy in λ [36, 37]:

Vud = 1− 1

2
λ2 − 1

8
λ4 +O(λ6) , Vus = λ+O(λ7) , Vub = Aλ3(ρ− i η) ,

Vcd = −λ+
1

2
A2λ5 [1− 2(ρ+ iη)] +O(λ7) ,

Vcs = 1− 1

2
λ2 − 1

8
λ4(1 + 4A2) +O(λ6) , (23)

Vcb = Aλ2 +O(λ8) , Vtd = Aλ3

[
1− (ρ+ iη)

(
1− 1

2
λ2

)]
+O(λ7) ,

Vts = −Aλ2 +
1

2
A(1− 2ρ)λ4 − iηAλ4 +O(λ6) , Vtb = 1− 1

2
A2λ4 +O(λ6) .

It should be noted that
Vub ≡ Aλ3(ρ− iη) (24)

receives by definition no power corrections in λ within this prescription. If we follow Ref. [36] and
introduce the generalized Wolfenstein parameters

ρ̄ ≡ ρ
(

1− 1

2
λ2

)
, η̄ ≡ η

(
1− 1

2
λ2

)
, (25)

we may simply write, up to corrections of O(λ7),

Vtd = Aλ3(1− ρ̄− i η̄) . (26)

Moreover, we have to an excellent accuracy

Vus = λ and Vcb = Aλ2 , (27)

as these quantities receive only corrections at the λ7 and λ8 levels, respectively. In comparison with
other generalizations of the Wolfenstein parametrization found in the literature, the advantage of (23) is
the absence of relevant corrections to Vus and Vcb, and that Vub and Vtd take forms similar to those in
(22). As far as the Jarlskog parameter introduced in (17) is concerned, we obtain the simple expression

JCP = λ6A2η , (28)

which should be compared with (18).
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2.6 Unitarity triangles of the CKM matrix
The unitarity of the CKM matrix, which is described by

V̂ †CKM · V̂CKM = 1̂ = V̂CKM · V̂ †CKM , (29)

leads to a set of 12 equations, consisting of 6 normalization and 6 orthogonality relations. The latter can
be represented as 6 triangles in the complex plane [38], all having the same area, 2A∆ = JCP [39]. Let
us now have a closer look at these relations: those describing the orthogonality of different columns of
the CKM matrix are given by

VudV
∗
us︸ ︷︷ ︸

O(λ)

+VcdV
∗
cs︸ ︷︷ ︸

O(λ)

+VtdV
∗
ts︸ ︷︷ ︸

O(λ5)

= 0 (30)

VusV
∗
ub︸ ︷︷ ︸

O(λ4)

+VcsV
∗
cb︸ ︷︷ ︸

O(λ2)

+VtsV
∗
tb︸ ︷︷ ︸

O(λ2)

= 0 (31)

VudV
∗
ub︸ ︷︷ ︸

(ρ+iη)Aλ3

+VcdV
∗
cb︸ ︷︷ ︸

−Aλ3

+ VtdV
∗
tb︸ ︷︷ ︸

(1−ρ−iη)Aλ3

= 0 , (32)

whereas those associated with the orthogonality of different rows take the following form:

V ∗udVcd︸ ︷︷ ︸
O(λ)

+V ∗usVcs︸ ︷︷ ︸
O(λ)

+V ∗ubVcb︸ ︷︷ ︸
O(λ5)

= 0 (33)

V ∗cdVtd︸ ︷︷ ︸
O(λ4)

+V ∗csVts︸ ︷︷ ︸
O(λ2)

+V ∗cbVtb︸ ︷︷ ︸
O(λ2)

= 0 (34)

V ∗udVtd︸ ︷︷ ︸
(1−ρ−iη)Aλ3

+V ∗usVts︸ ︷︷ ︸
−Aλ3

+ V ∗ubVtb︸ ︷︷ ︸
(ρ+iη)Aλ3

= 0 . (35)

Here we have also indicated the structures that arise if we apply the Wolfenstein parametrization by
keeping just the leading, non-vanishing terms. We observe that only in (32) and (35), which describe the
orthogonality of the first and third columns and of the first and third rows, respectively, are all three sides
of comparable magnitude, O(λ3), while in the remaining relations, one side is suppressed with respect
to the others by factors of O(λ2) or O(λ4). Consequently, we have to deal with only two non-squashed
unitarity triangles in the complex plane. However, as we have already indicated in (32) and (35), the
corresponding orthogonality relations agree with each other at the λ3 level, yielding

[(ρ+ iη) + (−1) + (1− ρ− iη)]Aλ3 = 0 . (36)

Consequently, they describe the same triangle, which is usually referred to as the unitarity triangle of the
CKM matrix [39, 40].

Concerning second-generation B-decay studies in the LHC era, the experimental accuracy will
be so tremendous that we shall also have to take the next-to-leading order terms of the Wolfenstein
expansion into account, and shall have to distinguish between the unitarity triangles following from (32)
and (35). Let us first have a closer look at the former relation. Including terms of O(λ5), we obtain the
following generalization of (36):

[(ρ̄+ iη̄) + (−1) + (1− ρ̄− iη̄)]Aλ3 +O(λ7) = 0 , (37)

where ρ̄ and η̄ are as defined in (25). If we divide this relation by the overall normalization factor Aλ3,
and introduce

Rb ≡
√
ρ2 + η2 =

(
1− λ2

2

)
1

λ

∣∣∣∣
Vub
Vcb

∣∣∣∣ (38)
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(a) (b)

Fig. 3: The two non-squashed unitarity triangles of the CKM matrix, as explained in the text: (a) and (b) correspond
to the orthogonality relations (32) and (35), respectively. In Asia, the notation φ1 ≡ β, φ2 ≡ α, and φ3 ≡ γ is
used for the angles of the triangle shown in (a).

Rt ≡
√

(1− ρ)2 + η2 =
1

λ

∣∣∣∣
Vtd
Vcb

∣∣∣∣ , (39)

we arrive at the unitarity triangle illustrated in Fig. 3 (a). It is a straightforward generalization of the
leading-order case described by (36): instead of (ρ, η), the apex is now simply given by (ρ̄, η̄) [36]. The
two sides Rb and Rt, as well as the three angles α, β and γ, will show up at several places throughout
these lectures. Moreover, the relations

Vub = Aλ3

(
Rb

1− λ2/2

)
e−iγ , Vtd = Aλ3Rte

−iβ (40)

are also useful for phenomenological applications, since they make the dependences of γ and β explicit;
they correspond to the phase convention chosen both in the standard parametrization (14) and in the
generalized Wolfenstein parametrization (23). Finally, if we take also (21) into account, we obtain

δ13 = γ . (41)

Let us now turn to (35). Here we arrive at an expression that is more complicated than (37):
[{

1− λ2

2
− (1− λ2)ρ− i(1− λ2)η

}
+

{
−1 +

(
1

2
− ρ
)
λ2 − iηλ2

}
+{ρ+ iη}

]
Aλ3+O(λ7) = 0.

(42)
If we divide again by Aλ3, we obtain the unitarity triangle sketched in Fig. 3 (b), where the apex is given
by (ρ, η) and not by (ρ̄, η̄). On the other hand, we encounter a tiny angle

δγ ≡ λ2η = O(1◦) (43)

between real axis and basis of the triangle, which satisfies

γ = γ′ + δγ , (44)

where γ coincides with the corresponding angle in Fig. 3 (a).

Whenever we refer to a ‘unitarity triangle’ (UT) in the following discussion, we mean the one
illustrated in Fig. 3 (a), which is the generic generalization of the leading-order case described by (36).
As we shall see below, the UT is the central target of the experimental tests of the SM description of CP
violation. Interestingly, the tiny angle δγ also can be probed directly through certain CP-violating effects
that can be explored at hadron colliders, in particular at the LHC.
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Fig. 4: Analyses of the CKMfitter and UTfit Collaborations [41, 42]

2.7 The determination of the unitarity triangle
The next obvious question is how to determine the UT. There are two conceptually different avenues that
we may follow:

(i) In the ‘CKM fits’, theory is used to convert experimental data into contours in the ρ̄–η̄ plane. In
particular, semi-leptonic b→ u`ν̄`, c`ν̄` decays and B0

q–B̄0
q mixing (q ∈ {d, s}) allow us to deter-

mine the UT sides Rb and Rt, respectively, i.e., to fix two circles in the ρ̄–η̄ plane. Furthermore,
the indirect CP violation in the neutral kaon system described by εK can be transformed into a
hyperbola.

(ii) Theoretical considerations allow us to convert measurements of CP-violating effects in B-meson
decays into direct information on the UT angles. The most prominent example is the determina-
tion of sin 2β through CP violation in B0

d → J/ψKS decays, but several other strategies were
proposed.

The goal is to ‘overconstrain’ the UT as much as possible. In the future, additional contours can be fixed
in the ρ̄–η̄ plane through the measurement of rare decays.

In Fig. 4, we show examples of the comprehensive analyses of the UT that are performed (and
continuously updated) by the ‘CKM Fitter Group’ [41] and the ‘UTfit Collaboration’ [42]. In these
figures, we can nicely see the circles that are determined through the semi-leptonic B decays and the εK
hyperbolas. Moreover, the straight lines following from the direct measurement of sin 2β with the help
of B0

d → J/ψKS modes are also shown. We observe that the global consistency is very good. However,
looking closer, we also see that the most recent average for (sin 2β)ψKS

is now on the lower side, so
that the situation in the ρ̄–η̄ plane is no longer ‘perfect’. As we shall discuss in detail in the course of
these lectures, there are certain puzzles in the B-factory data, and several important aspects have not yet
been addressed experimentally and are hence still essentially unexplored. Consequently, we may hope
that flavour studies will eventually establish deviations from the SM description of CP violation. Since
B mesons play a key role in these explorations, let us next have a closer look at them.

3 Decays ofB mesons
The B-meson system consists of charged and neutral B mesons, which are characterized by the valence
quark contents in (3). The characteristic feature of the neutral Bq (q ∈ {d, s}) mesons is the phenomenon
of B0

q–B̄0
q mixing, which will be discussed in Section 5. As far as the weak decays of B mesons are

concerned, we distinguish between leptonic, semileptonic, and non-leptonic transitions.
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Fig. 5: Feynman diagrams contributing to the leptonic decay B− → `ν̄`

3.1 Leptonic decays
The simplest B-meson decay class is given by leptonic decays of the kind B− → `ν̄`, as illustrated
in Fig. 5. If we evaluate the corresponding Feynman diagram, we arrive at the following transition
amplitude:

Tfi = − g
2
2

8
Vub [ū`γ

α(1− γ5)vν ]︸ ︷︷ ︸
Dirac spinors

[
gαβ

k2 −M2
W

]
〈0|ūγβ(1− γ5)b|B−〉︸ ︷︷ ︸

hadronic ME

, (45)

where g2 is the SU(2)L gauge coupling, Vub the corresponding element of the CKM matrix, α and β are
Lorentz indices, and MW denotes the mass of the W gauge boson. Since the four-momentum k that is
carried by the W satisfies k2 = M2

B �M2
W , we may write

gαβ
k2 −M2

W

−→ − gαβ
M2
W

≡ −
(

8GF√
2g2

2

)
gαβ , (46)

where GF is Fermi’s constant. Consequently, we may ‘integrate out’ the W boson in (45), which yields

Tfi =
GF√

2
Vub [ū`γ

α(1− γ5)vν ] 〈0|ūγα(1− γ5)b|B−〉 . (47)

In this simple expression, all the hadronic physics is encoded in the hadronic matrix element

〈0|ūγα(1− γ5)b|B−〉 ,

i.e., there are no other strong-interaction QCD effects (for a detailed discussion of QCD, see Ref. [43]).
Since the B− meson is a pseudoscalar particle, we have

〈0|uγαb|B−〉 = 0 , (48)

and may write
〈0|ūγαγ5b|B−(q)〉 = ifBqα , (49)

where fB is the B-meson decay constant, which is an important input for phenomenological studies. In
order to determine this quantity, which is a very challenging task, non-perturbative techniques, such as
QCD sum-rule analyses [44] or lattice studies, where a numerical evaluation of the QCD path integral is
performed with the help of a space-time lattice, [45]– [47], are required. If we use (47) with (48) and
(49), and perform the corresponding phase-space integrations, we obtain the following decay rate:

Γ(B− → `ν̄`) =
G2

F

8π
MBm

2
`

(
1− m2

`

M2
B

)2

f2
B|Vub|2 , (50)
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Fig. 6: Feynman diagrams contributing to semileptonic B̄0
d → D+(π+)`ν̄` decays

where MB and m` denote the masses of the B− and `, respectively. Because of the tiny value of
|Vub| ∝ λ3 and a helicity-suppression mechanism, we obtain unfortunately very small branching ratios of
O(10−10) and O(10−7) for ` = e and ` = µ, respectively [48]. The helicity suppression is not effective
for ` = τ , but—because of the required τ reconstruction—these modes are also very challenging from
an experimental point of view. Nevertheless, the Belle experiment has recently reported the first evidence
for the purely leptonic decay B− → τ−ν̄τ , with the following branching ratio [49]:

BR(B− → τ−ν̄τ ) =
[
1.06+0.34

−0.28 , (stat) +0.18
−0.16 (syst)

]
× 10−4 , (51)

which corresponds to a significance of 4.2 standard deviations. Using the SM expression for this branch-
ing ratio and the measured values of GF,MB ,mτ and the B-meson lifetime, the product of theB-meson
decay constant fB and the magnitude of the CKM matrix element |Vub| is obtained as

fB |Vub| =
[
7.73+1.24

−1.02 (stat) +0.66
−0.58 (syst)

]
× 10−4 GeV . (52)

The determination of this quantity is very interesting, as knowledge of |Vub| allows us to extract fB ,
thereby providing tests of non-perturbative calculations of this important parameter.

Before discussing the determination of |Vub| from semileptonic B decays in the next subsection,
let us have a look at the leptonic D-meson decay D+ → µ+ν. It is governed by the CKM factor

|Vcd| = |Vus|+O(λ5) = λ[1 +O(λ4)] , (53)

whereas B− → µ−ν̄ involves |Vub| = λ3Rb. Consequently, we win a factor of O(λ4) in the decay rate,
so that D+ → µ+ν is accessible at the CLEO-c experiment [50]. Since the corresponding CKM factor
is well known, the decay constant fD+ defined in analogy to (49) can be extracted, allowing another
interesting testing ground for lattice calculations. Thanks to recent progress in these techniques [51], the
‘quenched’ approximation, which had to be applied for many many years and ingnores quark loops, is no
longer required for the calculation of fD+ . In the summer of 2005, there was a first showdown between
the corresponding theoretical prediction and experiment: the lattice result of fD+ = (201±3±17)MeV
was reported [52], while CLEO-c announced the measurement of fD+ = (222.6 ± 16.7+2.8

−3.4) MeV [53].
Both numbers agree well within the uncertainties, and it will be interesting to stay tuned for future results.

3.2 Semileptonic decays
3.2.1 General structure
Semileptonic B-meson decays of the kind shown in Fig. 6 have a structure that is more complicated than
the one of the leptonic transitions. If we evaluate the corresponding Feynman diagram for the b → c
case, we obtain

Tfi = − g
2
2

8
Vcb [ū`γ

α(1− γ5)vν ]︸ ︷︷ ︸
Dirac spinors

[
gαβ

k2 −M2
W

]
〈D+|c̄γβ(1− γ5)b|B̄0

d〉︸ ︷︷ ︸
hadronic ME

. (54)
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Because of k2 ∼ M2
B � M2

W , we may again—as in (45)—integrate out the W boson with the help of
(46), which yields

Tfi =
GF√

2
Vcb [ū`γ

α(1− γ5)vν ] 〈D+|c̄γα(1− γ5)b|B̄0
d〉 , (55)

where all the hadronic physics is encoded in the hadronic matrix element

〈D+|c̄γα(1− γ5)b|B̄0
d〉 ,

i.e., there are no other QCD effects. Since the B̄0
d and D+ are pseudoscalar mesons, we have

〈D+|c̄γαγ5b|B̄0
d〉 = 0 , (56)

and may write

〈D+(k)|c̄γαb|B̄0
d(p)〉 = F1(q2)

[
(p+ k)α −

(
M2
B −M2

D

q2

)
qα

]
+ F0(q2)

(
M2
B −M2

D

q2

)
qα , (57)

where q ≡ p − k, and the F1,0(q2) denote the form factors of the B̄ → D transitions. Consequently,
in contrast to the simple case of the leptonic transitions, semileptonic decays involve two hadronic form
factors instead of the decay constant fB . In order to calculate these parameters, which depend on the
momentum transfer q, again non-perturbative techniques (QCD sum rules, lattice, etc.) are required.

3.2.2 Aspects of the heavy-quark effective theory
If the mass mQ of a quark Q is much larger than the QCD scale parameter ΛQCD = O(100 MeV) [43],
it is referred to as a ‘heavy’ quark. Since the bottom and charm quarks have masses at the level of 5 GeV
and 1 GeV, respectively, they belong to this important category. As far as the extremely heavy top quark,
with mt ∼ 170 GeV is concerned, it decays unfortunately through weak interactions before a hadron can
be formed. Let us now consider a heavy quark that is bound inside a hadron, i.e., a bottom or a charm
quark. The heavy quark then moves almost with the hadron’s four velocity v and is almost on-shell, so
that

pµQ = mQv
µ + kµ , (58)

where v2 = 1 and k � mQ is the ‘residual’ momentum. Owing to the interactions of the heavy
quark with the light degrees of freedom of the hadron, the residual momentum may only change by
∆k ∼ ΛQCD, and ∆v → 0 for ΛQCD/mQ → 0.

It is now instructive to have a look at the elastic scattering process B̄(v) → B̄(v′) in the limit of
ΛQCD/mb → 0, which is characterized by the following matrix element:

1

MB
〈B̄(v′)|b̄v′γαbv|B̄(v)〉 = ξ(v′ · v)(v + v′)α . (59)

Since the contraction of this matrix element with (v − v ′)α has to vanish because of 6 vbv = bv and
bv′6v′ = bv′ , no (v − v′)α term arises in the parametrization in (59). On the other hand, the 1/MB factor
is related to the normalization of states, i.e., the right-hand side of

(
1√
MB
〈B̄(p′)|

)(
|B̄(p)〉 1√

MB

)
= 2v0(2π)3δ3(~p− ~p′) (60)

does not depend on MB . Finally, current conservation implies the following normalization condition:

ξ(v′ · v = 1) = 1 , (61)
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where the ‘Isgur–Wise’ function ξ(v ′ ·v) does not depend on the flavour of the heavy quark (heavy-quark
symmetry) [54]. Consequently, for ΛQCD/mb,c → 0, we may write

1√
MDMB

〈D(v′)|c̄v′γαbv|B̄(v)〉 = ξ(v′ · v)(v + v′)α , (62)

and observe that this transition amplitude is governed—in the heavy-quark limit—by one hadronic form
factor ξ(v′ · v), which satisfies ξ(1) = 1. If we now compare (62) with (57), we obtain

F1(q2) =
MD +MB

2
√
MDMB

ξ(w) (63)

F0(q2) =
2
√
MDMB

MD +MB

[
1 + w

2

]
ξ(w) , (64)

with

w ≡ vD · vB =
M2
D +M2

B − q2

2MDMB
. (65)

Similar relations hold for the B̄ → D∗ form factors because of the heavy-quark spin symmetry, since the
D∗ is related to the D by a rotation of the heavy-quark spin. A detailed discussion of these interesting
features and the associated ‘heavy-quark effective theory’ (HQET) is beyond the scope of these lectures.
For a detailed overview, we refer the reader to Ref. [55], where also a comprehensive list of original
references can be found. For a more phenomenological discussion, Ref. [56] is very useful.

3.2.3 Applications
An important application of the formalism sketched above is the extraction of the CKM element |Vcb|.
To this end, B̄ → D∗`ν̄ decays are particularly promising. The corresponding rate can be written as

dΓ

dw
= G2

FK(MB ,MD∗ , w)F (w)2 |Vcb|2 , (66)

where K(MB ,MD∗ , w) is a known kinematic function, and F (w) agrees with the Isgur–Wise function,
up to perturbative QCD corrections and ΛQCD/mb,c terms. The form factor F (w) is a non-perturbative
quantity. However, it satisfies the following normalization condition:

F (1) = ηA(αs)

[
1 +

0

mc
+

0

mb
+O(Λ2

QCD/m
2
b,c)

]
, (67)

where ηA(αs) is a perturbatively calculable short-distance QCD factor, and the ΛQCD/mb,c corrections
vanish [55, 57]. The important latter feature is an implication of Luke’s theorem [58]. Consequently,
if we extract F (w)|Vcb| from a measurement of (66) as a function of w and extrapolate to the ‘zero-
recoil point’ w = 1 (where the rate vanishes), we may determine |Vcb|. In the case of B̄ → D`ν̄
decays, we have O(ΛQCD/mb,c) corrections to the corresponding rate dΓ/dw at w = 1. In order to
determine |Vcb|, inclusive B → Xc`ν̄ decays offer also very attractive avenues. As becomes obvious
from (27) and the considerations in Section 2.6, |Vcb| fixes the normalization of the UT. Moreover, this
quantity is an important input parameter for various theoretical calculations. The CKM matrix element
|Vcb| is currently known with 2% precision; performing an analysis of leptonic and hadronic moments in
inclusive b→ c`ν̄ processes [59], the following value was extracted from the B-factory data [60]:

|Vcb| = (42.0 ± 0.7)× 10−3 , (68)

which agrees with that from exclusive decays.

Let us now turn to B̄ → π`ν̄, ρ`ν̄ decays, which originate from b→ u`ν̄ quark-level processes, as
can be seen in Fig. 6, and provide access to |Vub|. If we complement this CKM matrix element with |Vcb|,
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we may determine the side Rb of the UT with the help of (38). The determination of |Vub| is hence a very
important aspect of flavour physics. Since the π and ρ are ‘light’ mesons, the HQET symmetry relations
cannot be applied to the B̄ → π`ν̄, ρ`ν̄ modes. Consequently, in order to determine |Vub| from these
exclusive channels, the corresponding heavy-to-light form factors have to be described by models. An
important alternative is provided by inclusive decays. The corresponding decay rate takes the following
form:

Γ(B̄ → Xu`ν̄) =
G2

F|Vub|2
192π3

m5
b

[
1− 2.41

αs
π

+
λ1 − 9λ2

2m2
b

+ . . .

]
, (69)

where λ1 and λ2 are non-perturbative parameters, which describe the hadronic matrix elements of cer-
tain ‘kinetic’ and ‘chromomagnetic’ operators appearing within the framework of the HQET. Using the
heavy-quark expansions

MB = mb + Λ̄− λ1 + 3λ2

2mb
+ . . . , MB∗ = mb + Λ̄− λ1 − λ2

2mb
+ . . . (70)

for the B(∗)-meson masses, where Λ̄ ∼ ΛQCD is another non-perturbative parameter that is related to the
light degrees of freedom, the parameter λ2 can be determined from the measured values of the MB(∗) .
The strong dependence of (69) on mb is a significant source of uncertainty. On the other hand, the
1/m2

b corrections can be better controlled than in the exclusive case (67), where we have, moreover,
to deal with 1/m2

c corrections. From an experimental point of view, we have to struggle with large
backgrounds, which originate from b → c`ν̄ processes and require also a model-dependent treatment.
The determination of |Vub| from B-meson decays caused by b→ u`ν̄ quark-level processes is therefore
a very challenging issue, and the situation is less favourable than with |Vcb|: there is a 1σ discrepancy
between the values from inclusive and exclusive transitions [61]:

|Vub|incl = (4.4 ± 0.3)× 10−3 , |Vub|excl = (3.8± 0.6) × 10−3 , (71)

which has to be settled in the future. The error on |Vub|excl is dominated by the theoretical uncertainty
of lattice and light-cone sum rule calculations of B → π and B → ρ transition form factors [62, 63],
whereas for |Vub|incl experimental and theoretical errors are at par. Using the values of |Vcb| and |Vub|
given above and λ = 0.225 ± 0.001 [64], we obtain

Rincl
b = 0.45± 0.03 , Rexcl

b = 0.39 ± 0.06 , (72)

where the labels ‘incl’ and ‘excl’ refer to the determinations of |Vub| through inclusive and exclusive
b→ u`ν̄` transitions, respectively.

For a much more detailed discussion of the determinations of |Vcb| and |Vub|, addressing also
various recent developments and the future prospects, we refer the reader to Ref. [12], where also the
references to the vast original literature can be found. Another excellent presentation is given in Ref. [56].

3.3 Non-leptonic decays
3.3.1 Classification
The most complicated B decays are the non-leptonic transitions, which are mediated by b→ q1 q̄2 d (s)
quark-level processes, with q1, q2 ∈ {u, d, c, s}. There are two kinds of topologies contributing to such
decays: tree-diagram-like and ‘penguin’ topologies. The latter consist of gluonic (QCD) and electroweak
(EW) penguins. In Fig. 7, the corresponding leading-order Feynman diagrams are shown. Depending on
the flavour content of their final states, we may classify b→ q1 q̄2 d (s) decays as follows:

– q1 6= q2 ∈ {u, c}: only tree diagrams contribute.
– q1 = q2 ∈ {u, c}: tree and penguin diagrams contribute.
– q1 = q2 ∈ {d, s}: only penguin diagrams contribute.
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(a)

(b)

(c)

Fig. 7: Feynman diagrams of the topologies characterizing non-leptonic B decays: (a) trees, (b) QCD penguins,
and (c) electroweak penguins

Fig. 8: Feynman diagrams contributing to the non-leptonic B̄0
d → D+K− decay

Fig. 9: The description of the b→ dūs process through the four-quark operatorO2 in the effective theory after the
W boson has been integrated out

3.3.2 Low-energy effective Hamiltonians
In order to analyse non-leptonic B decays theoretically, one uses low-energy effective Hamiltonians,
which are calculated by making use of the ‘operator product expansion’, yielding transition matrix ele-
ments of the following structure:

〈f |Heff |i〉 =
GF√

2
λCKM

∑

k

Ck(µ)〈f |Qk(µ)|i〉 . (73)

The technique of the operator product expansion allows us to separate the short-distance contributions
to this transition amplitude from the long-distance ones, which are described by perturbative quantities
Ck(µ) (‘Wilson coefficient functions’) and non-perturbative quantities 〈f |Qk(µ)|i〉 (‘hadronic matrix
elements’), respectively. As before, GF is the Fermi constant, whereas λCKM is a CKM factor and µ
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Fig. 10: Factorizable QCD corrections in the full and effective theories

Fig. 11: Non-factorizable QCD corrections in the full and effective theories

denotes an appropriate renormalization scale. The Qk are local operators, which are generated by elec-
troweak interactions and QCD, and govern ‘effectively’ the decay in question. The Wilson coefficients
Ck(µ) can be considered as scale-dependent couplings related to the vertices described by the Qk.

In order to illustrate this rather abstract formalism, let us consider the decay B̄0
d → D+K−, which

allows a transparent discussion of the evaluation of the corresponding low-energy effective Hamilto-
nian. Since this transition originates from a b → cūs quark-level process, it is—as we have seen in
our classification in Subsection 3.3.1—a pure ‘tree’ decay, i.e., we do not have to deal with penguin
topologies, which simplifies the analysis considerably. The leading-order Feynman diagram contributing
to B̄0

d → D+K− can straightforwardly be obtained from Fig. 6 by substituting ` and ν` by s and u,
respectively, as can be seen in Fig. 8. Consequently, the lepton current is simply replaced by a quark
current, which will have important implications shown below. Evaluating the corresponding Feynman
diagram yields

− g
2
2

8
V ∗usVcb [s̄γν(1− γ5)u]

[
gνµ

k2 −M2
W

]
[c̄γµ(1− γ5)b] . (74)

Because of k2 ∼ m2
b � M2

W , we may—as in (54)—‘integrate out’ the W boson with the help of (46),
and arrive at

Heff =
GF√

2
V ∗usVcb [s̄αγµ(1− γ5)uα] [c̄βγ

µ(1− γ5)bβ]

=
GF√

2
V ∗usVcb(s̄αuα)V–A(c̄βbβ)V–A ≡

GF√
2
V ∗usVcbO2 , (75)

where α and β denote the colour indices of the SU(3)C gauge group of QCD. Effectively, our b→ cūs
decay process is now described by the ‘current–current’ operator O2, as is illustrated in Fig. 9.

So far, we neglected QCD corrections. Their important impact is twofold: thanks to factorizable
QCD corrections as shown in Fig. 10, the Wilson coefficient C2 acquires a renormalization-scale depen-
dence, i.e., C2(µ) 6= 1. On the other hand, non-factorizable QCD corrections as illustrated in Fig. 11
generate a second current–current operator through ‘operator mixing’, which is given by

O1 ≡ [s̄αγµ(1− γ5)uβ] [c̄βγ
µ(1− γ5)bα] . (76)

Consequently, we eventually arrive at a low-energy effective Hamiltonian of the following structure:

Heff =
GF√

2
V ∗usVcb [C1(µ)O1 + C2(µ)O2] . (77)
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In order to evaluate the Wilson coefficients C1(µ) 6= 0 and C2(µ) 6= 1 [65], we must first calculate the
QCD corrections to the decay processes both in the full theory, i.e., withW exchange, and in the effective
theory, where the W is integrated out (see Figs. 10 and 11), and have then to express the QCD-corrected
transition amplitude in terms of QCD-corrected matrix elements and Wilson coefficients as in (73). This
procedure is called ‘matching’ between the full and the effective theory. The results for the Ck(µ) thus
obtained contain terms of log(µ/MW ), which become large for µ = O(mb), the scale governing the
hadronic matrix elements of the Ok. Making use of the renormalization group, which exploits the fact
that the transition amplitude (73) cannot depend on the chosen renormalization scale µ, we may sum up
the following terms of the Wilson coefficients:

αns

[
log

(
µ

MW

)]n
(LO), αns

[
log

(
µ

MW

)]n−1

(NLO), ... ; (78)

detailed discussions of these rather technical aspects can be found in Refs. [66, 67].

For the exploration of CP violation, the class of non-leptonic B decays that receives contributions
both from tree and from penguin topologies plays a key role. In this important case, the operator basis is
much larger than in our example (77), where we considered a pure ‘tree’ decay. If we apply the relation

V ∗urVub + V ∗crVcb + V ∗trVtb = 0 (r ∈ {d, s}), (79)

which follows from the unitarity of the CKM matrix, and ‘integrate out’ the top quark (which enters
through the penguin loop processes) and the W boson, we may write

Heff =
GF√

2


∑

j=u,c

V ∗jrVjb

{
2∑

k=1

Ck(µ)Qjr
k +

10∑

k=3

Ck(µ)Qr
k

}
 . (80)

Here we have introduced another quark-flavour label j ∈ {u, c}, and the Qjr
k can be divided as follows:

– Current–current operators:
Qjr1 = (r̄αjβ)V–A(j̄βbα)V–A

Qjr2 = (r̄αjα)V–A(j̄βbβ)V–A.
(81)

– QCD penguin operators:
Qr3 = (r̄αbα)V–A

∑
q′(q̄
′
βq
′
β)V–A

Qr4 = (r̄αbβ)V–A
∑

q′(q̄
′
βq
′
α)V–A

Qr5 = (r̄αbα)V–A
∑

q′(q̄
′
βq
′
β)V+A

Qr6 = (r̄αbβ)V–A
∑

q′(q̄
′
βq
′
α)V+A.

(82)

– EW penguin operators (the eq′ denote the electrical quark charges):

Qr7 = 3
2(r̄αbα)V–A

∑
q′ eq′(q̄

′
βq
′
β)V+A

Qr8 = 3
2(r̄αbβ)V–A

∑
q′ eq′(q̄

′
βq
′
α)V+A

Qr9 = 3
2(r̄αbα)V–A

∑
q′ eq′(q̄

′
βq
′
β)V–A

Qr10 = 3
2(r̄αbβ)V–A

∑
q′ eq′(q̄

′
βq
′
α)V–A.

(83)

The current–current, QCD and EW penguin operators are related to the tree, QCD and EW penguin
processes shown in Fig. 7. At a renormalization scale µ = O(mb), the Wilson coefficients of the current–
current operators are C1(µ) = O(10−1) and C2(µ) = O(1), whereas those of the penguin operators
are O(10−2) [66, 67]. Note that penguin topologies with internal charm- and up-quark exchanges [68]
are described in this framework by penguin-like matrix elements of the corresponding current–current
operators [69], and may also have important phenomenological consequences [70, 71].
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Since the ratio α/αs = O(10−2) of the QED and QCD couplings is very small, we would expect
naïvely that EW penguins should play a minor role in comparison with QCD penguins. This would
actually be the case if the top quark was not ‘heavy’. However, since the Wilson coefficient C9 increases
strongly with mt, we obtain interesting EW penguin effects in several B decays: B → Kφ modes are
affected significantly by EW penguins, whereas B → πφ and Bs → π0φ transitions are even dominated
by such topologies [72, 73]. EW penguins also have an important impact on the B → πK system [74].

The low-energy effective Hamiltonians discussed above apply to all B decays that are caused by
the same quark-level transition, i.e., they are ‘universal’. Consequently, the differences between the vari-
ous exclusive modes of a given decay class arise within this formalism only through the hadronic matrix
elements of the relevant four-quark operators. Unfortunately, the evaluation of such matrix elements is
associated with large uncertainties and is a very challenging task. In this context, ‘factorization’ is a
widely used concept, which is our next topic.

3.3.3 Factorization of hadronic matrix elements
In order to discuss ‘factorization’, let us consider once more the decay B̄0

d → D+K−. Evaluating the
corresponding transition amplitude, we encounter the hadronic matrix elements of the O1,2 operators
between the 〈K−D+| final and the |B̄0

d〉 initial states. If we use the well-known SU(NC) colour-algebra
relation

T aαβT
a
γδ =

1

2

(
δαδδβγ −

1

NC
δαβδγδ

)
(84)

to rewrite the operator O1, we obtain

〈K−D+|Heff |B̄0
d〉 =

GF√
2
V ∗usVcb

[
a1〈K−D+|(s̄αuα)V–A(c̄βbβ)V–A|B̄0

d〉

+2C1〈K−D+|(s̄α T aαβ uβ)V–A(c̄γ T
a
γδ bδ)V–A|B̄0

d〉
]
,

with
a1 = C1/NC + C2 ∼ 1 . (85)

It is now straightforward to ‘factorize’ the hadronic matrix elements in (85):

〈K−D+|(s̄αuα)V–A(c̄βbβ)V–A|B̄0
d〉
∣∣
fact

= 〈K−| [s̄αγµ(1− γ5)uα] |0〉〈D+| [c̄βγµ(1− γ5)bβ ] |B̄0
d〉

= ifK︸︷︷︸
decay constant

× F
(BD)
0 (M2

K)︸ ︷︷ ︸
B → D form factor

× (M2
B −M2

D) ,︸ ︷︷ ︸
kinematical factor

(86)

〈K−D+|(s̄α T aαβ uβ)V–A(c̄γ T
a
γδ bδ)V–A|B̄0

d〉
∣∣
fact

= 0 . (87)

The quantity a1 is a phenomenological ‘colour factor’, which governs ‘colour-allowed’ decays; the decay
B̄0
d → D+K− belongs to this category, since the colour indices of theK−meson and the B̄0

d–D+ system
run independently from each other in the corresponding leading-order diagram shown in Fig. 8. On the
other hand, in the case of ‘colour-suppressed’ modes, for instance B̄0

d → π0D0, where only one colour
index runs through the whole diagram, we have to deal with the combination

a2 = C1 + C2/NC ∼ 0.25 . (88)

The concept of factorizing the hadronic matrix elements of four-quark operators into the product
of hadronic matrix elements of quark currents has a long history [75], and can be justified, for example,
in the large-NC limit [76]. Interesting recent developments are the following:
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– ‘QCD factorization’ [77], which is in accordance with the old picture that factorization should
hold for certain decays in the limit of mb � ΛQCD [78], provides a formalism to calculate the
relevant amplitudes at the leading order of a ΛQCD/mb expansion. The resulting expression for
the transition amplitudes incorporates elements both of the naïve factorization approach sketched
above and of the hard-scattering picture. Let us consider a decay B̄ → M1M2, where M1 picks
up the spectator quark. If M1 is either a heavy (D) or a light (π, K) meson, and M2 a light (π, K)
meson, QCD factorization gives a transition amplitude of the following structure:

A(B̄ →M1M2) = [‘naïve factorization’]× [1 +O(αs) +O(ΛQCD/mb)] . (89)

While the O(αs) terms, i.e., the radiative non-factorizable corrections, can be calculated system-
atically, the main limitation of the theoretical accuracy originates from the O(ΛQCD/mb) terms.

– Another QCD approach to deal with non-leptonic B-meson decays—the ‘perturbative hard-scattering
approach’ (PQCD)—was developed independently in Ref. [79], and differs from the QCD factor-
ization formalism in some technical aspects.

– An interesting technique for ‘factorization proofs’ is provided by the framework of the ‘soft
collinear effective theory’ (SCET) [80], which has received a lot of attention in the recent liter-
ature and led to various applications.

– Non-leptonic B decays can also be studied within QCD light-cone sum-rule approaches [81].

A detailed presentation of these topics would be very technical and is beyond the scope of these lec-
tures. However, for the discussion of the CP-violating effects in the B-meson system, we must only
be familiar with the general structure of the non-leptonic B decay amplitudes and not enter the details
of the techniques to deal with the corresponding hadronic matrix elements. Let us finally note that the
B-factory data will eventually decide how well factorization and the new concepts sketched above are
actually working. For example, data on the B → ππ system point towards large non-factorizable correc-
tions [82, 83], to which we shall return in Section 8.2.

3.4 Towards studies of CP violation
As we have seen above, leptonic and semileptonic B-meson decays involve only a single weak (CKM)
amplitude. On the other hand, the structure of non-leptonic transitions is considerably more complicated.
Let us consider a non-leptonic decay B̄ → f̄ that is described by the low-energy effective Hamiltonian
in (80). The corresponding decay amplitude is then given as follows:

A(B̄ → f̄) = 〈f̄ |Heff|B̄〉

=
GF√

2


∑

j=u,c

V ∗jrVjb

{
2∑

k=1

Ck(µ)〈f̄ |Qjr
k (µ)|B̄〉+

10∑

k=3

Ck(µ)〈f̄ |Qr
k(µ)|B̄〉

}
 . (90)

Concerning the CP-conjugate process B → f , we have

A(B → f) = 〈f |H†eff|B〉

=
GF√

2


∑

j=u,c

VjrV
∗
jb

{
2∑

k=1

Ck(µ)〈f |Qjr†
k (µ)|B〉+

10∑

k=3

Ck(µ)〈f |Qr†
k (µ)|B〉

}
 . (91)

If we use now that strong interactions are invariant under CP transformations, insert (CP)†(CP) = 1̂
both after the 〈f | and in front of the |B〉, and take the relation

(CP)Qjr†
k (CP)† = Qjrk (92)
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into account, we arrive at

A(B → f) = ei[φCP(B)−φCP(f)]

×GF√
2


∑

j=u,c

VjrV
∗
jb

{
2∑

k=1

Ck(µ)〈f̄ |Qjr
k (µ)|B̄〉+

10∑

k=3

Ck(µ)〈f̄ |Qr
k(µ)|B̄〉

}
 , (93)

where the convention-dependent phases φCP(B) and φCP(f) are defined through

(CP)|B〉 = eiφCP(B)|B̄〉, (CP)|f〉 = eiφCP(f)|f̄〉. (94)

Consequently, we may write

A(B̄ → f̄) = e+iϕ1 |A1|eiδ1 + e+iϕ2 |A2|eiδ2 (95)

A(B → f) = ei[φCP(B)−φCP(f)]
[
e−iϕ1 |A1|eiδ1 + e−iϕ2 |A2|eiδ2

]
. (96)

Here the CP-violating phases ϕ1,2 originate from the CKM factors V ∗jrVjb, and the CP-conserving
‘strong’ amplitudes |A1,2|eiδ1,2 involve the hadronic matrix elements of the four-quark operators. In
fact, these expressions are the most general forms of any non-leptonic B-decay amplitude in the SM,
i.e., they do not only refer to the ∆C = ∆U = 0 case described by (80). Using (95) and (96), we obtain
the following CP asymmetry:

ACP ≡ Γ(B → f)− Γ(B̄ → f̄)

Γ(B → f) + Γ(B̄ → f̄)
=
|A(B → f)|2 − |A(B̄ → f̄)|2
|A(B → f)|2 + |A(B̄ → f̄)|2

=
2|A1||A2| sin(δ1 − δ2) sin(ϕ1 − ϕ2)

|A1|2 + 2|A1||A2| cos(δ1 − δ2) cos(ϕ1 − ϕ2) + |A2|2
. (97)

We observe that a non-vanishing value can be generated through the interference between the two weak
amplitudes, provided both a non-trivial weak phase difference ϕ1 − ϕ2 and a non-trivial strong phase
difference δ1 − δ2 are present. This kind of CP violation is referred to as ‘direct’ CP violation, as it
originates directly at the amplitude level of the considered decay. It is the B-meson counterpart of the
effects that are probed through Re(ε′/ε) in the neutral kaon system1, and could recently be established
with the help of Bd → π∓K± decays [6], as we shall see in Section 7.3.

Since ϕ1 − ϕ2 is in general given by one of the UT angles—usually γ—the goal is to extract this
quantity from the measured value ofACP. Unfortunately, hadronic uncertainties affect this determination
through the poorly known hadronic matrix elements in (90). In order to deal with this problem, we may
proceed along one of the following two avenues:

(i) Amplitude relations can be used to eliminate the hadronic matrix elements. We distinguish be-
tween exact relations, using pure ‘tree’ decays of the kind B± → K±D [84, 85] or B±c → D±s D
[86], and relations which follow from the flavour symmetries of strong interactions, i.e., isospin or
SU(3)F, and involve B(s) → ππ, πK,KK modes [87].

(ii) In decays of neutral Bq mesons, interference effects between B0
q–B̄0

q mixing and decay processes
may induce ‘mixing-induced CP violation’. If a single CKM amplitude governs the decay, the
hadronic matrix elements cancel in the corresponding CP asymmetries; otherwise we again have
to use amplitude relations. The most important example is the decay B0

d → J/ψKS [88].

Before discussing the features of neutral Bq mesons and B0
q–B̄0

q mixing in detail in Section 5, let us
illustrate the use of amplitude relations for clean extractions of the UT angle γ from decays of charged
Bu and Bc mesons.

1In order to calculate this quantity, an approriate low-energy effective Hamiltonian having the same structure as (80) is used.
The large theoretical uncertainties mentioned in Section 1 originate from a strong cancellation between the contributions of the
QCD and EW penguins (caused by the large top-quark mass) and the associated hadronic matrix elements.
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4 Amplitude relations
4.1 B± → K±D

The prototype of the strategies using theoretically clean amplitude relations is provided by B± → K±D
decays [84]. Looking at Fig. 12, we observe that B+ → K+D̄0 and B+ → K+D0 are pure ‘tree’
decays. If we consider, in addition, the transition B+ → D0

+K
+, where D0

+ denotes the CP eigenstate
of the neutral D-meson system with eigenvalue +1,

|D0
+〉 =

1√
2

[
|D0〉+ |D̄0〉

]
, (98)

we obtain interference effects, which are described by
√

2A(B+ → K+D0
+) = A(B+ → K+D0) +A(B+ → K+D̄0) (99)√

2A(B− → K−D0
+) = A(B− → K−D̄0) +A(B− → K−D0) . (100)

These relations can be represented as two triangles in the complex plane. Since we have only to deal
with tree-diagram-like topologies, we have moreover

A(B+ → K+D̄0) = A(B− → K−D0) (101)

A(B+ → K+D0) = A(B− → K−D̄0)× e2iγ , (102)

allowing a theoretically clean extraction of γ, as shown in Fig. 13. Unfortunately, these triangles are
very squashed, since B+ → K+D0 is colour-suppressed with respect to B+ → K+D̄0:

∣∣∣∣
A(B+ → K+D0)

A(B+ → K+D̄0

∣∣∣∣ =

∣∣∣∣
A(B− → K−D̄0)

A(B− → K−D0

∣∣∣∣ ≈
1

λ

|Vub|
|Vcb|

× a2

a1
≈ 0.4 × 0.3 = O(0.1) , (103)

where the phenomenological ‘colour’ factors were introduced in Subsection 3.3.3.

Another—more subtle—problem is related to the measurement of BR(B+ → K+D0). From the
theoretical point of view, D0 → K−`+ν would be ideal to measure this tiny branching ratio. However,
because of the huge background from semileptonic B decays, we must rely on Cabibbo-allowed hadronic
D0 → fNE decays, such as fNE = π+K−, ρ+K−, . . ., i.e., have to measure

B+ → K+D0 [→ fNE] . (104)

Unfortunately, we then encounter another decay path into the same final state K+fNE through

B+ → K+D̄0 [→ fNE] , (105)

where BR(B+ → K+D̄0) is larger than BR(B+ → K+D0) by a factor of O(102), while D̄0 → fNE is
doubly Cabibbo-suppressed, i.e., the corresponding branching ratio is suppressed with respect to the one
of D0 → fNE by a factor of O(10−2). Consequently, we obtain interference effects of O(1) between
the decay chains in (104) and (105). However, if two different final states fNE are considered, γ can
be extracted [85], although this determination is then more involved than the original triangle approach
presented in [84].

The angle γ can be determined in a variety of ways through CP-violating effects in pure tree
decays of type B → D(∗)K(∗) [89]. Using the present B-factory data, the following results were
obtained through a combination of various methods:

γ|D(∗)K(∗) =

{
(62+35
−25)◦ (CKMfitter Collaboration [41]) ,

(65± 20)◦ (UTfit Collaboration [42]) .
(106)

Here we have discarded a second solution given by 180◦ + γ|D(∗)K(∗) in the third quadrant of the ρ̄–η̄
plane, as it is disfavoured by the global fits of the UT, and by the data for mixing-induced CP violation in
pure tree decays of type Bd → D±π∓, D∗±π∓, ... [90]. A similar comment applies to the information
from B → ππ, πK modes [91].
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Fig. 12: Feynman diagrams contributing to B+ → K+D̄0 and B+ → K+D0

Fig. 13: The extraction of γ from B± → K±{D0, D̄0, D0
+} decays

Fig. 14: Feynman diagrams contributing to B+
c → D+

s D̄
0 and B+ → D+

s D
0

4.2 B±c → D±s D

In addition to the ‘conventional’ B±u mesons, there is yet another species of charged B mesons, the Bc-
meson system, which consists of B+

c ∼ cb and B−c ∼ bc. These mesons were observed by the CDF
Collaboration through their decay B+

c → J/ψ`+ν, with the following mass and lifetime [92]:

MBc = (6.40 ± 0.39 ± 0.13) GeV, τBc = (0.46+0.18
−0.16 ± 0.03) ps . (107)

Meanwhile, the D0 Collaboration observed the B+
c → J/ψ µ+X mode [93], which led to the following

Bc mass and lifetime determinations:

MBc = (5.95+0.14
−0.13 ± 0.34) GeV, τBc = (0.448+0.123

−0.096 ± 0.121) ps , (108)

and CDF reported evidence for the B+
c → J/ψπ+ channel [94], implying

MBc = (6.2870 ± 0.0048 ± 0.0011) GeV . (109)

Since Run II of the Tevatron will provide further insights into Bc physics and a huge number of Bc
mesons will be produced at LHCb, the natural question of how to explore CP violation with charged Bc
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Fig. 15: The extraction of γ from B±c → D±s {D0, D̄0, D0
+} decays

decays arises, in particular whether an extraction of γ with the help of the triangle approach is possible.
Such a determination is actually offered by B±c → D±s D decays, which are the Bc counterparts of the
B±u → K±D modes (see Fig. 14), and satisfy the following amplitude relations [95]:

√
2A(B+

c → D+
s D

0
+) = A(B+

c → D+
s D

0) +A(B+
c → D+

s D̄
0) (110)√

2A(B−c → D−s D
0
+) = A(B−c → D−s D̄

0) +A(B−c → D−s D
0) , (111)

with

A(B+
c → D+

s D̄
0) = A(B−c → D−s D

0) (112)

A(B+
c → D+

s D
0) = A(B−c → D−s D̄

0)× e2iγ . (113)

At first sight, everything is completely analogous to the B±u → K±D case. However, there is an im-
portant difference [86], which becomes obvious by comparing the Feynman diagrams shown in Figs. 12
and 14: in the B±c → D±s D system, the amplitude with the rather small CKM matrix element Vub is not
colour-suppressed, while the larger element Vcb comes with a colour-suppression factor. Therefore, we
obtain

∣∣∣∣
A(B+

c → D+
s D

0)

A(B+
c → D+

s D̄0)

∣∣∣∣ =

∣∣∣∣
A(B−c → D−s D̄

0)

A(B−c → D−s D0)

∣∣∣∣ ≈
1

λ

|Vub|
|Vcb|

× a1

a2
≈ 0.4× 3 = O(1) , (114)

and conclude that the two amplitudes are similar in size. In contrast to this favourable situation, in the
decays B±u → K±D, the matrix element Vub comes with the colour-suppression factor, resulting in a
very stretched triangle. The extraction of γ from theB±c → D±s D triangles is illustrated in Fig. 15, which
should be compared with the squashed B±u → K±D triangles shown in Fig. 13. Another important
advantage is that the interference effects arising from D0, D̄0 → π+K− are practically unimportant for
the measurement of BR(B+

c → D+
s D

0) and BR(B+
c → D+

s D̄
0) since the Bc-decay amplitudes are of

the same order of magnitude. Consequently, theB±c → D±s D decays provide—from the theoretical point
of view—the ideal realization of the ‘triangle’ approach to determine γ. On the other hand, the practical
implementation still appears to be challenging, although detailed experimental feasibility studies for
LHCb are strongly encouraged. The corresponding branching ratios were estimated in Ref. [96], with a
pattern in accordance with (114).

5 Features of neutralB mesons
5.1 Schrödinger equation for B0

q–B̄0
q mixing

Within the SM, B0
q–B̄0

q mixing (q ∈ {d, s}) arises from the box diagrams shown in Fig. 16. Because of
this phenomenon, an initially, i.e., at time t = 0, present B0

q -meson state evolves into a time-dependent

24

R. FLEISCHER

126



Fig. 16: Box diagrams contributing to B0
q–B̄0

q mixing in the SM (q ∈ {d, s})

linear combination of B0
q and B̄0

q states:

|Bq(t)〉 = a(t)|B0
q 〉+ b(t)|B̄0

q 〉, (115)

where a(t) and b(t) are governed by a Schrödinger equation of the following form:

i
d

dt

(
a(t)
b(t)

)
= H ·

(
a(t)
b(t)

)
≡
[(

M
(q)
0 M

(q)
12

M
(q)∗
12 M

(q)
0

)

︸ ︷︷ ︸
mass matrix

− i
2

(
Γ

(q)
0 Γ

(q)
12

Γ
(q)∗
12 Γ

(q)
0

)

︸ ︷︷ ︸
decay matrix

]
·
(
a(t)
b(t)

)
.

The special form H11 = H22 of the Hamiltonian H is an implication of the CPT theorem, i.e., of the
invariance under combined CP and time-reversal (T) transformations.

It is straightforward to calculate the eigenstates |B (q)
± 〉 and eigenvalues λ(q)

± of (116):

|B(q)
± 〉 =

1√
1 + |αq|2

(
|B0

q 〉 ± αq|B̄0
q 〉
)

(116)

λ
(q)
± =

(
M

(q)
0 − i

2
Γ

(q)
0

)
±
(
M

(q)
12 −

i

2
Γ

(q)
12

)
αq , (117)

where

αqe
+i
“

Θ
(q)
Γ12

+n′π
”

=

√√√√√ 4|M (q)
12 |2e

−i2δΘ(q)
M/Γ + |Γ(q)

12 |2
4|M (q)

12 |2 + |Γ(q)
12 |2 − 4|M (q)

12 ||Γ
(q)
12 | sin δΘ

(q)
M/Γ

. (118)

Here we have written

M
(q)
12 ≡ e

iΘ
(q)
M12 |M (q)

12 |, Γ
(q)
12 ≡ e

iΘ
(q)
Γ12 |Γ(q)

12 |, δΘ
(q)
M/Γ ≡ Θ

(q)
M12
−Θ

(q)
Γ12

, (119)

and have introduced the quantity n′ ∈ {0, 1} to parametrize the sign of the square root in (118).

Evaluating the dispersive parts of the box diagrams shown in Fig. 16, which are dominated by
internal top-quark exchanges, yields (for a more detailed discussion, see Ref. [17]):

M
(q)
12 =

G2
FM

2
W

12π2
ηBMBqf

2
BqB̂Bq

(
V ∗tqVtb

)2
S0(xt)e

i(π−φCP(Bq)) , (120)

where φCP(Bq) is a convention-dependent phase, which is defined in analogy to (94). The short-distance
physics is encoded in the ‘Inami–Lim’ function S0(xt ≡ m2

t /M
2
W ) [97], which can be written—to a

good approximation—in the SM as [98]

S0(xt) = 2.40 ×
[ mt

167 GeV

]1.52
, (121)

and in the perturbative QCD correction factor ηB = 0.55 ± 0.01 [99], which does not depend on q ∈
{d, s}, i.e., is the same for Bd and Bs mesons. On the other hand, the non-perturbative physics is
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described by the quantities fBq B̂
1/2
Bq

, involving—in addition to the Bq decay constant fBq—the ‘bag’

parameter B̂Bq , which is related to the hadronic matrix element 〈B̄0
q |(b̄q)V−A(b̄q)V−A|B0

q 〉. These non-
perturbative parameters can be determined through QCD sum-rule calculations [100] or lattice studies.
Concerning the latter analyses, the front runners are now unquenched calculations with 2 or 3 dynamical
quarks. Despite tremendous progress, the results still suffer from several uncertainties. For the analysis
of the mixing parameters discussed below [101], we use two sets of parameters from the JLQCD [102]
and HPQCD [103] lattice collaborations:

fBdB̂
1/2
Bd

∣∣∣
JLQCD

= (0.215 ± 0.019+0
−0.023) GeV

fBsB̂
1/2
Bs

∣∣∣
JLQCD

= (0.245 ± 0.021+0.003
−0.002) GeV ,

(122)

which were obtained for two flavours of dynamical light (‘Wilson’) quarks, and

fBdB̂
1/2
Bd

∣∣∣
(HP+JL)QCD

= (0.244 ± 0.026) GeV

fBsB̂
1/2
Bs

∣∣∣
(HP+JL)QCD

= (0.295 ± 0.036) GeV ,
(123)

where fBq comes from HPQCD (3 dynamical flavours) and B̂Bq from JLQCD as no value for this
parameter is available from the former collaboration [104].

If we calculate also the absorptive parts of the box diagrams in Fig 16, we obtain

Γ
(q)
12

M
(q)
12

≈ − 3π

2S0(xt)

(
m2
b

M2
W

)
= O(m2

b/m
2
t )� 1 . (124)

Consequently, we may expand (118) in Γ
(q)
12 /M

(q)
12 . Neglecting second-order terms, we arrive at

αq =

[
1 +

1

2

∣∣∣∣∣
Γ

(q)
12

M
(q)
12

∣∣∣∣∣ sin δΘ
(q)
M/Γ

]
e
−i
“

Θ
(q)
M12

+n′π
”
. (125)

The deviation of |αq| from 1 measures CP violation in B0
q–B̄0

q oscillations, and can be probed
through the following ‘wrong-charge’ lepton asymmetries:

A(q)
SL ≡

Γ(B0
q (t)→ `−ν̄X)− Γ(B̄0

q (t)→ `+νX)

Γ(B0
q (t)→ `−ν̄X) + Γ(B̄0

q (t)→ `+νX)
=
|αq|4 − 1

|αq|4 + 1
≈
∣∣∣∣∣

Γ
(q)
12

M
(q)
12

∣∣∣∣∣ sin δΘ
(q)
M/Γ . (126)

Because of |Γ(q)
12 |/|M

(q)
12 | ∝ m2

b/m
2
t and sin δΘ

(q)
M/Γ

∝ m2
c/m

2
b , the asymmetry A(q)

SL is suppressed by a
factor of m2

c/m
2
t = O(10−4) and is hence tiny in the SM. However, this observable may be enhanced

through NP effects, thereby representing an interesing probe for physics beyond the SM [105, 106].
The current experimental average for the Bd-meson system compiled by the ‘Heavy Flavour Averaging
Group’ [61] reads as follows:

A(d)
SL = 0.0030 ± 0.0078 , (127)

and does not indicate any non-vanishing effect.

5.2 Mixing parameters

Let us denote the masses of the eigenstates of (116) by M (q)
H (‘heavy’) and M (q)

L (‘light’). It is then
useful to introduce

Mq ≡
M

(q)
H +M

(q)
L

2
= M

(q)
0 , (128)
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as well as the mass difference

∆Mq ≡M (q)
H −M (q)

L = 2|M (q)
12 | > 0 , (129)

which is by definition positive. While B0
d–B̄0

d mixing is well established and

∆Md = (0.507 ± 0.004) ps−1 (130)

known with impressive experimental accuracy [61], only lower bounds on ∆Ms were available, for many
years, from the LEP (CERN) experiments and SLD (SLAC) [107]. In the spring of 2006, ∆Ms could
eventually be pinned down at the Tevatron: the D0 Collaboration reported a two-sided bound

17 ps−1 < ∆Ms < 21 ps−1 (90% C.L.) , (131)

corresponding to a 2.5 σ signal at ∆Ms = 19 ps−1 [108], and CDF announced the following result [109]:

∆Ms =
[
17.31+0.33

−0.18(stat)± 0.07(syst)
]

ps−1 . (132)

The decay widths Γ
(q)
H and Γ

(q)
L of the mass eigenstates, which correspond to M (q)

H and M (q)
L ,

respectively, satisfy

∆Γq ≡ Γ
(q)
H − Γ

(q)
L =

4 Re
[
M

(q)
12 Γ

(q)∗
12

]

∆Mq
, (133)

whereas

Γq ≡
Γ

(q)
H + Γ

(q)
L

2
= Γ

(q)
0 . (134)

There is the following interesting relation:

∆Γq
Γq
≈ − 3π

2S0(xt)

(
m2
b

M2
W

)
xq = −O(10−2)× xq , (135)

where

xq ≡
∆Mq

Γq
=

{
0.771 ± 0.012 (q = d)
O(20) (q = s)

(136)

is often referred to as the B0
q–B̄0

q ‘mixing parameter’2 . Consequently, we observe that ∆Γd/Γd ∼ 10−2

is negligibly small, while ∆Γs/Γs ∼ 10−1 may be sizeable. In fact, as was reviewed in Ref. [110], the
state of the art of calculations of these quantities is given as follows:

|∆Γd|
Γd

= (3± 1.2) × 10−3,
|∆Γs|

Γs
= 0.12 ± 0.05 . (137)

Recently, the first results for ∆Γs were reported from the Tevatron, using theB0
s → J/ψφ channel [111]:

|∆Γs|
Γs

=

{
0.65+0.25

−0.33 ± 0.01 (CDF [112])
0.24+0.28+0.03

−0.38−0.04 (D0 [113]) .
(138)

It will be interesting to follow the evolution of the data for this quantity.

In Sections 7.1 and 10.1, we give detailed discussions of the theoretical interpretation of the data
for the B0

q–B̄0
q mixing parameters.

2Note that ∆Γq/Γq is negative in the SM because of the minus sign in (135).
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5.3 Time-dependent decay rates
The time evolution of initially, i.e., at t = 0, pure B0

q - and B̄0
q -meson states is given by

|B0
q (t)〉 = f

(q)
+ (t)|B0

q 〉+ αqf
(q)
− (t)|B̄0

q 〉 (139)

and
|B̄0

q (t)〉 =
1

αq
f

(q)
− (t)|B0

q 〉+ f
(q)
+ (t)|B̄0

q 〉 , (140)

respectively, with

f
(q)
± (t) =

1

2

[
e−iλ

(q)
+ t ± e−iλ

(q)
− t
]
. (141)

These time-dependent state vectors allow the calculation of the corresponding transition rates. To this
end, it is useful to introduce

|g(q)
± (t)|2 =

1

4

[
e−Γ

(q)
L t + e−Γ

(q)
H t ± 2 e−Γq t cos(∆Mqt)

]
(142)

g
(q)
− (t) g

(q)
+ (t)∗ =

1

4

[
e−Γ

(q)
L t − e−Γ

(q)
H t + 2 i e−Γq t sin(∆Mqt)

]
, (143)

as well as

ξ
(q)
f = e

−iΘ(q)
M12

A(B̄0
q → f)

A(B0
q → f)

, ξ
(q)

f̄
= e
−iΘ(q)

M12
A(B̄0

q → f̄)

A(B0
q → f̄)

. (144)

Looking at (120), we find
Θ

(q)
M12

= π + 2arg(V ∗tqVtb)− φCP(Bq) , (145)

and observe that this phase depends on the chosen CKM and CP phase conventions specified in (11)
and (94), respectively. However, these dependences are cancelled through the amplitude ratios in (144),
so that ξ(q)

f and ξ(q)

f̄
are convention-independent observables. Whereas n′ enters the functions in (141)

through (117), the dependence on this parameter is cancelled in (142) and (143) through the introduction
of the positive mass difference ∆Mq [see (129)]. Combining the formulae listed above, we eventually
arrive at the following transition rates for decays of initially, i.e., at t = 0, present B 0

q or B̄0
q mesons:

Γ(
(–)

B0
q (t)→ f) =

[
|g(q)
∓ (t)|2 + |ξ(q)

f |2|g
(q)
± (t)|2 − 2 Re

{
ξ

(q)
f g

(q)
± (t)g

(q)
∓ (t)∗

}]
Γ̃f , (146)

where the time-independent rate Γ̃f corresponds to the ‘unevolved’ decay amplitude A(B0
q → f), and

can be calculated by performing the usual phase-space integrations. The rates into the CP-conjugate final
state f̄ can straightforwardly be obtained from (146) by making the substitutions

Γ̃f → Γ̃f̄ , ξ
(q)
f → ξ

(q)

f̄
. (147)

5.4 ‘Untagged’ rates
The expected sizeable width difference ∆Γs may provide interesting studies of CP violation through
‘untagged’ Bs rates (see Ref. [111] and [114]– [117]), which are defined as

〈Γ(Bs(t)→ f)〉 ≡ Γ(B0
s (t)→ f) + Γ(B̄0

s (t)→ f) , (148)

and are characterized by the feature that we do not distinguish between initially, i.e., at time t = 0,
present B0

s or B̄0
s mesons. If we consider a final state f to which both a B0

s and a B̄0
s may decay, and use

the expressions in (146), we find

〈Γ(Bs(t)→ f)〉 ∝ [cosh(∆Γst/2)−A∆Γ(Bs → f) sinh(∆Γst/2)] e−Γst , (149)
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with

A∆Γ(Bs → f) ≡
2 Re ξ(s)

f

1 +
∣∣ξ(s)
f

∣∣2 . (150)

We observe that the rapidly oscillating ∆Mst terms cancel, and that we may obtain information about
the phase structure of the observable ξ(s)

f , thereby providing valuable insights into CP violation.

Following these lines, for instance, the untagged observables offered by the angular distribution of
the Bs → K∗+K∗−,K∗0K̄∗0 decay products allow a determination of the UT angle γ, provided ∆Γs is
actually sizeable [115]. Untagged Bs-decay rates are interesting in terms of efficiency, acceptance and
purity, and are already applied for the physics analyses at the Tevatron. Later on, they will help to fully
exploit the physics potential of the Bs-meson system at the LHC.

5.5 CP asymmetries
A particularly simple—but also very interesting—situation arises if we restrict ourselves to decays of
neutral Bq mesons into final states f that are eigenstates of the CP operator, i.e., satisfy the relation

(CP)|f〉 = ±|f〉 . (151)

Consequently, we have ξ(q)
f = ξ

(q)

f̄
in this case, as can be seen in (144). Using the decay rates in (146),

we find that the corresponding time-dependent CP asymmetry is given by

ACP(t) ≡
Γ(B0

q (t)→ f)− Γ(B̄0
q (t)→ f)

Γ(B0
q (t)→ f) + Γ(B̄0

q (t)→ f)

=

[Adir
CP(Bq → f) cos(∆Mqt) +Amix

CP (Bq → f) sin(∆Mqt)

cosh(∆Γqt/2) −A∆Γ(Bq → f) sinh(∆Γqt/2)

]
, (152)

with

Adir
CP(Bq → f) ≡

1−
∣∣ξ(q)
f

∣∣2

1 +
∣∣ξ(q)
f

∣∣2 , Amix
CP (Bq → f) ≡

2 Im ξ
(q)
f

1 +
∣∣ξ(q)
f

∣∣2 . (153)

Because of the relation

Adir
CP(Bq → f) =

|A(B0
q → f)|2 − |A(B̄0

q → f̄)|2
|A(B0

q → f)|2 + |A(B̄0
q → f̄)|2 , (154)

this observable measures the direct CP violation in the decay Bq → f , which originates from the inter-
ference between different weak amplitudes, as we have seen in (97). On the other hand, the interesting
new aspect of (152) is due toAmix

CP (Bq → f), which originates from interference effects between B0
q–B̄0

q

mixing and decay processes, and describes ‘mixing-induced’ CP violation. Finally, the width difference
∆Γq, which may be sizeable in the Bs-meson system, provides access to A∆Γ(Bq → f) introduced in
(150). However, this observable is not independent from Adir

CP(Bq → f) and Amix
CP (Bq → f), satisfying

[
Adir

CP(Bq → f)
]2

+
[
Amix

CP (Bq → f)
]2

+
[
A∆Γ(Bq → f)

]2
= 1 . (155)

In order to calculate ξ(q)
f , we use the general expressions (95) and (96), where e−iφCP(f) = ±1

because of (151), and φCP(B) = φCP(Bq). If we insert these amplitude parametrizations into (144) and
take (145) into account, we observe that the phase-convention-dependent quantity φCP(Bq) cancels, and
finally arrive at

ξ
(q)
f = ∓ e−iφq

[
e+iϕ1 |A1|eiδ1 + e+iϕ2 |A2|eiδ2
e−iϕ1 |A1|eiδ1 + e−iϕ2 |A2|eiδ2

]
, (156)
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where

φq ≡ 2 arg(V ∗tqVtb) =

{
+2β (q = d)
−2δγ (q = s)

(157)

is associated with the CP-violating weak B0
q–B̄0

q mixing phase arising in the SM; β and δγ refer to the
corresponding angles in the unitarity triangles shown in Fig. 3.

In analogy to (97), the caclulation of ξ(q)
f is—in general—also affected by large hadronic uncer-

tainties. However, if one CKM amplitude plays the dominant role in the Bq → f transition, we obtain

ξ
(q)
f = ∓ e−iφq

[
e+iφf/2|Mf |eiδf
e−iφf/2|Mf |eiδf

]
= ∓ e−i(φq−φf ) , (158)

and observe that the hadronic matrix element |Mf |eiδf cancels in this expression. Since the requirements
for direct CP violation discussed above are no longer satisfied, direct CP violation vanishes in this impor-
tant special case, i.e., Adir

CP(Bq → f) = 0. On the other hand, this is not the case for the mixing-induced
CP asymmetry. In particular,

Amix
CP (Bq → f) = ± sinφ (159)

is now governed by the CP-violating weak phase difference φ ≡ φq −φf and is not affected by hadronic
uncertainties. The corresponding time-dependent CP asymmetry takes then the simple form

Γ(B0
q (t)→ f)− Γ(B̄0

q (t)→ f̄)

Γ(B0
q (t)→ f) + Γ(B̄0

q (t)→ f̄)

∣∣∣∣∣
∆Γq=0

= ± sinφ sin(∆Mqt) , (160)

and allows an elegant determination of sinφ.

6 How could new physics enter?
Using the concept of the low-energy effective Hamiltonians introduced in Section 3.3.2, we may address
this important question in a systematic manner [118]:

– NP may modify the ‘strength’ of the SM operators through new short-distance functions which
depend on the NP parameters, such as the masses of charginos, squarks, charged Higgs particles
and tan β̄ ≡ v2/v1 in the ‘minimal supersymmetric SM’ (MSSM). The NP particles may enter
in box and penguin topologies, and are ‘integrated out’ as the W boson and top quark in the SM.
Consequently, the initial conditions for the renormalization-group evolution take the following
form:

Ck → CSM
k + CNP

k . (161)

It should be emphasized that the NP pieces CNP
k may also involve new CP-violating phases which

are not related to the CKM matrix.
– NP may enhance the operator basis:

{Qk} → {QSM
k , QNP

l } , (162)

so that operators which are not present (or strongly suppressed) in the SM may actually play
an important role. In this case, we encounter, in general, also new sources for flavour and CP
violation.

The B-meson system offers a variety of processes and strategies for the exploration of CP violation
[12, 119], as we have illustrated in Fig. 17 through a collection of prominent examples. We see that
there are processes with a very different dynamics that are—in the SM—sensitive to the same angles
of the UT. Moreover, rare B- and K-meson decays [120], which originate from loop effects in the SM,
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Fig. 17: A brief roadmap of B-decay strategies for the exploration of CP violation

provide complementary insights into flavour physics and interesting correlations with the CP-B sector;
key examples are B → Xsγ and the exclusive modes B → K∗γ, B → ργ, as well as Bs,d → µ+µ−

and K+ → π+νν̄, KL → π0νν̄.

In the presence of NP contributions, the subtle interplay between the different processes could
well be disturbed. There are two popular avenues for NP to enter the roadmap of quark-flavour physics:

– B0
q–B̄0

q mixing: NP could enter through the exchange of new particles in the box diagrams, or
through new contributions at the tree level. In general, we may write

M
(q)
12 = M q,SM

12

(
1 + κqe

iσq
)
, (163)

where the expression for M q,SM
12 can be found in (120). Consequently, we obtain

∆Mq = ∆MSM
q + ∆MNP

q = ∆MSM
q

∣∣1 + κqe
iσq
∣∣ , (164)

φq = φSM
q + φNP

q = φSM
q + arg(1 + κqe

iσq ), (165)

with ∆MSM
q and φSM

q given in (129) and (157), respectively. Using dimensional arguments bor-
rowed from effective field theory [121, 122], it can be shown that ∆MNP

q /∆MSM
q ∼ 1 and

φNP
q /φSM

q ∼ 1 could—in principle—be possible for a NP scale ΛNP in the TeV regime; such
a pattern may also arise in specific NP scenarios. Introducing

ρq ≡
∣∣∣∣

∆Mq

∆MSM
q

∣∣∣∣ =
√

1 + 2κq cos σq + κ2
q , (166)

the measured values of the mass differences ∆Mq can be converted into constraints in NP parame-
ter space through the contours shown in Fig. 18. Further constraints are implied by the NP phases
φNP
q , which can be probed through mixing-induced CP asymmetries, through the curves in the
σq–κq plane shown in Fig. 19. Interestingly, κq is bounded from below for any value of φNP

q 6= 0.
For example, even a small phase |φNP

q | = 10◦ implies a clean lower bound of κq ≥ 0.17, i.e., NP
contributions of at most 17% [101].

– Decay amplitudes: NP has typically a small effect if SM tree processes play the dominant role.
However, NP could well have a significant impact on the FCNC sector: new particles may enter in
penguin or box diagrams, or new FCNC contributions may even be generated at the tree level. In
fact, sizeable contributions arise generically in field-theoretical estimates with ΛNP ∼ TeV [123],
as well as in specific NP models.
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Fig. 18: The dependence of κq on σq for values of ρq varied between 1.4 (most upper curve) and 0.6 (most inner
curve), in steps of 0.1
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Fig. 19: The dependence of κq on σq for values of φNP
q varied between ±10◦ (lower curves) and ±170◦ in steps

of 10◦: the curves for 0◦ < σq < 180◦ and 180◦ < σq < 360◦ correspond to positive and negative values of φNP
q ,

respectively.

Concerning model-dependent NP analyses, SUSY scenarios in particular have received a lot of attention;
for a selection of recent studies, see Refs. [124]– [129]. Examples of other fashionable NP scenarios are
left–right-symmetric models [130], scenarios with extra dimensions [131], models with an extra Z ′ [132],
‘little Higgs’ scenarios [133], and models with a fourth generation [134].

The simplest extension of the SM is given by models with ‘minimal flavour violation’ (MFV).
Following the characterization given in Ref. [135], the flavour-changing processes are here still governed
by the CKM matrix—in particular there are no new sources for CP violation—and the only relevant
operators are those present in the SM (for an alternative definition, see Ref. [136]). Specific examples are
the Two-Higgs Doublet Model II, the MSSM without new sources of flavour violation and tan β̄ not too
large, models with one extra universal dimension and the simplest little Higgs models. Because of their
simplicity, the extensions of the SM with MFV show several correlations between various observables,
thereby allowing for powerful tests of this scenario [137]. A systematic discussion of models with ‘next-
to-minimal flavour violation’ was recently given in Ref. [138].

There are other fascinating probes for the search of NP. Important examples are the D-meson
system [139], electric dipole moments [140], or flavour-violating charged lepton decays [141]. Since
a discussion of these topics is beyond the scope of these lectures, the interested reader should consult
the corresponding references. Let us next have a closer look at prominent B decays, with a particular
emphasis of the impact of NP.

7 Status of importantB-factory benchmark modes
7.1 B0

d → J/ψKS

7.1.1 Basic formulae
This decay has a CP-odd final state, and originates from b̄→ c̄cs̄ quark-level transitions. Consequently,
as we discussed in Section 3.3.1, it receives contributions both from tree and from penguin topologies,
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Fig. 20: Feynman diagrams contributing to B0
d → J/ψK0 decays

as can be seen in Fig. 20. In the SM, the decay amplitude can hence be written as follows [142]:

A(B0
d → J/ψKS) = λ(s)

c

(
Ac
′

T +Ac
′

P

)
+ λ(s)

u Au
′

P + λ
(s)
t At

′
P . (167)

Here the
λ(s)
q ≡ VqsV ∗qb (168)

are CKM factors, Ac
′

T is the CP-conserving strong tree amplitude, while the Aq′
P describe the penguin

topologies with internal q quarks (q ∈ {u, c, t}), including QCD and EW penguins; the primes remind
us that we are dealing with a b̄ → s̄ transition. If we eliminate now λ

(s)
t through (79) and apply the

Wolfenstein parametrization, we obtain

A(B0
d → J/ψKS) ∝

[
1 + λ2aeiθeiγ

]
, (169)

where

aeiϑ ≡
(

Rb
1− λ2

)[
Au
′

P −At
′

P

Ac
′

T +Ac
′

P −At
′

P

]
(170)

is a hadronic parameter. Using now the formalism of Section 5.5 yields

ξ
(d)
ψKS

= +e−iφd
[

1 + λ2aeiϑe−iγ

1 + λ2aeiϑe+iγ

]
. (171)

Unfortunately, aeiϑ, which is a measure for the ratio of the B0
d → J/ψKS penguin to tree contributions,

can only be estimated with large hadronic uncertainties. However, since this parameter enters (171) in
a doubly Cabibbo-suppressed way, its impact on the CP-violating observables is practically negligible.
We can put this important statement on a more quantitative basis by making the plausible assumption
that a = O(λ̄) = O(0.2) = O(λ), where λ̄ is a ‘generic’ expansion parameter:

Adir
CP(Bd → J/ψKS) = 0 +O(λ

3
) (172)

Amix
CP (Bd → J/ψKS) = − sinφd +O(λ

3
)

SM
= − sin 2β +O(λ

3
) . (173)

Consequently, (173) allows an essentially clean determination of sin 2β [88].

7.1.2 Experimental status
Since the CKM fits performed within the SM pointed to a large value of sin 2β, B 0

d → J/ψKS offered
the exciting perspective of exhibiting large mixing-induced CP violation. In 2001, the measurement
of Amix

CP (Bd → J/ψKS) allowed indeed the first observation of CP violation outside the K-meson
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system [5]. The most recent data are still not showing any signal for direct CP violation inB 0
d → J/ψKS

within the current uncertainties, as is expected from (172). The current world average reads [61]

Adir
CP(Bd → J/ψKS) = 0.026 ± 0.041. (174)

As far as (173) is concerned, we have

(sin 2β)ψKS
≡ −Amix

CP (Bd → J/ψKS) =

{
0.722 ± 0.040 ± 0.023 (BaBar [143])
0.652 ± 0.039 ± 0.020 (Belle [144]) ,

(175)

which gives the following world average [61]:

(sin 2β)ψKS
= 0.687 ± 0.032 . (176)

In the SM, the theoretical uncertainties are generically expected to be below the 0.01 level; significantly
smaller effects are found in Ref. [145], whereas a fit performed in Ref. [146] yields a theoretical pen-
guin uncertainty comparable to the present experimental systematic error. A possibility to control these
uncertainties is provided by the B0

s → J/ψKS channel [142], which can be explored at the LHC [147].

In Ref. [121], a set of observables to search for NP contributions to the B → J/ψK decay
amplitudes was introduced. It uses also the charged B± → J/ψK± decay, and is given by

BψK ≡
1−AψK
1 +AψK

, (177)

with

AψK ≡
[

BR(B+ → J/ψK+) + BR(B− → J/ψK−)

BR(B0
d → J/ψK0) + BR(B̄0

d → J/ψK̄0)

] [
τB0

d

τB+

]
, (178)

and
D±ψK ≡

1

2

[
Adir

CP(Bd → J/ψKS)±Adir
CP(B± → J/ψK±)

]
. (179)

As discussed in detail in Refs. [119,121], the observables BψK and D−ψK are sensitive to NP in the I = 1

isospin sector, whereas a non-vanishing value of D+
ψK would signal NP in the I = 0 isospin sector.

Moreover, the NP contributions with I = 1 are expected to be dynamically suppressed with respect to
the I = 0 case because of their flavour structure. The most recent B-factory results yield

BψK = −0.035 ± 0.037, D−ψK = 0.010 ± 0.023, D+
ψK = 0.017 ± 0.023 . (180)

Consequently, NP effects ofO(10%) in the I = 1 sector of theB → J/ψK decay amplitudes are already
disfavoured by the data for BψK and D−ψK . However, since a non-vanishing value of D+

ψK requires also a
large CP-conserving strong phase, this observable still leaves room for sizeable I = 0 NP contributions.

7.1.3 A closer look at new-physics effects
Thanks to the new Belle result listed in (175), the average for (sin 2β)ψKS

went down by about 1σ, which
was a somewhat surprising development of the summer of 2005. Consequently, the comparison of (176)
with the CKM fits in the ρ̄–η̄ plane no longer looks ‘perfect’, as we saw in Fig. 4. Let us have a closer
look at this feature. If we use γ determined from non-leptonic B → D(∗)K(∗) tree modes and Rb from
semileptonic decays, we may calculate the ‘true’ value of β with the help of the relations

sinβ =
Rb sin γ√

1− 2Rb cos γ +R2
b

, cos β =
1−Rb cos γ√

1− 2Rb cos γ +R2
b

, (181)

which follow from the unitarity of the CKM matrix; the UTfit value

γ = (65± 20)◦ (182)

34

R. FLEISCHER

136



in (106) and the inclusive and exclusive values of Rb in (72) yield

βincl = (26.7 ± 1.9)◦ , βexcl = (22.9 ± 3.8)◦ , (183)

which can be converted into

sin 2β|incl = 0.80 ± 0.04, sin 2β|excl = 0.71 ± 0.09 . (184)

Consequently, we find

SψK ≡ (sin 2β)ψKS
− sin 2β =

{
−0.11 ± 0.05 (incl)
−0.02 ± 0.10 (excl) ,

(185)

and see nicely the discrepancy arising for the inclusive determination of |Vub|. As discussed in detail
in Ref. [101], Rb is actually the key parameter for this possible discrepancy with the SM, whereas the
situation is remarkably stable with respect to γ. There are two limiting cases of this possible discrepancy
with the KM mechanism of CP violation:

– NP contributions to the B → J/ψK decay amplitudes;
– NP effects entering through B0

d–B̄0
d mixing.

Let us first illustrate the former case. As the NP effects in the I = 1 sector are expected to be
dynamically suppressed, we consider only NP in the I = 0 isospin sector, which implies BψK = D−ψK =
0, in accordance with (180). To simplify the discussion, we assume that there is effectively only a single
NP contribution of this kind, so that we may write

A(B0
d → J/ψK0) = A0

[
1 + v0e

i(∆0+φ0)
]

= A(B+ → J/ψK+) . (186)

Here v0 and the CP-conserving strong phase ∆0 are hadronic parameters, whereas φ0 denotes a CP-
violating phase originating beyond the SM. An interesting specific scenario falling into this category
arises if the NP effects enter through EW penguins. This kind of NP has recently received a lot of
attention in the context of the B → πK puzzle, which we shall discuss in Section 8. Also within the
SM, where φ0 vanishes, EW penguins have a sizeable impact on the B → J/ψK system [148]. Using
factorization, the following estimate can be obtained [83]:

v0e
i∆0
∣∣SM

fact
≈ −0.03 . (187)

In Figs. 21 (a) and (b), we consider the inclusive value of (185), and show the situation in the SψK–D+
ψK

plane for φ0 = −90◦ and φ0 = +90◦, respectively. The contours correspond to different values of
v0, and are obtained by varying ∆0 between 0◦ and 360◦; the experimental data are represented by the
diamonds with the error bars. Since factorization gives ∆0 = 180◦, as can be seen in (187), the case
of φ0 = −90◦ is disfavoured. On the other hand, in the case of φ0 = +90◦, the experimental region
can straightforwardly be reached for ∆0 not differing too much from the factorization result, although
an enhancement of v0 by a factor of O(3) with respect to the SM estimate in (187), which suffers
from large uncertainties, would simultaneously be required in order to reach the central experimental
value. Consequently, NP contributions to the EW penguin sector could, in principle, be at the origin
of the possible discrepancy indicated by the inclusive value of (185). This scenario should be carefully
monitored in the future.

Another explanation of (185) is provided by CP-violating NP contributions to B 0
d–B̄0

d mixing,
which affect the corresponding mixing phase as in (165), so that

φd = 2β + φNP
d . (188)
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(a) (b)

Fig. 21: The situation in the SψK–D+
ψK plane for NP contributions to the B → J/ψK decay amplitudes in the

I = 0 isospin sector for NP phases φ0 = −90◦ (a) and φ0 = +90◦ (b). The diamonds with the error bars represent
the averages of the current data [for the inclusive value of (185)], whereas the numbers correspond to the values of
∆0 and v0.
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Fig. 22: Left panel: allowed region (yellow/grey) in the σd–κd plane in a scenario with the JLQCD lattice results
(122) and φNP

d

∣∣
excl

. Dashed lines: central values of ρd and φNP
d , solid lines: ±1σ. Right panel: ditto for the

scenario with the (HP+JL)QCD lattice results (123) and φNP
d

∣∣
incl

.

Assuming that the NP contributions to the B → J/ψK amplitudes are negligible, (176) implies

φd = (43.4 ± 2.5)◦ ∨ (136.6 ± 2.5)◦ . (189)

Here the latter solution would be in dramatic conflict with the CKM fits, and would require a large NP
contribution to B0

d–B̄0
d mixing [122,149]. Both solutions can be distinguished through the measurement

of the sign of cosφd, where a positive value would select the SM-like branch. Using an angular analysis
of the Bd → J/ψ[→ `+`−]K∗[→ π0KS] decay products, the BaBar Collaboration finds [150]

cosφd = 2.72+0.50
−0.79 ± 0.27 , (190)

thereby favouring the solution around φd = 43◦. Interestingly, this picture emerges also from the first
data for CP-violating effects in Bd → D(∗)±π∓ modes [90], and an analysis of the B → ππ, πK system
[83], although in an indirect manner. Recently, a new method has been proposed, which makes use of
the interference pattern in D → KSπ

+π− decays emerging from Bd → Dπ0 and similar decays [151].
The results of this method are also consistent with the SM, so that a negative value of cosφd is now ruled
out with greater than 95% confidence [89].

Using the ‘true’ values of β in (183), the value of φd = (43.4 ± 2.5)◦ implies

φNP
d

∣∣
incl

= −(10.1 ± 4.6)◦ , φNP
d

∣∣
excl

= −(2.5 ± 8.0)◦ ; (191)
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Fig. 23: Feynman diagrams contributing to B0
d → φK0 decays

results of φNP
d ≈ −10◦ were also recently obtained in Refs. [91, 152]. The contours in Fig. 19 allow us

now to convert these numbers into constraints in the σd–κd plane. Further constraints can be obtained
through the experimental value of ∆Md in (130) with the help of the contours in Fig. 18, where ρd is
introduced in (166). In addition to hadronic parameters, the SM prediction of ∆Md involves also the
CKM factor |V ∗tdVtb|, which can—if we use the unitarity of the CKM matrix—be expressed as

|V ∗tdVtb| = |Vcb|λ
√

1− 2Rb cos γ +R2
b . (192)

The values in (72) and (182), as well as the relevant lattice parameters in (122) and (123) yield then

ρd|JLQCD = 0.97 ± 0.33−0.17
+0.26 (193)

ρd|(HP+JL)QCD = 0.75 ± 0.25 ± 0.16 , (194)

where the first and second errors are due to γ (and a small extent to Rb) and fBdB̂
1/2
Bd

, respectively [101].
These results are compatible with the SM value ρd = 1, but suffer from considerable uncertainties.
In Fig. 22, we finally show the situation in the σd–κd plane. We see that the information about the
CP-violating phase φd has a dramatic impact, reducing the allowed NP parameter space significantly.

The possibility of having a non-zero value of (185) could of course just be due to a statistical
fluctuation. However, should it be confirmed, it could be due to CP-violating NP contributions to the
B0
d → J/ψKS decay amplitude or to B0

d–B̄0
d mixing, as we just saw. A tool to distinguish between these

avenues is provided by decays of the kind Bd → Dπ0, Dρ0, ..., which are pure ‘tree’ decays, i.e., they do
not receive any penguin contributions. If the neutral D mesons are observed through their decays into CP
eigenstates D±, these decays allow extremely clean determinations of the ‘true’ value of sinφd [153], as
we shall discuss in more detail in Section 10.3. In view of (185), this would be very interesting, so that
detailed feasibility studies for the exploration of the Bd → Dπ0, Dρ0, ... modes at a super-B factory are
strongly encouraged.

7.2 B0
d → φKS

Another important probe for the testing of the KM mechanism is offered by B 0
d → φKS, which is a

decay into a CP-odd final state. As can be seen in Fig. 23, it originates from b̄→ s̄ss̄ transitions and is,
therefore, a pure penguin mode. This decay is described by the low-energy effective Hamiltonian in (80)
with r = s, where the current–current operators may only contribute through penguin-like contractions,
which describe the penguin topologies with internal up- and charm-quark exchanges. The dominant
role is played by the QCD penguin operators [154]. However, thanks to the large top-quark mass, EW
penguins have a sizeable impact as well [72, 155]. In the SM, we may write

A(B0
d → φKS) = λ(s)

u Ãu
′

P + λ(s)
c Ãc

′
P + λ

(s)
t Ãt

′
P , (195)
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(a) (b)

Fig. 24: The time evolution of the BaBar (a) and Belle (b) data for the CP violation in Bd → φKS. The diamonds
represent the SM relations (199)–(201) with (176).

where we have applied the same notation as in Section 7.1. Eliminating the CKM factor λ(s)
t with the

help of (79) yields
A(B0

d → φKS) ∝
[
1 + λ2beiΘeiγ

]
, (196)

where

beiΘ ≡
(

Rb
1− λ2

)[
Ãu
′

P − Ãt
′

P

Ãc
′

P − Ãt
′

P

]
. (197)

Consequently, we obtain

ξ
(d)
φKS

= +e−iφd
[

1 + λ2beiΘe−iγ

1 + λ2beiΘe+iγ

]
. (198)

The theoretical estimates of beiΘ suffer from large hadronic uncertainties. However, since this parameter
enters (198) in a doubly Cabibbo-suppressed way, we obtain the following expressions [148]:

Adir
CP(Bd → φKS) = 0 +O(λ2) (199)

Amix
CP (Bd → φKS) = − sinφd +O(λ2) , (200)

where we made the plausible assumption that b = O(1). On the other hand, the mixing-induced CP
asymmetry of Bd → J/ψKS measures also − sinφd, as we saw in (173). We arrive therefore at the
following relation [148, 156]:

−(sin 2β)φKS
≡ Amix

CP (Bd → φKS) = Amix
CP (Bd → J/ψKS) +O(λ2) , (201)

which offers an interesting test of the SM. SinceBd → φKS is governed by penguin processes in the SM,
this decay may well be affected by NP. In fact, if we assume that NP arises generically in the TeV regime,
it can be shown through field-theoretical estimates that the NP contributions to b→ ss̄s transitions may
well lead to sizeable violations of (199) and (201) [119, 123]. Moreover, this is also the case for several
specific NP scenarios; for examples, see Refs. [126, 128, 129, 157].

In Fig. 24, we show the time evolution of the B-factory data for the measurements of CP violation
in Bd → φKS, using the results reported at the LP ’03 [158], ICHEP ’04 [159] and LP ’05 [160]
conferences. Because of (155), the corresponding observables have to lie inside a circle with radius
one around the origin, which is represented by the dashed lines. The result announced by the Belle
Collaboration in 2003 led to quite some excitement in the community. Meanwhile, the Babar [161] and
Belle [162] results are in good agreement with each other, yielding the following averages [61]:

Adir
CP(Bd → φKS) = −0.09 ± 0.14, (sin 2β)φKS

= 0.47 ± 0.19 . (202)
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(a) (b)

Fig. 25: The situation in the SφK–D+
φK plane for NP contributions to the B → φK decay amplitudes in the I = 0

isospin sector for NP phases φ0 = −90◦ (a) and φ0 = +90◦ (b). The diamonds with the error bars represent the
averages of the current data, whereas the numbers correspond to the values of ∆̃0 and ṽ0.

If we take (176) into account, we obtain the following result for the counterpart of (185):

SφK ≡ (sin 2β)φKS
− (sin 2β)ψKS

= −0.22± 0.19 . (203)

This number still appears to be somewhat on the lower side, thereby indicating potential NP contributions
to b→ ss̄s processes.

Further insights into the origin and the isospin structure of NP contributions can be obtained
through a combined analysis of the neutral and charged B → φK modes with the help of observ-
ables BφK and D±φK [123], which are defined in analogy to (177) and (179), respectively. The current
experimental results read as follows:

BφK = 0.00 ± 0.08 , D−φK = −0.03± 0.07 , D+
φK = −0.06± 0.07 . (204)

As in the B → J/ψK case, BφK and D−φK probe NP effects in the I = 1 sector, which are expected to
be dynamically suppressed, whereas D+

φK is sensitive to NP in the I = 0 sector. The latter kind of NP
could also manifest itself as a non-vanishing value of (203).

In order to illustrate these effects, let us consider again the case where NP enters only in the I = 0
isospin sector. An important example is given by EW penguins, which have a significant impact on
B → φK decays [72]. In analogy to the discussion in Section 7.1, we may then write

A(B0
d → φK0) = Ã0

[
1 + ṽ0e

i(∆̃0+φ0)
]

= A(B+ → φK+) , (205)

which implies BφK = D−φK = 0, in accordance with (204). The notation corresponds to that of (186).
Using the factorization approach to deal with the QCD and EW penguin contributions, we obtain the
following estimate in the SM, where the CP-violating NP phase φ0 vanishes [83]:

ṽ0e
i∆̃0

∣∣∣
SM

fact
≈ −0.2 . (206)

In Figs. 25 (a) and (b), we show the situation in the SφK–D+
φK plane for NP phases φ0 = −90◦ and

φ0 = +90◦, respectively, and various values of ṽ0; each point of the contours is parametrized by ∆̃0 ∈
[0◦, 360◦]. We observe that the central values of the current experimental data, which are represented by
the diamonds with the error bars, can straightforwardly be accommodated in this scenario in the case of
φ0 = +90◦ for strong phases satisfying cos ∆̃0 < 0, as in factorization. Moreover, as can also be seen
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in Fig. 25 (b), the EW penguin contributions would then have to be suppressed with respect to the SM
estimate, which would be an interesting feature in view of the discussion of the B → πK puzzle and the
rare decay constraints in Section 8.

It will be interesting to follow the evolution of the B-factory data, and to monitor also similar
modes, such as B0

d → π0KS [163] and B0
d → η′KS [164]. For a compilation of the corresponding

experimental results, see Ref. [61]; recent theoretical papers dealing with these channels can be found
in Refs. [82, 83, 91, 165, 166]. We shall return to the CP asymmetries of the B 0

d → π0KS channel in
Section 8.

7.3 B0
d → π+π−

This decay is a transition into a CP eigenstate with eigenvalue +1, and originates from b̄ → ūud̄ pro-
cesses, as can be seen in Fig. 26. In analogy to (167) and (195), its decay amplitude can be written as
follows [167]:

A(B0
d → π+π−) = λ(d)

u (AuT +AuP) + λ(d)
c AcP + λ

(d)
t AtP . (207)

Using again (79) to eliminate the CKM factor λ(d)
t = VtdV

∗
tb and applying once more the Wolfenstein

parametrization yields
A(B0

d → π+π−) = C
[
eiγ − deiθ

]
, (208)

where the overall normalization C and

deiθ ≡ 1

Rb

[
AcP −AtP

AuT +AuP −AtP

]
(209)

are hadronic parameters. The formalism discussed in Section 5.5 then implies

ξ
(d)
π+π− = −e−iφd

[
e−iγ − deiθ
e+iγ − deiθ

]
. (210)

In contrast to the expressions (171) and (198) for the B0
d → J/ψKS and B0

d → φKS counterparts,
respectively, the hadronic parameter deiθ , which suffers from large theoretical uncertainties, does not
enter (210) in a doubly Cabibbo-suppressed way. This feature is at the basis of the famous ‘penguin
problem’ in B0

d → π+π−, which was addressed in many papers (see, for instance, [168]– [173]). If the
penguin contributions to this channel were negligible, i.e., d = 0, its CP asymmetries were simply given
by

Adir
CP(Bd → π+π−) = 0 (211)

Amix
CP (Bd → π+π−) = sin(φd + 2γ)

SM
= sin(2β + 2γ︸ ︷︷ ︸

2π−2α

) = − sin 2α . (212)

Consequently, Amix
CP (Bd → π+π−) would then allow us to determine α. However, in the general case,

we obtain expressions with the help of (153) and (210) of the form

Adir
CP(Bd → π+π−) = G1(d, θ; γ) (213)

Amix
CP (Bd → π+π−) = G2(d, θ; γ, φd) ; (214)

for explicit formulae, see Ref. [167]. We observe that actually the phases φd and γ enter directly in the
Bd → π+π− observables, and not α. Consequently, since φd can be fixed through the mixing-induced
CP violation in the ‘golden’ mode Bd → J/ψKS, as we have seen in Subsection 7.1, we may use
Bd → π+π− to probe γ.

40

R. FLEISCHER

142



Fig. 26: Feynman diagrams contributing to B0
d → π+π− decays

The current measurements of the Bd → π+π− CP asymmetries are given as follows:

Adir
CP(Bd → π+π−) =

{
−0.09 ± 0.15± 0.04 (BaBar [174])
−0.56 ± 0.12± 0.06 (Belle [175])

(215)

Amix
CP (Bd → π+π−) =

{
+0.30 ± 0.17± 0.03 (BaBar [174])
+0.67 ± 0.16± 0.06 (Belle [175]) .

(216)

The BaBar and Belle results are still not fully consistent with each other, although the experiments are
now in better agreement. In Ref. [61], the following averages were obtained:

Adir
CP(Bd → π+π−) = −0.37± 0.10 (217)

Amix
CP (Bd → π+π−) = +0.50± 0.12 . (218)

The central values of these averages are remarkably stable in time. Direct CP violation at this level
would require large penguin contributions with large CP-conserving strong phases, thereby indicating
large non-factorizable effects.

This picture is in fact supported by the direct CP violation in B0
d → π−K+ modes that could be

established by the B factories in the summer of 2004 [6]. Here the BaBar and Belle results agree nicely
with each other, yielding the following average [61]:

Adir
CP(Bd → π∓K±) = 0.115 ± 0.018 . (219)

The diagrams contributing to B0
d → π−K+ can straightforwardly be obtained from those in Fig. 26 by

just replacing the anti-down quark emerging from the W boson through an anti-strange quark. Conse-
quently, the hadronic matrix elements entering B0

d → π+π− and B0
d → π−K+ can be related to one

another through the SU(3) flavour symmetry of strong interactions and the additional assumption that
the penguin annihilation and exchange topologies contributing to B0

d → π+π−, which have no coun-
terpart in B0

d → π−K+ and involve the ‘spectator" down quark in Fig. 26, play actually a negligible
role [176]. Following these lines, we obtain the following relation in the SM:

HBR ≡
1

ε

(
fK
fπ

)2 [ BR(Bd → π+π−)

BR(Bd → π∓K±)

]

︸ ︷︷ ︸
7.5± 0.7

= −1

ε

[Adir
CP(Bd → π∓K±)

Adir
CP(Bd → π+π−)

]

︸ ︷︷ ︸
6.7± 2.0

≡ HAdir
CP
, (220)

where

ε ≡ λ2

1− λ2
= 0.053 , (221)

and the ratio fK/fπ = 160/131 of the kaon and pion decay constants defined through

〈0|s̄γαγ5u|K+(k)〉 = ifKkα , 〈0|d̄γαγ5u|π+(k)〉 = ifπkα (222)
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describes factorizable SU(3)-breaking corrections. As usual, the CP-averaged branching ratios are de-
fined as

BR ≡ 1

2

[
BR(B → f) + BR(B̄ → f̄)

]
. (223)

In (220), we have also given the numerical values following from the data. Consequently, this relation
is well satisfied within the experimental uncertainties, and does not show any anomalous behaviour. It
supports therefore the SM description of the B0

d → π−K+, B0
d → π+π− decay amplitudes, and our

working assumptions listed before (220).

The quantities HBR and HAdir
CP

introduced in this relation can be written as follows:

HBR = G3(d, θ; γ) = HAdir
CP
. (224)

If we complement this expression with (213) and (214), and use [see (189)]

φd = (43.4 ± 2.5)◦ , (225)

we have sufficient information to determine γ, as well as (d, θ) [167,176,177]. In using (225), we assume
that the possible discrepancy with the SM described by (185) is only due to NP inB 0

d–B̄0
d mixing and not

to effects entering through the B0
d → J/ψKS decay amplitude. As was recently shown in Ref. [91], the

results following from HBR and HAdir
CP

give results that are in good agreement with one another. Since
the avenue offered by HAdir

CP
is cleaner than the one provided by HBR, it is preferable to use the former

quantity to determine γ, yielding the following result [91]:

γ = (73.9+5.8
−6.5)◦ . (226)

Here a second solution around 42◦ was discarded, which can be excluded through an analysis of the
whole B → ππ, πK system [83]. As was recently discussed [91] (see also Refs. [176, 177]), even large
non-factorizable SU(3)-breaking corrections have a remarkably small impact on the numerical result in
(226). The value of γ in (226) is somewhat higher than the central values in (106), but fully consistent
within the large errors. An even larger value in the ballpark of 80◦ was recently extracted from the
B → ππ data with the help of SCET [178, 179].

8 The B → πK puzzle and its relation to rare B andK decays
8.1 Preliminaries
We already made first contact with a B → πK decay in Section 7.3, the B0

d → π−K+ channel. It
receives contributions both from tree and from penguin topologies. Since this decay originates from a
b̄ → s̄ transition, the tree amplitude is suppressed by a CKM factor λ2Rb ∼ 0.02 with respect to the
penguin amplitude. Consequently, B0

d → π−K+ is governed by QCD penguins; the tree topologies
contribute only at the 20% level to the decay amplitude. The feature of the dominance of QCD penguins
applies to all B → πK modes, which can be classified with respect to their EW penguin contributions
as follows (see Fig. 27):

(a) In the B0
d → π−K+ and B+ → π+K0 decays, EW penguins contribute in colour-suppressed

form and are hence expected to play a minor role.
(b) In the B0

d → π0K0 and B+ → π0K+ decays, EW penguins contribute in colour-allowed form
and have therefore a significant impact on the decay amplitude, entering at the same order of
magnitude as the tree contributions.

As we noted above, EW penguins offer an attractive avenue for NP to enter non-leptonic B decays, which
is also the case for the B → πK system [180, 181]. Indeed, the decays of class (b) show a puzzling
pattern, which may point towards such a NP scenario. This feature emerged already in 2000 [182],
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(a)

(b)

Fig. 27: Examples of the colour-suppressed (a) and colour-allowed (b) EW penguin contributions to the B → πK

system

when the CLEO Collaboration reported the observation of the B0
d → π0K0 channel with a surprisingly

prominent rate [183], and is still present in the most recent BaBar and Belle data, thereby receiving a lot
of attention in the literature (see, for instance, Refs. [157] and [184]– [188]).

In the following discussion, we focus on the systematic strategy to explore the ‘B → πK puzzle’
developed in Refs. [82, 83]; all numerical results refer to the most recent analysis presented in Ref. [91].
The logical structure is very simple: the starting point is given by the values of φd and γ in (225) and
(226), respectively, and by the B → ππ system, which allows us to extract a set of hadronic parameters
from the data with the help of the isospin symmetry of strong interactions. Then we make, in analogy to
the determination of γ in Section 7.3, the following working hypotheses:

(i) SU(3) flavour symmetry of strong interactions (but taking factorizable SU(3)-breaking correc-
tions into account),

(ii) neglect of penguin annihilation and exchange topologies,

which allow us to fix the hadronic B → πK parameters through their B → ππ counterparts. Interest-
ingly, we may gain confidence in these assumptions through internal consistency checks [an example is
relation (220)], which work nicely within the experimental uncertainties. Having the hadronic B → πK
parameters at hand, we can predict the B → πK observables in the SM. The comparison of the corre-
sponding picture with the B-factory data will then guide us to NP in the EW penguin sector, involving in
particular a large CP-violating NP phase. In the final step, we explore the interplay of this NP scenario
with rare K and B decays.

8.2 Extracting hadronic parameters from the B → ππ system
In order to fully exploit the information that is provided by the whole B → ππ system, we use—
in addition to the two CP-violating B0

d → π+π− observables—the following ratios of CP-averaged
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branching ratios:

Rππ+− ≡ 2

[
BR(B+ → π+π0) + BR(B− → π−π0)

BR(B0
d → π+π−) + BR(B̄0

d → π+π−)

]
= 2.04 ± 0.28 (227)

Rππ00 ≡ 2

[
BR(B0

d → π0π0) + BR(B̄0
d → π0π0)

BR(B0
d → π+π−) + BR(B̄0

d → π+π−)

]
= 0.58 ± 0.13 . (228)

The pattern of the experimental numbers in these expressions came as quite a surprise, as the central
values calculated in QCDF gave Rππ

+− = 1.24 and Rππ00 = 0.07 [184]. As discussed in detail in Ref. [83],
this ‘B → ππ puzzle’ can straightforwardly be accommodated in the SM through large non-factorizable
hadronic interference effects, i.e., does not point towards NP. For recent SCET analyses, see Refs. [179,
189, 190].

Using the isospin symmetry of strong interactions, we can write

Rππ+− = F1(d, θ, x,∆; γ) , Rππ00 = F2(d, θ, x,∆; γ) , (229)

where xei∆ is another hadronic parameter, which was introduced in Refs. [82, 83]. Using now, in addi-
tion, the CP-violating observables in (213) and (214), we arrive at the following set of haronic parame-
ters:

d = 0.52+0.09
−0.09, θ = (146+7.0

−7.2)◦, x = 0.96+0.13
−0.14, ∆ = −(53+18

−26)◦ . (230)

In the extraction of these quantities, also the EW penguin effects in the B → ππ system are included
[191, 192], although these topologies have a tiny impact [163]. Let us emphasize that the results for
the hadronic parameters listed above, which are consistent with the picture emerging in the analyses of
other authors (see, for example, Refs. [193, 194]), are essentially clean and serve as a testing ground
for calculations within QCD-related approaches. For instance, in recent QCDF [195] and PQCD [196]
analyses, the following numbers were obtained:

d|QCDF = 0.29 ± 0.09 , θ|QCDF = − (171.4 ± 14.3)◦ , (231)

d|PQCD = 0.23+0.07
−0.05 , +139◦ < θ|PQCD < +148◦ , (232)

which depart significantly from the pattern in (230) that is implied by the data.

Finally, we can predict the CP asymmetries of the decay Bd → π0π0:

Adir
CP(Bd → π0π0) = −0.30+0.48

−0.26 , Amix
CP (Bd → π0π0) = −0.87+0.29

−0.19 . (233)

The current experimental value for the direct CP asymmetry is given as follows [61]:

Adir
CP(Bd → π0π0) = −0.28+0.40

−0.39 . (234)

Consequently, no stringent test of the corresponding prediction in (233) is provided at this stage, although
the indicated agreement is encouraging.

8.3 Analysis of the B → πK system
Let us begin the analysis of the B → πK system by having a closer look at the modes of class (a)
introduced above, Bd → π∓K± and B± → π±K , which are only marginally affected by EW penguin
contributions. We already used the branching ratio and direct CP asymmetry of the former channel in
the SU(3) relation (220), which is nicely satisfied by the current data, and in the extraction of γ with
the help of the CP-violating Bd → π+π− observables, yielding the value in (226). The Bd → π∓K±

modes provide the CP-violating asymmetry

Adir
CP(B± → π±K) ≡ BR(B+ → π+K0)− BR(B− → π−K̄0)

BR(B+ → π+K0) + BR(B− → π−K̄0)
= 0.02 ± 0.04 , (235)
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and enter in the following ratio [197]:

R ≡
[

BR(B0
d → π−K+) + BR(B̄0

d → π+K−)

BR(B+ → π+K0) + BR(B− → π−K̄0)

]
τB+

τB0
d

= 0.86 ± 0.06 ; (236)

the numerical values refer again to the most recent compilation in [61]. The B+ → π+K0 channel
involves another hadronic parameter ρce

iθc which cannot be determined through the B → ππ data
[191, 198, 199]:

A(B+ → π+K0) = −P ′
[
1 + ρce

iθceiγ
]

; (237)

the overall normalization P ′ cancels in (235) and (236). Usually, it is assumed that the parameter ρce
iθc

can be neglected. In this case, the direct CP asymmetry in (235) vanishes, and R can be calculated
through the B → ππ data with the help of the assumptions specified in Section 8.1:

R|SM = 0.963+0.019
−0.022 . (238)

This numerical result is 1.6σ larger than the experimental value in (236). As was discussed in
detail in Ref. [200], the experimental range for the direct CP asymmetry in (235) and the first direct
signals for the B± → K±K decays favour a value of θc around 0◦. This feature allows us to essentially
resolve the small discrepancy concerning R for values of ρc around 0.05. The remaining small numerical
difference between the calculated value of R and the experimental result, if confirmed by future data,
could be due to (small) colour-suppressed EW penguins, which enter R as well [83]. As was recently
discussed in Ref. [91], even large non-factorizable SU(3)-breaking effects would have a small impact
on the predicted value of R. In view of these results, it would not be a surprise to see an increase of the
experimental value of R in the future.

Let us now turn to the B+ → π0K+ and B0
d → π0K0 channels, which are the B → πK modes

with significant contributions from EW penguin topologies. The key observables for the exploration of
these modes are the following ratios of their CP-averaged branching ratios [182, 191]:

Rc ≡ 2

[
BR(B+ → π0K+) + BR(B− → π0K−)

BR(B+ → π+K0) + BR(B− → π−K̄0)

]
= 1.01 ± 0.09 (239)
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Rn ≡
1

2

[
BR(B0

d → π−K+) + BR(B̄0
d → π+K−)

BR(B0
d → π0K0) + BR(B̄0

d → π0K̄0)

]
= 0.83 ± 0.08 , (240)

where the overall normalization factors of the decay amplitudes cancel, as in (236). In order to de-
scribe the EW penguin effects, both a parameter q, which measures the strength of the EW penguins
with respect to tree-like topologies, and a CP-violating phase φ are introduced. In the SM, this phase
vanishes, and q can be calculated with the help of the SU(3) flavour symmetry, yielding a value of
0.69 × 0.086/|Vub/Vcb| = 0.58 [201]. Following the strategy described above yields the following SM
predictions:

Rc|SM = 1.15 ± 0.05 , Rn|SM = 1.12 ± 0.05 , (241)

where in particular the value ofRn does not agree with the experimental number, which is a manifestation
of the B → πK puzzle. As was recently discussed in Ref. [91], the internal consistency checks of the
working assumptions listed in Subsection 8.1 are currently satisfied at the level of 25%, and can be
systematically improved through better data. A detailed study of the numerical predictions in (241) (and
those given below) shows that their sensitivity on non-factorizable SU(3)-breaking effects of this order
of magnitude is surprisingly small. Consequently, it is very exciting to speculate that NP effects in the
EW penguin sector, which are described effectively through (q, φ), are at the origin of the B → πK
puzzle. Following Refs. [82, 83], we show the situation in the Rn–Rc plane in Fig. 28, where—for
the convenience of the reader—also the experimental range and the SM predictions at the time of the
original analysis of Refs. [82, 83] are indicated through the dashed rectangles. We observe that although
the central values of Rn and Rc have slightly moved towards each other, the puzzle is as prominent as
ever. The experimental region can now be reached without an enhancement of q, but a large CP-violating
phase φ of the order of −90◦ is still required:

q = 0.99 +0.66
−0.70 , φ = −(94 +16

−17)◦ . (242)

Interestingly, φ of the order of +90◦ can now also bring us rather close to the experimental range of Rn

and Rc.

An interesting probe of the NP phase φ is also provided by the CP violation in B 0
d → π0KS.

Within the SM, the corresponding observables are expected to satisfy the following relations [163]:

Adir
CP(Bd→π0KS) ≈ 0 , Amix

CP (Bd→π0KS) ≈ Amix
CP (Bd→ψKS) . (243)

The most recent Belle [162] and BaBar [202] measurements of these quantities are in agreement with
each other, and lead to the following averages [61]:

Adir
CP(Bd→π0KS) = −0.02± 0.13 (244)

Amix
CP (Bd→π0KS) = −0.31± 0.26 ≡ −(sin 2β)π0KS

. (245)

Taking (176) into account yields

∆S ≡ (sin 2β)π0KS
− (sin 2β)ψKS

= −0.38 ± 0.26 , (246)

which may indicate a sizeable deviation of the experimentally measured value of (sin 2β)π0KS
from

(sin 2β)ψKS
, and is therefore one of the recent hot topics. Since the strategy developed in Refs. [82, 83]

allows us also to predict the CP-violating observables of the B0
d → π0KS channel both within the SM

and within our scenario of NP, it allows us to address this issue, yielding

Adir
CP(Bd→π0KS)|SM = 0.06+0.09

−0.10 , ∆S|SM = 0.13 ± 0.05 , (247)

Adir
CP(Bd→π0KS)|NP = 0.01 +0.14

−0.18 , ∆S|NP = 0.27 +0.05
−0.09 , (248)
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where the NP results refer to the EW penguin parameters in (242). Consequently, ∆S is found to be
positive in the SM. In the literature, values of ∆S|SM ∼ 0.04–0.08 can be found, which were obtained—
in contrast to (247)—with the help of dynamical approaches such as QCDF [166] and SCET [179].
Moreover, bounds were derived with the help of the SU(3) flavour symmetry [203]. Looking at (248),
we see that the modified parameters (q, φ) in (242) imply an enhancement of ∆S with respect to the SM
case. Consequently, the best values of (q, φ) that are favoured by the measurements of Rn,c make the
potential Amix

CP (Bd→π0KS) discrepancy even larger than in the SM.

There is one CP asymmetry of the B → πK system left, which is measured as

Adir
CP(B± → π0K±) = −0.04± 0.04 . (249)

In the limit of vanishing colour-suppressed tree and EW penguin topologies, it is expected to be equal
to the direct CP asymmetry of the Bd → π∓K± modes. Since the experimental value of the latter
asymmetry in (219) does not agree with (249), the direct CP violation in B± → π0K± has also received
a lot of attention. The lifted colour suppression described by the large value of x in (230) could, in
principle, be responsible for a non-vanishing difference between (219) and (249),

∆A ≡ Adir
CP(B± → π0K±)−Adir

CP(Bd → π∓K±)
exp
= −0.16 ± 0.04 . (250)

However, applying once again the strategy described above yields

Adir
CP(B± → π0K±)|SM = 0.04 +0.09

−0.07 , (251)

so that the SM still prefers a positive value of this CP asymmetry; the NP scenario characterized by (242)
corresponds to

Adir
CP(B± → π0K±)|NP = 0.09 +0.20

−0.16 . (252)

In view of the large uncertainties, no stringent test is provided at this point. Nevertheless, it is
tempting to play a bit with the CP asymmetries of the B± → π0K± and Bd → π0KS decays. In Fig. 29,
we show the situation in the Amix

CP (Bd → π0KS)–Adir
CP(B± → π0K±) plane for various values of q with

φ ∈ [0◦, 360◦]. We see that these observables seem to show a preference for positive values of φ around
+90◦. As we noted above, in this case, we can also get rather close to the experimental region in the Rn–
Rc plane. It is now interesting to return to the discussion of the NP effects in the B → φK system given
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in Section 7.2. In our scenario of NP in the EW penguin sector, we have just to identify the CP-violating
phase φ0 in (205) with the NP phase φ [83]. Unfortunately, we cannot determine the hadronic B → φK
parameters ṽ0 and ∆̃0 through the B → ππ data as in the case of the B → πK system. However, if
we take into account that ∆̃0 = 180◦ in factorization and look at Fig. 25, we see again that the case of
φ ∼ +90◦ would be favoured by the data for SφK . Alternatively, in the case of φ ∼ −90◦, ∆̃0 ∼ 0◦

would be required to accommodate a negative value of SφK , which appears unlikely. Interestingly, a
similar comment applies to the B → J/ψK observables shown in Fig. 21, although here a dramatic
enhancement of the EW penguin parameter v0 relative to the SM estimate would be simultaneously
needed to reach the central experimental values, in contract to the reduction of ṽ0 in the B → φK case.
In view of rare decay constraints, the behaviour of the B → φK parameter ṽ0 appears much more likely,
thereby supporting the assumption after (225).

8.4 The interplay with rare K andB decays and future scenarios
In order to explore the implications of the B → πK puzzle for rare K and B decays, we assume that
the NP enters the EW penguin sector through Z0 penguins with a new CP-violating phase. This scenario
was already considered in the literature, where model-independent analyses and studies within SUSY
can be found [204, 205]. In the strategy discussed here, the short-distance function C characterizing
the Z0 penguins is determined through the B → πK data [206]. Performing a renormalization-group
analysis yields

C(q̄) = 2.35 q̄eiφ − 0.82 with q̄ = q

[ |Vub/Vcb|
0.086

]
. (253)

Evaluating then the relevant box-diagram contributions in the SM and using (253), the short-distance
functions

X = 2.35 q̄eiφ − 0.09 and Y = 2.35 q̄eiφ − 0.64 (254)

can also be calculated, which govern the rare K , B decays with νν̄ and `+`− in the final states, respec-
tively. In the SM, we have C = 0.79, X = 1.53 and Y = 0.98, with vanishing CP-violating phases.
An analysis along these lines shows that the value of (q, φ) in (242), which is preferred by the B → πK
observables Rn,c, requires the following lower bounds for X and Y [91]:

|X|min ≈ |Y |min ≈ 2.2 , (255)

which appear to violate the 95% probability upper bounds

X ≤ 1.95, Y ≤ 1.43 (256)

that were recently obtained within the context of MFV [207]. Although we have to deal with CP-violating
NP phases in our scenario, which goes therefore beyond the MFV framework, a closer look at B →
Xs`

+`− shows that the upper bound on |Y | in (256) is difficult to avoid if NP enters only through EW
penguins and the operator basis is the same as in the SM. A possible solution to the clash between (255)
and (256) would be given by more complicated NP scenarios [91]. However, unless a specific model is
chosen, the predictive power is then significantly reduced. For the exploration of the NP effects in rare
decays, we shall therefore not follow this avenue.

Using an only slightly more generous bound on |Y | by imposing |Y | ≤ 1.5 and taking only those
values of (242) that satisfy the constraint |Y | = 1.5 yields

q = 0.48± 0.07 , φ = −(93± 17)◦ , (257)

corresponding to a modest suppression of q relative to its updated SM value of 0.58. It is interesting to
investigate the impact of various modifications of (q, φ), which allow us to satisfy the bounds in (256), for
the B → πK observables and rare decays. To this end, three scenarios for the possible future evolution
of the measurements of Rn and Rc were introduced in Ref. [91]:
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Table 1: The B → πK observables for the three scenarios introduced in the text

Quantity SM Scen. A Scen. B Scen. C Experiment
Rn 1.12 0.88 1.03 1 0.83± 0.08

Rc 1.15 0.96 1.13 1 1.01± 0.09

Adir
CP(B±→π0K±) 0.04 0.07 0.06 0.02 −0.04 ± 0.04

Adir
CP(Bd→π0KS) 0.06 0.04 0.03 0.09 −0.02 ± 0.13

Amix
CP (Bd→π0KS) −0.82 −0.89 −0.91 −0.70 −0.31 ± 0.26

∆S 0.13 0.21 0.22 0.01 −0.38 ± 0.26

∆A −0.07 −0.04 −0.05 −0.09 −0.16 ± 0.04

Table 2: Rare decay branching ratios for the three scenarios introduced in the text. The Bs → µ+µ− channel will
be discussed in more detail in Section 10.5.

Decay SM Scen. A Scen. B Scen. C Exp. bound
(90% C.L.)

BR(K+ → π+νν̄)/10−11 9.3 2.7 8.3 8.4 (14.7+13.0
−8.9 )

BR(KL → π0νν̄)/10−11 4.4 11.6 27.9 7.2 < 2.9× 104

BR(KL → π0e+e−)/10−11 3.6 4.6 7.1 4.9 < 28

BR(B → Xsνν̄)/10−5 3.6 2.8 4.8 3.3 < 64

BR(Bs → µ+µ−)/10−9 3.9 9.2 9.1 7.0 < 1.5 × 102

BR(KL → µ+µ−)SD/10−9 0.9 0.9 0.001 0.6 < 2.5

– Scenario A: q = 0.48, φ = −93◦, which is in accordance with the currrent rare decay bounds and
the B → πK data [see (257)].

– Scenario B: q = 0.66, φ = −50◦, which yields an increase of Rn to 1.03, and some interesting
effects in rare decays. This could, for example, happen if radiative corrections to theB 0

d → π−K+

branching ratio enhance Rn [208], though this alone would probably account for only about 5%.
– Scenario C: here it is assumed that Rn = Rc = 1, which corresponds to q = 0.54 and φ = 61◦.

The positive sign of φ distinguishes this scenario strongly from the others.

The patterns of the observables of the B → πK and rare decays corresponding to these scenarios are
collected in Tables 1 and 2, respectively. We observe that the K → πνν̄ modes, which are theoretically
very clean (for a recent review, see Ref. [209]), offer a particularly interesting probe for the different
scenarios. Concerning the observables of the B → πK system, Amix

CP (Bd→π0KS) is very interesting:
this CP asymmetry is found to be very large in Scenarios A and B, where the NP phase φ is negative.
On the other hand, the positive sign of φ in Scenario C brings Amix

CP (Bd → π0KS) closer to the data,
in agreement with the features discussed in Section 8.3. A similar comment applies to the direct CP
asymmetry of B± → π0K±.

In view of the large uncertainties, unfortunately no definite conclusions on the presence of NP can
be drawn at this stage. However, the possible anomalies in the B → πK system complemented with
the one in B → φK may actually indicate the effects of a modified EW penguin sector with a large
CP-violating NP phase. As we just saw, rare K and B decays have an impressive power to reveal such
a kind of NP. Finally, let us stress that the analysis of the B → ππ modes, which signals large non-
factorizable effects, and the determination of the UT angle γ described above are not affected by such
NP effects. It will be interesting to monitor the evolution of the corresponding data with the help of the
strategy discussed above.
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9 Entering a new territory: b→ d penguins
9.1 Preliminaries
Another hot topic which emerged recently is the exploration of b → d penguin processes. The non-
leptonic decays belonging to this category, which are mediated by b → ds̄s quark transitions (see the
classification in Section 3.3.1), are now coming within experimental reach at the B factories. A similar
comment applies to the radiative decays originating from b→ dγ processes, whereas b→ d`+`− modes
are still far from being accessible. The B factories are therefore just entering a new territory, which is
still essentially unexplored. Let us now have a closer look at the corresponding processes.

9.2 A prominent example: B0
d → K0K̄0

The Feynman diagrams contributing to this decay can be obtained from those for B 0
d → φK0 shown in

Fig. 23 by replacing the anti-strange quark emerging from theW boson through an anti-down quark. The
B0
d → K0K̄0 decay is described by the low-energy effective Hamiltonian in (80) with r = d, where the

current–current operators may only contribute through penguin-like contractions, corresponding to the
penguin topologies with internal up- and charm-quark exchanges. The dominant role is played by QCD
penguins; since EW penguins contribute only in colour-suppressed form, they have a minor impact on
B0
d → K0K̄0, in contrast to the case of B0

d → φK0, where they may also contribute in colour-allowed
form.

If we apply the notation introduced in Section 7, again make use of the unitarity of the CKM
matrix and apply the Wolfenstein parametrization, we may write the B0

d → K0K̄0 amplitude as follows:

A(B0
d → K0K̄0) = λ3A(ÃtP − ÃcP)

[
1− ρKKeiθKKeiγ

]
, (258)

where

ρKKe
iθKK ≡ Rb

[
ÃtP − ÃuP
ÃtP − ÃcP

]
. (259)

This expression allows us to calculate the CP-violating asymmetries with the help of the formulae given
in Section 5.5, taking the following form:

Adir
CP(Bd → K0K̄0) = D1(ρKK , θKK ; γ) (260)

Amix
CP (Bd → K0K̄0) = D2(ρKK , θKK ; γ, φd) . (261)

Let us assume, for a moment, that the penguin contributions are dominated by top-quark ex-
changes. In this case, (259) simplifies as

ρKKe
iθKK → Rb . (262)

Since the CP-conserving strong phase θKK vanishes in this limit, the direct CP violation in B0
d → K0K̄0

vanishes, too. Moreover, if we take into account that φd = 2β in the SM and use trigonometrical relations
which can be derived for the UT, we find that the mixing-induced CP asymmetry also would be zero.
These features suggest an interesting test of the b → d flavour sector of the SM (see, for instance,
Ref. [210]). However, contributions from penguins with internal up- and charm-quark exchanges are
expected to yield sizeable CP asymmetries inB0

d → K0K̄0 even within the SM, so that the interpretation
of these effects is much more complicated [211]; these contributions contain also possible long-distance
rescattering effects [212], which are often referred to as ‘GIM’ and ‘charming’ penguins and recently
received a lot of attention [213].

Despite this problem, interesting insights can be obtained through the B 0
d → K0K̄0 observ-

ables [214]. By the time the CP-violating asymmetries in (260) and (261) can be measured, the angle
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γ of the UT will also be reliably known, in addition to the B0
d–B̄0

d mixing phase φd. The experimental
values of the CP asymmetries can then be converted into ρKK and θKK , in analogy to the B → ππ
discussion in Section 8.2. Although these quantities are interesting to obtain insights into the B → πK
parameter ρce

iθc [see (237)] through SU(3) arguments, and can be compared with theoretical predic-
tions, for instance, those of QCDF, PQCD or SCET, they do not provide—by themselves—a test of the
SM description of the FCNC processes mediating the decay B0

d → K0K̄0. However, so far, we have
not yet used the information offered by the CP-averaged branching ratio of this channel. It takes the
following form:

BR(Bd → K0K̄0) =
τBd

16πMBd

×ΦKK × |λ3AÃtcP |2〈B〉 , (263)

where ΦKK denotes a two-body phase-space factor, ÃtcP ≡ ÃtP − ÃcP, and

〈B〉 ≡ 1− 2ρKK cos θKK cos γ + ρ2
KK . (264)

If we now use φd and the SM value of γ, we may characterize the decay B0
d → K0K̄0—within the

SM—through a surface in the observable space of Adir
CP,Amix

CP and 〈B〉. In Fig. 30, we show this surface,
where each point corresponds to a given value of ρKK and θKK . It should be emphasized that this
surface is theoretically clean since it relies only on the general SM parametrization of B 0

d → K0K̄0.
Consequently, should future measurements give a value in observable space that should not lie on the
SM surface, we would have immediate evidence for NP contributions to b̄→ d̄ss̄ processes.

Looking at Fig. 30, we see that 〈B〉 takes an absolute minimum. Indeed, if we keep ρKK and θKK
as free parameters in (264), we find

〈B〉 ≥ sin2 γ , (265)

which yields a strong lower bound because of the favourably large value of γ. Whereas the direct and
mixing-induced CP asymmetries can be extracted from a time-dependent rate asymmetry [see (152)],
the determination of 〈B〉 requires further information to fix the overall normalization factor involving
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the penguin amplitude ÃtcP . The strategy developed in Refs. [82, 83] offers the following two avenues,
using data for

i) B → ππ decays, i.e., b→ d transitions, implying the following lower bound:

BR(Bd → K0K̄0)min = ΞKπ ×
(
1.39 +1.54

−0.95

)
× 10−6 , (266)

ii) B → πK decays, i.e., b → s transitions, which are complemented by the B → ππ system to
determine a small correction, implying the following lower bound:

BR(Bd → K0K̄0)min = ΞKπ ×
(
1.36 +0.18

−0.21

)
× 10−6 . (267)

Here factorizable SU(3)-breaking corrections are included, as is made explicit through

ΞKπ =

[
fK0

0.331

0.258

fπ0

]2

, (268)

where the numerical values for the B → K,π form factors fK,π0 refer to a recent light-cone sum-rule
analysis [215]. At the time of the derivation of these bounds, the B factories reported an experimental
upper bound of BR(Bd → K0K̄0) < 1.5×10−6 (90% C.L.). Consequently, the theoretical lower bounds
given above suggested that the observation of this channel should just be ahead of us. Subsequently, the
first signals were indeed announced, in accordance with (266) and (267):

BR(Bd → K0K̄0) =

{
(1.19+0.40

−0.35 ± 0.13) × 10−6 (BaBar [216]) ,
(0.8± 0.3 ± 0.1) × 10−6 (Belle [217]) .

(269)

The SM description ofB0
d → K0K̄0 has thus successfully passed its first test. However, the experimental

errors are still very large, and the next crucial step—a measurement of the CP asymmetries—is still
missing. Using QCDF, an analysis of NP effects in this channel was recently performed in the minimal
supersymmetric standard model [218]. For further aspects of B0

d → K0K̄0, the reader is referred to
Ref. [214].

9.3 Radiative b→ d penguin decays: B̄ → ργ

Another important tool to explore b → d penguins is provided by B̄ → ργ modes. In the SM, these
decays are described by a Hamiltonian with the following structure [67]:

Hb→dγeff =
GF√

2

∑

j=u,c

V ∗jdVjb

[
2∑

k=1

CkQ
jd
k +

8∑

k=3

CkQ
d
k

]
. (270)

Here the Qjd
1,2 denote the current–current operators, whereas the Qd

3...6 are the QCD penguin operators,
which govern the decay B̄0

d → K0K̄0 together with the penguin-like contractions of Qcd
1,2 and Qud

1,2. In
contrast to these four-quark operators,

Qd7,8 =
1

8π2
mbd̄iσ

µν(1 + γ5)
{
ebiFµν , gsT

a
ijbjG

a
µν

}
(271)

are electro- and chromomagnetic penguin operators. The most important contributions to B̄ → ργ orig-
inate from Qjd

1,2 and Qd
7,8, whereas the QCD penguin operators play only a minor role, in contrast to

B̄0
d → K0K̄0. If we use again the unitarity of the CKM matrix and apply the Wolfenstein parametriza-

tion, we may write
A(B̄ → ργ) = cρλ

3APργtc
[
1− ρργeiθργe−iγ

]
, (272)
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where cρ = 1/
√

2 and 1 for ρ = ρ0 and ρ±, respectively, Pργtc ≡ Pργt −Pργc , and

ρργe
iθργ ≡ Rb

[Pργt −Pργu
Pργt −Pργc

]
. (273)

Here we follow our previous notation, i.e., the Pργj are strong amplitudes with the following interpreta-
tion: Pργu and Pργc refer to the matrix elements of

∑2
k=1CkQ

ud
k and

∑2
k=1CkQ

cd
k , respectively, whereas

Pργt corresponds to −∑8
k=3CkQ

d
k. Consequently, Pργu and Pργc describe the penguin topologies with

internal up- and charm-quark exchanges, respectively, whereas P ργt corresponds to the penguins with
the top quark running in the loop. Let us note that (272) refers to a given photon helicity. However, the
b quarks couple predominantly to left-handed photons in the SM, so that the right-handed amplitude is
usually neglected [219]; we shall return to this point below. Comparing (272) with (258), we observe
that the structure of both amplitudes is the same. In analogy to ρKKeiθKK , ρργeiθργ may also be affected
by long-distance effects, which represent a key uncertainty of B̄ → ργ decays [147, 219].

If we replace all down quarks in (270) by strange quarks, we obtain the Hamiltonian for b → sγ
processes, which are already well established experimentally [61]:

BR(B± → K∗±γ) = (40.3 ± 2.6) × 10−6 (274)

BR(B0
d → K∗0γ) = (40.1 ± 2.0) × 10−6 . (275)

In analogy to (272), we may write

A(B̄→K∗γ)= −λ
3APK∗γtc√

ε

[
1+ερK∗γe

iθK∗γe−iγ
]
, (276)

where ε was introduced in (221). Thanks to the smallness of ε, the parameter ρK∗γeiθK∗γ plays an
essentially negligible role for the B̄ → K∗γ transitions.

Let us have a look at the charged decays B± → ρ±γ and B± → K∗±γ first. If we consider their
CP-averaged branching ratios, we obtain

BR(B± → ρ±γ)

BR(B± → K∗±γ)
= ε

[
Φργ

ΦK∗γ

] ∣∣∣∣∣
Pργtc
PK∗γtc

∣∣∣∣∣

2

Hργ
K∗γ , (277)

where Φργ and ΦK∗γ denote phase-space factors, and

Hργ
K∗γ ≡

1− 2ρργ cos θργ cos γ + ρ2
ργ

1 + 2ερK∗γ cos θK∗γ cos γ + ε2ρ2
K∗γ

. (278)

Since B± → ρ±γ and B± → K∗±γ are related through the interchange of all down and strange quarks,
the U -spin flavour symmetry of strong interactions allows us to relate the corresponding hadronic am-
plitudes to each other; the U -spin symmetry is an SU(2) subgroup of the full SU(3)F flavour-symmetry
group, which relates down and strange quarks in the same manner as the conventional strong isospin
symmetry relates down and up quarks. Following these lines, we obtain

|Pργtc | = |PK
∗γ

tc | (279)

ρργe
iθργ = ρK∗γe

iθK∗γ ≡ ρeiθ . (280)

Although we may determine the ratio of the penguin amplitudes |Ptc| in (277) with the help of (279)—
up to SU(3)-breaking effects to be discussed below—we are still left with the dependence on ρ and
θ. However, keeping ρ and θ as free parameters, it can be shown that H ργ

K∗γ satisfies the following
relation [220]:

Hργ
K∗γ ≥

[
1− 2ε cos2 γ +O(ε2)

]
sin2 γ , (281)
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where the term linear in ε gives a shift of about 1.9%.

Concerning possible SU(3)-breaking effects to (280), they may only enter this tiny correction
and are negligible for our analysis. On the other hand, the SU(3)-breaking corrections to (279) have a
sizeable impact. Following Refs. [221, 222], we write

[
Φργ

ΦK∗γ

] ∣∣∣∣∣
Pργtc
PK∗γtc

∣∣∣∣∣

2

=

[
M2
B −M2

ρ

M2
B −M2

K∗

]3

ζ2 , (282)

where ζ = Fρ/FK∗ is the SU(3)-breaking ratio of the B± → ρ±γ and B± → K∗±γ form factors; a
light-cone sum-rule analysis gives ζ−1 = 1.31 ± 0.13 [223]. Consequently, (281) and (282) allow us to
convert the measured B± → K∗±γ branching ratio (274) into a lower SM bound for BR(B± → ρ±γ)
with the help of (277) [220]:

BR(B± → ρ±γ)min =
(
1.02 +0.27

−0.23

)
× 10−6 . (283)

A similar kind of reasoning holds also for the U -spin pairs B± → K±K,π±K and B± →
K±K∗, π±K∗, where the following lower bounds can be derived [220]:

BR(B±→K±K)min = ΞKπ ×
(
1.69 +0.21

−0.24

)
×10−6 (284)

BR(B±→K±K∗)min = ΞKπ ×
(
0.68 +0.11

−0.13

)
×10−6 , (285)

with ΞKπ given in (268). Thanks to the most recent B-factory data, we now also have evidence for
B± → K±K decays:

BR(B±→K±K) =

{
(1.5 ± 0.5± 0.1) × 10−6 (BaBar [216])
(1.0 ± 0.4± 0.1) × 10−6 (Belle [217]) ,

(286)

whereas the upper limit of 5.3 × 10−6 for B± → K±K∗ still leaves a lot of space. Obviously, we may
also consider the B± → K∗±K, ρ±K system [220]. However, since currently only the upper bound
BR(B± → ρ±K) < 48 × 10−6 is available, we cannot yet give a number for the lower bound on
BR(B± → K∗±K). Experimental analyses of these modes are strongly encouraged.

Let us now turn to B̄0
d → ρ0γ, which receives contributions from exchange and penguin annihi-

lation topologies that are not present in B̄0
d → K̄∗0γ; in the case of B± → ρ±γ and B± → K∗±γ,

which are related by the U -spin symmetry, there is a one-to-one correspondence of topologies. Making
the plausible assumption that the topologies involving the spectator quarks play a minor role, and taking
the factor of cρ0 = 1/

√
2 in (272) into account, the counterpart of (283) is given by

BR(Bd → ρ0γ)min =
(
0.51 +0.13

−0.11

)
× 10−6 . (287)

At the time of the derivation of the lower bounds for the B → ργ branching ratios given above,
the following experimental upper bounds (90% C.L.) were available:

BR(B± → ρ±γ) <

{
1.8× 10−6 (BaBar [224])
2.2× 10−6 (Belle [225])

(288)

BR(Bd → ρ0γ) <

{
0.4× 10−6 (BaBar [224])
0.8× 10−6 (Belle [225]) .

(289)

Consequently, it was expected that the B̄ → ργ modes should soon be discovered at theB factories [220].
Indeed, the Belle Collaboration recently reported the first observation of b→ dγ processes [226]:

BR(B± → ρ±γ) =
(
0.55+0.43+0.12

−0.37−0.11

)
× 10−6 (290)
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BR(Bd → ρ0γ) =
(
1.17+0.35+0.09

−0.31−0.08

)
× 10−6 (291)

BR(B → (ρ, ω)γ) =
(
1.34+0.34+0.14

−0.31−0.10

)
× 10−6 , (292)

which was one of the hot topics of the 2005 summer conferences [227]. These measurements still suffer
from large uncertainties, and the pattern of the central values of (290) and (291) would be in conflict with
the expectation following from the isospin symmetry. It will be interesting to follow the evolution of the
data. The next important conceptual step would be the measurement of the corresponding CP-violating
observables, though this is still in the distant future.

An alternative avenue to confront the data for the B → ργ branching ratios with the SM is pro-
vided by converting them into information on the sideRt of the UT. To this end, the authors of Refs. [221,
222] also use (282), and calculate the CP-conserving (complex) parameter δa entering ρργe

iθργ =
Rb [1 + δa] in the QCDF approach. The corresponding result, which favours a small impact of δa,
takes leading and next-to-leading order QCD corrections into account and holds to leading order in the
heavy-quark limit [222]. In view of the remarks about possible long-distance effects made above and
the B-factory data for the B → ππ system, which indicate large corrections to the QCDF picture for
non-leptonic B decays into two light pseudoscalar mesons (see Section 8.2), it is, however, not obvious
that the impact of δa is actually small. The advantage of the bound following from (281) is that it is—by
construction—not affected by ρργeiθργ at all.

9.4 General lower bounds for b→ d penguin processes
Interestingly, the bounds discussed above are actually realizations of a general, model-independent bound
that can be derived in the SM for b→ d penguin processes [220]. If we consider such a decay, B̄ → f̄d,
we may—in analogy to (258) and (272)—write

A(B̄ → f̄d) = A
(0)
d

[
1− %deiθde−iγ

]
, (293)

so that the CP-averaged amplitude square is given as follows:

〈|A(B → fd)|2〉 = |A(0)
d |2

[
1− 2%d cos θd cos γ + %2

d

]
. (294)

In general, %d and θd depend on the point in phase space considered. Consequently, the expression

BR(B → fd) = τB

[∑

Pol

∫
dPS 〈|A(B → fd)|2〉

]
(295)

for the CP-averaged branching ratio, where the sum runs over possible polarization configurations of
fd, does not factorize into |A(0)

d |2 and [1 − 2%d cos θd cos γ + %2
d] as in the case of the two-body decays

considered above. However, if we keep %d and θd as free, ‘unknown’ parameters at any given point in
phase space, we obtain

〈|A(B → fd)|2〉 ≥ |A(0)
d |2 sin2 γ , (296)

which implies

BR(B → fd) ≥ τB
[∑

Pol

∫
dPS |A(0)

d |2
]

sin2 γ . (297)

In order to deal with the term in square brackets, we use a b → s penguin decay B̄ → f̄s, which
is the counterpart of B̄ → f̄d in that the corresponding CP-conserving strong amplitudes can be related
to one another through the SU(3) flavour symmetry. In analogy to (276), we may then write

A(B̄ → f̄s) = −A
(0)
s√
ε

[
1 + ε%se

iθse−iγ
]
. (298)
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If we neglect the term proportional to ε in the square bracket, we arrive at

BR(B → fd)

BR(B → fs)
≥ ε

[∑
Pol

∫
dPS |A(0)

d |2∑
Pol

∫
dPS |A(0)

s |2

]
sin2 γ . (299)

Apart from the tiny ε correction, which gave a shift of about 1.9% in (281), (299) is valid exactly in the
SM. If we now apply the SU(3) flavour symmetry, we obtain

∑
Pol

∫
dPS |A(0)

d |2∑
Pol

∫
dPS |A(0)

s |2
SU(3)F−→ 1 . (300)

Since sin2 γ is favourably large in the SM and the decay B̄ → f̄s will be measured before its b →
d counterpart—simply because of the CKM enhancement—(299) provides strong lower bounds for
BR(B → fd).

It is instructive to return briefly to B → ργ. If we look at (299), we observe immediately that
the assumption that these modes are governed by a single photon helicity is no longer required. Conse-
quently, (283) and (287) are actually very robust with respect to this issue, which may only affect the
SU(3)-breaking corrections to a small extent. This feature is interesting in view of the recent discussion
in Ref. [228], where the photon polarization in B → ργ and B → K ∗γ decays was critically analysed.

We can now also derive a bound for the B± → K∗±K∗, ρ±K∗ system, where we have to sum in
(299) over three polarization configurations of the vector mesons. The analysis of the SU(3)-breaking
corrections is more involved than in the case of the decays considered above, and the emerging lower
bound of BR(B± → K∗±K∗)min ∼ 0.6 × 10−6 is still very far from the experimental upper bound of
71 × 10−6. Interestingly, the theoretical lower bound would be reduced by ∼ 0.6 in the strict SU(3)
limit, i.e., would be more conservative [220]. A similar comment applies to (266), (267) and (284), (285).
On the other hand, the B → ργ bounds in (283) and (287) would be enhanced by ∼ 1.7 in this case.
However, here the theoretical situation is more favourable since we have not to rely on the factorization
hypothesis to deal with the SU(3)-breaking effects as in the case of the non-leptonic decays.

Let us finally come to another application of (299), which is offered by decays of the kind
B̄ → π`+`− and B̄ → ρ`+`−. It is well known that the ρd terms complicate the interpretation of
the corresponding data considerably [147]; the bound offers SM tests that are not affected by these con-
tributions. The structure of the b → d`+`− Hamiltonian is similar to (270), but involves the additional
operators

Q9,10 =
α

2π
(¯̀̀ )V,A(d̄ibi)V−A . (301)

The b → s`+`− modes B̄ → K`+`− and B̄ → K∗`+`− were already observed at the B factories,
with branching ratios at the 0.6 × 10−6 and 1.4 × 10−6 levels [61], respectively, and received consider-
able theoretical attention (see, for example, Ref. [229]). For the application of (299), the charged decay
combinations B± → π±`+`−,K±`+`− and B± → ρ±`+`−,K∗±`+`− are suited best since the corre-
sponding decay pairs are related to each other through the U -spin symmetry [230]. The numbers given
above suggest

BR(B± → π±`+`−), BR(B± → ρ±`+`−) ∼> 10−8 , (302)

thereby leaving the exploration of these b → d penguin decays for the more distant future. Detailed
studies of the associated SU(3)-breaking corrections are encouraged. It is hoped that by the time the
B± → π±`+`−, ρ±`+`− modes can be measured, we shall have a good picture of these effects.

It will be interesting to confront all of these bounds with experimental data. In the case of the non-
leptonic Bd → K0K̄0, B± → K±K modes and their radiative B → ργ counterparts, they have already
provided a first successful test of the SM description of the corresponding FCNC processes, although the
uncertainties are still very large in view of the fact that we are just at the beginning of the experimental
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exploration of these channels. A couple of other non-leptonic decays of this kind may just be around the
corner. It would be exciting if some bounds were significantly violated through destructive interference
between SM and NP contributions. Since the different decay classes are governed by different operators,
we could actually encounter surprises!

10 B-decay studies in the LHC era: fully exploiting the Bs system
10.1 In pursuit of new physics with ∆Ms

Concerning experimental information about this mass difference, only lower bounds were available for
many years from the LEP experiments at CERN and SLD at SLAC [107]. Since the currently operating
e+e− B factories run at the Υ(4S) resonance, which decays into Bu,d, but not into Bs mesons, the
Bs system cannot be explored by the BaBar and Belle experiments3 . However, plenty of Bs mesons
are produced at the Tevatron (and will be later on at the LHC [232]), which—very recently—allowed
the measurement of ∆Ms, as summarized in (131) and (132). These new results were one of the hot
topics of spring 2006, and have already triggered several phenomenological papers (see, for example,
Refs. [233]– [241]).

As in Section 6 and Section 7.1, we shall follow the analysis of Ref. [101]. In order to describe
possible NP effects, we parametrize them through (164) and (165). The relevant CKM factor is |V ∗tsVtb|.
Using once again the unitarity of the CKM matrix and including next-to-leading order terms in the
Wolfenstein expansion as given in Ref. [36], we have

∣∣∣∣
Vts
Vcb

∣∣∣∣ = 1− 1

2
(1− 2Rb cos γ) λ2 +O(λ4) . (303)

Consequently, apart from the tiny correction in λ2, the CKM factor for ∆Ms is independent of γ and
Rb, which is an important advantage in comparison with the Bd-meson system. The accuracy of the SM
prediction of ∆Ms is hence limited by the hadronic mixing parameter fBsB̂

1/2
Bs

. If we consider the ratio
ρs introduced in (166) and use the CDF measurement in (132), we obtain

ρs|JLQCD = 1.08+0.03
−0.01(exp)± 0.19(th) (304)

ρs|(HP+JL)QCD = 0.74+0.02
−0.01(exp)± 0.18(th) , (305)

where we made the experimental and theoretical errors explicit. These numbers are consistent with the
SM case ρs = 1, but suffer from significant theoretical uncertainties, which are much larger than the
experimental errors. Nevertheless, it is interesting to note that the (HP+JL)QCD result is 1.5σ below
the SM; a similar pattern arises in (193) and (194), though at the 1σ level. Any more precise statement
about the presence or absence of NP requires the reduction of theoretical uncertainties.

In Fig. 31, we show the constraints in the σs–κs plane, which can be obtained from ρs with the
help of the contours shown in Fig. 18. We see that upper bounds of κs . 2.5 arise from the measurement
of ∆Ms. In the case of (305), σs would be constrainted to lie within the range 110◦ ≤ σs ≤ 250◦.
Consequently, the CDF measurement of ∆Ms leaves ample space for the NP parameters σs and κs. As
in the case of the Bd-meson system discussed in Section 7.1, this situation will change significantly as
soon as information about CP violation in the Bs-meson system becomes available. We shall return to
this topic in Section 10.2.

It is interesting to consider the ratio of ∆Ms and ∆Md, which can be written as follows:

∆Ms

∆Md
=
ρs
ρd

∣∣∣∣
Vts
Vtd

∣∣∣∣
2 MBs

MBd

ξ2 , (306)

3The asymmetric e+e− KEKB collider was recently also operated at the Υ(5S) resonance in an engineering run, allowing
the Belle experiment to take first Bs data [231].
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Fig. 31: The allowed regions (yellow/grey) in the σs–κs plane. Left panel: JLQCD lattice results (122). Right
panel: (HP+JL)QCD lattice results (123).
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Fig. 32: The dependence of ρs/ρd on γ for the central values of ∆Md,s in (130) and (132). Left panel: JLQCD
results (308). Right panel: (HP+JL)QCD results (309). The plots are nearly independent of Rb.

where the hadronic SU(3)-breaking parameter ξ is defined through

ξ ≡
fBsB̂

1/2
Bs

fBdB̂
1/2
Bd

. (307)

In the class of NP models with ‘minimal flavour violation’ (see Section 6, and Ref. [237] for a recent
analysis addressing also the ∆Ms measurement), we have ρs/ρd = 1, so that (306) allows the extraction
of the CKM factor |Vts/Vtd|, and hence |Vtd|, as |Vts| is known—to excellent accuracy—from (303). The
advantage of this determination lies in the reduced theoretical uncertainty of ξ as compared to fBdB̂

1/2
Bd

.
For the sets of lattice results in (122) and (123), we have

ξJLQCD = 1.14 ± 0.06+0.13
−0 (308)

ξ(HP+JL)QCD = 1.210+0.047
−0.035 . (309)

Using the expression

Rt ≡
1

λ

∣∣∣∣
Vtd
Vcb

∣∣∣∣ =
1

λ

∣∣∣∣
Vtd
Vts

∣∣∣∣
[
1− 1

2
(1− 2Rb cos γ) λ2 +O(λ4)

]
, (310)

we may convert the extracted value of |Vts/Vtd| into a measurement of the UT side Rt. As we noted
in Subsection 9.3, another determination of Rt can, in principle, be obtained from radiative decays, in
particular the ratio of branching ratios B(B → (ρ, ω)γ)/B(B → K ∗γ), but is presently limited by
experimental statistics; see Ref. [242] for a recent analysis.
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Alternatively, following Ref. [101], we may constrain the ratio ρs/ρd through the measured value
of ∆Ms/∆Md. To this end, we express—in analogy to (192)—the UT side Rt in terms of Rb and γ:

Rt =
√

1− 2Rb cos γ +R2
b , (311)

allowing the determination of Rt through processes that are essentially unaffected by NP. The resulting
value of Rt depends rather strongly on γ, which is the main source of uncertainty. Combining then (306)
and (310), we obtain the following expression for ρs/ρd:

ρs
ρd

= λ2
[
1− 2Rb cos γ +R2

b

] [
1 + (1− 2Rb cos γ)λ2 +O(λ4)

] 1

ξ2

MBd

MBs

∆Ms

∆Md
. (312)

In Fig. 32, we plot this ratio for the central values of ∆Md and ∆Ms in (130) and (132), respectively, as
a function of the UT angle γ for the values of ξ given in (122) and (123). We find that the corresponding
curves are nearly independent of Rb and that γ is actually the key CKM parameter for the determination
of ρs/ρd. The corresponding numerical values are given by:

ρs
ρd

∣∣∣∣
JLQCD

= 1.11+0.02
−0.01(exp)± 0.35(γ,Rb)

+0.12
−0.28(ξ) (313)

ρs
ρd

∣∣∣∣
(HP+JL)QCD

= 0.99+0.02
−0.01(exp)± 0.31(γ,Rb)

+0.06
−0.08(ξ) . (314)

Because of the large range of allowed values of γ in (182), this ratio is currently not stringently con-
strained. This situation should, however, improve significantly in the LHC era thanks to the impressive
determination of γ to be obtained at the LHCb experiment. In fact, a statistical accuracy of σstat(γ) ≈
2.5◦ is expected at LHCb after five years of data taking [232].

Let us introduce a scenario for the year 2010 that is characterized by γ = (70 ± 5)◦ and the
(HP+JL)QCD parameters in (123). We then find

ρs
ρd

∣∣∣∣
2010

= 1.07 ± 0.09(γ,Rb)
+0.06
−0.08(ξ) = 1.07 ± 0.12 , (315)

where we made the errors arising from the uncertainties of γ and ξ explicit, and, in the last step, added
them in quadrature. Consequently, the hadronic uncertainties and those induced by γ would now be of
the same size, which should provide additional motivation for the lattice community to reduce the error
of ξ even further. Despite the impressive reduction of uncertainty compared to the 2006 values in (313)
and (314), the numerical value in (315) would still not allow a stringent test of whether ρs/ρd equals one:
to establish a 3σ deviation from 1, central values of ρs/ρd = 1.4 or 0.7 would be needed. The assumed
uncertainty of γ of 5◦ could also turn out to be too pessimistic, in which case even more progress would
be needed from the lattice side to match the experimental accuracy.

The result in (315) would not necessarily suggest that there is no physics beyond the SM. In fact,
the central values of ρd = 0.69 ± 0.16 and ρs = 0.74 ± 0.18 would both be smaller than 1, i.e., would
both deviate from the SM picture, although the hadronic uncertainties would again not allow us to draw
definite conclusions. In order to shed further light on these possible NP contributions, the exploration of
CP-violating effects in the Bs-meson system is essential, which can be performed with the help of the
‘golden’ decay B0

s → J/ψφ.

10.2 B0
s → J/ψφ

As can be seen in Fig. 20, the decay B0
s → J/ψφ is simply related to B0

d → J/ψKS through a replace-
ment of the down spectator quark by a strange quark. Consequently, the structure of the B 0

s → J/ψφ de-
cay amplitude is completely analogous to that of (169). On the other hand, the final state of B 0

s → J/ψφ
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Fig. 33: sinφs for a scenario with flavour-universal NP, i.e., φNP
s = φNP

d , as specified in Eq. (318), and φd = 43.4◦.
Left panel: sinφs as a function of γ for various values of Rb. Right panel: sinφs as a function of Rb for various
values of γ [solid line: γ = 65◦, dashed lines: γ = (45◦, 85◦)].

consists of two vector mesons, and is hence an admixture of different CP eigenstates, which can, how-
ever, be disentangled through an angular analysis of the B0

s → J/ψ[→ `+`−]φ[→ K+K−] decay
products [111,243]. The corresponding angular distribution exhibits tiny direct CP violation, and allows
the extraction of

sinφs +O(λ
3
) = sinφs +O(10−3) (316)

through mixing-induced CP violation. Since we have φs = −2δγ = −2λ2η ∼ −2◦ in the SM, the
determination of this phase from (316) is affected by hadronic uncertainties of O(10%), which may be-
come an issue for the LHC era. These uncertainties can be controlled with the help of flavour-symmetry
arguments through the B0

d → J/ψρ0 decay [244].

Needless to say, the big hope is that large CP violation will be found in this channel. Since
the CP-violating effects in B0

s → J/ψφ are tiny in the SM, such an observation would give us an
unambiguous signal for NP [117,245,246]. As the situation for NP entering through the decay amplitude
is similar to B → J/ψK , we would get evidence for CP-violating NP contributions to B 0

s–B̄0
s mixing,

and could extract the corresponding sizeable value of φs [117]. Such a scenario may generically arise
in the presence of NP with ΛNP ∼ TeV [119], as well as in specific models, including supersymmetric
frameworks and models with extra Z ′ bosons (see Ref. [101] and references therein).

Thanks to its nice experimental signature, B0
s → J/ψφ is very accessible at hadron colliders,

and can be fully exploited at the LHC. After one year of data taking (which corresponds to 2 fb−1),
LHCb expects a measurement with the statistical accuracy σstat(sinφs) ≈ 0.031; adding modes such as
Bs → J/ψη, J/ψη′ and ηcφ, σstat(sinφs) ≈ 0.013 is expected after five years [232]. Also ATLAS and
CMS will contribute to the measurement of sinφs, expecting uncertainties at the 0.1 level after one year
of data taking, which corresponds to 10 fb−1 [247,248]. In order to illustrate the impact of NP effects on
the quantity

sinφs = sin(−2λ2Rb sin γ + φNP
s ) , (317)

let us assume that the NP parameters satisfy the simple relation

σd = σs, κd = κs , (318)

i.e., that in particular φNP
d = φNP

s . This scenario would be supported by (315), although it would not
belong to the class of models with MFV, as new sources of CP violation would be required. As we have
seen in Section 7.1, the analysis of the B0

d data for Rincl
b = 0.45 indicates a small NP phase around
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Fig. 34: Combined constraints for the allowed region (yellow/grey) in the σs–κs plane through ∆Ms in (132)
for the (HP+JL)QCD results (123) and CP violation measurements. Left panel: the SM scenario (sinφs)exp =

−0.04 ± 0.02. Right panel: a NP scenario with (sinφs)exp = −0.20 ± 0.02. The solid lines correspond to
cosφs > 0, the dotted lines to cosφs < 0.

−10◦ in the Bd system. In the above scenario, that would imply the presence of the same phase in the
Bs system, which would interfere constructively with the small SM phase and result in CP asymmetries
at the level of −20%. CP-violating effects of that size can easily be detected at the LHC. This exercise
demonstrates again the great power of the Bs-meson system to reveal CP-violating NP contributions
to B0

q–B̄0
q mixing. The presence of a small NP phase could actually be considerably magnified, as

illustrated in Fig. 33.

Let us finally also discuss the impact of CP violation measurements on the allowed region in the
σs–κs plane in our 2010 scenario. To this end, we consider two cases:

i) (sinφs)exp = −0.04± 0.02, in accordance with the SM;
ii) (sinφs)exp = −0.20± 0.02, in accordance with the NP scenario of Fig. 33.

The measurement of sinφs implies a twofold solution for φs and, therefore, also for φNP
s . However, this

ambiguity can be resolved through the determination of the sign of cosφs, which can be fixed through
the strategies proposed in Ref. [117]. In Fig. 34, we show the situation in the σs–κs plane4. The dotted
lines refer to negative values of cosφs. Assuming that these are experimentally excluded, we are left with
strongly restricted regions, although κs could still take sizeable ranges, with upper bounds κs ≈ 0.5. In
the SM-like scenario, values of σs around 180◦ would arise, i.e., a NP contribution with a sign opposite
to the SM. However, due to the absence of new CP-violating effects, the accuracy of lattice results would
have to be considerably improved in order to allow the extraction of a value of κs incompatible with 0.
On the other hand, a measurement of (sinφs)exp = −0.20 ± 0.02 would give a NP signal at the 10σ

level, with κs & 0.2. A determination of κs with 10% uncertainty requires fBsB̂
1/2
Bs

with 5% accuracy,
i.e., the corresponding error in (123) has to be reduced by a factor of 2.

Since our discussion does not refer to a specific model of NP, the question arises whether there are
actually extensions of the SM that still allow large CP-violating NP phases in B 0

s–B̄0
s mixing. This is in

fact the case, also after the measurement of ∆Ms. In Ref. [101], where also a comprehensive guide to
the relevant literature can be found, this exciting feature was illustrated by considering models with an
extra Z ′ boson and SUSY scenarios with an approximate alignment of quark and squark masses.

Let us now continue our discussion of the Bs-meson system by having a closer look at other
benchmark processes.

4The closed lines agree with those shown in the right panel of Fig. 31, as our 2010 scenario is based on the (HP+JL)QCD
lattice results.
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Fig. 35: Feynman diagrams contributing to B0
q → Dqūq and B̄0

q → Dqūq decays

Fig. 36: Interference effects between B0
q → Dqūq and B̄0

q → Dqūq decays

10.3 Bs → D±s K
∓ and Bd → D±π∓

The decays Bs → D±s K
∓ [249] and Bd → D±π∓ [250] can be treated on the same theoretical basis,

and provide new strategies to determine γ [90]. Following this paper, we write these modes, which are
pure ‘tree’ decays according to the classification of Section 3.3.1, generically as Bq → Dqūq. As can
be seen from the Feynman diagrams in Fig. 35, their characteristic feature is that both a B 0

q and a B̄0
q

meson may decay into the same final state Dqūq. Consequently, as illustrated in Fig. 36, interference
effects between B0

q–B̄0
q mixing and decay processes arise, which allow us to probe the weak phase φq+γ

through measurements of the corresponding time-dependent decay rates.

In the case of q = s, i.e.,Ds ∈ {D+
s , D

∗+
s , ...} and us ∈ {K+,K∗+, ...}, these interference effects

are governed by a hadronic parameter Xse
iδs ∝ Rb ≈ 0.4, where Rb ∝ |Vub/Vcb| is the usual UT side,

and hence are large. On the other hand, for q = d, i.e., Dd ∈ {D+, D∗+, ...} and ud ∈ {π+, ρ+, ...}, the
interference effects are described by Xde

iδd ∝ −λ2Rb ≈ −0.02, and hence are tiny. In the following,
we shall only consider Bq → Dquq modes, where at least one of the Dq, ūq states is a pseudoscalar
meson; otherwise a complicated angular analysis has to be performed.

The time-dependent rate asymmetries of these decays take the same form as (152). It is well known
that they allow a theoretically clean determination of φq + γ, where the ‘conventional’ approach works
as follows [249, 250]: if we measure the observables C(Bq → Dqūq) ≡ Cq and C(Bq → D̄quq) ≡ Cq
provided by the cos(∆Mqt) pieces, we may determine the following quantities:

〈Cq〉+ ≡
1

2

[
Cq + Cq

]
= 0, 〈Cq〉− ≡

1

2

[
Cq − Cq

]
=

1−X2
q

1 +X2
q

, (319)

where 〈Cq〉− allows us to extract Xq . However, to this end we have to resolve terms entering at the X 2
q

level. In the case of q = s, we have Xs = O(Rb), implying X2
s = O(0.16), so that this should actually

be possible, though challenging. On the other hand, Xd = O(−λ2Rb) is doubly Cabibbo-suppressed.
Although it should be possible to resolve terms of O(Xd), this will be impossible for the vanishingly
smallX2

d = O(0.0004) terms, so that other approaches to fixXd are required [250]. For the extraction of
φq+γ, the mixing-induced observables S(Bq → Dqūq) ≡ Sq and S(Bq → D̄quq) ≡ Sq associated with
the sin(∆Mqt) terms of the time-dependent rate asymmetry must be measured. In analogy to (319), it is
convenient to introduce observable combinations 〈Sq〉±. Assuming that Xq is known, we may consider
the quantities
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s+ ≡ (−1)L

[
1 +X2

q

2Xq

]
〈Sq〉+ = + cos δq sin(φq + γ) (320)

s− ≡ (−1)L

[
1 +X2

q

2Xq

]
〈Sq〉− = − sin δq cos(φq + γ) , (321)

which yield

sin2(φq + γ) =
1

2

[
(1 + s2

+ − s2
−)±

√
(1 + s2

+ − s2
−)2 − 4s2

+

]
, (322)

implying an eightfold solution for φq+γ. If we fix the sign of cos δq through factorization, still a fourfold
discrete ambiguity is left, which is limiting the power for the search of NP significantly. Note that this
assumption allows us also to fix the sign of sin(φq + γ) through 〈Sq〉+. To this end, the factor (−1)L,
where L is the Dqūq angular momentum, has to be properly taken into account. This is a crucial issue
for the extraction of the sign of sin(φd + γ) from Bd → D∗±π∓ decays.

Let us now discuss new strategies to explore CP violation through Bq → Dqūq modes, fol-
lowing Ref. [90]. If ∆Γs is sizeable, the ‘untagged’ rates introduced in (149) allow us to measure
A∆Γ(Bs → Dsūs) ≡ A∆Γs and A∆Γ(Bs → D̄sus) ≡ A∆Γs . Introducing, in analogy to (319), observ-
able combinations 〈A∆Γs〉±, we may derive the relations

tan(φs + γ) = −
[ 〈Ss〉+
〈A∆Γs〉+

]
= +

[〈A∆Γs〉−
〈Ss〉−

]
, (323)

which allow an unambiguous extraction of φs + γ if we fix the sign of cos δq through factorization.
Another important advantage of (323) is that we do not have to rely on O(X 2

s ) terms, as 〈Ss〉± and
〈A∆Γs〉± are proportional to Xs. On the other hand, a sizeable value of ∆Γs is of course needed.

If we keep the hadronic quantities Xq and δq as ‘unknown’, free parameters in the expressions for
the 〈Sq〉±, we may obtain bounds on φq + γ from

| sin(φq + γ)| ≥ |〈Sq〉+| , | cos(φq + γ)| ≥ |〈Sq〉−| . (324)

If Xq is known, stronger constraints are implied by

| sin(φq + γ)| ≥ |s+| , | cos(φq + γ)| ≥ |s−| . (325)

Once s+ and s− are known, we may of course determine φq + γ through the ‘conventional’ approach,
using (322). However, the bounds following from (325) provide essentially the same information and are
much simpler to implement. Moreover, as discussed in detail in Ref. [90] for several examples within the
SM, the bounds following from the Bs and Bd modes may be highly complementary, thereby providing
particularly narrow, theoretically clean ranges for γ.

Let us now further exploit the complementarity between theB0
s → D

(∗)+
s K− andB0

d → D(∗)+π−

processes. Looking at the corresponding decay topologies, we see that these channels are related to each
other through an interchange of all down and strange quarks. Consequently, applying again the U -spin
symmetry implies as = ad and δs = δd, where as ≡ Xs/Rb and ad ≡ −Xd/(λ

2Rb) are the ratios of the
hadronic matrix elements entering Xs and Xd, respectively. There are various possibilities to implement
these relations [90]. A particularly simple picture arises if we assume that as = ad and δs = δd, which
yields

tan γ = −
[

sinφd − S sinφs
cosφd − S cosφs

]
φs=0◦

= −
[

sinφd
cosφd − S

]
. (326)
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Here we have introduced

S ≡ −R
[〈Sd〉+
〈Ss〉+

]
(327)

with

R ≡
(

1− λ2

λ2

)[
1

1 +X2
s

]
, (328)

where R can be fixed with the help of untagged Bs rates through

R =

(
fK
fπ

)2
[

Γ(B̄0
s → D

(∗)+
s π−) + Γ(B0

s → D
(∗)−
s π+)

〈Γ(Bs → D
(∗)+
s K−)〉+ 〈Γ(Bs → D

(∗)−
s K+)〉

]
. (329)

Alternatively, we can only assume that δs = δd or that as = ad [90]. An important feature of this
strategy is that it allows us to extract an unambiguous value of γ, which is crucial for the search of NP;
first studies for LHCb are very promising in this respect [251]. Another advantage with respect to the
‘conventional’ approach is that X2

q terms have not to be resolved experimentally. In particular, Xd does
not have to be fixed, and Xs may only enter through a 1+X2

s correction, which can straightforwardly be
determined through untagged Bs rate measurements. In the most refined implementation of this strategy,
the measurement of Xd/Xs would only be interesting for the inclusion of U -spin-breaking corrections
in ad/as. Moreover, we may obtain interesting insights into hadron dynamics and U -spin breaking.

The colour-suppressed counterparts of the Bq → Dqūq modes are also interesting for the explo-
ration of CP violation. In the case of the Bd → DKS(L), Bs → Dη(′), Dφ, ... modes, the interference
effects between B0

q–B̄0
q mixing and decay processes are governed by xfse

iδfs ∝ Rb. If we consider
the CP eigenstates D± of the neutral D-meson system, we obtain additional interference effects at the
amplitude level, which involve γ, and may introduce the following ‘untagged’ rate asymmetry [153]:

Γfs+− ≡
〈Γ(Bq → D+fs)〉 − 〈Γ(Bq → D−fs)〉
〈Γ(Bq → D+fs)〉+ 〈Γ(Bq → D−fs)〉

, (330)

which allows us to constrain γ through the relation

| cos γ| ≥ |Γfs+−| . (331)

Moreover, if we complement Γfs+− with

〈Sfs〉± ≡
1

2

[
Sfs+ ± Sfs−

]
, (332)

where Sfs± ≡ Amix
CP (Bq → D±fs), we may derive the following simple but exact relation:

tan γ cosφq =

[
ηfs〈Sfs〉+

Γfs+−

]
+ [ηfs〈Sfs〉− − sinφq] , (333)

with ηfs ≡ (−1)LηfsCP. This expression allows a conceptually simple, theoretically clean and essentially
unambiguous determination of γ [153]. Since the interference effects are governed by the tiny parameter
xfde

iδfd ∝ −λ2Rb in the case of Bs → D±KS(L), Bd → D±π0, D±ρ0, ..., these modes are not as
interesting for the extraction of γ. However, they provide the relation

ηfd〈Sfd〉− = sinφq +O(x2
fd

) = sinφq +O(4× 10−4) , (334)

allowing very interesting determinations of φq with theoretical accuracies one order of magnitude higher
than those of the conventional B0

d → J/ψKS and B0
s → J/ψφ approaches [153]. As we pointed

out in Section 7.1, these measurements would be very interesting in view of the new world average of
(sin 2β)ψKS

.
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10.4 B0
s → K+K− and B0

d → π+π−

The decay B0
s → K+K− is a b̄ → s̄ transition, and involves tree and penguin amplitudes, as the

B0
d → π+π− mode [167]. However, because of the different CKM structure, the latter topologies

actually play the dominant role in the B0
s → K+K− channel. In analogy to (208), we may write

A(B0
s → K+K−) =

√
ε C′

[
eiγ +

1

ε
d′eiθ

′
]
, (335)

where ε was introduced in (221), and the CP-conserving hadronic parameters C ′ and d′eiθ
′

correspond to
C and deiθ , respectively. The corresponding observables then take the following generic form:

Adir
CP(Bs → K+K−) = G′1(d′, θ′; γ) (336)

Amix
CP (Bs → K+K−) = G′2(d′, θ′; γ, φs) , (337)

in analogy to the expressions for the CP-violating B0
d → π+π− asymmetries in (213) and (214). Since

φd = (43.4 ± 2.5)◦ is already known (see Section 7.1) and φs is negligibly small in the SM—or can
be determined through B0

s → J/ψφ should CP-violating NP contributions to B0
s–B̄0

s mixing make
it sizeable—we may convert the measured values of Adir

CP(Bd → π+π−), Amix
CP (Bd → π+π−) and

Adir
CP(Bs → K+K−), Amix

CP (Bs → K+K−) into theoretically clean contours in the γ–d and γ–d′

planes, respectively. In Fig. 37, we show these contours for an example, which corresponds to the central
values of (217) and (218) with the hadronic parameters (d, θ) in (230).

As can be seen in Fig. 26, the decay B0
d → π+π− is actually related to B0

s → K+K− through
the interchange of all down and strange quarks. Consequently, each decay topology contributing to
B0
d → π+π− has a counterpart in B0

s → K+K−, and the corresponding hadronic parameters can be
related to each other with the help of the U -spin flavour symmetry of strong interactions, implying the
following relations [167]:

d′ = d , θ′ = θ . (338)

Applying the former, we may extract γ and d through the intersections of the theoretically clean γ–
d and γ–d′ contours. As discussed in Ref. [167], it is also possible to resolve straightforwardly the
twofold ambiguity for (γ, d) arising in Fig. 37, thereby leaving us with the ‘true’ solution of γ = 74◦

in this example. Moreover, we may determine θ and θ ′, which allow an interesting internal consistency
check of the second U -spin relation in (338). An alternative avenue is provided if we eliminate d and
d′ through the CP-violating Bd → π+π− and Bs → K+K− observables, respectively, and then extract
these parameters and γ through the U -spin relation θ ′ = θ.

As illustrated in Fig. 38, this strategy is very promising from an experimental point of view for
the LHCb experiment, where an accuracy for γ of a few degrees can be achieved [147, 232, 252]. As
far as possible U -spin-breaking corrections to d′ = d are concerned, they enter the determination of γ
through a relative shift of the γ–d and γ–d′ contours; their impact on the extracted value of γ therefore
depends on the form of these curves, which is fixed through the measured observables. In the examples
discussed in Refs. [119, 167], as well as in the one shown in Fig. 37, the extracted value of γ would be
very stable under such effects. Let us also note that the U -spin relations in (338) are particularly robust
since they involve only ratios of hadronic amplitudes, where all SU(3)-breaking decay constants and
form factors cancel in factorization and also chirally enhanced terms would not lead to U -spin-breaking
corrections [167]. On the other hand, the ratio |C ′/C|, which equals 1 in the strict U -spin limit and enters
the U -spin relation

Amix
CP (Bs → K+K−)

Adir
CP(Bd → π+π−)

= −
∣∣∣∣
C′
C

∣∣∣∣
2 [ BR(Bd → π+π−)

BR(Bs → K+K−)

]
τBs
τBd

, (339)

is affected by U -spin-breaking effects within factorization. An estimate of the corresponding form factors
was recently performed in Ref. [253] with the help of QCD sum rules, which is an important ingredient
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Fig. 37: The contours in the γ–d(′) plane for an example with d = d′ = 0.52, θ = θ′ = 146◦, φd = 43.4◦,
φs = −2◦, γ = 74◦, which corresponds to the CP asymmetries Adir

CP(Bd → π+π−) = −0.37 and
Amix

CP (Bd → π+π−) = +0.50 (see Sections 7.3 and 8.2), as well as Adir
CP(Bs → K+K−) = +0.12 and

Amix
CP (Bs → K+K−) = −0.19.

Fig. 38: Experimental LHCb feasibility study for the contours in the γ–d(′) plane, as discussed in Ref. [252]

for a SM prediction of the CP-averaged Bs → K+K− branching ratio [83]. Following these lines, the
prediction

BR(Bs → K+K−) = (35 ± 7)× 10−6 (340)

was obtained in Refs. [83, 200] from the CP-averaged Bd → π∓K± branching ratio. On the other
hand, the CDF Collaboration announced recently the observation of the Bs → K+K− channel, with the
following branching ratio [254]:

BR(Bs → K+K−) = (33 ± 5.7± 6.7) × 10−6 , (341)

which is in excellent accordance with (340). For other recent analyses of the Bs → K+K− decay, see
Refs. [255, 256].

In addition to the Bs → K+K−, Bd → π+π− and Bs → D±s K
∓, Bd → D±π∓ strategies dis-

cussed above, other U -spin methods for the extraction of γ were also proposed, using Bs(d) → J/ψKS

or Bd(s) → D+
d(s)D

−
d(s) [142], Bd(s) → K0(∗)K̄0(∗) [119, 244], B(s) → πK [257], or Bs(d) → J/ψη

modes [258]. In a very recent paper [259], two-body decays of charged B mesons were also considered.
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Fig. 39: Feynman diagrams contributing to B0
q → µ+µ− (q ∈ {s, d})

10.5 B0
s → µ+µ− andB0

d → µ+µ−

Let us finally have a closer look at the rare decay B0
s → µ+µ−, which we already encountered briefly in

Section 8.4. As can be seen in Fig. 39, this decay and its Bd-meson counterpart B0
d → µ+µ− originate

from Z0-penguin and box diagrams in the SM. The corresponding low-energy effective Hamiltonian is
given as follows [67]:

Heff = −GF√
2

[
α

2π sin2 ΘW

]
V ∗tbVtqηY Y0(xt)(b̄q)V−A(µ̄µ)V−A + h.c. , (342)

where α denotes the QED coupling and ΘW is the Weinberg angle. The short-distance physics is de-
scribed by Y (xt) ≡ ηY Y0(xt), where ηY = 1.012 is a perturbative QCD correction [260]– [262], and the
Inami–Lim function Y0(xt) describes the top-quark mass dependence. We observe that only the matrix
element 〈0|(b̄q)V−A|B0

q 〉 is required. Since here the vector-current piece vanishes, as the B0
q is a pseu-

doscalar meson, this matrix element is simply given by the decay constant fBq . Consequently, we arrive
at a very favourable situation with respect to the hadronic matrix elements. Since, moreover, NLO QCD
corrections were calculated, and long-distance contributions are expected to play a negligible role [260],
the B0

q → µ+µ− modes belong to the cleanest rare B decays. The SM branching ratios can then be
written in the following compact form [37]:

BR(Bs → µ+µ−) = 4.1 × 10−9

×
[

fBs
0.24 GeV

]2 [ |Vts|
0.040

]2 [ τBs
1.5 ps

] [ mt

167 GeV

]3.12
(343)

BR(Bd → µ+µ−) = 1.1× 10−10

×
[

fBd
0.20 GeV

]2 [ |Vtd|
0.008

]2 [ τBd
1.5 ps

] [ mt

167 GeV

]3.12
. (344)

The most recent upper bounds (95% C.L.) from the CDF Collaboration read as follows [263]:

BR(Bs → µ+µ−) < 1.0× 10−7, BR(Bd → µ+µ−) < 3.0 × 10−8 , (345)

while the D0 Collaboration finds the following (95% C.L.) upper limit [264]:

BR(Bs → µ+µ−) < 3.7× 10−7 . (346)

Using again relation (310) and neglecting the tiny corrections entering at the λ2 level, we find that
the measurement of the ratio

BR(Bd → µ+µ−)

BR(Bs → µ+µ−)
=

[
τBd
τBs

] [
MBd

MBs

] [
fBd
fBs

]2 ∣∣∣∣
Vtd
Vts

∣∣∣∣
2

(347)

would allow an extraction of the UT side Rt. Since the short-distance function Y cancels, this deter-
mination works not only in the SM, but also in the NP scenarios with MFV [137]. This strategy is
complementary to that offered by the ratio ∆Ms/∆Md discussed in the context of (306). If we look

67

FLAVOUR PHYSICS AND CP VIOLATION

169



at this expression in the MFV case, where ρs/ρd = 1, and (347), we see that the following relation is
implied [265]:

BR(Bs → µ+µ−)

BR(Bd → µ+µ−)
=

[
τBs
τBd

][
B̂Bd
B̂Bs

][
∆Ms

∆Md

]
, (348)

which holds again in the context of MFV models, including the SM. Here the advantage is that the
dependence on (fBd/fBs)

2 cancels. Moreover, we may also use the data for the mass differences ∆Mq

to reduce the hadronic uncertainties of the SM predictions of the Bq → µ+µ− branching ratios [265]:

BR(Bs → µ+µ−) = (3.35 ± 0.32) ××10−9 (349)

BR(Bd → µ+µ−) = (1.03 ± 0.09) × 10−10 , (350)

where (349) is another application of the recent ∆Ms measurement at the Tevatron [237].

The current experimental upper bounds in (345) and (346) are still about two orders of magnitude
away from these numbers. Consequently, should the Bq → µ+µ− decays be governed by their SM
contributions, we could only hope to observe them at the LHC [147]. On the other hand, since the
Bq → µ+µ− transitions originate from FCNC processes, they are sensitive probes of NP. In particular,
the branching ratios may be dramatically enhanced in specific NP (SUSY) scenarios, as was recently
reviewed in Ref. [118]. Should this actually be the case, these decays may already be seen at Run II of
the Tevatron, and the e+e− B factories could observe Bd → µ+µ−. Let us finally emphasize that the
experimental bounds on Bs → µ+µ− can also be converted into bounds on NP parameters in specific
scenarios. In the context of the constrained minimal supersymmetric extension of the SM (CMSSM) with
universal scalar masses, such constraints were recently critically discussed by the authors of Ref. [266].

11 Conclusions and outlook
CP violation is now well established in the B-meson system, thereby complementing the neutral K-
meson system, where this phenomenon was discovered more than 40 years ago. The data of the e+e−

B factories have provided valuable insights into the physics of strong and weak interactions. Concern-
ing the former aspect, which is sometimes only considered as a by-product, the data give us important
evidence for large non-factorizable effects in non-leptonic B-decays, so that the challenge for a reliable
theoretical description within dynamical QCD approaches remains, despite interesting recent progress.
As far as the latter aspect is concerned, the description of CP violation through the KM mechanism has
successfully passed its first experimental tests, in particular through the comparison between the mea-
surement of sin 2β with the help of B0

d → J/ψKS and the CKM fits. However, the most recent average
for (sin 2β)ψKS

is now somewhat on the lower side, and there are a couple of puzzles in the B-factory
data. It will be very interesting to monitor these effects, which could be first hints for physics beyond the
SM, as the data improve. Moreover, it is crucial to refine the corresponding theoretical analyses further,
to have a critical look at the underlying working assumptions and to check them through independent
tests, and to explore correlations with other flavour probes.

Despite this impressive progress, there are still regions of the B-physics landscape left that are
essentially unexplored. For instance, b → d penguin processes are now entering the stage, since lower
bounds for the corresponding branching ratios that can be derived in the SM turn out to be very close
to the corresponding experimental upper limits. Indeed, we have now evidence for the Bd → K0K̄0

and B± → K±K channels, and the first signals for the radiative B → ργ transitions were reported,
representing one of the hot topics of the summer of 2005. These modes have now to be explored in much
more detail, and several other decays are waiting to be observed.

Another very interesting aspect of future studies is the Bs-meson system. Although the mass
difference ∆Ms was measured in the spring of 2006 at the Tevatron, many features of Bs physics are
still essentially unexplored. Concerning the measurement of ∆Ms, NP may actually be hiding in this
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quantity, but is currently obscured by parameter uncertainties. The smoking-gun signal for NP in B 0
s–B̄0

s

mixing would be the observation of sizeable CP violation inB0
s → J/ψφ and similar decays. Since there

are various specific extensions of the SM where such effects arise (also when taking the ∆Ms constraints
into account), we may hope that the LHC will detect them. Moreover, the Bs-meson system allows
several determinations of the angle γ of the UT in an essentially unambiguous way, which are another
key ingredient for the search of NP, and offers further tests of the SM through strongly suppressed rare
decays. After new results from Run II of the Tevatron, the promising physics potential of the Bs-meson
system can be fully exploited at the LHC, in particular by the LHCb experiment.

These studies can be nicely complemented through the kaon system, which governed the stage of
CP violation for more than 35 years. The future lies now in rare decays, in particular on the K+ →
π+νν̄ and KL → π0νν̄ modes; there is a proposal to measure the former channel at the CERN SPS,
and efforts to explore the latter at KEK/J-PARC in Japan. Furthermore, flavour physics offers several
other exciting topics. Important examples are top-quark physics, the D-meson system, the anomalous
magnetic moment of the muon, electric dipole moments and flavour violation in the charged lepton and
neutrino sectors.

The established neutrino oscillations as well as the evidence for dark matter and the baryon asym-
metry of the Universe tell us that the SM is incomplete, and specific extensions usually contain also new
sources of flavour and CP violation, which may manifest themselves at the flavour factories. Fortunately,
the LHC is expected to go into operation in the autumn of 2007. This new accelerator will provide in-
sights into electroweak symmetry breaking and, we hope, also give us direct evidence for physics beyond
the SM through the production and subsequent decays of NP particles in the ATLAS and CMS detectors.
It is obvious that there should be a very fruitful interplay between these ‘direct’ studies of NP, and the
‘indirect’ information provided by flavour physics5. I have no doubt that an exciting future is ahead of
us!
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CP violation in K decays: experimental aspects

M. Jeitler
Institute for High Energy Physics, Vienna, Austria

Abstract
CP violation was originally discovered in neutral K mesons. Over the last
few years, it has also been seen in B mesons, and most of the research in the
field is currently concentrating on the B system. However, there are some
parameters which could be best measured in kaons. In order to see to which
extent our present understanding of CP violation within the framework of the
CKM matrix is correct, one has to check for possible differences between the
K system and the B system. After an historical overview, I discuss a few of
the most important recent results, and give an outlook on experiments that are
being prepared.

1 The discovery of CP violation
Symmetries are a salient feature of our world, but so is the breaking of approximate symmetries. Still, for
a long time physicists believed that at the level of elementary particles, a high level of symmetry should
prevail. In particular, it was expected that all fundamental interactions should be symmetric under the
discrete transformations of spatial inversion (parity transformation P), substitution of antiparticles for
particles (charge conjugation C), and time inversion (T). However, in 1956 Lee and Yang concluded
from experimental data that the weak interactions might not be invariant under spatial inversion, in other
words that parity might be violated. This was then explicitly shown in an experiment by Wu in 1957 [1].

For a few years, physicists were inclined to believe that although parity was broken, this symme-
try violation was exactly compensated by the charge symmetry violation, and that the symmetry under
a combined charge and parity transformation (CP) was exactly conserved. An obvious example was
the helicity of the neutrino, which was always observed to be negative (‘left-handed neutrino’). Parity
transformation would transform it into a right-handed neutrino, which has not been observed in nature.
In other words, it appears that parity is maximally violated. However, by performing charge conjugation
in addition, one arrives at the right-handed anti-neutrino, which does exist in nature.

However, only a few years after the discovery of parity violation, it turned out that this so-called
‘CP symmetry’ was also violated, although to a much smaller extent than parity itself. In an experiment
carried out at the Brookhaven Alternating Gradient Synchrotron (AGS), Christenson, Cronin, Fitch and
Turlay found out that the longer-lived of the two neutral kaons, the K 0

L, which frequently decays into
three pions and should therefore be assigned odd parity, in rare cases decayed into a parity-even two-
pion state [2]. For some physicists, this was hard to believe and a number of possible explanations were
looked at [3] before it was accepted that CP had to be broken at the per mil level.

While at first CP violation was regarded by some physicists as a sort of unwelcome guest and
an unnecessary complication of nature, it later turned out that it is in fact vital for our very existence!
According to the Big Bang model of the origin of the universe, particles and antiparticles were at first
produced in equal numbers. We know that at present, however, the universe contains almost no antimat-
ter. How could matter survive and not be annihilated right away by antimatter, in which case the universe
would now be a fairly dull place made up largely of photons, without much of a structure and without
physicists wondering about it? In 1967 Andrei Sakharov found three necessary conditions for creating
such a ‘baryon asymmetry’ [4]:
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– baryon number violation
– absence of thermal equilibrium
– CP violation.

While this in itself is certainly a very good reason to study CP violation, it must be said that the
effects that have been found in the K and now also in the B system are far too weak to explain the size
of the baryon asymmetry in the universe, and physicists are looking for new, stronger sources of CP
violation.

After the experimental discovery of CP violation, various theories were developed, one of the first
being the so-called ‘superweak’ theory developed by Lincoln Wolfenstein [5]. This theory introduced a
fifth fundamental interaction (the ‘superweak interaction’) on top of the four known interactions: gravity,
electromagnetism, strong interaction, and weak interaction. It is interesting to note that this theory was
published less than two months after the publication of the experimental discovery but it took 35 years
to decide by experiment if it really gave a satisfactory description of CP violation in nature. The paper
concluded with the following remark:

“The most interesting point of the model discussed here lies in the possibility that the experiment
... may measure an interaction as much as 107 or 108 times weaker than the standard weak interactions.
If this is the case it may prove extremely difficult to observe CP violation (or T violation) in independent
ways.”

Almost nine years went by before Makoto Kobayashi and Toshihide Maskawa discovered that CP
violation could be described in an organic, natural way by a theory with at least three quark genera-
tions [6]. In a model with three generations, there is one physical complex phase (i.e., a phase which
cannot be made to disappear, or ‘rotate away’, by phase conventions), and it is this very phase which
gives rise to CP violation.

Soon this model was preferred by most theorists on ‘aesthetic’ grounds but it was not so easy
to decide between these theories by experiment. In the ‘superweak’ theory CP violation is caused ex-
clusively by state mixing, where the K0

L meson consists mostly of the CP-odd state K2 but has a tiny
admixture ε̃ of the CP-even state K1 while the K0

S meson corresponds to the CP-even state K1 with only
a small admixture of the K2 state:

|KL > ≈ |K2 > +ε̃|K1 > (1)

|KS > ≈ |K1 > +ε̃|K2 > (2)

where
|K1 > =

1√
2

(|K0 > +|K̄0 >) (3)

and
|K2 > =

1√
2

(|K0 > −|K̄0 >) . (4)

If CP violation is, however, caused by the phase of the three-generation quark mixing matrix
(which is now known as the Cabibbo–Kobayashi–Maskawa or CKM matrix) there should also exist a
‘direct’ violation of CP in the decay amplitude itself. From experiments it soon became clear that this
effect had to be even much more suppressed than the CP violation due to state mixing.

2
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2 The quest for direct CP violation
2.1 Direct CP violation in two-pion decays
If CP violation were exclusively due to state mixing as in Eq. (1), the amount of CP violation in any
decay would only be determined by the mixing parameter ε̃ and would therefore be the same for all
decay channels. So, in the case of two-pion decays, the ratio of the CP-violating and the CP-conserving
decay rates would be the same for the charged decay channel (K 0 → π+π−) and for the corresponding
neutral channel (K0 → π0π0). In other words, we should find

Γ(KL → π0π0)

Γ(KS → π0π0)
=

Γ(KL → π+π−)

Γ(KS → π+π−)
. (5)

In case of ‘direct’ CP violation in the decay amplitudes, however, this would not have to be so. The
strength of direct CP violation is usually parametrized by a parameter ε′ which can be obtained from the
‘double ratio’ R defined by the following equation:

R =
Γ(KL → π0π0)

Γ(KS → π0π0)
/

Γ(KL → π+π−)

Γ(KS → π+π−)
= 1− 6× Re(ε′/ε) . (6)

Here, ε is a measure of mixing-induced CP violation and related to the mixing parameter ε̃ intro-
duced in Eqs. (1) and (2) by

ε = ε̃+ i
Im(A0)

Re(A0)
(7)

where A0 is the isospin = 0 amplitude of the K0 → ππ decay.

Experimental results soon showed that the ‘double ratio’ R was very close to unity, and ε ′ had
to be much smaller than ε. So, R had to be measured with very high precision, and this could only
be obtained in a relative measurement of the four decay rates entering Eq. (6), which would allow one
to reduce the systematic error. Over many years, a series of competing experiments tried to reach the
precision needed for establishing a non-zero value of Re(ε′/ε). At the beginning of the 1990s, the NA31
experiment at CERN had found a more than three-sigma deviation of Re(ε′/ε) from zero (Re(ε′/ε) =
(23.0± 6.5)× 10−4, Ref. [7]) while the E731 experiment at Fermilab had measured a value compatible
both with zero and with NA31 (Re(ε′/ε) = (7.4± 5.9) × 10−4, Ref. [8]).

In the hope of finally finding a sign of direct CP violation, both laboratories built still more refined
experiments: NA48 at CERN and KTeV at Fermilab. In order to minimize systematic errors due to
acceptance or changes in the detector over time, both experiments aimed at measuring the four decay
rates simultaneously in the same apparatus.

A fundamental problem in this measurement is the fact that K 0
L and K0

S cannot be produced
separately. At an accelerator, kaons are produced in strong interaction processes, and the eigenstates of
neutral kaons from the point of view of strong interactions (the strangeness eigenstates) are not K 0

L and
K0
S but their linear combinations K0 and K̄0. So, equal amounts of K0

L and K0
S are created. The large

difference in lifetime (the K0
L lives 580 times longer than the K0

S) allows, however, to obtain strongly
enhanced samples of K0

L or K0
S decays.

Figure 1 shows the setup of the NA48 experiment [9]. At a first target, 450-GeV protons produce
neutral kaons along with other particles. Charged particles are deflected by magnets while neutral parti-
cles continue along the beamline over 120 m. Most K 0

S particles decay here while the K0
L mesons pass

a final collimator and enter the fiducial volume of the experiment, which is observed by the detector. A
proton beam of relatively low intensity continues along the same axis as the neutral kaon beam. Shortly
before the collimator, the protons are deflected onto a second target where again neutral kaons (and other
particles) are produced, which enter the detector’s fiducial volume through a collimator close to the K 0

L

collimator. Within the fiducial volume of the detector, most of the K 0
S mesons but only a tiny fraction

of the K0
L mesons from this second beam decay. By detecting the individual protons which go to the

3

CP VIOLATION IN K DECAYS: EXPERIMENTAL ASPECTS

183



7

K 

cristal

~ 120 m~ 120 m

Ks tagging station

S

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Proton momentum : 450 GeV/c
Cycle time : 14.4 s

SPS spill length : 2.38 s  
(AKS)

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

(~ 40 m long)

7.2 cm

Target

K  anticounter
Ks

0.6 mrad

Last collimator

Decay Region 

Target

Bent

~1
.5

 1
0 

 p
ro

to
ns

 p
er

 sp
ill

12

Muon sweeping

( ~3. 10  protons per spill)

not  to scale !

L

N
A

48
D

etector
SK

L
K
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second target (by ‘tagging’ the decays), it can be decided if a particular decay stems from a K 0
L or from

a K0
S meson.

By identifying decays into two neutral or two charged pions, the decay rates of all four channels
in Eq. (6) can be measured simultaneously, and the double ratio and thus the parameter Re ε ′/ε can be
computed. The KTeV experiment [10] used a similar setup. Instead of producing kaons at a second
target, however, one of two K0

L beams hit a regenerator where its K0
S content was strongly enhanced.

These two experiments measured a value of Re ε′/ε about seven sigmas away from zero and thus
established the existence of direct CP violation beyond any doubt [10, 9]. So, the CKM matrix and
the Standard Model seem to explain the CP violation we observe in the kaon system, and the superweak
model is excluded. However, on account of quantum chromodynamics effects it is very hard to calculate a
theoretical value for ε′ and thus to check how well the theory really describes experimental data. Before
a major theoretical breakthrough is achieved (which might come from lattice QCD) it does not make
much sense to improve the current experimental measurements of ε′ (see Fig. 2).

2.2 Direct CP violation in three-pion decays of charged kaons
In order to really understand direct CP violation, it is important to also find it in other channels than in
the two-pion decay of neutral kaons. One possibility could be the decays of charged kaons into three
pions ( K± → π±π+π− and K± → π±π0π0 ). Differently from the neutral kaon system, K+ and K−

cannot mix because of their different charge, and any difference in the decays for positive and negative
kaons would be a sign of direct CP violation. The amount of CP violation in this channel as predicted
by the Standard Model is very small and hardly measurable at present. However, certain theories have
predicted a significant enhancement of the effect, which could be within the reach of present experiments
(see Fig. 3).

4
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Fig. 2: Measurements of Re ε′/ε by the four most recent experiments (left) and calculations by various theory
groups. The experimental errors are now far smaller than even the most optimistic theoretical errors. Over the
last few years, theoretical calculations of Re ε′/ε have not achieved much progress, and at the moment it would be
rather useless to carry out more refined experimental measurements of this quantity.

Fig. 3: Experimental limits and theoretical expectations for the size of CP violation visible in the charge asymmetry
in the decay of charged kaons to three pions

5

CP VIOLATION IN K DECAYS: EXPERIMENTAL ASPECTS

185



Measuring a possible difference in the branching ratios of these decays does not look very promis-
ing. In all models such differences are predicted to be very small. Moreover, such a measurement would
require an accurate knowledge of the kaon flux for both charge signs, which is very hard to achieve from
the experimental point of view. However, somewhat larger differences are predicted for the distribu-
tion of the decay in phase space (the shape of the Dalitz plot), and these distributions can be measured
independently of the kaon flux.

It is usual to parametrize the phase space of the kaon decay products in terms of the Dalitz-plot
parameters u and v defined as

u =
s3 − s0

m2
π

v =
s2 − s1

m2
π

(8)

where si = (pK − pi)2, pK is the four-momentum of the decaying kaon and pi are the four-momenta of
the pions; p3 corresponds to the ‘odd’ pion, i.e., the one that differs in charge from the other two, and
s0 = (s1 + s2 + s3)/3. The matrix element can then be expanded as

|M |2 ≈ 1 + gu+ hu2 + kv2 + ... (9)

with the linear g term being the dominant one (see Fig. 4).

Fig. 4: The Dalitz plot for the decayK± → π±π+π− describes the phase space distribution of the decay products
in terms of the kinematic variables u and v defined in Eq. (8)

This allows to define an asymmetry parameter

Ag =
g+ − g−
g+ + g−

(10)

where g+ and g− are the values of g measured for positive and negative kaons.

Such measurements have been made by several experiments, the latest and by far the most accurate
one being the NA48/2 experiment [11] at CERN. Owing to the smallness of the expected effect a large
amount of data must be recorded, and great care has to be taken to minimize systematic errors. As
in the case of the measurement in neutral kaons described above, simultaneous K+ and K− beams
have been used to avoid systematic effects from variations in the detector and the magnetic fields over
time. The fields in the beam and spectrometer magnets have been reversed at regular intervals to achieve
cancellation of the effects of detector inefficiencies.

So far, part of the data has been analysed and no signal has been seen. The measured value of
the asymmetry parameter from the data analysed so far is Ag = (1.7 ± 2.9) × 10−4 (see Ref. [11]).
This is in keeping with the Standard Model but excludes some theories that suggested a possible strong
enhancement of the effect.

6
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3 The decay KS → π0π0π0 and CPT symmetry
Originally, CP violation was discovered in the decay of K 0

L mesons into two pions. It is harder to study
the analogous CP-violating decay of K0

S mesons into three pions for two reasons.

Firstly, the K0
S meson’s decay constant is much larger (the lifetime is much shorter) than for the

K0
L meson, so that comparable partial decay widths translate into much smaller branching ratios. In

other words: while in K0
L the CP-violating decay (into two pions) is favoured by phase space over the

CP-conserving decay (into three pions), in K0
S the decay into three pions is disfavoured both by being

CP-violating and by the smaller phase space.

Secondly, it is impossible to produce K0
S without producing the same amount of K0

L mesons at the
same time (while a rather pure K0

L sample can be obtained by waiting for the K0
S component to decay,

as in the NA48 experiment described above). In fixed-target experiments, K 0
S → πππ decays have been

studied by investigating the interference of these decays with the corresponding K 0
L decays (see Fig. 5).

It is, however, also possible to carry out a direct search for such decays by ‘tagging’ the decaying neutral
kaon: if, for example, a φ meson decays into two neutral kaons, and one of them is a K 0

L, the other one
must be a K0

S because the two kaons form an entangled quantum mechanical system. So, a kaon can be
identified by measuring the decay of its partner. This method is being used by the KLOE experiment at
the DAΦNE e+e− collider in Frascati, Italy (see Fig. 6 and Ref. [12]).

Fig. 5: Ratio of K0
S /K0

L interference data over purely exponentially decaying K0
L data (from a target further

upstream) as a function of kaon lifetime (in units of the K0
S lifetime; points with error bars). The almost constant

line is the fit result for the interference signal.

Fig. 6: Events in signal box from the KLOE experiment, whereK0
S decays are tagged by measuring the K0

L which
is produced together with the K0

S . Left: Monte Carlo for 900 pb−1, right: data, 450 pb−1.

The decay K0
S → π+π−π0 may be CP violating or CP conserving, depending on the isospin (and

thus the angular momentum) in the final state. The CP conserving component of this decay, which is
suppressed by the higher angular momentum, has been measured (see, for example, Ref. [13]) and limits
for the CP-violating component have been established [14].
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For K0
S → π0π0π0, not all isospin states are possible that are accessible to K 0

S → π+π−π0,
and therefore this decay is always CP violating. It is of particular interest because of the so-called
Bell–Steinberger relation which links possible CPT violation in the K 0K̄0 mixing matrix to CP violat-
ing amplitudes in K0

L and K0
S decays via unitarity (conservation of probability, see Ref. [15]). When

parametrizing a possible violation of CPT by a parameter δ, this relation states that

(1 + i tan φSW)[Re(ε)− i Im(δ)] =
∑

A(KL → f)∗A(KS → f)/ΓS . (11)

Here φSW is the so-called ‘superweak phase’: tan φSW = 2∆m
∆Γ ; ∆m and ∆Γ are the differences in

mass and decay rate between K0
L and K0

S . For some time, the uncertainty in the right-hand side of this
equation was dominated by the uncertainty in the K 0

S → π0π0π0 branching ratio.

Of course, there are very good theoretical reasons to believe in CPT symmetry. It is an almost
inescapable consequence of Lorentz-invariant quantum field theories. There are, however, ways to the-
oretically envisage CPT violation, e.g., in superstring theories, which have a fundamentally non-local
structure (cf. Ref. [16]). So, the experimental verification of CPT symmetry is not an academic exercise,
but an important task!

Recent measurements of the CP-violating parameter

η000 ≡
A(K0

S → π0π0π0)

A(K0
L → π0π0π0)

(12)

(see Figs. 5, 6, 7, and Refs. [17], [12]) have not allowed one to see the decay K 0
S → π0π0π0. In fact, the

best limit on its branching ratio (BR(K0
S → π0π0π0) < 1.2 × 10−7, from Ref. [12]) is still almost two

orders of magnitude away from the Standard Model prediction of BR(K 0
S → π0π0π0) ∼ 1.9 × 10−9.

However, these recent experimental results have significantly reduced the error on the branching ratio
and thus improved the constraint on CPT violation from the Bell–Steinberger relation. At present, the
uncertainty in the right-hand side of Eq. (11) is dominated by the uncertainty on the decay into π+π−—
the very first decay in which CP violation was seen!

Fig. 7: The experimental result for the parameter η000 of the decayK0
S → 3π0 measured by the NA48 experiment
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4 Time’s arrow: the violation of T symmetry
From daily life, we are used to the fact that time always appears to move in the same direction. Travels
into the past seem to be restricted to the realm of science fiction. If they were possible, this would
completely upset our notion of causality, our understanding of how the world works. So, although for
a long time philosophers have thought that space and time have something in common (cf. Ref. [18]),
and this vague feeling has developed into the physical concept of spacetime in special relativity, we are
convinced that there is a fundamental difference between space and time: we can move around freely in
space, but time always progresses in the same direction, and there is nothing we can do about it.

So it might seem ridiculous to even think about something as symmetry in time. When we watch
a film and see fragments of china scattered over the floor and coffee spilt over a carpet, and suddenly the
fragments and the drops of coffee fly upwards and assemble into a nice cup with good hot coffee inside
while the carpet below turns clean, we will be convinced that the film was taken in the reverse direction.
But why is this so? After all, the fragments of the cup and the drops of coffee could move in any direction
in space. It is the difference in the initial and final states which creates this asymmetry. For just one initial
state of the cup being whole and the coffee being in it, there are billions of states for each fragment,
for each drop of coffee being in a different place. One ‘macroscopic’ state is thus presented by an
enormous multitude of different ‘microscopic’ states. If we accept that each microscopic state is equally
likely, it becomes clear why the inverse transition between macroscopic states is never observed. So, the
explanation for the obvious arrow of time we experience in everyday life lies in thermodynamics and the
increase of entropy and has nothing to do with possible asymmetries in the interactions themselves.

If we watch a game of billiards with just three balls and look at the positions of the balls between
the shots, it will not be obvious at all in which direction time is going, although the laws of mechanics
should be the same as in the previous example. In fact, what we saw in the first example was not a
time asymmetry in the interaction itself, but in the initial and final states. All the configurations of three
balls on a billiard table are about equally likely, so that we cannot make out the direction in time in this
example.

In fact, if we look at the interactions themselves, Newton’s laws are symmetric in time. According
to all observations, most of the basic interactions in nature—the strong, electromagnetic, and gravita-
tional interactions—are all time symmetric. What about the weak interactions? For a long time it has
been believed that the product of the three transformations of parity (P), particle–antiparticle exchange
(C) and time inversion (T), in short ‘CPT’, is conserved under all interactions. This is true for any kind
of interaction in a relativistic field theory (see Ref. [19]). Although recently it has been envisaged that
CPT invariance might still be violated on a very small scale, it is an experimental fact that it is conserved
to a very good approximation. So, CP violation should entail T violation, and one may say that in this
indirect way, T asymmetry in weak interactions was discovered back in 1964 when CP violation was first
observed.

Still, if weak interactions are really not symmetric under T, it is desirable to observe this in a
more direct way. There are processes between particles whose inverse processes can also be observed.
However, it is not straightforward to demonstrate T violation in this way. One major problem is due
to finite-state interactions which may exist between the particles that are produced in the process. So,
if in the decay of a particle more than one hadron is produced, they will interact strongly while they
are sufficiently close to each other, thus influencing the rate of the decay. Likewise, charged particles
produced in a decay or an interaction will continue to interact electromagnetically even at a distance,
again influencing the rate for the process in question. So, different rates may be observed when looking
at a process and its inverse, but this difference is not necessarily due to the basic interaction itself [20].

Again, neutral kaons have allowed us to carry out the first unequivocal measurement of T violation.
K0 ↔ K̄0 oscillations may serve to compare a process with its inverse, by comparing the number of
neutral kaons that are created as K0 and decay as K̄0 with the opposite process. For this, one needs
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to know the flavour state of the neutral kaon (if it is a K 0 or a K̄0) both at production and at the time
ofy decay. As stated above, the production of kaons at an accelerator is mediated by strong interactions,
which conserve strangeness. At the CPLEAR experiment at CERN (see Ref. [21]) antiprotons impinged
on a hydrogen target and the processes pp̄ → K+π−K̄0 and pp̄ → K−π+K0 were selected. As K+

and K0 each contain a strange quark while K− and K̄0 each contain an anti-strange quark, and a strange
quark can only be produced together with an anti-strange quark, one can determine the flavour content
of the neutral kaon by measuring the charge of the charged kaon.

The selected decay channels were the semileptonic channels K 0 → π−e+ν and K̄0 → π+e−ν̄
(so-called ‘Ke3 decays’). Here, the charge of the pion allows one to determine the flavour state of the
neutral kaon by means of the so-called ‘∆S = ∆Q rule’, which is an expression of the experimental fact
that no flavour-changing neutral currents are observed at tree level. This fact has been explained by the
so-called ‘GIM mechanism’, which led to the prediction of the charm quark (see Ref. [22]). When a
neutral kaon decays semileptonically, the s quark turns into a u quark (strangeness and charge change by
+1), or the s̄ quark into a ū quark (strangeness and charge change by –1). The other quark (the d̄ or the
d quark) flies on as a ‘spectator’ (see Fig. 8). Owing to the absence of flavour-changing neutral currents
it never happens, however, that the s quark transforms into a d quark (or the s̄ quark into a d̄ quark).

Fig. 8: Semileptonic decay of neutral kaons

So, the flavour of the neutral kaon can be determined both at production and at decay, and the
difference in the rates of K0 → K̄0 and K̄0 → K0 can be measured:

A =
R(K̄0 → K0)−R(K0 → K̄0)

R(K̄0 → K0) +R(K0 → K̄0)
. (13)

The measurement by the CPLEAR experiment at CERN yielded a value ofA = (6.6±1.3stat±1.0syst)×
10−3 (Ref. [21]), and T violation was thus established by a direct measurement, without making use of
any assumptions on CPT symmetry.

It is not obvious that the analysis does not rely on implicit assumptions. An in-depth investiga-
tion [23] into the theoretical framework has shown that the measurement does not rely on the assumption
of general CPT symmetry. It does, however, have to assume that semileptonic kaon decays are CPT
symmetric, or that the Bell–Steinberger relation in its conventional form is valid [16]. This relation is
a consequence of unitarity if we assume that all relevant kaon decay channels are known. As the ex-
perimental error on the branching ratios is of the order of a per cent, it would in principle be possible
(although this may seem unlikely) that there exist hitherto unobserved decays with a branching fraction
of 10−3. Although this may appear somewhat far-fetched, this possibility is not necessarily more exotic
than the possibility of CPT violation.

There are decays which show T-odd correlations between variables, which might be interpreted as
a sign of T violation. One of them is the decay KL → π+π−e+e−, where a strong T-odd correlation
has been measured [24]. However, the interpretation of this effect as T violation relies on the assumption
of CPT conservation [16] although this is not as obvious as when simply deducing T violation from CP
violation. Another experiment, E246 at KEK (Japan), is looking for T violation in the decays K+ →
π0µ+ν (‘Kµ3’) and K+ → µ+νγ (‘Kµ2γ’; see, for example, Ref. [25]). The expected Standard Model
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branching ratio is small and the signal has to be seen against the background from electromagnetic final-
state interactions. However, non-Standard-Model mechanisms of CP violation could possibly lead to a
strong enhancement of the effect. So far, no signal has been seen.

5 Rare kaon decays: hard to measure but easier to calculate
As stated above in the discussion of the ε′/ε measurement, it is not always straightforward to derive a
theoretical Standard Model prediction of decay rates. While the basic weak-interaction processes are
thought to be under control, it is well known that strong interactions between the decay products give
rise to large corrections which are very hard to calculate (cf. Ref. [26]). The Standard Model with three
generations of quarks whose coupling is described by the Cabibbo–Kobayashi–Maskawa matrix, yields
a plausible description of the phenomena of CP violation we have discovered. However, in most cases
technical difficulties in the calculations do not allow us to make accurate predictions, so that possible
limitations of the Standard Model that would require modifications in the theory may escape us. This
is, however, exactly what physicists are looking for. There are good reasons to believe that the Standard
Model cannot be ‘the whole truth’ and that there must be some sort of ‘New Physics’. (With regard to CP
violation, the observed baryon asymmetry in the universe discussed in Section 1 is one of these reasons.)

There are, however, a few rare kaon decays that can be calculated with much better accuracy.
These decays feature only one strongly interacting particle in the final state, so that QCD corrections
play a much smaller role. For the very same reason, and because of their small branching ratios, they are
problematic from the experimental point of view. Their accurate measurement will be the main target of
kaon physics over the coming years.

5.1 K0 → π0l+l−

An accurate experimental determination of the directly CP-violating component of the decay K 0
L →

π0e+e− (or K0
L → π0µ+µ−) would yield a value for the height of the so-called ‘unitarity triangle’ (des-

ignated by η), which is a measure of the overall strength of CP violation (see Fig. 9). One complication
consists in the fact that these decays also have a CP-conserving part and an indirectly CP-violating com-
ponent due to state mixing. The CP-conserving component is predicted by theory with good accuracy by
making use of experimental data on the decay K0

L → π0γγ. For the electronic mode (K0
L → π0e+e−) it

is negligible. The indirectly CP-violating contribution can be obtained by measuring the same decay for
K0
S mesons.

The measurement of K0
L → π0e+e− itself is complicated by the large background from K 0

L →
γγe+e−, whose branching ratio is (5.95 ± 0.33) × 10−7 (Ref. [27]), while for K0

L → π0e+e− the
Standard Model predicts a branching ratio of only 10−12 − 10−11 (in some SUSY scenarios it could be
up to 10−10). As the π0 decays almost instantaneously into two γ’s, both decays show the same particles
in the final state. Of course, one expects the invariant mass of the two γ’s in the signal channel to be
close to the known mass of the π0, but due to the much higher rate of the background channel there
may be some events in it where this also happens by accident (see Fig. 10). Simulation studies predict
somewhat different distributions in a few kinematic variables for signal and background events but this is
of limited use in a very rare decay where one might find only a handful of events. The best measurement
so far found a number of events consistent with background expectations and allowed one to set an upper
threshold on the branching ratio: BR(K0

L → π0e+e−) < 2.8× 10−10 (see Ref. [28] and Fig. 11).

What has been measured are the (not so strongly suppressed, CP conserving) decay rates for
the corresponding K0

S decays. The branching ratios are BR(K0
S → π0e+e−) = (5.8+2.9

−2.4) × 10−9

(Ref. [29]) and BR(K0
S → π0µ+µ−) = (2.9+1.5

−1.2) × 10−9 (Ref. [30]). As one sees from the number of
identified signal events (seven events for the K 0

S → π0e+e− channel, see Fig. 12) this was not an easy
measurement either, although the branching ratio is at least one order of magnitude higher than that of
the corresponding K0

L decay.
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Fig. 9: The unitarity triangle and the various experimental ways to measure its parameters. If one assumes the
CKM matrix to be unitary and multiplies it with its Hermitian conjugate, the off-diagonal elements must be zero.
In the matrix multiplication, this means that certain sums of three products of CKM matrix elements add up to zero.
When graphically representing these products as vectors in the complex plane, this yields a triangle, the so-called
‘unitarity triangle’. By choosing the appropriate phase and normalization, two of its end points can be made to lie
at (0,0) and (1,0) and the experimentalist’s task is to determine the position of the third end point, the triangle’s tip.
Of course, if the CKM theory is not completely correct, the triangle may not close, and various measurements—
in particular those derived from K physics and those derived from B physics—may yield contradictory results.
Therefore it is very important to ‘overconstrain’ the unitarity triangle.

Fig. 10: The invariant mass of the photon pair (vertical axis) against the invariant eeγγ mass (horizontal axis). For
K0
L decays where only two electrons and two photons are produced, the invariant eeγγ mass should be close to

the K0
L mass (0.498 GeV/c2). If the two photons have been produced in the decay of a neutral pion, their invariant

mass should be close to the π0 mass (0.135 GeV/c2). The part of the plot where a signal from K0
L → π0e+e−

should be expected has been masked out by the circular ‘signal region’ and the square ‘control region’. From
looking at the rest of the plot, some background from other events is expected for the signal region.
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Fig. 11: The circular ‘signal region’ and the square ‘control region’ have been unmasked. The event in the signal
region is compatible with the background expected from looking at the rest of the plot. So, it cannot be claimed
that this should be a signal event.
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Fig. 12: The signal box for theK0
S → π0e+e− decay (enlarged in the top right-hand corner). As in Fig. 10, forK0

S

decays where only two electrons and two photons are produced, the invariant eeγγ mass should be close to theK 0
S

mass (0.498 GeV/c2). If the two photons have been produced in the decay of a neutral pion, their invariant mass
should be close to the π0 mass (0.135 GeV/c2). For this decay, it has been possible to choose cuts that suppress the
background very efficiently, and the nearest background event is very far away from the signal box. The cuts were
chosen while the ‘signal box’ in the centre and the ‘control box’ that surrounds it were masked. Then the control
box was ‘opened’ to check if for some reason there was an accumulation of background close to the signal box.
Only then was the signal box itself opened, thus giving confidence that no bias was introduced by a specific choice
of cuts based on the experimentalists’ expectations (or ‘hopes’) concerning the signal value.
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Unfortunately, even when the branching ratio of K 0
L → π0e+e− is measured, these numbers by

themselves will not be sufficient to determine the relative contribution of indirect and direct CP viola-
tion in K0

L → π0l+l− because of the interference between these two decay amplitudes. Using chiral
perturbation theory, the K0

S decay’s branching ratio can be written as

BR(K0
S → π0e+e−) = 5.2× 10−9a2

s , (14)

while the branching ratio of the CP-violating component of the corresponding K 0
L decay is written as [31]

BRCPV(K0
L → π0e+e−) = {15.3a2

s − 6.8as(Im λt × 104) + 2.8(Im λt × 104)2} × 10−12 . (15)

While the measurement of the K0
S decay rates fixes the absolute size of the K0

S decay amplitudes,
it does not tell us if the interference term is positive or negative (constructive or destructive interference),
which will have to be decided by theory.

Owing to the above-mentioned experimental and theoretical difficulties, this decay channel does
not appear to be the most promising for the near future.

5.2 K+ → π+νν̄

This rare decay is not CP violating. When considering the unitarity triangle (see Fig. 9), the rate of this
decay yields an ellipse around a point on the abscissa, so that the tip of the unitarity triangle should lie
on this ellipse. Its measurement would allow one to derive in an independent way the length of the right
side of the unitarity triangle, which has already been measured from B–B̄ oscillations. The systematics
which enter into these two kinds of measurement are different, so that they are complementary to each
other. In case a significant difference in the results should be observed, this would be a strong hint
towards new physics.

An advantage for the theoretical treatment of this decay is the fact that the hadronic matrix element
can be calculated from other, measured processes, such as K+ → π0e+ν. From the experimental point
of view, this is of course a difficult measurement because two of the three decay products, the neutrinos,
cannot be seen in the detector. The task of the experiment is thus to look for K+ decays producing
nothing but a π+. The detector has to be completely hermetic in order to suppress other, much more
frequent decay channels, such as K+ → π+π0, which could be mistaken for a signal event if the π0

were not observed. Excellent particle identification is needed to suppress decays such as K+ → µ+νµ.

Experiments at Brookhaven running over many years found a total of three signal events with small
background (see Fig. 13 and Ref. [32]). Figure 14 shows the detected events and the most important
source of background from K+ → π+π0. This is a good illustration of the virtues of the so-called ‘blind
analysis’ technique in case of very rare decays. The ‘signal box’ is defined from background studies
before events inside the box are looked at. Only when all experimental cuts have been defined is the
signal box ‘opened’. This ensures that expectations do not influence the result by tempting observers to
arbitrarily change the values of the cuts.

The number of detected events (three events) has been enough to establish the decay but the accu-
racy to which the branching ratio has been measured (BR(K+ → π+νν̄) = 1.47+1.30

−0.89) is still too low
to really verify the predictions of the Standard Model (see Fig. 15).

Because of funding problems, the experiments at Brookhaven have been discontinued. Other
experiments using different techniques are in preparation (see, for example, Ref. [33]) and it is hoped
that over the coming years a total of about 102 signal events might be observed.
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Fig. 13: A K+ → π+νν̄ event in the E787 detector at Brookhaven. The kaon is stopped in the target and emits
a signal (blow-up and signal shape at bottom right), which shows no extra activity. The only visible particle from
the K+ → π+νν̄ decay is the π+, which travels towards the top right in the figure. The top-right graph shows the
signal from the travelling pion and a second pulse caused by the π+ → µ+νµ decay.

Fig. 14: Kaon range in scintillator versus kaon energy: Monte Carlo generated data for the decay K+ → π+νν̄

(blue dots), and signal and K+ → π+π0 background events measured in the two Brookhaven experiments E787
and E949 (circles and triangles). The signal boxes (frames containing the three signal events, at top right) for the
two experiments were slightly different. This graph illustrates the virtue of a ‘blind analysis’ for such a rare decay,
where a small change in the cut parameters (which define the signal box) may significantly influence the result.
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Fig. 15: The branching ratio of the decay K+ → π+νν̄ defines an ellipse in the complex plane, on which the tip
of the unitarity triangle should be located. The measurements available so far suffer from a large statistical error
and yield a very broad band. By measuring around 100 events, the allowed region could be restricted to a narrow
band. Should this band not cover the region of the unitarity triangle’s tip as obtained from other measurements,
this would be an unequivocal sign of new physics.

5.3 K0 → π0νν̄

This is one of the potentially most instructive decays because it can be calculated with a very small
theoretical error, so that any significant deviation between prediction and measurement would be an
unequivocal sign of new physics. At the same time, the experiment is extremely challenging, so that this
decay, dubbed the ‘Holy Grail’ of kaon physics, has provoked comments such as “a theorist’s dream and
an experimentalist’s nightmare” where one attempts to measure “nothing goes to nothing plus nothing”.

The measurement would directly yield the value of the height of the unitarity triangle, η (cf.
Fig. 9). The decay is almost purely directly CP violating, so that its observation would show a second
manifestation of direct CP violation in the kaon system. As for the preceding decay, the hadronic matrix
element could be obtained from the measured rate of K 0 → π+e−ν, and the total theoretical uncertainty
is estimated to be only a few per cent.

Again, care must be taken to fight against the background, which dominates the signal (as expected
from Standard Model calculations) by a factor of about 1010. A large number of kaon decays must be
observed with a completely hermetic detector, and all possible sources of background must be measured
in a convincing way. Experiments were in preparation at BNL and at Fermilab but have been turned
down because of funding problems. Hope remains with a new experiment which aims at measuring this
decay in the J-PARC facility in Japan [34].

6 Conclusion
The discovery of CP violation in the decays of neutral kaons 41 years ago at first appeared as an unnec-
essary and unwanted complication of nature. This phenomenon has, however, proved extremely fruitful
for our understanding of the world, and has turned out to be a vital ingredient of the universe as we know
it. For a long time kaons remained the only particles where CP violation could be observed, but now
mainstream research has shifted to the B system, where very promising results have been obtained over
the last few years. There are, however, a few outstanding measurements in kaons which pose extreme
experimental difficulties but whose results will be indispensable to obtaining a clear overall picture of
CP violation.
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CP violation in B decays: experimental aspects

L. Widhalm
Institute for High-Energy Physics, Vienna, Austria

Abstract
This lecture, given at the 2005 European School of High-Energy Physics in
Austria in succession of the series on CP Violation by Robert Fleischer, sheds
light on the topic from a slightly different perspective, which is meant to be a
link between theory and the daily work of experimentalists. An overview of B-
meson experimental history and phenomenology is followed by a description
of B-meson production techniques, facilities worldwide, and a list of important
present and future experiments. Current analyses are discussed, and their latest
results (as of summer of 2005) are given.

1 Introduction
Studies of CP violation, especially in the B-meson sector, are one of the hottest topics of today’s high-
energy physics; experiments like BaBar [1] in the USA, or Belle [2] in Japan, have recently started
to produce large amounts of B mesons, and recent years have brought numerous new results of high
relevance. From the theoretical point of view, several very firm and accurate predictions can be made
within the Standard Model, and verified in experiment; New Physics can reveal itself in many places.

This lecture is divided in three main parts. Starting with an experimental history, the first part
summarizes the properties of the B meson, with emphasis on how they show up in experiment. A
comparison with the K meson stresses the common features as well as the differences (and the reason
for these differences). The second part deals with B-meson production and detection techniques, and
provides an overview of facilities and experiments worldwide. In the last part, the focus is on a selection
of important analyses at these experiments. After a short summary of the theoretical background, recent
results and their implications are discussed. The lecture closes with an outlook on the near (and not-that-
near) future.

All given experimental numbers, unless some other reference is given, are taken from Particle
Data Group (PDG) 2004 [3]. Charge conjugate modes of any given particles are also implied throughout,
unless explicitly stated otherwise.

1.1 Disclaimer
The aim of this lecture is not to explain detector physics, experimental setups or analysis techniques in
detail, although we give references for further reading about this. It is aimed at students who, after having
heard the theoretical lecture on CP violation, would like to be reminded of the key features of B-meson
phenomenology, and then get an overview about experimental designs, currently running experiments,
and their most important analyses and results. Within the scope of a 90-minutes lecture, the emphasis is
on the larger picture rather than on technical (or theoretical) details, addressing experimentalists who are
not experts in this field, but would like to understand what is going on.

Although there is very interesting physics with heavier B mesons like the Bs, this lecture will
concentrate mainly on the B0, with some remarks about the B±.

2 The B meson
2.1 Experimental history and properties
In 1977 the E288 fixed-target experiment at Fermilab (Batavia, USA), studying µµ events, discovered
the b-quark in the Υ(1S) resonance [4], and marked the beginning of bottom physics (Table 1). What is
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remarkable is the extraordinarily small width of this state of just 53.0±1.5 keV, which is the consequence
of the fact that its mass of 9460.30 ± 0.26 MeV is too small to allow the fast decay into two B mesons
(composed of a b-quark and a light quark, with a mass of 5279±0.5 MeV). While a decay into B mesons
would preserve the b-quarks, and can be mediated by the strong interaction, instead both b-quarks have
to decay weakly to lighter quarks, which is much slower and thus gives rise to the unusual observed
width.

The same remains true even for the excitation states Υ(2S) (observed at DESY in 1978 [5]) at
m = 10023.26 ± 0.31 MeV and Υ(3S) at m = 10355.2± 0.5 MeV. The excitation Υ(4S) with a mass
of 10580.0 ± 3.5 MeV is the first which allows a decay into B mesons, which immediately broadens
the width to 20 000 ± 2000 ± 4000 keV. This state was observed first in 1979 at the CLEO experiment
(CESR, USA) [6]; a review of upsilon spectroscopy can be found, for example, in Ref. [7].

B mesons were discovered a year later, in 1980, also at CESR [8]. A fact that is experimentally
quite important is the small mass difference between Υ(4S) and the sum of the two B mesons, which
amounts to just 21 MeV. As a consequence, the relative velocity of the B mesons produced via this
resonance is very small, and they are produced nearly at rest in the Υ(4S) centre-of-mass frame. Another
consequence is that only the lightest B mesons, namely the B+ (B0) composed of an anti-b- and a u-
quark (d-quark) can be produced via Υ(4S); the required energy for a production of a B 0

s (with an
s-quark instead of the d-quark) is 159 MeV larger than the Υ(4S) mass. Therefore, the production of B
mesons at the Υ(4S) threshold is a very clean and efficient process, which is exploited in the so-called
B factories discussed later in this lecture (Section 3.1). First evidence of the Bs meson was found much
later, at ALEPH (CERN, Switzerland) in 1992 (Ref. [9], and the references therein); the discovery of Bc

followed in 1998 at CDF (Fermilab, USA) [10].

1983 was the year of the first measurement of the b-quark inclusive lifetime at PEP (SLAC, USA)
and PETRA (DESY, Germany) [11]; the exclusive lifetime of the B mesons was first measured con-
siderably later (1994) at the DELPHI and ALEPH experiments at CERN (Geneva, Switzerland) [12].
Experimentally important is its product with the speed of light, which gives the scale for the spatial sep-
aration of primary and secondary decay vertices; it is known today as cτ = 501 µm (461 µm) for B+

(B0), which is comparably rather large and is again caused by the fact that the B-meson decay is mediated
by a weak transition of the b-quark to a lighter one, which is further suppressed by the CKM-hierarchy
as described in Section 2.5.

In 1987, DESY was the first to observe B0B̄0 oscillations [13]—a feature of neutral meson/anti-
meson systems which was already known in the K0 system, and anticipated also for the B0. The reason
for and the implications of these oscillations will be discussed in more detail in Section 2.4. In the
following years, the knowledge of B physics was further improved also by experiments running at LEP
(CERN, Geneva) and SLC (Stanford, USA).

The new millennium brought the age of CP violation in B physics: in 2001, the already anticipated
large CP violation in the neutral B-meson system was found at both large B-factory experiments at PEP-
II (BaBar) and KEKB (Belle) [14]. Only three years later, in 2004, the more subtle direct CP violation
was established in B mesons [15] (for comparison: in K physics, three decades lie between the discovery
of indirect and direct CP violation). The aspects of CP violation are discussed in Section 2.6.

2.2 The neutral B-meson system
The following discussion assumes B0 mesons, but is valid generally for any neutral meson. Some im-
portant basic features of a system made of a neutral meson B0 and its antiparticle B̄0 can be derived
without the need to know (and independent of) the details of the underlying field theory if one studies
the subspace of the complete Hilbert space comprised of just the states |B 0 >= |1 > and |B̄0 >= |2 >;
in this subspace, the projection of the Hamiltonian H is given by Hij :=< i|H|j >, which forms a 2×2
matrix which is—in contrast to the full Hamiltonian—generally not Hermitian. Still, any matrix can be
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Table 1: B-meson history

Year Event
1977 Discovery of b-quark in Υ(1S) at FNAL (USA)
1978 Υ(1S) and Υ(2S) at DESY (Germany)
1979 Discovery of Υ(4S) at CESR (USA)
1980 First observation of B mesons at CESR (USA)
1983 Measurement of inclusive b lifetime at PEP and PETRA
1987 B0B̄0 oscillations discovered at DESY (Germany)
1992 Evidence of Bs
1993 Observation of time-dependent oscillations
1994 Measurement of exclusive B-meson lifetime
1998 Discovery of Bc
2001 CP violation found at PEP-II (USA) and KEKB (Japan)
2004 Direct CP violation established

decomposed into a Hermitian and an anti-Hermitian part. It turns out to be useful to write H as

Heff =

(
H11 H12

H21 H22

)
= M − i

2
Γ =

(
M11 M12

M21 M22

)
− i

2

(
Γ11 Γ12

Γ21 Γ22

)

where—by virtue of the pulled out i—both M and Γ are Hermitian, inferring Mij = M∗ji and Γij = Γ∗ji.
An additional constraint, namely H11 = H22, comes from the CPT theorem, which states that the
combined symmetry of Charge conjugation, Parity transformation and Time reversal holds in a very
general class of quantum field theories.

The projected Schrödinger equation

H|B〉 = i
d

dt
|B〉

yields the usual solution
|BH,L〉(t) = exp−iHH,Lt |BH,L〉(0)

where HH,L denotes the eigenvalues of H , which are under the assumption of CPT symmetry given as

HH,L = H11 ±
√
H12H21

and |BH,L〉 are eigenstates of the form

|BH,L〉 = p|B0〉 ∓ q|B̄0〉
with

q

p
= −HH −HL

2H12
. (1)

Rewriting the time-dependent solution using HH,L := MH,L − i
2ΓH,L with real M and Γ, one has

|BH,L〉(t) = exp−
ΓH,L

2
t exp−iMH,Lt |BH,L〉(0)

which is interpreted as two neutral mesons (one Heavier with mass MH , one Lighter with mass ML),
decaying with (generally different) decay constants ΓH,L. It is conventional to introduce the mean mass
M := 1

2(MH +ML) and ∆M := MH −ML; similarly one introduces Γ and ∆Γ.

Note that the above applies for all neutral mesons, while the specific experimental character of the
B meson (which is quite different from that of the K meson, for example) is due to the specific values of
the above parameters. This will be discussed in Section 2.3.
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2.2.1 A short pre-discussion of CP violation
The topic of CP violation in the B-meson system will be discussed in greater depth later (Section 2.6),
but it makes sense to discuss immediately some basic properties and connections referred to above.

The CP operator is defined as reversing both charge and parity of a state, i.e., a quark q with
momentum p is transformed to q̄ with momentum −p. It is an important point to understand that this
does not imply that the CP operator acting on |B0〉 gives |B̄0〉, all that can be concluded is that the result
is proportional to |B̄0〉, which together with the normalization condition gives

CP|B0〉 = expiξ |B̄0〉

where ξ is an arbitrary phase which can be defined to any value, but has to be chosen consistently. To
keep formulas simple, we choose ξ = 0 which leads to

CP|B0〉 = |B̄0〉

and similarly
CP|B̄0〉 = |B0〉

but not without the warning to check for the definition of this phase whenever looking into different pa-
pers (to avoid misunderstandings, many theoretical papers explicitly state the phase wherever it occurs).

With this phase convention, the eigenstates of CP are easily found to be

|BCP+,CP−〉 = |B0〉 ± |B̄0〉 (2)

with eigenvalues ±1. If one assumes CP symmetry, then CP eigenstates are also eigenstates of the
Hamiltonian. Comparing the above result with Eq. (1) this infers that q/p = ±1 and consequently
H12 = H21.

2.3 The different experimental characters of neutral B and K mesons
While the underlying theory is the same, B and K mesons bear rather characteristic (and partly quite
different) properties in experiment, especially with respect to CP violation. Table 2 compares the values
of some basic parameters for B0 and K0. Remarkably, the lifetimes of the two mass eigenstates are
practically the same for the B mesons, while they are almost three orders of magnitude different for the
K mesons. This is the reason for some of the most characteristic experimental differences between B and
K mesons.

For the K mesons, it is natural to think of them in terms of the mass eigenstates, for simple
experimental reasons: by just waiting long enough (a couple of τL), the lighter component decays away,
and one has a pure beam made of the heavier component. On the other hand, if one studies decays
immediately after production (t = O(τL)), one mainly observes the lighter component, since it decays
much faster. Instead of classifying them into heavier and lighter K mesons, it is usual to speak of a
long-lived KL (which—confusingly—is identified with the heavier kaon state formerly denoted KH ),
and a short-lived KS (formerly KL).

As the B-meson mass eigenstates—owing to their similar lifetime—do not disentangle equiva-
lently in experiment, frequently they are addressed in terms of the B0 and B̄0 states (which are the
strong eigenstates in which these particles are produced) rather than of the BH and BL states. However,
it is important to realize that also the K mesons are produced in their strong eigenstates K 0 and K̄0, and
the reason for preferring KL,S is only experimentally motivated—in some experiments, it is more useful
to think of particles, and in others of waves; consequently, there are also experiments which are better
understood in terms of K0 and K̄0.

A notable property of the B meson is its large lifetime, which is rather surprising given the fact
that it is much heavier than the K meson, with much more open decay channels. The reason for this
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Table 2: Comparison of B meson with K meson

B0 K0

Mean mass M 5279 MeV/c2 497 MeV/c2

Mass difference ∆M ≈ 3.3× 10−10 MeV/c2 ≈ 3.5× 10−12 MeV/c2

Lifetime (1/Γ) τH = 1.5 ps τH = 51800 ps
τL = 1.5 ps τL = 90 ps

|q/p| ≈ 1 ≈ 1
arg(q/p) O(π/2) O(10−3)

experimentally very fortunate and welcome property (see, for example, the discussion in Section 5.1) is
the CKM hierarchy discussed in Section 2.5, which suppresses transitions of b-quarks to lighter quarks
one order of magnitude more than the comparable transition of an s-quark in a K-meson decay.

Concerning the eigenstate parameters p and q, their ratio is about 1 for both B and K mesons, but
while for K mesons also the relative phase between p and q is small, it is large for B mesons. Comparing
with Eq. (2) this means that the K mesons KL,S are almost CP eigenstates, while the B mesons are not.

Since K mesons are nearly CP eigenstates, the decay of the almost-CP-odd KL into the kinemati-
cally favoured channel ππ is suppressed to a level of O(10−3). As the CP-odd decay into three pions is
kinematically suppressed (3mπ ≈ mK), the KL acquires its observed long lifetime.

To summarize the comparison: while the K mesons appear in experimentally distinct long- and
short-lived mass eigenstates, which are almost CP eigenstates, B mesons bear a large phase relative to
CP eigenstates and cannot as easily be separated experimentally into their mass eigenstates. Therefore
as will be discussed in the following section, interference between the eigenstates plays a much more
central role for B mesons than for K mesons.

2.4 How B mesons show up in experiment
B mesons are produced via strong interactions, therefore in the strong eigenstates B 0 and B̄0. As they
cannot decay strongly, their further development with time is governed by weak interactions, and it is
advisable to express the strong eigenstates as compositions of the weak mass eigenstates:

|B0〉 ∝ |BH〉+ |BL〉
|B̄0〉 ∝ |BH〉 − |BL〉 .

Since time evolution is different for |BH〉 and |BL〉, generally interference occurs:

|B0〉(t) = exp−
t

2τ exp−iMt

[
| cos(

∆M

2
t)|B0〉+ i

q

p
sin(

∆|M
2

t)|B̄0〉
]

B̄0〉(t) = | exp−
t

2τ exp−iMt

[
i
p

q
| sin(

∆M

2
t)|B0〉+ cos(

∆|M
2

t)|B̄0〉
]

where τ is the mean lifetime, and the very small difference ∆τ has been neglected. Obviously there
is a damped oscillation between B0 and B̄0 with a frequency determined by the mass difference ∆M .
Figure 1 shows three characteristic cases for values of ∆M in relation to 1/τ . If ∆M is large compared
to 1/τ , then many oscillations take place before the majority of the B mesons have been decayed; if ∆M
is small, then most of the B mesons decay before the first oscillation occurs. Both cases are unfavourable
in experiment; the former because of limits in time resolution, the latter because of limits in statistics. By
some lucky coincidence, however, it turns out that for the neutral B meson ∆M ≈ 0.7/τ , which makes
one full oscillation well observable, as will be shown later in this lecture.
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Fig. 1: Oscillation of B mesons: probability to find a B0 (solid) or B̄0 (dashed) at time t, assuming a B0 at t = 0

From the experimental point of view, it is interesting whether (and how) these interferences can be
observed. One precondition is obviously that the flavour of the B meson (i.e., whether it is a B 0 or B̄0)
can be measured. But it is not sufficient to measure the flavour at the time of decay: if the initial state (at
t = 0) is unknown, then the interference cancels in the average.

The flavour can be tagged by looking for a channel which is only (or at least dominantly) open
for either B0 or B̄0, like, for example, the semileptonic decay B0 → `+ + anything and B̄0 → `− +
anything, where the charge of the lepton determines (tags) the flavour of the B meson. However, this
determines the flavour only at one point in time and does not yet allow one to observe oscillations. To
measure the flavour at a second point in time, one could go back to the production at t = 0, and determine
the flavour at this time using the fact that b-quarks are produced in quark–anti-quark pairs; this works
if the second b-quark went into a charged B meson, but only because the charged B meson does not
oscillate between its production at t = 0 and its later decay, which reveals its charge. If a B 0B̄0 pair
is produced at t = 0, both neutral B mesons oscillate, and the flavour of both mesons will change with
time. However, as the pair builds an entangled state, a decay of one B meson at some time t1 with a
certain, tagged flavour forces the opposite flavour for the other B meson at the same time t1. When this
second B meson also decays at some later time t2, flavour oscillation can be observed.

To avoid misunderstandings: the occurrence of oscillations in the B-meson system is not an effect
of CP violation; as can be seen from the formulae above, it is governed by ∆M , which can be different
from zero also when CP symmetry holds. As will be discussed later, the amplitude of the oscillations
can be connected with the amount of CP violation in certain decays.

2.5 The larger picture: CP violation and CKM hierarchy in the Standard Model
To understand the specific properties of B mesons, it is necessary to look at the larger picture: the CKM
matrix VCKM describes the conversion between up- and down-type quarks [16]. Within the Standard
Model (SM), it is unitary (V +V = V V + = 1) which infers that it is defined by nine parameters (three
angles and six phases); however, by redefining the quark phases, five of the phases (corresponding to the
five relative phases between the quarks; a global phase change does not affect VCKM) can be gauged to
zero. Thus, only one phase with physical meaning remains.

It turns out that this single remaining phase is the source of CP violation within the SM (for the
scope of this lecture, we do not discuss the strong CP problem [17]), and it is interesting to note that
while for only two generations of quarks CP symmetry would necessarily hold, there is no reason for the
CP-violating phase to be small in three generations. Experiment shows that it is not, i.e., CP symmetry
is not a near miss. However, this does not imply that CP-violating effects are large—on the contrary, it
turns out that either the effects are small, or the branching fractions involved.
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The hierarchy of the CKM matrix can be illustrated in the approximation

VCKM ≈




1 Vus Vube
−iγ

−Vus 1 Vcb
VusVcb − Vubeiγ −Vcb 1




with

|Vus| = 0.224 ± 0.003 (λ) , |Vcb| = 0.041 ± 0.002 (O(λ2)) , |Vub| = 0.0037 ± 0.0008 (O(λ3)) .

The dominant conversions are along the main axis, i.e., among quarks of the same generation. Conver-
sions between the first and second generation are suppressed by about one order of magnitude, charac-
terized by the parameter λ ≈ O(10−1). Between the second and the third by two orders of magnitude,
and finally those between the first and the third by three orders of magnitude. This hierarchy is important
to understand certain properties of the B meson.

Im

Re

V*  Vcb     cd

V*  Vtb     td

V*  Vub     ud

Im

Re

V*  Vcb     cd

V*  Vub     ud

tb     tdV*  V

cb     cdV*  V

1

ρ+  ηi

γ (φ3) β (φ1)

α (φ2)

Fig. 2: Unitarity triangles in the complex plane; right the original one, left with one side normalized to 1

To characterize CP violation in the Standard Model, one can utilize the unitarity of the CKM
matrix (V +V = 1), which gives nine equations (three in the main diagonal, six off-diagonal). One
off-diagonal equation is

V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0 .

In the complex plane, the three terms of the above equation can be interpreted as the sides of a triangle
(Fig. 2, left). It is conventional to normalize one side of the triangle to 1 by dividing the above equation
by V ∗cbVcd. Introducing the real parameters ρ̄ and η̄ as

ρ̄+ iη̄ :=
V ∗ubVud
V ∗cbVcd

,

one arrives at the unitarity triangle (UT) (Fig. 2, right); note that there are six unitarity triangles, as there
are six off-diagonal equations from CKM unitarity; however, most of the triangles are rather degenerated,
i.e., very flat; the unitarity triangle discussed here is the most famous one, and the one usually referred to
when speaking of the unitarity triangle. Its three angles are denoted α, β, γ (sometimes also φ2, φ1, φ3).

The area of the unitarity triangle is a direct measure for the amount of CP violation in the CKM
matrix [16], i.e., with no CP violation, it would be degenerated to a flat line.

2.6 CP violation in the neutral B-meson system
CP violation (CPV) can reveal itself in experiment in several ways, which we discuss here briefly:

CP violation in mixing is a manifestation of indirect CP violation; mixing means that mass eigen-
states differ from the CP eigenstates (see discussion above in Section 2.2), and can be measured in
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asymmetries of semileptonic decays, for example. Note: the mixing of B0 and B̄0 (i.e., the fact that
the mass eigenstates differ from the strong eigenstates) is not yet an effect of CP violation. Owing to
|q/p| ≈ 1 this asymmetry is small for B mesons (as for K mesons).

As the above asymmetry due to mixing does not require any CP violation in the B decay itself, CP
violation in decay is another way for CP violation to reveal itself, a manifestation of direct CP violation.
A non-zero asymmetry requires at least two terms in the amplitude of the decay (i.e., two different
Feynman graphs) with a difference in both the strong and weak phases [16].

Since mass eigenstates differ from CP eigenstates, there is interference in the decay to CP eigen-
states, and oscillations occur in the corresponding asymmetry (CP violation in interference); the oscil-
lation frequency is again determined by ∆M , and the amplitude of the oscillation is a measure of CP
violation. Generally, the asymmetry is given by Adir

CP cos(∆Mt) + Amix
CP sin(∆Mt) [16] where because

|q/p| ≈ 1, Adir
CP is only different from zero for decay channels with direct CP violation (i.e., channels

with at least two contributing Feynman graphs with different phases, see above), i.e., Adir
CP is a measure

for direct CP violation. For channels without direct CP violation, Amix
CP depends only on purely elec-

troweak parameters, i.e., Amix
CP measures the unitarity triangle. Note that the asymmetry cancels when

integrated over time, so the time dependence has to be measured if one wants to study this form of CP
violation.

Although all above forms of CP violation occur in the B-meson system, most attention is on the
last kind (CP violation in interference), because a large effect directly related to angles in the unitarity
triangle is predicted (and has already been confirmed experimentally, cf. Section 5.1).

Detailed discussions about the phenomenology of CP violation can be found in Ref. [16] or
Refs. [18–20].

2.7 New Physics with the B meson
Although CP violation is already accommodated for within the Standard Model, the measured amount
is far too small to explain the matter–antimatter asymmetry observed in the Universe [18]. There are
many extensions to the Standard Model which predict sizeable differences in CP variables, e.g., Super-
Symmetry (SUSY) brings in dozens of additional CP-violating phases. Therefore, the existence of New
Physics is rather expected, and potentially can reveal itself in many places in B physics, and also espe-
cially in CP violation.

In the Standard Model, where CP violation is controlled by just one single phase, all possible
different experiments are determined to give strongly correlated results: as the sides and angles of the
unitarity triangle can be measured independently, and usually in more than one way, it is strongly over-
determined. A disagreement would be a sign of physics beyond the Standard Model.

Good candidates to show New Physics are decay channels with sizeable contributions from Feyn-
man graphs involving loops, since such loops may contain (heavy) new particles, which—like the top
quark in many Standard Model loops—can have a measurable effect on the amplitudes.

3 Production of B mesons
Precision measurements with B mesons demand a large number of them, and special techniques have
evolved with certain advantages and disadvantages, which are briefly discussed here.

3.1 B factories and hadron colliders
Lepton colliders have the advantage of clear environments, but are limited in energy because of syn-
chrotron radiation. An early way to produce b-pairs was via the Z 0 particle, at an energy of about
90 GeV, as done in the LEP experiments at CERN (Geneva, Switzerland) and SLD (Stanford, USA). As
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these experiments were not designed for the production of B mesons, the production capacity was not
very large.

A more efficient way to produce B mesons is to exploit the Υ(4S) resonance at about 10 GeV,
as discussed already in Section 2.1. Advantages are that the production is resonantly enhanced, and that
the background is comparably small (in addition, it can be comfortably studied by reducing the collision
energy to slightly below threshold). However, only B0 and B± can be produced in this way, the Bs is
too heavy. Still, this is currently the state-of-the-art way to produce large amounts of B mesons, as in the
so-called B factories at PEP-II (Stanford, USA) and KEKB (Tsukuba, Japan); pioneers were DORIS II
(Hamburg, Germany) and CESR (Cornell, USA).

An alternative way to produce B mesons is in hadron colliders; just by pure collision energy, B
mesons of any kind (B0, B±, Bs, Bc) can be produced copiously in very large numbers, however, the
background is very large. This method is currently used in the CDF and D0 experiments at Fermilab
(Batavia, USA); and will be soon joined by the LHC experiments at CERN (Geneva, Switzerland).

A possible future linear collider will combine the advantages of lepton colliders (clean environ-
ment) with the higher energy of hadron colliders.

3.2 Symmetric vs asymmetric colliders

Fig. 3: The PEP-II B factory in Stanford, USA

When B mesons are produced at the Υ(4S) resonance, their relative momentum is very small, since the
resonance lies only 24 MeV above the production threshold (cf. Section 2.1). In symmetric colliders,
where both beams have the same energy, the B mesons are therefore produced nearly at rest, and it is hard
(or impossible) to separate their decay vertices (which is important for the measurement of CP violation,
see discussion below in Section 5.1). Historically, symmetric colliders were CESR (Cornell, USA) and
DORIS (Hamburg, Germany).

Asymmetric colliders, where the beams have different energies, are technologically more demand-
ing, but are essential for modern experiments. In such colliders, the B mesons are boosted in one favoured
direction, and their lifetime can be measured via high-resolution vertex detectors. This technology is used
in PEP-II (Stanford, USA), Fig. 3, and KEKB (Tsukuba, Japan).

4 B-meson experiments
4.1 B factories and hadron collider experiments
Since 2000, the BaBaR experiment [21] at SLAC (Stanford, USA, see Fig. 4) has been using the PEP-II
B factory for precision studies of the B-meson system. A five-layer, double-sided silicon vertex tracker
surrounds the interaction point and provides precise reconstruction of track angles and B-decay vertices.
A 40-layer drift chamber provides measurements of the transverse momenta of charged particles. An
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Fig. 4: The BaBaR and Belle detectors

internally reflecting ring-imaging Cherenkov detector is used for particle identification. A CsI(Tl) crystal
electromagnetic calorimeter detects photons and electrons. The calorimeter is surrounded by a solenoidal
magnet providing a 1.5 T field. The flux return is instrumented with resistive plate chambers used for
muon and neutral-hadron identification.

Also since 2000, the Belle experiment at KEK (Tsukuba, Japan, see Fig. 4) with the KEKB B
factory has similar goals. The Belle detector [22] is rather similar to that of BaBar: a large-solid-
angle magnetic spectrometer that consists of a multilayer silicon vertex detector, a 50-layer central drift
chamber, an array of aerogel threshold Cherenkov counters, a barrel-like arrangement of time-of-flight
scintillation counters, and an electromagnetic calorimeter comprised of CsI(Tl) crystals located inside a
superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of
the coil is instrumented to detect K0

L mesons and to identify muons. The old inner detector configuration
of a 2.0 cm radius beam pipe and a three-layer silicon vertex detector was upgraded in 2004 to a 1.5 cm
radius beam pipe, and a four-layer silicon detector [23].

Besides these two B-factory experiments, there are also two important experiments running at a
hadron collider, the Tevatron at Fermilab (Batavia, USA): the CDF II detector [24] consists of a charged-
particle tracking system in a magnetic field of 1.4 T, segmented electromagnetic and hadronic calorime-
ters, and muon detectors. A silicon microstrip detector provides tracking over the radial range 1.5–28 cm
and is used to detect displaced secondary vertices. The fiducial region of the silicon detector covers the
pseudorapidity range |η| < 2, while the central tracking system and muon chambers provide coverage
for |η| < 1.

The D0 detector [25] has a silicon microstrip tracker and a central fibre tracker located within a
2 T superconducting solenoidal magnet. The surrounding liquid-argon/uranium calorimeter has a central
cryostat covering pseudorapidities |η| up to 1.1, and two end-cryostats extending coverage to |η| ≈ 4. A
muon system resides beyond the calorimetry, and consists of a layer of tracking detectors and scintillation
trigger counters before 1.8 T toroids, followed by two similar layers after the toroids.

Both the CDF II and D0 experiments have a rich physics programme which includes, in addition
to B physics, top physics, electroweak physics, and QCD. They are collecting important new results on
heavier B mesons like the Bs, which are not accessible to the B-factory experiments.

4.2 The future: experiments at the LHC and super factories
The Large Hadron Collider (LHC), a 14 TeV pp collider at CERN (Geneva, Switzerland), is scheduled to
start in 2007. The goal is to get the luminosity to 1033 cm−2s−1. Later the luminosity will be increased
to nominal 1034 cm−2s−1. The launch of the LHC will also bring a whole set of new experiments:
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while ATLAS and CMS have B physics as part of a wider programme, LHCb is a dedicated experiment.
LHCb is a single-arm spectrometer covering the range 1.9 < η < 4.9. It consists of a silicon vertex
detector [26] which includes a pile-up system surrounding a beam pipe, a magnet and a tracking system,
two RICH counters, a calorimeter system and a muon detector. Its construction has started and it will be
ready to take data from the start of LHC operation. LHCb will benefit from an unprecedented source of b-
hadrons, to substantially improve precision measurements of CP-violation parameters in many different
channels. In particular, LHCb will also be capable of measuring CP-violation effects for the first time in
decay modes involving Bs mesons.

For the more distant future (around 2010), there are already plans for a super B-factory: Super-
Belle is a foreseen successor of the Belle experiment to run at a planned SuperKEKB collider [27], an
asymmetric e+e− collider with a design luminosity of 5×1035 cm−2s−1, which is around 40 times larger
than the peak luminosity achieved by the KEKB collider. The Belle detector will be upgraded to Super-
Belle to take full advantage of the high luminosity of SuperKEKB. Despite large beam backgrounds, the
detector performance will be at least as good as that of the present Belle detector and improvements in
several aspects are envisaged.

5 The analyses
The theory behind the analyses is explained in greater detail elsewhere (e.g., Refs. [16, 18–20, 28]), and
is only sketched here. For a basic understanding of the relevance of the certain decay channels which are
being analysed, it is important to know the two typical Feynman diagrams which contribute to the decay,
corresponding to two ways of the transition of the b-quark to a lighter quark: the tree diagram (Fig. 5,
left), and the penguin diagram (Fig. 5, right), which contains a loop. As there are three possibilities
for the quark inside the loop (u, c and t), and also three possibilities for the internal gauge boson (g, γ
and Z0—the first known as strong penguin, the latter two as electroweak penguin), there are in total ten
different amplitudes from tree and penguin diagrams which can interfere with each other, and introduce
different phases. However, depending on the decay channel, certain amplitudes may be suppressed,
which is important for the way a measurement is interpreted.

In the following, a selection of the most important decay channels is briefly discussed, sorted by
the amplitudes which dominate the decay.

5.1 Tree-dominated: the golden channel B0 → ΨKS,L

This channel is a decay to CP eigenstates, and therefore is expected to exhibit an asymmetry related to
CP violation as discussed in Section 2.6. It is known as golden channel because it provides both a clear
experimental signature, and a clean theoretical situation: it is dominated by the tree graph, there is no
contribution from direct CP violation [16], and thus the asymmetry is a pure sine (cf. Section 2.6). The
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Fig. 6: Scheme of measurement of the time-dependent asymmetry (left), and experimental results from Belle 2005
(right)

amplitude of this sign turns out to be related to angle β of the unitarity triangle:

Amix
CP = − sin(2β) .

As the asymmetry cancels when integrated over time, the experimental challenge is to accurately
measure the time difference between the decay of the tagging B meson (whose decay determines the
flavours of the B meson at this time t = 0) and the B meson decaying into the golden channel at some
other time t. Figure 6 schematically shows the procedure, which relies on an accurate measurement of
the respective decay vertices. Because of the boost of the B mesons in the asymmetric collider, and the
relatively long lifetime, the typical distance between the two decay vertices is ∆Z = 200 µm, which is
enough to allow a sufficiently accurate measurement with the modern silicon vertex detectors of BaBar
and Belle. A more detailed description of the reconstruction method can be found, for example, in
Ref. [29].

First results came from both BaBar and Belle in 2001, and have been improved annually since.
The 2005 values [14] are in very good agreement with each other (cf. Table 3), but also with the Standard
Model prediction (using all available other information) of sin(2β) = 0.68 ± 0.18. No indication of a
direct CP-violating amplitude was found.

Table 3: Overview of experimental results, as of summer 2005

Channel(s) Measurement BaBar Belle
B0 → ΨKS,L Amix

CP 0.722 ± 0.040 ± 0.023 0.625 ± 0.039 ± 0.020

B0 → ΦKS,L Amix
CP 0.50 ± 0.25 ± 0.07 0.44 ± 0.27 ± 0.05

B0 → η′KS,L Amix
CP 0.36 ± 0.13 ± 0.03 0.62 ± 0.12 ± 0.04

B0 → ππ Amix
CP −0.30 ± 0.17 ± 0.03 −0.67 ± 0.016 ± 0.06

Adir
CP −0.09 ± 0.15 ± 0.04 −0.56 ± 0.12± 0.06

B0 → Kπ ad 0.133 ± 0.030 ± 0.009 0.113 ± 0.022 ± 0.008

B± → D0K/D̄0K γ (67 ± 28 ± 13 ± 11)◦ (68 ± 15 ± 13 ± 11)◦

12

L. WIDHALM

210



5.2 Penguin-dominated: B0 → ΦKS,L and the like
Contrary to the golden channel B0 → ΨKS,L discussed above, this channel is dominated by the penguin
diagram. However, the direct CP-violating contribution is again suppressed, and the amplitude of the
asymmetry is again related to the angle β:

Amix
CP = sin(2β) .

The interesting aspect of this channel is that it allows an independent second measurement of β—which
tests the Standard Model. Furthermore, it is sensitive to New Physics, as it contains a loop (cf. Section
2.7).

Agreement between the BaBar and Belle results in this channel [30] has improved over the years,
and no indication of direct CP violation has been found (cf. Table 3). Similarly, other channels B 0 →
XKS,L have also been analysed [31]; so far, results are not incompatible with the Standard Model, i.e.,
the precision result from the golden channel B0 → ΨKS,L. However, uncertainties are too large for final
conclusions.

5.3 Both tree and penguin: B0 → ππ and the like
Although this channel is an example for a mode to which both tree and penguins contribute to a similar
extent, it is instructive to discuss the case where the penguin contribution is neglected: in this case, there
would be no contribution from direct CP violation, and the amplitude of the asymmetry would be related
to another angle of the unitarity triangle:

Amix
CP = sin(2α) .

However, the real situation is more complicated; there might be a non-zero amplitude of the cosine in
the asymmetry, Adir

CP, and the extraction of α is more difficult than in the corresponding measurement of
β discussed above. It can be done, for example, by an isospin analysis (comparing the different isospin
states of the ππ system) [32].

Starting with a large disagreement in the first 2001 results, agreement between BaBar and Belle
has improved over the years, but is still not very good; in addition, no conclusive answer to the question
of direct CP violation can be given yet. The latest results from BaBar (2004) and Belle (2005) [33] are
given in Table 3.

5.4 Direct CP violation in B0 → Kπ

Whereas the above analyses studied time-dependent CP violation due to interference, this channel is used
to measure direct CP violation. The corresponding asymmetry is given by

ad =
Γ(B0 → K+π−)− Γ(B̄0 → K−π+)

Γ(B0 → K+π−) + Γ(B̄0 → K−π+)

and is a simple counting experiment, with self-tagging modes. Yet, the effect is smaller than that found
in interference.

The experimental establishment of direct CP violation in the B-meson system happened very re-
cently, in 2004. Both experiments BaBar and Belle presented results [15] in good agreement with theo-
retical prediction [16], cf. Table 3.

5.5 Interference in production: B± → D0K/D̄0K

Another kind of analysis studies this channel, which allows experimental access to the third angle of the
unitarity triangle γ. While the previous analyses studied interference between B-meson states or during
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decay, this one studies interference between two different end states, namely D0 and D̄0. Interference
between the D mesons can be observed in decay channels common to both. Experimentally, there are
three established methods which differ by the studied common decay channel: while the GLW method
[34], which uses decays into CP eigenstates like ππ, and the ADS method [35] (decays into flavour-
specific modes, e.g., K±π∓) both suffer from small sensitivity for γ, the rather new Dalitz method [36]
utilizing decays into three-body modes like, for example, Kππ is more promising. Still, the angle γ is
certainly the hardest to measure, and the experimental errors are correspondingly large.

The 2005 results [37] listed in Table 3 show good agreement between BaBar and Belle when
combining different channels, there is about one sigma difference in the single mode results.

The analyses presented here are only a—to some extent randomly—selected subset of results from
BaBar and Belle; a complete listing of all studies would clearly be beyond the scope of this lecture.

6 Conclusions and outlook
As I hope I have demonstrated above, B physics is a very rich and active field; recent years have seen
several results of high impact and relevance, deepening our understanding of the Standard Model, which
has withstood another precision test: CP violation was found as large as expected in the B-meson system,
and so far no disagreement with the Standard Model has been detected (see Fig. 7).
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Fig. 7: Current knowledge about the CKM unitarity triangle [38]

However, as the results presented in the previous section show, in several fields no final conclusion
can be drawn yet. There are some deviations from the Standard Model predictions which could be a hint
for New Physics—but some patience is needed until the uncertainties can be further reduced.

Looking into the future, the big running experiments like BaBar, Belle, CDF II and D0 will con-
tinue to take data and will further improve their results. In 2007, when the LHC is scheduled to go into
operation and bring some orders of magnitude more of data, the dedicated LHCb experiment will enter
the game, and the other LHC experiments will also contribute to the field of B physics. This will enable
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precision measurements of all three angles and the sides of the unitarity triangle, over-constraining it as
a strong test of the Standard Model. The Bs meson will be studied in similar precision, and the search
for New Physics will extend to rare decays.

For the next decade, the preparations have already started for a super B-factory, with well over
one order of magnitude higher luminosity. It will allow precision measurements of whatever the LHC
surprises us with.

Maybe the Standard Model will survive once again—but maybe there will be more. And perhaps,
you will be there!
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Relativistic heavy-ion physics: three lectures

L. McLerran
Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract
These lectures provide an introduction to the physics issues which are being
studied in the the collisions of ultrarelativistic heavy ions. These issues are
focused on the production of new states of matter. The quark–gluon plasma
is thermal matter which once existed in the Big Bang. The colour glass con-
densate is a universal form of matter which controls the high-energy limit of
strong interactions. I introduce the student to these topics, discuss results from
experiments, and comment upon future opportunities.

1 Introduction
These lectures will introduce the student to the physics issues behind the study of new forms of matter,
and the general issue of understanding the high-energy limit of QCD. The full programme of this study
involves the collisions of protons on protons, deuterons on nuclei, and nuclei on nuclei. The reason for
nuclei is that one can achieve extraordinary energy densities of matter, and because of the large size of
nuclei relative to partons, more easily study effects associated with the bulk properties of matter. The
highest energies are required, as this allows one to generate the highest energy densities, and as we shall
see, at RHIC energies and higher, one can study novel effects associated with the high density of gluons
in a hadron wavefunction.

Central to these experimental studies is the production of new forms of matter. This may be a
Quark–Gluon Plasma (QGP) or a Colour Glass Condensate (CGC). The properties of these forms of
matter are described below.

The outline of these lectures is

– New states of matter
In the first lecture, I describe the new forms of matter which may be produced in heavy-ion colli-
sions. These are the quark–gluon plasma and the colour glass condensate.

– Space–time dynamics
This lecture describes the space–time dynamics of high-energy heavy-ion collisions. In this lec-
ture, I illustrate how high energy density matter might be formed. I describe how the colour glass
condensate may evolve into the quark–gluon plasma, and eventually to a gas of ordinary hadrons.

– Experiment and theory
In the final lecture, I show how various experimental measurements might teach us about the
properties of matter. Topics discussed are multiplicities and the colour glass condensate, low-
transverse-momentum particles and the quark–gluon plasma, heavy vector meson production and
confinement, the flavour dependence of the quark–gluon plasma, high-transverse-momentum par-
ticles and what they tell us about the CGC and the QGP, and identical particle correlations and
what they tell us about the space–time evolution of the matter produced in collisions.
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2 Lecture I: High-density matter
2.1 The goals of RHIC
The goal of nuclear physics has traditionally been to study matter at densities of the order of those in the
atomic nucleus

ε ∼ 0.15 GeV/fm3 . (1)

High-energy nuclear physics has extended this study to energy densities several orders of magnitude
higher. This extension includes the study of matter inside ordinary strongly interacting particles, such
as the proton and the neutron, and producing new forms of matter at much higher energy densities in
high-energy collisions of nuclei with nuclei, and various other probes.

There are at least three central issues of high-energy nuclear physics:

– The production of matter at energy densities one to two orders of magnitude higher than
that of nuclear matter and the study of its properties
This matter is at such high densities that it is only simply described in terms of quarks and gluons
and is generically referred to as the Quark–Gluon Plasma (QGP). The study of this matter may
allow us to better understand the origin of the masses of ordinary particles such as nucleons, and
of the confinement of quarks and gluons into hadrons. The QGP will be described below [1].

– The study of the matter which controls high-energy strong interactions
This matter is believed to be universal (independent of the hadron), and exists over sizes large
compared to the typical microphysics size scales important for high-energy strong interactions.
(The microphysics size scale here is about 1 fm and the microphysics time scale is the time it
takes light to fly 1 fm, t ∼ 10−23 s.) It is called a Colour Glass Condensate (CGC) because it is
composed of coloured particles, evolves on time scales long compared to microphysics time scales
and therefore has properties similar to glasses, and a condensate since the phase-space density of
gluons is very high. The study of this matter may allow us to better understand the typical features
of strong interactions when they are truly strong, a problem which has eluded a basic understanding
since strong interactions were first discovered. The CGC will be described below [2].

– The study of the structure of the proton, most notably spin
The structure of the proton and neutron is important as these particles form the ordinary matter
from which we are composed. We would like to understand how valence quantum numbers such
as baryon number, charge, and spin are distributed. RHIC has an active programme to study the
spin of the proton [3].

Because I was asked to provide lectures on ultrarelativistic nuclear collisions, I shall discuss only
the first two issues.

2.2 The quark–gluon plasma
This section describes the quark–gluon plasma, why it is important for astrophysics and cosmology, and
why it provides a laboratory in which one can study the origin of mass and of confinement [1].

2.2.1 What is the quark–gluon plasma?
Matter at low energy densities is composed of electrons, protons, and neutrons. If we heat the system,
we might produce thermal excitations which include light-mass strongly interacting particles such as the
pion. Inside the protons, neutrons, and other strongly interacting particles are quarks and gluons. If we
make the matter have high enough energy density, the protons, nucleons, and other particles overlap and
get squeezed so tightly that their constituents are free to roam the system without being confined inside
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Hadron GasQuark-Gluon Plasma

Fig. 1: As the energy density is decreased, the quark–gluon plasma condenses into a low-density gas of hadrons.
Quarks are red, green, or blue and gluons are yellow.

hadrons [4]. At this density, there is deconfinement and the system is called a quark–gluon plasma. This
is shown in Fig. 1.

As the energy density gets to be very large, the interactions between the quarks and gluons become
weak. This is a consequence of the asymptotic freedom of strong interactions: at short distances the
strong interactions become weak.

The QGP surely existed during the Big Bang. In Fig. 2, the various stages of evolution in the Big
Bang are shown.
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Fig. 2: The various forms of matter, and the types of physics which are probed during the Big Bang

At the earliest times in the Big Bang, temperatures are of order T ∼ 1019 GeV, quantum gravity is
important, and despite the efforts of several generations of string theorists, we have little understanding.
At somewhat lower temperatures, perhaps there is the grand unification of all the forces, except gravity. It
might be possible that the baryon number of the universe is generated at this temperature scale. At much
lower temperatures, of order T ∼ 100 GeV, electroweak symmetry breaking takes place. It is possible
here that the baryon asymmetry of the universe might be produced. At temperatures of order T ∼ 1 GeV,
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quarks and gluons become confined into hadrons. This is the temperature range appropriate for studies
at RHIC and the LHC. At T ∼ 1 MeV, the light elements are made. This temperature corresponds to
an energy range which has been much studied, and is the realm of conventional nuclear physics. At
temperatures of the order of an electronvolt, corresponding to the binding energies of electrons in atoms,
the universe changes from an ionized gas to a lower-pressure gas of atoms, and structure begins to form.

The QGP is formed at energy densities of order 1 GeV/fm3. Matter at such energy densities
probably exists inside the cores of neutron stars as shown in Fig. 3. Neutron stars are objects of about

Magnetic
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Electrons

n & p

quark
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conductor ?
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Nuclei

Neutron
Star

Radius ~ 10 km   Central Density ~ 10 Baryons/fm3

color super-

Fig. 3: A spinning neutron star

10 km in radius and are composed of extremely high energy density matter. The typical energy density
in the core is of the order of 1 GeV/fm3, and approaches zero at the surface. Unlike the matter in the
Big Bang, this matter is cold and has temperature small compared to the Fermi energies of quarks. It is
a cold, degenerate gas of quarks. At lower densities, this matter converts into a cold gas of nucleons.

Hot and dense matter with energy density of order 1 GeV/fm3 may have occurred in the supernova
explosion which led to the neutron star’s formation. It may also occur in collisions of neutron stars and
black holes, and may be the origin of the mysterious gamma-ray bursters. (Gamma-ray bursters are
believed to be starlike objects which convert of the order of their entire mass into gamma rays.)

2.2.2 The quark–gluon plasma and ideal gases
At very high energy temperatures, the coupling constant of QCD becomes weak. A gas of particles
should to a good approximation become an ideal gas. Each species of particle contributes to the energy
density of an ideal gas as

ε =

∫
d3p

(2π)3

∑

i

Ei
eβEi ± 1

(2)

where the− is for bosons and the + for fermions. The energy of each particle isEi. At high temperatures,
masses can be ignored, and the factor of ±1 in the denominator turns out to make a small difference.
One finds therefore that

ε ∼ π2

30
NT 4 (3)

where N is the number of particle degrees of freedom. At low temperatures when masses are important,
only the lowest mass, strongly interacting particle degree of freedom contributes; the pion, and the energy
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density approaches zero as ε ∼ e−mπ/T . For an ideal gas of pions, the number of pion degrees of
freedom is three. For a QGP there are two helicities and eight colours for each gluon, and for each
quark, three colours, two spins, and a quark–antiquark pair. The number of degrees of freedom is N ∼
2 × 8 + 4 × 3 × NF where NF is the number of important quark flavours, which is about three if the
temperature is below the charm quark mass so that N ∼ 50.

There is about an order of magnitude change in the number of degrees of freedom between a
hadron gas and a QGP. This is because the degrees of freedom of the QGP include colour. In the large
Ncolour limit, the number of degrees of freedom of the plasma are proportional to N 2

colour, and in the
confined phase is of order 1. In this limit, the energy density has an infinite discontinuity at the phase
transition. There would be a limiting temperature for the hadronic world in the limit for which Ncolour →
∞, since at some temperature the energy density would go to infinity. This is the Hagedorn limiting
temperature. (In the real world Ncolour is three, and there is a temperature at which the energy density
changes by an order of magnitude in a narrow range.)

2.2.3 The quark–gluon plasma and fundamental physics issues
The nature of matter at high densities is an issue of fundamental interest. Such matter occurred during
the Big Bang, and it is the ultimate and universal state of matter at very high energy densities.

A hypothetical phase diagram for QCD is shown in Fig. 4. The vertical axis is temperature,
and the horizontal is a measure of the matter or baryon number density, the baryon number chemical
potential [5]. The solid lines indicate a first-order phase transition, and the dashed line a rapid cross-
over. It is not known for sure whether or not the region marked cross-over is or is not a true first-order
phase transition. There are analytic arguments for the properties of matter at high density, but numerical
computations are of insufficient resolution. At high temperature and fixed baryon number density, there
are both analytic arguments and numerical computations of good quality. At high density and fixed
temperature, one goes into a superconducting phase, perhaps multiple phases of superconducting quark
matter. At high temperature and fixed baryon number density, the degrees of freedom are those of a
quark–gluon plasma.

Hadron Gas

Quark Gluon
Plasma

Quark Gluon Quark Gluon

Plasma Plasma

Hadron Gas Hadron Gas

Color
Superconductor

T

µB

T T

µB µB

t ~ 1980

t ~ 1990 t ~ 2000

The Evolving QCD Phase Transition 

Critical Temperature 150 - 200 MeV
Critical Density 1/2-2 Baryons/fm3 T = 0

µ B = 0( )
( )

Fig. 4: A phase diagram for QCD collisions

I have shown this phase diagram as a function of time. What this means is that at various times
people thought they knew what the phase diagram was. As time evolved, the picture changed. The latest
ideas are marked with the date 2000. The point of doing this is to illustrate that theoretical ideas in
the absence of experiment change with time. Physics is essentially an experimental science, and it is
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very difficult to appreciate the richness which nature allows without knowing from experiment what is
possible.

Much of the information we have about QCD at finite energy density comes from lattice gauge
theory numerical simulation [5]. To see how lattice gauge theory works, recall that at finite temperature,
the grand canonical ensemble is given by

Z = Tr e−βH . (4)

This is similar to computing

Z = 〈e−itH 〉 (5)

where −it = β. That is we compute the expectation value of the time evolution operator for imaginary
time. This object has a path integral representation, which has been described to you in your elementary
field theory text books. Under the change of variables, the action becomes iS = i

∫
dtL → S =

−
∫ β

0 dτL. Here L is the Lagrangian.

The grand canonical ensemble has the representation

Z =

∫
[dA]e−S[A] (6)

for a system of pure gluons. The gluon fields satisfy periodic boundary conditions due to the trace in the
definition of the grand canonical ensemble. (Fermions may also be included, although the path integral
is more complicated, and the fermion fields are required to satisfy antiperiodic boundary conditions.)
Expectation values are computed as

〈0〉 =
Tr Oe−βH

Tr e−βH
. (7)

The way that lattice Monte Carlo simulates the grand canonical ensemble is by placing all of the
fields on a finite grid, so the path integral becomes finite dimensional. Then field configurations are
selectively sampled, as weighted by their action. This works because the factor of e−βH is positive and
real. (The method has essential complications for finite density systems, since there the action becomes
complex.)

Lattice gauge theory numerical studies, and analytic studies have taught us much about the prop-
erties of these various phases of matter [5]. There have been detailed computations of the energy density
as a function of temperature. In Fig. 5 the energy density scaled by T 4 is plotted. This is essentially the
number of degrees of freedom of the system as a function of T . At a temperature of Tc ∼ 160–190 MeV
the number of degrees of freedom changes very rapidly, possibly discontinuously. This is the location of
the transition from the hadron gas to the quark–gluon plasma.

In Fig. 6, the sound velocity is plotted as a function of temperature. The sound velocity increases
at high temperature asymptoting to its ideal gas value of v2

sound ∼ 1/3. Near the phase transition, it
becomes very small. This is because the energy density jumps at the transition temperature, but the
pressure must be smooth and continuous. The sound velocity squared is dP/dε.

Lattice Monte Carlo simulation has also been used to study how the phase transition is related to
the confining force. In a theory with only gluons, the potential for sources of fundamental representation
colour charge grows linearly in the confined phase. (With dynamical fermions, the potential stops rising
at some distance when it is energetically favourable to produce quark–antiquark pairs which short out
the potential.)

We can understand how confinement might disappear at high temperature. At finite temperature,
there is a symmetry of the pure gluon Yang–Mills system. Consider a Wilson line which propagates from
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Fig. 5: The energy density scaled by T 4 as a function of temperature
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Fig. 6: The sound velocity as a function of temperature

(0, ~x) to the point (β, ~x). A Wilson line is a path-ordered phase,

L(x) = P exp i

∫ β

0
dtA0(t, ~x) . (8)

One can show that the expectation value of this line gives the free energy of an isolated quark:

e−βF =
1

Nc
〈Tr (L(x))〉 . (9)

Now consider gauge transformations which maintain the periodic boundary conditions on the gauge
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fields (required by the trace in the definition of the grand canonical ensemble). The most general gauge
transformation which does this is not periodic but solves

U(β, ~x) = ZU(0, ~x) . (10)

One can show that [z, τ a] = 0, and that ∇iZ = 0. Z is an element of the gauge group so that detZ = 1.
These conditions require that

Z = e2πij/Nc . (11)

This symmetry under non-periodic gauge transformations is global, that is it does not depend upon
the position in space. It may be broken. If it is realized, the free energy of a quark must be infinite since
L→ ZL under this transformation, and 〈L〉 = 0. If the symmetry is broken, quarks can be free.

Lattice gauge computations have measured the quark–antiquark potential as a function of T , and
at the deconfinement temperature, the potential changes from linear at infinity to constant. This is shown
in Fig. 7.

V(r)

T > T

T < T linear potential

constant potential

r

conf

conf

Fig. 7: The potential in pure gauge theory as a function of temperature

In addition to confinement–deconfinement, there is an additional symmetry which might occur
at high temperatures. In nature, the up and down quark masses are almost zero. This leads to a chiral
symmetry, which is the rotation of fermion fields by eiγ5θ. This symmetry would require that either
baryons are massless or occur in parity doublets. Neither arises in nature. The nucleon has a mass of
about 1 GeV and has no opposite parity partner of almost equal mass. It is believed that this symmetry
becomes broken, and as a consequence, the nucleon acquires mass, and that the pion becomes an almost
massless Goldstone boson. It turns out that at the confinement–deconfinement phase transition, chiral
symmetry is restored. This is seen in Fig. 8 where a quantity proportional to the nucleon mass is plotted
as a function of T .

The chiral symmetry restoration phase transition can have interesting dynamical consequences. In
the confined phase, the mass of a nucleon is of order NcΛQCD, but in the deconfined phase is of order
T . Therefore in the confined phase, the Boltzman weight e−M/T is very small. Imagine what happens
as we go through the phase transition starting at a temperature above Tc. At first the system is entirely
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Fig. 8: The chiral order parameter 〈ΨΨ〉 as a function of temperature

in QGP. As the system expands, a mixed phase of droplets of QGP and droplets of hadron gas forms.
The nucleons like to stay in the QGP because their Boltzman weight is larger. As the system expands
further, the droplets of QGP shrink, but most of the baryon number is concentrated in them. At the end
of the mixed phase, one has made large-scale fluctuations in the baryon number. This scenario is shown
in Fig. 9.

The confinement–deconfinement phase transition and the chiral symmetry restoration phase transi-
tion might be logically disconnected from one another. The confinement–deconfinement phase transition
is related to a symmetry when the quark masses are infinite. The chiral transition is related to a symmetry
when the quarks are massless. As a function of mass, one can follow the evolution of the phase transi-
tions. At large and small masses there is a real phase transition marked by a discontinuity in physical
quantities. At intermediate masses, there is probably a rapid transition, but not a real phase transition.
It is believed that the real world has masses which make the transition closer to a cross-over than a
phase transition, but the evidence from lattice Monte Carlo studies is very weak. In Fig. 10, the various
possibilities are shown.

2.3 The colour glass condensate
This section describes the colour glass condensate, and why it is important for our understanding of
basic properties of strong interactions [2], [6]. I argue that the colour glass condensate is a universal
form of matter which controls the high-energy limit of all strong interaction processes and is the part of
the hadron wavefunction important at such energies. Since the colour glass condensate is universal and
controls the high-energy limit of all strong interactions, it is of fundamental importance.

2.3.1 What is the colour glass condensate?
The colour glass condensate is a new form of matter which controls the high-energy limit of strong
interactions. It is universal and independent of the hadron which generated it. It should describe

– high-energy cross-sections
– distributions of produced particles
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Fig. 9: Formation of large-scale baryon number fluctuations at the QCD phase transition

– the distribution of the small-x particles in a hadron
– initial conditions for heavy-ion collisions

A very-high-energy hadron has contributions to its wavefunction from gluons, quarks, and anti-
quarks with energies up to that of the hadron and all the way down to energies of the order of the scale
of light-mass hadron masses, E ∼ 200 MeV. A convenient variable in which to think about these quark
degrees of freedom is the typical energy of a constituent scaled by that of the hadron,

x = Econstituent/Ehadron . (12)

Clearly the higher the energy of the hadron we consider, the lower the minimum x of a constituent.
Sometimes it is also useful to consider the rapidity of a constituent which is y ∼ ln(1/x).

The density of small-x partons is

dN
dy

= xG(x,Q2) . (13)

The scale Q2 appears because the number of constituents one measures depends (weakly) upon the
resolution scale of the probe with which one measures. (Resolution scales are measured in units of the
inverse momentum of the probe, which is usually taken to be a virtual photon.) A plot of xG(x,Q2) for
gluons at various x and Q2 measured at the HERA accelerator in protons [7] is shown in Fig. 11.

Note that the gluon density rises rapidly at small x in Fig. 11. This is the so-called small-x
problem. It means that if we view the proton head-on at increasing energies, the low-momentum gluon
density grows. This is shown in Fig. 12.

As the density of gluons per unit area per unit rapidity increases, the typical transverse separation
of the gluons decreases. This means that the matter which controls high-energy strong interactions is very
dense, and it means that the QCD interaction strength which is usually parametrized by the dimensionless
scale αs becomes small. The phase space density of these gluons ρ ∼ 1/πR2 dN/d2pT can become at
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Fig. 10: The phase diagram of QCD as a function of fermion mass
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Fig. 11: The number of gluons in a proton per unit rapidity at various rapidities and Q2 resolutions

most 1/αs since once this density is reached gluon interactions are important. This is characteristic of
Bose condensation phenomena which are generated by an instability proportional to the density ρ and
are compensated by interactions proportional to αsρ

2, which become of the same order of magnitude
when ρ ∼ 1/αs. Thus the matter is a colour condensate.

The glassy nature of the condensate arises because the fields associated with the condensate are
generated by constituents of the proton at higher momentum. These higher momentum constituents have
their time scales Lorentz time dilated relative to those which would be measured in their rest frame.
Therefore the fields associated with the low-momentum constituents also evolve on this long time scale.
The low-momentum constituents are therefore glassy: their time evolution scale is unnaturally long
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Fig. 12: The increasing density of wee partons as the energy increases

compared to their natural time scale. Hence the name colour glass condensate.

There is also a typical scale associated with the colour glass condensate: the saturation momentum.
This is the typical momentum scale where the phase-space density of gluons becomes ρ ≤ 1/αs.

At very high momentum, the fields associated with the colour glass condensate can be treated as
classical fields, like the fields of electricity and magnetism. Since they arise from fast moving partons,
they are plane polarized, with mutually orthogonal colour electric and magnetic fields perpendicular to
the direction of motion of the hadron. They are also random in two dimensions. This is shown in Fig. 13.

Fig. 13: The colour glass condensate as a high density of random gluon fields on a two-dimensional sheet travelling
near the speed of light
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2.3.2 Why is the colour glass condensate important?
Like nuclei and electrons compose atoms, and nucleons and protons compose nuclear matter, the colour
glass condensate is the fundamental matter of which high-energy hadrons are composed. The colour glass
condensate has the potential to allow for a first-principles description of the gross or typical properties of
matter at high energies. For example, the total cross-section at high energies for proton–proton scattering,
as shown in Fig. 14, has a simple form but for over 40 years has resisted simple explanation. (It has
perhaps been understood recently in terms of the colour glass condensate or saturation ideas [8–11].)

Fig. 14: The total cross-section for high-energy proton–proton interactions

The colour glass condensate forms the matter in the quantum mechanical state which describes a
nucleus. In the earliest stages of nucleus–nucleus collisions, the matter must not be changed much from
these quantum mechanical states. The colour glass condensate therefore provides the initial conditions
for the quark–gluon plasma to form in these collisions. A space–time picture of nucleus–nucleus colli-
sions is shown in Fig. 15. At very early times, the colour glass condensate evolves into a distribution
of gluons. Later these gluons thermalize and may eventually form a quark–gluon plasma. At even later
times, a mixed phase of plasma and hadronic gas may form.

Hadron Gas

QGP

Parton Formation

Thermalization

t

z

Fig. 15: A space–time diagram for the evolution of matter produced in heavy-ion collisions
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3 Lecture II: Ultrarelativistic nuclear collisions
Heavy-ion collisions at ultrarelativistic energies are visualized in Fig. 16 as the collision of two sheets of
coloured glass [12].

At ultrarelativistic energies, these sheets pass through one another. In their wake is left melting
coloured glass, which eventually materializes as quarks and gluons. These quarks and gluons would
naturally form in their rest frame on some natural microphysics time scale. For the saturated colour
glass, this time scale is of the order of the inverse saturation momentum (again, we convert momentum
into time by appropriate uses of Planck’s constant and the speed of light), in the rest frame of the produced
particle. When a particle has a large momentum along the beam axis, this time scale is Lorentz dilated.
This means that the slow particles are produced first towards the centre of the collision regions and the
fast particles are produced later further away from the collision region.

Fig. 16: The collision of two sheets of coloured glass

This correlation between space and momentum is similar to what happens to matter in Hubble
expansion in cosmology. The stars which are further away have larger outward velocities. This means
that this system, like the universe in cosmology is born expanding. This is shown in Fig. 17.

large p small p large p

Fig. 17: Particles being produced after the collision of two nuclei

As this system expands, it cools. Presumably at some time the produced quarks and gluons ther-
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malize. They then expand as a quark–gluon plasma and eventually as some mixture of hadrons and
quarks and gluons. Finally, they may become a gas of only hadrons before they stop interacting and fly
off to detectors.

In the last lecture, we shall describe the results from nucleus–nucleus collisions at RHIC in some
detail. Before proceeding there, we need to learn a little bit more about the properties of high-energy
hadrons. It is useful to introduce some kinematic variables which are useful in what will follow.

The light cone momenta are defined as

P± =
1√
2

(E ± pz) (14)

and light cone coordinates are

X± =
1√
2

(t± z) . (15)

The metric in these variables is

p · x = p+x− + p−x+ − pT · xT . (16)

Conjugate variables are x±〈–〉p∓. The square of the four momentum is

p2 = 2P+P− − P 2
T = M2 . (17)

The uncertainty principle is

∆x±∆p∓ ≥ 1 . (18)

Light cone variables are useful because in a high-energy collision, a left-moving particle has pz ∼
E, so that p+ ∼

√
2E, but p− ∼ m2

T/pz ∼ 0. For the right-moving particles, it is p− which is big and
p+ which is very small.

Light cone variables scale by a constant under Lorentz transformations along the collision axis.
Ratios of light cone momentum are therefore invariant under such Lorentz boosts. The light cone mo-
mentum fraction x = p+

i /P
+, where P+ is that of the particle we probe and p+

i is that of the constituent
of the probed hadron, satisfies 0 ≤ x ≤ 1. It is the same as Bjorken x, and for a fast-moving hadron, it is
almost Feynman xFeynman = Ei/E. This is the x variable one is using when one describes deep inelastic
scattering. In this case the label i corresponds to a quark or gluon constituent of a hadron.

One can also define a rapidity variable:

y =
1

2
ln

{
p+
i

p−i

}
∼ ln(2Ei/MT) . (19)

Up to mass effects, the rapidity is in the range −yproj ≤ y ≤ yproj. When particles, like pions, are
produced in high-energy hadronic collisions, one often plots them in terms of the rapidity variable.
Distributions tend to be slowly varying functions of rapidity.

3.1 Is there simple behaviour at high energy?
A hint of the underlying simplicity of high-energy hadronic interactions comes from studying the rapidity
distributions of produced particles for various collision energies. In Fig. 18, a generic plot of the rapidity
distribution of produced pions is shown for two different energies. The rapidity distribution at lower
energies has been cut in half and the particles associated with each of the projectiles have been displaced
in rapidity so that their staring points in rapidity are the same. It is remarkable that, except for the slowest
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Fig. 18: The rapidity distributions of particles at two different energies

Fig. 19: Experimental evidence from the PHOBOS experiment at RHIC on limiting fragmentation

particles in the centre-of-mass frame, those located near y ∼ 0, the distributions are almost identical [13].
This is shown for the data from RHIC in Fig. 19.

We conclude from this that going to higher energy adds in new degrees of freedom, the small-
x part of the hadron wavefunction. At lower energies, these degrees of freedom are not kinematically
relevant as they can never be produced. On the other hand, going to higher energy leaves the fast degrees
of freedom of the hadron unchanged.

This suggests that there should be a renormalization group description of the hadrons. As we go to
higher energy, the high-momentum degrees of freedom remain fixed. Integrating out the previous small-
x degrees of freedom should incorporate them into what are now the high-energy degrees of freedom
at the higher energy. This process generates an effective action for the new low-momentum degrees of
freedom. Such a process, when done iteratively, is a renormalization group.

3.2 A single hadron
A plot of the rapidity distribution of the constituents of a hadron, the gluons, is shown generically in
Fig. 20. I have used y = yhadron − ln(1/x) as my definition of rapidity. This distribution is similar in
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dy

y

Nd

Fig. 20: The rapidity distribution of the constituents of a hadron

shape to that of the half of the rapidity distribution shown for hadron–hadron interactions in the centre-of-
mass frame which has positive rapidity. The essential difference is that this distribution is for constituents
where the hadron–hadron collision is for produced particles, mainly pions.

In the high-energy limit, as discussed in the previous section, the density of gluons grows rapidly.
This suggests we introduce a density scale for the partons

Λ2 =
1

πR2

dN
dy

. (20)

One usually defines a saturation momentum to be Q2
sat ∼ αsΛ

2, since this will turn out to be the typical
momentum of particles in this high-density system. In fact, αs is slowly varying compared to the variation
of λ, so that for the purposes of the estimates we make here, whether or not there is a factor of αs
will not be so important. Note that αs evaluated at the saturation scale will be αs � 1. The typical
particle transverse momenta are of order p2

T ∼ Q2
sat � 1/R2

had. Therefore it is consistent to think of
the parton distribution as a high-density, weakly coupled system which is localized in the transverse
plane. The high-momentum partons, the degrees of freedom which should be frozen, can be thought of
as sitting on an infinitesimally thin sheet. We shall study this system with a resolution size scale which
is ∆x� 1/ΛQCD, so that we may use weak coupling methods. Such a thin sheet is shown in Fig. 21.

It is useful to discuss different types of rapidity variables before proceeding. The typical momen-
tum space rapidity is

y =
1

2
ln

(
p+

p−

)

= ln

(
2p+

MT

)

= ln

(
2p+

hadron
MT

)
+ ln

(
p+

p+
hadron

)

= yhadron − ln(1/x) . (21)

Here MT is a particle transverse mass, and we have made approximations which ignore overall shifts
in rapidity by of order one unit. Within these approximations, the momentum space rapidity used to
describe the production of particles is the same as that used to describe the constituents of hadrons.
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dx

Fig. 21: A thin sheet travelling near light velocity. The transverse resolution scale is ∆x.

Oftentimes a coordinate-space rapidity is introduced. With τ =
√
t2 − z2,

y =
1

2
ln

(
x+

x−

)
= ln(2τ/x−) . (22)

Taking τ to be a time scale of order 1/MT, and using the uncertainty principle x± ∼ 1/p∓, we find that
up to shifts in rapidity of order one, all the rapidities are the same. This implies that coordinate space and
momentum space are highly correlated, and that one can identify momentum-space and coordinate-space
rapidity with some uncertainty of order one unit.

If we plot the distribution of particles in a hadron in terms of the rapidity variable, the longitudinal
dimension of the sheet is spread out. This is shown in Fig. 22. The longitudinal position is correlated
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Fig. 22: The distribution of particles in a hadron in terms of rapidity variables

with the longitudinal momentum. The highest-rapidity particles are the fastest. In ordinary coordinate
space, this means the fastest particles are those most Lorentz contracted. If we now look down a tube of
transverse size ∆x << 1/ΛQCD, we intersect the various constituents of the hadron only occasionally.
The colour charge probed by this tube should therefore be random, until the transverse size scale becomes
large enough so that it can probe the correlations. If the beam energy is large enough, or x is small
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enough, there should be a large amount of colour charge in each tube of fixed size ∆x. One can therefore
treat the colour charge classically.

The physical picture we have generated is that there should be classical sources of to a good
approximation random charges on a thin sheet. The current for this is

Jµa = δµ+δ(x−)ρa(xT) . (23)

The delta function approximation should be good for many purposes, but it may also be useful in some
circumstances to insert the longitudinal structure

Jµa = δµ+ρa(y, xT) (24)

and to remember that the support of the source is for very large y.

3.3 The colour glass condensate
We now know how to write down a theory to describe the colour glass condensate. It is given by the path
integral [6]

∫
[dA][dρ] exp (iS[A, ρ] −W [ρ]) . (25)

Here S[A, ρ] is the Yang–Mills action in the presence of a source current as described above. The
function W weights the various configurations of colour charge. In the simplest version of the colour
glass condensate, this can be taken to be a Gaussian

W =
1

2

∫
dyd2xT

ρ2(y, xT)

µ2(y)
. (26)

In this ansatz, µ2(y) is the colour charge squared density per unit area per unit y scaled by 1/N 2
c − 1.

The theory can be generalized to less trivial forms of the weight function, but this form works at small
transverse resolution scales, ∆x � 1/Qsat. As one increases the transverse resolution scale one needs
a better determination of W . It turns out that at resolution scales of order 1/Qsat � ∆x � 1/ΛQCD, a
Gaussian form is still valid.

The averaging over an external field makes the theory of the colour glass condensate similar to that
of spin glasses. The solutions of the classical field equations also have F 2 ∼ 1/α, so the gluon fields are
strong and have high occupation number, hence the word condensate.

The theory described above has an implicit longitudinal momentum cutoff scale. Particles with
momentum above this scale are treated as sources, and those below it as fields. One computes physical
quantities by first computing the classical fields and then averaging over sources ρ. This is a good
approximation so long as the longitudinal momentum in the field is not too far below the longitudinal
momentum cutoff Λ+. If one computes quantum corrections, the expansion parameter is

αs ln(Λ+/p+) . (27)

To generate a theory at smaller momenta Λ
+ one first requires that αs ln(Λ+/Λ

+
) � 1. Then

one computes the quantum corrections in the presence of the background field. This turns out to change
only the weight function W . Therefore the theory maps into itself under a change of scale. This is a
renormalization group, and it determines the weight function W [6], [14, 15].
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3.4 Colour glass fields
The form of the classical fields is easily inferred. On either side of the sheet the fields are zero. They
have no time dependence, and in light cone gauge A+ = 0. It is plausible to look for a solution which
is purely transverse. On either side of the sheet, we have fields which are gauge transformations of zero
field. It can be a different gauge transformation of zero field on different sides of the sheet. Continuity
requires that F ij = 0. F i− is zero because of light cone time x+ independence, and the assumption that
A− = 0. F i+ is non-zero ∼ δ(x−) because of the variation in x− as one crosses the sheet. This means
that F i0 ∼ −F iz, or that E ⊥ B ⊥ ~z. These are transversely polarized Weiszacker–Williams fields.
They are random in the two-dimensional plane because the source is random. This is shown in Fig. 13.
The intensity of these fields is of order 1/αs, and they are not at all stringlike.

3.5 The gluon distribution and saturation
The gluon distribution function is given by computing the expectation value of the number operator
〈a†(p)a(p)〉 and can be found from computing the gluon field expectation value 〈A(p)A(−p)〉. This is
left as an exercise for the student. At large pT, the distribution function scales as

dN
dyd2pT

∼ 1

αs

Q2
sat

p2
T

(28)

which is typical of a bremsstrahlung spectrum. At small pT, the solution is ∼ ln(Q2
sat/p

2
T)/αs. The

reason for this softer behaviour at smaller pT is easy to understand. At small distances corresponding to
large pT, one sees point sources of charge, but at smaller pT, the charges cancel one another and lead to a
dipole field. The dipole field is less singular at large r, and when transformed into momentum space, one
loses two powers of momentum in the distribution function. In terms of the colour field, the saturation
phenomena is almost trivial to understand. (It is very difficult to understand if the gluons are treated as
incoherently interacting particles.)

Now Q2
sat can grow with energy. In fact it turns out that Q2

sat never stops growing. The intrinsic
transverse momentum grows without bound. Physically what is happening is that the low-momentum
degrees of freedom below the saturation momentum grow very slowly, like ln(Q2

sat) because repulsive
gluon interactions prevent more filling. On the other hand, one can always add more gluons at high
momentum since the phase space is not filled there.

How is this consistent with unitarity? Unitarity is a statement about cross-sections at fixed Q2. If
Q2 is above the saturation momentum, then the gluon distribution function grows rapidly with energy, as
Q2

sat. On the other hand, once the saturation momentum becomes larger than Q2, the number of gluons
one can probe

xG(x,Q2) ∼ πR2

∫ Q2

0
d2pT

dN
d2pTdy

(29)

varies only logarithmically. The number of gluons scales as the surface area. (At high Q2, it is propor-
tional to R2Q2

sat, and one expects that Q2
sat ∼ A1/3 so that xG(x,Q2) ∼ A.)

3.6 Hadron collisions
In Fig. 16, the collision of two hadrons is represented as that of two sheets of coloured glass. Before the
collisions, the left-moving hadron has fields

F i+ ∼ δ(x−)

F ij ∼ 0

F i− ∼ 0 (30)
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and that of the right-moving fields is analogous to that of the above save that ± → ∓ in the indices and
coordinates of all fields. The fields are of course different in each nucleus. We shall consider impact-
parameter-zero head-on collisions in what follows.

These fields are plane polarized and have random colours. A solution of the classical Yang–Mills
equation can be constructed by requiring that the fields be two-dimensional gauge transforms of vacuum
everywhere but in the forward light cone. At the edges of the light cone, and at its tip t = z = 0,
the equations are singular, and a global solution requires that the fields carry non-trivial energy and
momentum in the forward light cone. At short times, these fields are highly non-linear. In a time of order
τ ∼ 1/Qsat, the fields linearize. When they linearize, we can identify the particle content of the classical
radiation field.

This situation is much different than the case for quantum electrodynamics. Because of the gluon
self-interaction, it is possible to classically convert the energy in the incident nuclei into radiation. In
quantum electrodynamics, the charged particles are fermions, and they cannot be treated classically. Ra-
diation is produced by annihilation or bremsstrahlung as quantum corrections to the initial value problem.

The solution to the field equation in the forward light cone is approximately boost invariant over
an interval of rapidity of order ∆y � 1/αs. At large momentum, the field equations can be solved in
perturbation theory and the distribution is like that of a bremsstrahlung spectrum

dN
dyd2pT

∼ 1

αs
πR2Q

4
sat

p4
T
. (31)

It can be shown that such a spectrum matches smoothly onto the result for high-momentum-transfer jet
production.

One of the outstanding problems of particle production is computing the total multiplicity of pro-
duced gluons. In the CGC description, this problem is solved. When pT ≤ Qsat, non-linearities of the
field equations become important, and the field stops going as 1/p4

T. Instead it becomes of order

dN
dyd2pT

∼ 1

αs
πR2 . (32)

The total multiplicity is therefore of order

N ∼ 1

αs
πR2Q2

sat . (33)

If Q2
sat ∼ A1/3, then the total multiplicity goes as A, the high-pT differential multiplicity goes as

A4/3, as we naively expect for hard processes since they should be incoherent, and the low-momentum
differential multiplicity goes as A2/3, since these particles arise from the region where the hadrons are
black disks and the emission should take place from the surface.

In Fig. 23, the various kinematic regions for production of gluons are shown. In Fig. 24, the results
of numerical simulation of gluon production are shown. At small pT, it is amusing that the distribution
is well described by a two-dimensional Bose–Einstein distribution. This is presumably a numerical
accident, and in this computation has absolutely nothing to do with thermalized distributions.

3.7 Thermalization
As shown in Fig. 17, in a heavy-ion collision, the slow particles are produced first near the collision point
and the slow particles are produced later far from the collision point. This introduces a gradient into the
initial matter distribution, and the typical comoving volume element expands like 1/τ . To understand
the factor of 1/τ in the above equation, note that if we convert dN/dz = dN/dy, dy/dz = dN/dy 1/t,
where we used our previous definition of space–time rapidity, and where we evaluated at z = 0. This is
the physical rest frame density at z = 0.
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Fig. 23: A cartoon representation of the various kinematic regions of gluon production
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Fig. 24: The numerically computed distribution of produced gluons

If entropy is conserved, as is the case for a thermalized system with expansion time small com-
pared to collision time,

S ∼ T 3τR2 (34)

is fixed so that T ∼ 1/τ 1/3. Therefore for a thermalized system, the energy density decreases as ε ∼
1/τ4/3 for a system with no scattering so that the typical transverse momentum does not change, ε ∼ 1/τ .

For the initial conditions typical of a colour glass condensate, thermalization is not so easy to
do [16]. At the earliest times, the typical transverse momentum is large, of order of the saturation
momentum. At this scale, the coupling is weak αs(Qsat)� 1, at least for asymptotically large energy.

To estimate the typical scattering time, we need to know the density and the mean free path. At
early times, the density is that in the transverse space diluted by the longitudinal expansion of the system,

ρ = 〈p2
T〉/τ . (35)

The scattering cross-section is on the other hand σ ∼ α2
s ln(ρ)/〈p2

T〉. The logarithmic cutoff comes
about from Debye-screening the Coulomb cross-section. (The linear divergence can be shown to cancel
for thermalization processes.)
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Thermalization requires that τ � τscat, since τ itself is the characteristic expansion time. This
requires that

τ ≥ exp(c/αs)1/Qsat . (36)

For practical purposes and for weakly coupled systems, there is never thermalization by elastic scattering!

Thermalization, if it in fact occurs, takes place by inelastic scattering. The physics of what is
happening is easy to understand. Because the system begins its evolution with pT at such a large typical
scale Qsat, the coupling is weak and the system does not easily thermalize by elastic scattering. It there-
fore expands and becomes overly dilute compared to the typical density associated with the transverse-
momentum scale p3

T. When a system is overly dilute, the Debye screening length becomes very large,
since the Debye length scales inversely with the density. The Debye length is what cuts off scattering pro-
cesses in the infrared. Multigluon production processes can be shown to diverge like the Debye screening
length, whereas elastic processes only diverge like the logarithm of this length. Therefore, when the De-
bye screening length is of order 1/αs, multigluon production begins to become more important than
elastic scattering. This happens at a time τ ∼ 1/(αsQsat).

The details of how this thermalization occurs have not been fully worked out in detail. Current
estimates of the time of thermalization matter produced in heavy-ion collisions at RHIC energies range
from 0.3 ≤ τ ≤ 3 fm/c.

4 Lecture III: What we have learned from RHIC
In this lecture, I review results from RHIC and describe what we have learned so far about the production
of new forms of matter in heavy-ion collisions. I shall make the case that we have produced matter of
extremely high energy density, so high that it is silly not to think of it as composed of quarks and
gluons. I also shall argue that this matter is strongly interacting with itself. The issue of the properties
of this matter is still largely unresolved. For example, whether the various quantities measured are more
properly described as arising from a colour glass condensate or from a quark–gluon plasma, although we
can easily understand in most cases which form of matter should be most important.

The data presented here are taken from the RHIC whitepapers [13]. For references to the original
publications, please look there.

4.1 The energy density is big
The particle multiplicity as a function of energy has been measured at RHIC, as shown in Fig. 25.
Combining the multiplicity data together with the measurements of transverse energy or of typical parti-
cle transverse momenta, one can determine the energy density of the matter when it decouples [13]. One
can then extrapolate backwards in time. We extrapolate backwards using one-dimensional expansion,
since decoupling occurs when the matter first begins to expand three dimensionally. We can extrapolate
backwards until the matter has melted from a colour glass.

To do this extrapolation we use that the density of particles falls as N/V ∼ 1/t during one-
dimensional expansion. If the particles expand without interaction, then the energy per particle is con-
stant. If the particles thermalize, then E/N ∼ T , and since N/V ∼ T 3 for a massless gas, the tem-
perature falls as T ∼ t−1/3. For a gas which is not quite massless, the temperature falls somewhere in
the range To > T > To(to/t)

1/3, that is the temperature is bracketed by the value corresponding to no
interaction and to that of a massless relativistic gas. This one-dimensional expansion continues until the
system begins to feel the effects of finite size in the transverse direction, and then rapidly cools through
three-dimensional expansion. Very close to when three-dimensional expansion begins, the system de-
couples and particles free-stream to detectors without further interaction. We shall take a conservative
overestimate of this time to be of order tmelt ∼ 0.3 fm/c. The extrapolation backwards is bounded by
εf (tf/t) < ε(t) < εf (tf/t)

4/3. The lower bound is that assuming that the particles do not thermalize
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Fig. 25: Particle multiplicity as a function of energy as measured at RHIC

and their typical energy is frozen. The upper bound assumes that the system thermalizes as an ideal
massless gas. We argued above that the true result is somewhere in between. When the time is as small
as the melting time, then the energy density begins to decrease as time is further decreased.

This bound on the energy density is shown in Fig. 26. On the left axis is the energy density and
on the bottom axis is time. The system begins as a colour glass condensate, then melts to quark–gluon
matter which eventually thermalizes to a quark–gluon plasma. At a time of a few fm/c, the plasma
becomes a mixture of quarks, gluons, and hadrons which expand together.

At a time of about 10 fm/c, the system falls apart and decouples. At a time of t ∼ 1 fm/c, the
estimate we make is identical to the Bjorken energy density estimate, and this provides a lower bound on
the energy density achieved in the collision. (All estimates agree that by a time of order 1 fm/c, matter
has been formed.) The upper bound corresponds to assuming that the system expands as a massless
thermal gas from a melting time of 0.3 fm/c. (If the time was reduced, the upper bound would be
increased yet further.) The bounds on the energy density are therefore

2–3 GeV/fm3 < ε < 20–30 GeV/fm3 (37)

where we included a greater range of uncertainty in the upper limit because of the uncertainty associated
with the formation time. The energy density of nuclear matter is about 0.15 GeV/fm3, and even the
lowest energy densities in these collisions is in excess of this. At late times, the energy density is about
that of the cores of neutron stars, ε ∼ 1 GeV/fm3.

At such extremely high energy densities, the matter is most simply described in terms of its quark
and gluon degrees of freedom.
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Fig. 26: Bounds on the energy density as a function of time in heavy-ion collisions

Fig. 27: The CGC description of the participant dependence of the multiplicity of produced particles

4.2 The gross features of multiplicity distributions are consistent with coloured glass
As argued by Kharzeev and Nardi [17], the density of produced particles per nucleon which participates
in the collision Npart should be proportional to 1/αs(Qsat), and Q2

sat ∼ Npart. This dependence follows
from the 1/αs which characterizes the density of the colour glass condensate. In Fig. 27, we show the
data from PHENIX and PHOBOS [13]. The Kharzeev–Nardi form fits the data well. Other attempts
such as HIJING [18], or the so-called saturation model of Eskola–Kajantie–Ruuskanen–Tuominen [19]
are also shown in the figure.
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Fig. 28: Colour glass condensate fits to the rapidity density measured in the PHOBOS and BRAHMS experiments

Kharzeev and Levin have recently argued that the rapidity distributions as a function of centrality
can be computed from the colour glass description [20]. This is shown in Fig. 28.

4.3 The CGC describes features of deep inelastic scattering
The colour glass condensate provides a theory of the hadron wavefunction at very small values of x. As
such, it should describe features not only of high-energy nucleus–nucleus scattering, but also electron–
hadron scattering. This includes inclusive scattering and diffraction. It indeed appears that there is such
a successful phenomenology [21].

In these notes, I shall describe only one aspect of this phenomenology, geometric scaling [22]-
[25]. The basic idea is that the cross-section for virtual photon scattering from a hadron should be, up to
some trivial overall scale factor, a dimensionless function. If the saturation momentum is the only scale
in the problem and the properties of the matter probed depend only upon the density of the matter, then

σγ∗p ∼ F (Q2/Q2
sat(x)) (38)

and is not an independent function of x and Q2. The dependence of the saturation momentum on x can
be computed [26], or can be determined from data. In Fig. 29, this cross-section is plotted as a function
of τ = Q2/Q2

sat for values of x ≤ 10−2. Indeed, there appears to be such scaling.

While it is easy to understand this scaling for Q2 ≤ Q2
sat, it is perhaps a little surprising that it

works to much larger values of Q2. One can show that one expects approximate scaling up to Q2 ∼
Q4

sat/Λ
2
QCD. However, one should and can compute scaling violations [25].

4.4 The CGC provides a theory of shadowing
The naive expectation for the production of hard particles from a nucleus is that they should be generated
by incoherent scattering. This is, however, modified because of multiparticle scattering, and because the
gluon distribution function itself acquires a non-trivial dependence upon the nuclear baryon number. The
colour glass condensate provides a theory of this modification [27–32]
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Fig. 29: The cross-section σγ∗p as a function of τ for x ≤ 10−2

One can understand how this works by first considering the effects of multiple elastic scattering.
Such scattering does not change the number of particles. At very high pT, the effects of multiple scatter-
ing should be small, since cross-sections are small. At intermediate pT, the pT distribution in a nucleus
should broaden relative to that of incoherent scattering from nucleons. By conservation of probability,
this requires a suppression at low pT. By similar reasoning, one expects that these effects will be accen-
tuated as one goes from peripheral to more central collisions. The results of one such computation of
multiple scattering are shown in Fig. 30 [33].

One also expects that the effects of multiple scattering will be larger at small values of x because
there are more degrees of freedom to scatter from.

Such multiple-scattering effects are included in the CGC description of the hadron collisions, but
there is another effect which is larger at very small x. This is the quantum evolution of the hadron
wavefunction. Because the saturation momentum is larger in nuclei than it is in protons, it is more
difficult to produce glue at small x. Therefore as one goes to smaller values of x, there should be fewer
particles at small x relative to the expectation from incoherent scattering. In Fig. 31, pT distributions as a
function of x are shown for the ratio of hadron–nucleus collisions to incoherent scattering. At large values
of x there is a clear Cronin enhancement. At small values of x, there is a suppression as predicted by
quantum evolution in the CGC. There is a similar suppression as the centrality of the collisions increases
in distinction from the effects of multiple elastic scattering.

In the BRAHMS experiment, dAu collisions were used to study this effect. The results are shown
in Fig. 32 [13]. Similar results have been found by STAR and PHENIX [13]. The results are qualitatively
in accord with the CGC expectations, and also exhibit semi-quantitative agreement [34].

27

RELATIVISTIC HEAVY-ION PHYSICS: THREE LECTURES

241



1.0

1.1

1.2

1.3

1.4

1.5

dσ
dA

u 
/ 

A
d.A

A
u 

dσ
pp

0.5(π++π-), EKS’98 shadowing

0.5(π++π-), no shadowing

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

dσ
dA

u /
 A

d.A
A

u d
σ pp

0.5(π++π-), EKS’98 shadowing

0.5(π++π-), no shadowing

2 3 4 5 6
pT [GeV]

0.6

0.7

0.8

0.9

1.0

1.1

1.2

dσ
dA

u /
 A

d.A
A

u d
σ pp

0.5(π++π-), EKS’98 shadowing

0.5(π++π-), no shadowing

<kT
2> = <kT

2>pp + <∆kT
2>pA

perfect binary scaling

Y = +3

Y = -3 

Y = 0 

Total invariant cross sectionAll panels:

All panels:

Upper band: no initial state E-loss

Fig. 30: The expectations of multiple scattering in dAu collisions in a multiple-scattering computation

Fig. 31: The pT distributions in hadron–nucleus collisions relative to incoherent scattering. Different curves
correspond to different values of x.
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Fig. 32: The measurements from BRAHMS of the ratio of dAu high-pT particle production to that of incoherent
scattering as a function of x and centrality

4.5 Matter has been produced which interacts strongly with itself
In off-zero-impact-parameter heavy-ion collisions, the matter which overlaps has an asymmetry in den-
sity relative to the reaction plane. This is shown in the left-hand side of Fig. 33. Here the reaction plane is
along the x axis. In the region of overlap there is an x–y asymmetry in the density of matter which over-
laps. This means that there will be an asymmetry in the spatial gradients which will eventually transmute
itself into an asymmetry in the momentum space distribution of particles, as shown in the right-hand side
of Fig. 33.

In region of overlap

x

y

asymmetry of spatial
distribution -> 

distribution
asymmetry of momentum

2
φ)>V = < cos(2  tan( φ ) = py/px

Fig. 33: The asymmetry in the distribution of matter in an off-centre collision is converted to an asymmetry of the
momentum space distribution

This asymmetry is called elliptic flow and is quantified by the variable v2. In all attempts to theoretically
describe this effect, one needs very strong interactions among the quarks and gluons at very early times
in the collision [35]. In Fig. 34, two different theoretical descriptions are fit to the data by STAR and
PHOBOS [13]. On the left-hand side, a hydrodynamical model is used [36]. It is roughly of the correct
order of magnitude and has roughly the correct shape to fit the data. This was not the case at lower energy.
On the right-hand side are preliminary fits assuming colour glass [37]. Again it has roughly the correct
shape and magnitude to describe the data. In the colour glass, the interactions are very strong essentially
from t = 0, but unlike the hydrodynamic models it is field pressure rather than particle pressure which
converts the spatial anisotropy into a momentum space-anisotropy.
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Fig. 34: (a) A hydrodynamic fit to v2. (b) The coloured glass fit.

Probably the correct story for describing flow is complicated and will involve both the quark–
gluon plasma and the colour glass condensate. Either description requires that matter be produced in the
collisions and that it interact strongly with itself. In the limit of single scatterings for the partons in the
two nuclei, no flow is generated.

Recent data on charm particles show that they too flow with the produced matter [38, 39]. Charm
is a very heavy particle, and as such it requires many collisions with other particles before it can flow
with the surrounding matter. The amount of flow seen experimentally exceeds the wildest expectations
of theorists.

4.6 How strongly does the quark–gluon plasma interact?
4.6.1 Jets are quenched
One of the most interesting results from the RHIC experiments is the so-called ‘jet quenching’ [13],
[40–43]. In Fig. 35(a), the single-particle hadron spectrum is scaled by the same result in pp collisions
and scaled by the number of collisions. The number of collisions is the number of nucleon–nucleon
interactions, which for central collisions should be almost all of the nucleons. One is assuming hard
scattering in computing this number, so that a single nucleon can hard-scatter a number of times as it
penetrates the other nucleus. The striking feature of this plot is that the ratio does not approach one at
large pT. This would be the value if these particles arose from hard scattering which produced jets of
quarks and gluons, and the jets subsequently decayed.
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Fig. 35: (a) The pT distribution of particles scaled by the data from pp collisions times the number of hard collisions
inside the nuclei. (b) A pair of jets is produced in a hard collision and they propagate through the surrounding
matter.
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The explanation for this is shown in Fig. 35(b). Here a pair of jets is produced in a gluon–gluon
collision. The jets are immersed in a quark–gluon plasma, and rescatter as they poke through the plasma.
This shifts the transverse-momentum spectrum down, and the ratio to pp collisions, where there is no
significant surrounding media, is reduced.

This suppression has been conclusively shown to be a final-state effect. One can measure the
corresponding suppression in dA collisions, and at the central rapidity values where one sees strong
suppression in jet production in AuAu collisions, there is little suppression or even enhancement seen in
dA collisions. One can also look at the correlation in azimuthal angle of high-pT-produced particles, as
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Fig. 36: The forward–backward correlation for high-pT particles produced in STAR

shown in Fig. 36. In pp collisions, if there is a high-pT particle produced, then at an azimuthal angle 180
degrees away, one expects to see an excess of hard particles. This was done and verified in STAR. In
central AuAu collisions, one looks in the backward direction, and the peak has disappeared.

The essential problem with jet quenching is that it is much stronger than expected from QCD
computation. Jet quenching apparently persists out to 20 GeV, and is present for charmed particles.

One of the reasons why jet quenching is so important for the RHIC programme is that it gives a
good measure of the degree of thermalization in the collisions. If jets are strongly quenched by transverse
momenta of 4 GeV, then because cross-sections go like 1/E2 for quarks and gluons, this would be strong
evidence for thermalization at the lower energies typical of the emitted particles.

4.6.2 The matter flows and is well approximated by perfect fluid hydrodynamics
One can look for evidence of thermalization directly from the measured pT distributions. Here one
can do a hydrodynamic computation and in so far as it agrees with the results, one is encouraged to
believe that there is thermalization. On the other hand, these distributions may have their origin in the
initial conditions for the collision, the coloured glass. In reality, one will have to understand the tradeoff
between both effects. The hydrodynamic models do a good job in describing the data for pT ≤ 2 GeV.
Here there is approximate mT scaling, a characteristic feature of hydrodynamic computations. This
scaling arises naturally because hydrodynamic distributions are produced by flowing matter which has a
characteristic transverse flow velocity with a well-defined local temperature. Particles with the same mT
should have arisen from regions with the same transverse-flow velocity and temperature.
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Fig. 37: The hydrodynamical model fits to the mT spectra for the PHENIX and STAR data

Hydrodynamical models successfully describe the data on mT distributions [44]. In Fig. 37 the re-
sults of the simulation by Shuryak and Teaney are shown compared to the STAR and PHENIX data [13].
The shape of the curve is a prediction of the hydrodynamic model, and is parametrized somewhat by the
nature of the equation of state. Notice that the STAR data include protons near threshold, and here the
mT scaling breaks down. The hydrodynamic fits get this dependence correctly, and this is one of the best
tests of this description. The hydrodynamic models do less well on fits to the more peripheral collisions.
In general, a good place to test the hydrodynamic models’ predictions is with massive particles close to
threshold, since here one deviates in a computable way from the mT scaling curve, which is arguably
determined from parametrizing the equation of state.

If one can successfully argue that there is thermalization in the RHIC collisions, then the hy-
drodynamic computations become compelling. One should remember that hydrodynamics requires an
equation of state plus initial conditions, and these initial conditions are determined by coloured glass.
Presumably, a correct description will require the inclusion of both types of effects [45].

At present, hydrodynamical models do an excellent job of describing data on distributions of
particles with pT ≤ 2 GeV. This uses perfect fluid hydrodynamics with no viscosity. This was not
the case at CERN [46]. Estimates of the viscosity which is consistent with the experimental data give
numbers which are quite small, leading some to conclude that the quark–gluon plasma is the most perfect
fluid yet measured. There are of course some uncertainties in these conclusions, largely associated
with the initial conditions for the hydrodynamic equations, uncertainty in the equation of state, and
dispersion in the treatment of the matter at late times when the hydrodynamic description must break
down. Nevertheless, the fact that the hydrodynamic computations seem to work well, and the existence
of strong jet quenching, lead me to conclude that at a minimum, the matter produced is reasonably well
approximated as a thermal system, and that is remarkably strongly self-interacting. This means that I
believe that the semi-quantitative conclusions drawn from hydrodynamic simulation have substance.
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4.7 Confinement and chiral symmetry restoration
We would like to know whether or not deconfinement has occurred in dense matter or whether chiral
symmetry restoration has changed particle masses.
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Fig. 38: The CERES data on low-mass electron–positron pairs. The expected contribution from ordinary hadrons
is shown by the solid line. The data points are for the measured electron–positron pairs.

This can be studied in principle by measuring the spectrum of dileptons emitted from the heavy-
ion collision. These particles probe the interior of the hot matter since electromagnetically interacting
particles are not significantly attenuated by the hadronic matter. For electron–positron pairs, the mass
distribution has been measured in the CERES experiment at CERN [47], and is shown in Fig. 38. Shown
in the plot is the distribution predicted from extrapolating from pA collisions. There should be a clear ρ
and φ peak, which has disappeared. This has been interpreted as a resonance mass shift [48], enhanced
η′ production [49], but is most probably collisional broadening of the resonances in the matter produced
in the collisions [50]. Nevertheless, if one makes a plot such as this and the energy density is very high
and there are no resonances at all, then this would be strong evidence that the matter is not hadronic, i.e.,
the hadrons have melted.

The resolution in the CERES experiment is unpleasantly large, making it difficult to unambigu-
ously interpret the result. Whether or not such an experiment could be successfully run at RHIC, much
less whether the resolution could be improved, is the subject of much internal debate among the RHIC
experimentalists.

It has also been pointed out recently that the matter in the early stages after the collisions has
remarkable properties [51]. At the earliest times, there is both longitudinal colour electric and colour
magnetic fields. These fields evolve towards a thermalized system as the longitudinal fields evaporate
into gluons. I call this early matter the glasma. The fields have a non-zero colour ~E · ~B. This is an unusal
situation and generates an anomaly in the axial vector current. This means that even very energetic quarks
will flip their helicities in the presence of such fields, and generate chiral symmetry breaking. It has been
conjectured that such helicity flip may ultimately be responsible for mass generation in QCD. The idea
of the glasma with its anomalous fields is recent, and it is not yet possible to assess the experimental
implications.
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4.8 Confinement and J/Ψ suppression
In Fig. 39, the NA(50) data for J/Ψ production is shown [52]. In the first figure, the ratio of J/Ψ
production cross-section to that of Drell–Yan is shown as a function of ET, the transverse energy, for the
lead–lead collisions at CERN. There is a clear suppression at large ET which is greater than the hadronic

Fig. 39: (a) The ratio of produced J/Ψ pairs to Drell–Yan pairs as a function of transverse energy ET at CERN
energy. (b) The measured compared to the theoretically expected J/Ψ suppression as a function of the Bjorken
energy density for various targets and projectiles.

absorption model calculations which are plotted with the data [53]. In the next figure, the theoretically
expected J/Ψ suppression based on hadronic absorption models is compared to that measured as a
function of the Bjorken energy density for various targets and projectiles. There appears to be a sharp
increase in the amount of suppression for central lead–lead collisions.

Is this suppression due to Debye screening of the confinement potential in a high-density quark–
gluon plasma [54–56]? Might it be due to higher twists, enhanced rescattering, or changes in the gluon
distribution function [57, 58]? Might the J/ψ suppression be changed into an enhancement at RHIC
energies and result from the recombination in the produced charm particles, many more of which are
produced at RHIC energy [59–62]?

These various descriptions can be tested by using the capability at RHIC to do pp and pA as well as
AA. Issues related to multiple scattering, higher twist effects, and changes in the gluon distribution func-
tion can be explored. A direct measurement of open charm will be important if final-state recombination
of the produced open charm makes a significant amount of J/Ψ’s.

The data from the PHENIX experiment show roughly the same pattern of suppression as seen at
CERN [63]. This is a surprise since one naively expected that there should be more suppression at higher
energy densities. This had led some to speculate that there may be significant recombination effects
in the final state [59], [62]. This will be resolved after measurements of resonant states decaying into
charm, J/Ψ flow, and more, as the programme at RHIC continues.

4.8.1 Direct photons
One of the first suggestions for a signal of the quark–gluon plasma was thermal radiation due to pho-
tons [64–68]. Produced photons are penetrating, and in principle can measure the properties of the hot
matter at early times in the collision. The problem is that there are huge backgrounds from resonance
decays.
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At very large pT, the resonance backgrounds are small, but there the dominant process for making
photons is hard scattering of a gluon and a quark, and reflects the initial parton distribution functions.
This has been measured at RHIC, and agrees with perturbative computations. More recently, there has
been a claimed measurement from PHENIX of an excess seen at intermediate pT [69].

The excess is surely interesting, but it is an excess relative to a theoretical computation, and these
computations must be checked against the pp and dA data before one can be too excited about the result
seen in AA. Of course, one has to check against all possible sources of photons for AA before one
concludes that these photons arise from thermal radiation. As the results are new, these checks are not
yet complete.

4.8.2 The lifetime and size of the matter produced
The measurement of correlated pion pairs, the so-called HBT pion interferometry, can measure properties
of the space–time volume from which the hadronic matter emerges in heavy-ion collisions [70]. The
quantities Rlong, Rside and Rout shown in Fig. 40 measure the transverse size of the matter at decoupling
and the decoupling time.

Rout

Rlong

p∆

Rside

Fig. 40: The various radii used for HBT pion interferometry

In Fig. 41, the data from STAR and PHENIX are shown [13]. There is only a weak dependence
on energy, and the results seem to be more or less what was observed at CERN energies. This is a
surprise, since a longer time for decoupling is expected at RHIC. Perhaps the most surprising result is
that Rout/Rside is close to 1, whereas most theoretical expectations give a value of about Rout/Rside ∼
2 [71, 72]. Perhaps this is due to greater than expected opacity of the emitting matter? At this time,
there is no consistent theoretical description of the HBT data at RHIC. Is there something missing in our
space–time picture?

4.8.3 The flavour composition of the quark–gluon plasma
The first signal proposed for the existence of a quark–gluon plasma in heavy-ion collisions was enhanced
strangeness production [73]. This has led to a comprehensive programme in heavy-ion collisions to mea-
sure the ratios of abundances of various flavours of particles [74]. In Fig. 42(a), the ratios of flavour
abundances is compared to a thermal model for the particle abundances [75–77]. The fit is quite good. In
Fig. 42(b), the temperature and baryon chemical potential extracted from these fits is shown for experi-
ments at various energies and with various types of nuclei. It seems to agree reasonably well with what
might be expected for a phase boundary between hadronic matter and a quark–gluon plasma.

This would appear to be a compelling case for the production of a quark–gluon plasma. The
problem is that the fits done for heavy ions to particle abundances work even better in e+ e− collisions.
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Fig. 41: (a) The various HBT radii measured in heavy-ion experiments including the new data from STAR. (b)
The correlation functions which determine the radii as a function of the pair momenta measured in PHENIX.

Fig. 42: (a) Various ratios of particle abundances and the RHIC data. The lines are the predictions of a thermal
model. (b) The temperature vs baryon chemical potential for a thermal model which is fit to data at various
energies. The dashed line is a hypothetical phase boundary between a quark–gluon plasma and a hadronic gas.

One definitely expects no quark–gluon plasma in e+ e− collisions. There is a deep theoretical question
to be understood here: How can thermal models work so well for non-thermal systems? Is there some
simple saturation of phase space? The thermal model description can eventually be made compelling for
heavy-ion collisions once the degree of thermalization in these collisions is understood.
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[24] E. Iancu, K. Itakura and L. McLerran, Nucl. Phys. A708 (2002) 327.
[25] E. Iancu, K. Itakura and S. Munier, Phys. Lett. B590 (2004) 199.
[26] A. H. Mueller and D. Triantafyllopoulos, Nucl. Phys. B640 (2002) 331; D. Triantafyllopoulos,

Nucl. Phys. B648 (2003) 294.
[27] D. Kharzeev, E. Levin and L. McLerran, Phys. Lett. B561 (2003) 93.
[28] J. Jalilian-Marian, Y. Nara and R. Venugopalan, Phys. Lett. B577 (2003) 54.
[29] D. Kharzeev, Y. Kovcehgov and K. Tuchin, Phys. Rev. D68 (2003) 094013.
[30] R. Baier, A. Kovner and U. Wiedemann, Phys. Rev. D68 (2003) 054009; J. Albacete, N. Armesto,

C. Salgado and U. Wiedemann, Phys. Rev. Lett. 92 (2004) 082001.
[31] Jian-Wei Qiu and I. Vitev, Phys. Lett. B632 (2006) 507.
[32] E. Iancu, K. Itakura and D. Triantafyllopoulos, Nucl. Phys. A742 (2004) 182.
[33] I. Vitev, Phys. Lett. B562 (2003) 36.
[34] A. Dumitru, A. Hayashigata and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464.
[35] S. Voloshin and Y. Zhang, Z. Phys. C70 (1996) 665; A. M. Poskhanzer and S. A. Voloshin, Phys.

Rev. C58 (1998) 1671; J. Y. Ollitrault, Phys. Rev. D46 (1992) 229.
[36] P. F. Kolb, J. Sollfrank and U. Heinz, Phys. Lett. B459 (1999) 667; P. F. Kolb, P. Huovinen, U. Heinz

and H. Heiselberg, Phys. Lett. B500 (2001) 232.
[37] A. Krasnitz, Y. Nara and R. Venugopalan, Phys. Lett. B554 (2003) 21.
[38] J. Adams et al., Phys. Rev. Lett. 94 (2005) 06231.
[39] S. Adler et al., Phys. Rev. Lett. 94 (2005) 082301; Phys. Rev. Lett. 88 (2002) 192303.
[40] J. D. Bjorken, FERMILAB-PUB-82-059-THY.
[41] D. Appel, Phys. Rev. D33 (1986) 717.
[42] J. P. Blaizot and L. McLerran, Phys. Rev. D34 (1986) 2739.
[43] M. Gyulassy, P. Levai and I. Vitev, Nucl. Phys. B571 (2000) 197; Phys. Rev. Lett. 85 (2000) 5535;

Nucl. Phys. B594 (2001) 371.
[44] D. Teaney and E. V. Shuryak, Phys. Rev. Lett. 83 (1999) 4951; D. Teaney, J. Lauret and

E. V. Shuryak, nucl-th/0110037.
[45] D. K. Srivastava, Phys. Rev. C64 (2001) 064901.
[46] M. Gyulassy and L. McLerran, Nucl. Phys. A750 (2005) 30.
[47] G. Agakishiev et al., Nucl. Phys. A638 (1998) 159.
[48] G. E. Brown and M. Rho, Phys. Rep. 269 (1996) 33.
[49] J. Kapusta, D. Kharzeev and L. D. McLerran, Phys. Rev. D53 (1996) 5028.
[50] R. Rapp, G. Chanfry and J. Wambach, Phys. Rev. Lett. 76 (1996) 368.
[51] T. Lappi and L. McLerran, hep-ph/0602189.
[52] For the latest results, see M. C. Abreau et al., Nucl. Phys. A661 (1999) 93.
[53] J. Geiss, E. Bratskaya, W. Cassing and C. Greiner, nucl-th/981005; C. Spieles, R. Vogt, L. Gerland,

S. A. Bass, M. Bleicher, H. Stocker and W. Greiner, Phys. Rev. C60 (1999) 054901; D. E. Kahana
and S. H. Kahana, Phys. Rev. C60 (1999) 065206; N. Armesto, A. Capella, E. Ferreiro, A. Kaidalov
and D. Sousa, Nucl. Phys. A698 (2002) 583.

[54] T. Matsui and H. Satz, Phys. Lett. B178 (1986) 416.

38

L. MCLERRAN

252



[55] D. Kharzeev and H. Satz, Phys. Lett. B334 (1994) 155.
[56] J.-P. Blaizot and J.-Y. Ollitrault, Phys. Rev. Lett. 77 (1996) 1703.
[57] J. Armesto and A. Capella, Phys. Lett. B430 (1998) 23; A. Capella, E. G. Ferreiro and A. Kaidalov,

Phys. Rev. Lett. 85 (2000) 2080.
[58] Jian-wei Qiu, J. P. Vary and Xiao-fei Zhang, hep-ph/9809442.
[59] R. Thews, M. Schroeder and J. Rafelski, Phys. Rev. C63 (2001) 054905.
[60] P. Braun-Munzinger and J. Stachel, Phys. Lett. B490 (2000) 196.
[61] P. Braun-Munzinger and K. Redlich, Eur. Phys. J. C16 (2000) 519.
[62] M. Gorenstein and M. Gazdzicki, Phys. Rev. Lett. 83 (1999) 4009; M. Gorenstein, A. P. Kostyk,

H. Stoecker and W. Greiner, Phys. Lett. B509 (2001) 277; M. Gorenstein, A. Kostyk, L. McLer-
ran, H. Stoecker and W. Greiner, hep-ph/0012292; M. Gorenstein, A. Kostyk, H. Stocker and
W. Greiner, Phys. Lett. B524 (2002) 265.

[63] S. Adler et al., Phys. Rev. C69 (2004) 014901.
[64] E. Shuryak, Phys. Lett. B78 (1978) 150.
[65] K. Kajantie and H. I. Miettinen, Z. Phys. C9 (1981) 341.
[66] D. Srivastava and B. Sinha, Phys. Rev. Lett. 73 (1994) 2421.
[67] E. L. Feinberg, Nuovo Cim. A34 (1976) 391.
[68] L. McLerran and T. Toimeal, Phys. Rev. D31 (1985) 545.
[69] S. Adler et al., Phys. Rev. Lett. 94 (2005) 232301, see also the proceedings of Quark Matter 2005,

Budapest, Hungary.
[70] M. Gyulassy, S. Kauffmann and L. Wilson, Phys. Rev. C20 (1979) 2267.
[71] S. Chapman, P. Scotto and U. Heinz, Phys. Rev. Lett. 74 (1995) 4400; S. Chapman and U. Heinz,

Phys. Lett B340 (1994) 250.
[72] S. Soff, S. Bass and A. Dumitru, Phys. Rev. Lett. 86 (2001) 3981.
[73] B. Muller and J. Rafelski, Phys. Rev. Lett. 48 (1986) 1066; P. Koch, B. Muller and J. Rafelski, Phys.

Rep. 142 (1986) 167.
[74] For a summary, see M. Kaneta and N. Xu, J. Phys. G27 (2001) 589.
[75] For a state-of-the-art assessment review, see J. Cleymans, hep-ph/0201142; J. Cleymans and

K. Redlich, Phys. Rev. Lett. 81 (1998) 5284; Phys. Rev. C60 (1999) 054908.
[76] P. Braun-Munzinger, J. Stachel, J. P. Wessels and N. Xu, Phys. Lett. B365 (1996) 1;

P. Braun-Munzinger, I. Heppe and J. Stachel, Phys. Lett. B465 (1999) 15.
[77] G. Yen and M. Gorenstein, Phys. Rev. C59 (1999) 2788.

39

RELATIVISTIC HEAVY-ION PHYSICS: THREE LECTURES

253
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Abstract
The Joint Institute for Nuclear Research (JINR) is a large, multidisciplinary,
international, scientific centre in which fundamental research in modern el-
ementary particle physics, nuclear physics, and condensed-matter physics is
integrated with the development and application of the newest technologies
and university education activity in related areas.

1 Introduction
1.1 General information about the Joint Institute for Nuclear Research (JINR)
The Joint Institute for Nuclear Research (JINR) in Dubna was established on the basis of the convention
signed by the Plenipotentiaries of the governments of the Member States of JINR in March 1956 in
Moscow. JINR was created in order to unify the intellectual and material potential of the Member States
in order to study the fundamental properties of matter.

Dubna as a town of science was founded immediately after the end of World War II. In 1947 a
group of scientists led by Academician I.V. Kurchatov initiated construction of the then largest acceler-
ator of charged particles—the synchrocyclotron. The accelerator was commissioned in 1949. Extensive
fundamental and applied investigations into the properties of nuclear matter immediately started at the
newly established Institute for Nuclear Problems (INP) with its operating 680 MeV synchrocyclotron,
headed by the young physicists M.G. Meshcheryakov and V.P. Dzhelepov, later world-renowned scien-
tists.

After INP, the Electrophysical Laboratory of the USSR Academy of Sciences (EFLAN), headed
by Academician V.I. Veksler, was set up in Dubna. A new accelerator, a synchrophasotron with record
parameters for that time, was constructed at EFLAN.

In 1954 the European Organization for Nuclear Research (CERN) was established near Geneva to
unite the efforts of Western European countries for studying the fundamental properties of matter.

About the same time, under the stimulus of the USSR Government, the countries then belonging
to the socialist world took the decision to establish the Joint Institute for Nuclear Research in Dubna
from the INP and EFLAN laboratories. The same year, specialists from 12 countries (Albania, Bulgaria,
China, Czechoslovakia, East Germany, Hungary, Mongolia, N. Korea, Poland, Romania, USSR, and
Vietnam) came to Dubna. The town became international, and investigations into many fields of nuclear
physics of interest for research centres of the JINR Member States were launched there.

Many scientists and engineers from the Member States have been trained in the JINR scientific
schools established by N.N. Bogoliubov, D.I. Blokhintsev (Fig. 1), G.N. Flerov, I.M. Frank, B.M. Pon-
tecorvo, V.I. Veksler, and other outstanding physicists. The development of different scientific directions
at JINR is connected with the names of A. Baldin, A. Logunov, M. Markov, D. Shirkov, A. Tavkhelidze,
as well as L. Infeld and H. Niewodniczanski (Poland), G. Nadjakov (Bulgaria), H. Hulubei (Romania),
L. Janossy (Hungary), N. Sodnom (Mongolia), Wang Gangchang (China), Nguyen Van Hieu (Vietnam),
V. Votruba and J. Kozesnik (Czechoslovakia), H. Pose and K. Lanius (Germany), and others.

The Charter of the JINR was adopted in 1956, the text of which was revised in 1992 and more
recently in 1999. In accordance with the Charter, the activities of the Institute are achieved on the basis of
its openness, and the mutual and equal co-operation of all the interested parties to participate in research.
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Fig. 1: N.N. Bogoliubov and D.I. Blokhintsev

The aim of the Institute is

– to carry out theoretical and experimental investigations on adopted scientific topics;
– to organize the exchange of experience when carrying out research and the exchange of informa-

tion obtained as a result of these investigations through publication of scientific papers, holding of
conferences, symposia, etc.;

– to promote the development of the intellectual and professional capabilities of the scientific per-
sonnel;

– to establish and maintain contacts with other national and international scientific organizations and
institutes to ensure stable and mutual co-operation;

– to use the results of the investigations of an applied nature to provide supplementary financial re-
sources for fundamental research by implementing them into industrial, medical, and technological
developments.

The results of investigations carried out at the Institute can be used solely for peaceful purposes
for the benefit of mankind. So until the late 1980s, Dubna was a centre that unified the efforts of leading
research groups of nuclear sciences from socialist countries and the Soviet Union.

After the disintegration of the USSR, membership of JINR underwent the following changes: the
majority of Eastern European countries, such as Poland, the Czech and Slovak Republics, Bulgaria,
Romania, and others continue to be Member States and contribute to the budget. Germany remains as
an observer and makes a substantial financial contribution. Most of the former Soviet Union republics,
which became independent states, entered JINR as new members.

There are different ways to participate in the activities of the Institute: on the basis of full or
associated membership, or bilateral and multilateral agreements in order to perform particular scientific
programmes. The JINR Member States contribute financially to the Institute’s activities and have equal
rights in its management.

At present JINR has 18 Member States: Armenia, Azerbaijan, Belarus, Bulgaria, Cuba, Czech
Republic, Georgia, Kazakhstan, D.P. Republic of Korea, Moldova, Mongolia, Poland, Romania, Russian
Federation, Slovak Republic, Ukraine, Uzbekistan, Vietnam.

The JINR has special co-operation agreements concluded on the governmental level with Ger-
many, Hungary, Italy, and recently with the Republic of South Africa. Positive preliminary negotiations
with scientific officials of the USA, China, Greece, India and other countries are underway to conclude
similar governmental agreements with these countries.
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Among the major partners with whom JINR has long-term co-operation agreements are

– CERN, in the field of high-energy physics,
– IN2P3 (France), in the field of nuclear and particle physics,
– INFN (Italy), in the field of nuclear and particle physics,
– FNAL, BNL, SLAC and other research centres in the USA.

The activity of JINR in the territory of its host country, the Russian Federation, is carried out in
accordance with the Russian Federal Law on Ratification of ‘The Agreement between the Government
of the Russian Federation and JINR on the Location and Terms of Activity of JINR in the Russian
Federation’. The Federal Law was approved by the Federation Council on 22 December 1999 and
signed by the President of the Russian Federation, V. Putin, on 2 January 2000. The Federal Law came
into force from the date of its official publication—6 January 2000.

This Agreement underlines the international legal capacity of JINR and grants it privileges and
immunities in compliance with established practice for international intergovernmental organizations.

1.2 Governing and advisory bodies of JINR
– Committee of Plenipotentiaries of the JINR Member States
– Finance Committee
– Scientific Council
– Programme Advisory Committee for Particle Physics
– Programme Advisory Committee for Nuclear Physics
– Programme Advisory Committee for Condensed Matter Physics.

The Committee of Plenipotentiaries of the Governments of the Institute Member States is the
supreme body of the JINR and carries out its activities in the session order. Each member of the Institute
has one representative in the Committee of Plenipotentiaries.

Scientific policy is developed and co-ordinated by the Scientific Council, whose members are
eminent and well-known scientists from the Member States, as well as from CERN, Germany, Greece,
France, Italy, Belgium, the Netherlands, China, India, and other countries.

Three Programme Advisory Committees (PACs) for Particle Physics, Nuclear Physics and Con-
densed Matter Physics are advisory bodies of the JINR Directorate and to the JINR Scientific Council in
specific fields of research. The PACs hold their meetings twice a year.

3

SCIENTIFIC PROGRAMME OF THE JOINT INSTITUTE FOR NUCLEAR RESEARCH

257



1.3 JINR’s structure and the main fields of research activities
The internal organization of the JINR is determined by scientific specialization. There are seven Lab-
oratories at JINR and, by the scope of their scientific activities, each is comparable to a large research
institution:

– Bogoliubov Laboratory of Theoretical Physics (BLTP)
– Veksler-Baldin Laboratory of High Energies (VBLHE)
– Laboratory of Particle Physics (LPP)
– Dzhelepov Laboratory of Nuclear Problems (DLNP)
– Flerov Laboratory of Nuclear Reactions (FLNR)
– Frank Laboratory of Neutron Physics (FLNP)
– Laboratory of Information Technologies (LIT).

All-Institute subdivisions are

– Division of Radiation and Radiobiological Research
– University Centre.

Several associate experimental physics workshops are also part of the Institute. It is equipped
with everything necessary for manufacturing large-sized, non-standard facilities, electronics, and has
technological lines for constructing detectors for physics.

In the past four decades JINR has grown into a large multidisciplinary physics centre. It employs
over 5500 people, including 1300 scientists and about 2000 engineers and technicians.

The main fields of the Institute’s activities are as follows.

– Theoretical Physics
Quantum field theory and modern mathematical physics; Fundamental symmetries; Standard Model
and beyond; Astroparticle physics; Nuclear structure near the drip line; Dynamics of few-body
systems; Exotic properties of nuclear matter; Systems with strong correlations; Integrability; Self-
organization; Disordered structures.

– Elementary Particle Physics
Origin of mass; Nature of spin; Fundamental symmetries (including chiral symmetry); Nature of
dark matter; Neutrino mass; Deconfinement; Search for supersymmetry.

– Relativistic Nuclear Physics
Non-perturbative QCD; Spin effects in hadronic processes; Quark–gluon degrees of freedom;
Asymptotics in nuclear collisions; Mechanism of hadronization and confinement; Heavy-ion col-
lisions; Multiple production; Nuclear multifragmentation processes; Hypernuclei and η nuclei;
Cumulative effects; Spin structure of light nuclei; Physics of resonances; Nuclotron; Supercon-
ducting magnet technology.

– Heavy-Ion Physics
Nuclear reactions induced by beams of stable and radioactive nuclei; Synthesis and properties of
transuranium and superheavy nuclei; Properties of nuclei close to proton and neutron drip lines;
Chemistry of actinides and transactinides; Radioanalytical investigations; Heavy-ion accelerators;
Production of secondary beams; Interaction of heavy ions with condensed matter.

– Low- and Intermediate-Energy Physics
Fundamental physics phenomena and processes in nuclear physics; Rare decays of elementary
particles and nuclei; Nonaccelerator particle physics; Nature and properties of the neutrino.

– Nuclear Physics with Neutrons
Violation of fundamental symmetries in neutron-induced reactions; Beta-decay and electromag-
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netic properties of the neutron; Ultracold neutrons; Nuclear data for science and technology; Eco-
logical study with neutrons.

– Condensed-Matter Physics
Strongly correlated electron systems; Low-dimensional systems; Heterostructures; Quantum wells
and dots; Quantum liquids; Chaos; Self-organization; Disordered systems; Polymers; Biopoly-
mers; Biomembranes; Nanomaterials; Physics of surfaces.

– Radiation and Radiobiological Research
Radiobiology; Radiation genetics; Mutagenesis; Chromosomal aberration; Biophysics of pho-
tobiological processes; Target therapy; Radiation protection; Dosimetry; Neutron spectrometry;
Radiation transport through matter.

– Networks, Computing and Computational Physics
Distributed high-performance computing infrastructure; High-speed networking; Information, al-
gorithmic, and software support; Modelling of physical systems; Data processing and analytic
calculations for physics problems; JINR’s Grid segment and global Grid structures.

– Educational Programme
University-type education; Continuous education ‘secondary school–higher education institution–
research institution’; Postgraduate programmes; Extension of specialties; Collective use centres;
International schools; JINR-based educational departments.

A unique choice of experimental facilities is available at this Institute. Apart from the still oper-
ational early accelerator, the 680 MeV Phasotron, they include the Nuclotron, a new, superconducting
synchrotron for nuclei and heavy ions up to 6 GeV/n intended for relativistic nuclear physics studies; the
U400 and U400M cyclotrons used for experiments on the synthesis of heavy and exotic nuclei, on the
studies of their properties and heavy-ion reaction mechanisms; the IBR-2 reactor (mean power 2 MW,
peak power 1500 MW) used for nuclear physics research with neutrons and condensed-matter studies.
Also, several new facilities are being constructed at JINR, namely IREN, a new source of resonance
neutrons, and DRIBs, the Dubna Radioactive Ion Beams project.

2 JINR scientific policy and the road map
2.1 Worldwide recognized traditions of scientific schools
The Institute is proud of the prominent scientists who worked at JINR. They made outstanding contri-
butions to JINR’s research programme and established scientific schools at Dubna. Among them is the
famous theoretical physics school founded by professors N. Bogoliubov, D. Blokhintsev and M. Markov.

Another school on neutrino physics was founded by B. Pontecorvo who made the supposition
about neutrino oscillations. Professor V. Veksler, a distinguished scientist, is the author of the Phase
Stability Principle, being a base for modern accelerators. Professor G. Flerov is a prominent scientist
and founder of heavy-ion physics at JINR. Laureate of the Nobel and State Prizes, Professor I. Frank
made important contributions to the formation and development of various directions in physics: electro-
dynamics of a moving charged relativistic particle; nuclear and especially neutron physics. Relativistic
Nuclear Physics is a new scientific direction established at JINR by Professor A. Baldin.

A very big contribution to the formation of the JINR scientific schools was made by the prominent
scientists from the JINR Member States (see introduction). Our obligation and key strategic goal is to
preserve the traditions of JINR schools and to train young scientists in the spirit of these traditions.

2.2 International collaboration
Broad international co-operation is one of the most important principles of JINR’s activities. Almost all
investigations are carried out in close collaboration with the JINR Member States scientific centres, as
well as international and national institutions and laboratories around the world. JINR collaborates with
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nearly 700 research centres and universities in more than 60 countries, including Germany, France, Italy,
Japan, Switzerland, and the USA.

Over its 49 years of existence, first-class theoretical and experimental research programmes ac-
complished at JINR have led to a significant enrichment of fundamental nuclear science. JINR accounts
for a half (about 40) of the total number of discoveries in particle and nuclear physics, registered in the
former Soviet Union. About 500 research papers and reports representing approximately 3000 authors
are submitted every year by JINR to editorial boards of journals in many countries and to organizing
committees of conferences. JINR publications are sent to over 50 countries.

The Institute carries out theoretical and experimental research using its own basic facilities and
those of other major scientific centres throughout the world. These facilities provide ample and unique
opportunities for research in high-energy physics as well as in low- and intermediate-energy physics.
Widely used are novel information technologies and computational physics methods, which, on the
whole, maintain a modern level of research.

Here I would like to recall the words of the great Russian writer A. Chekhov, who said: “Science
cannot be national, in the same way that a multiplication table cannot be national. If a science becomes
national, it ceases to be a science.”

JINR is a perfect illustration of this idea.

2.2.1 Co-operation with CERN
Our long-standing scientific partner is CERN. For more than 40 years the co-operation between JINR
and CERN has been very fruitful and mutually beneficial. Though the general agreement between JINR
and CERN was signed in 1992, nevertheless, the real co-operation between the two international orga-
nizations has a long and rich history. JINR scientists and engineers are actively involved in the current
CERN experiments as well as in the preparation of future LHC projects. Today JINR participates in
twenty-seven CERN projects. Among them: ATLAS, CMS, ALICE, LHC (accelerator complex), DEL-
PHI (data analysis), DIRAC, HARP, NA45, NA48/1, NA48/2, NA49, NA58 (COMPASS) and others.

2.2.1.1 Science bringing nations together

A special page in our co-operation with CERN is the joint poster exhibition ‘Science Bringing Nations
Together’.

Since 1997 when the first joint exhibition of this series was held at the University of Oslo (Nor-
way), CERN and JINR have organized this exhibition every year. The exhibitions have been shown at
UNESCO (1998), at the United Nation’s office in Geneva (1999), in the European Parliament in Brussels
(2000), in Russia State Duma (2001), in Romania (2002), in Armenia (2003), in Russian Diplomatic
Academy (2003), and in Greece (2005).

The dominant theme of the exhibition is that joining of creative efforts and material resources
by scientists from various countries has become another important way for fruitful communication of
peoples and mutual understanding between them.

2.2.2 Co-operation with Germany
The Joint Institute has very fruitful relations with scientific centres in Germany. Since 1991, JINR has a
special co-operation agreement concluded on the governmental level—namely BMBF—with Germany.
At present JINR co-operates with 71 centres in Germany located in 47 cities.

Today the co-operation between JINR and German Scientific Groups is based on

– the BMBF–JINR Agreement, and
– Bilateral Agreements concluded between JINR and German Scientific Groups.
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The co-operation in the field of High-Energy Physics at DESY was included in the JINR–BMBF
Agreement in 1995. The Laboratory of Particle Physics of JINR and DESY co-operate in the experimen-
tal programme at the HERA electron–proton collider and in the R&D programme for the TESLA linear
collider and Free-Electron Laser (FEL). The Dubna group has made important contributions in all fields
of this collaboration.

In the HERMES Collaboration, the Dubna group has taken an active part in data analysis and
detector upgrades. Many thousands of events for the deeply virtual Compton scattering processes have
been collected at HERMES.

2.2.3 Co-operation with the USA
JINR is implementing a wide scientific collaborative programme with US research laboratories. This
co-operation is carried out in the fields of high-energy physics, heavy-ion physics, nuclear physics with
neutrons, and accelerator technologies. At present, the Joint Institute for Nuclear Research collaborates
with 75 US scientific centres located in 66 cities.

JINR is developing a successful collaboration with FNAL. At this Laboratory, groups of JINR
scientists have been taking part in the experiments using the CDF and D0 detectors.

Another good example is the active collaboration with the Brookhaven National Laboratory. JINR
scientists are participating in the design and construction of the electromagnetic calorimeters for the
STAR detector.

2.3 JINR’s Road Map
First of all I would like to stress once more that fundamental studies remain the core mission of the Joint
Institute. The ‘old’ challenging questions ‘What is the world made of?’ and ‘What holds it together?’
are still capturing the imagination and professional interests of physicist all over the world.

The evaluation of the Universe beginning from the Big Bang up to its modern state is a subject of
particle physics studies (mainly at the early stages), as well as of nuclear and condensed-matter studies
at later stages. The JINR research programme covers all three research directions. The investigations
are being carried out both at in-home experiments and external experiments with JINR’s participation.
Thereby JINR enhances its role as a cluster scientific centre for its Member States, giving good oppor-
tunities for scientists to participate in research programmes of many other well-known centres in the
world.

I would like to note that, since its very foundation, JINR has developed as a centre of Particle
Physics. The first basic facilities of JINR—the synchrocyclotron and synchrophasotron—were at that
time HEP accelerators with record parameters. Gradually the methods and approaches used in high-
energy physics had an essential influence on other branches of science which were developed as new
research directions at JINR: condensed-matter physics, nuclear physics with neutrons, radiobiology, and
others.

We also consider our innovation activities to be of high importance. We must bring them to the
commercial level, to get into the world high-tech market.

2.3.1 The Road Map in the field of Particle Physics
To ensure the scientific excellence of JINR and maximize its scientific and technological output, we re-
cently started to elaborate the Road Map—a strategic plan of the Institute’s development in the fields
of particle physics, nuclear physics, and condensed-matter physics for the next 10–15 years. The de-
velopment of the Road Map is based on JINR’s seven-year Programme (2003–2009) and our annual
document—the Topical Plan for Research and International Co-operation. At the same time we consider
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the Road Map as an important step for strategic planning of the overall research activity of the Institute
based on the three main scientific directions: particle physics, nuclear physics, and condensed-matter
physics. We intend to focus our efforts on the implementation of really ambitious projects.

When developing first proposals for the Road Map in the field of particle physics (as well as in
other fields) we proceeded from the priorities in this area accepted today by the international physical
community and our real capabilities. In the light of these statements we single out the following priori-
ties:

– the origin of mass;
– the properties of neutrinos;
– the properties of the strong interaction including properties of nuclear matter;
– the origin of the matter–antimatter asymmetry in the Universe;
– the unification of particles and forces including gravity.

JINR’s research programme in the field of particle physics is aimed at solving these tasks based
on the Nuclotron and external facilities.

Of special interest are studies on nucleon spin
structure (Fig. 2) with JINR’s participation in
DESY (HERMES experiment) and CERN (Com-
pass project). In the future this research will take
place in Serpukhov at the U-70 accelerator and also
in the PAX experiment—a spin physics experiment
at FAIR (GSI, Germany).

Fig. 2: Generalized Parton Distributions (GPD)

Neutrino physics is a traditional research direction for JINR and mainly connected with the name
of Professor Bruno Pontecorvo, one of the founders of neutrino physics schools. The NOMAD and
HARP experiments are almost completed and at present JINR is planning to participate actively in the
OPERA experiment connected with tau neutrino appearance.

Another ambitious task in the field of particle physics is the CP-violation effect. Here we must
mention first of all the NA48 experiment at CERN (Fig. 3). You know that the first evidence of direct
CP violation has been obtained. This result was achieved in neutral kaon decays by the ε′/ε measure-
ment with the world’s highest precision. Professor V. Kekelidze from JINR occupies the position of the
NA48/2 Spokesperson until the end of 2005.

The new estimate of the upper limit for KL decay on pion and two neutrinos branching ratio was
obtained 2×10−7; confidence level is 90%. The JINR group contributed significantly to this experiment
as well.

The verification of the Standard Model and the tasks beyond it are also traditionally in the focus of
our interests. As an example I would like to mention a big success which has been achieved recently in
the most precise top-mass measurement experiments (CDF and D0 projects) with the participation and
remarkable contribution of JINR scientists (Fig. 4).

The JINR–INFN–FNAL team made a contribution of principal significance to the world’s most
precise Mtop measurement in the so-called ‘lepton + jets’ topology. The efforts of the team are aimed at
significantly reducing the error of the Mtop up to the 2 GeV/c2 level which will enable us to establish a
new limit on the Higgs mass.
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Fig. 3: World best measurement of direct CP violation in K0 decays

Fig. 4: World best: Mtop = 173.5 + 3.7/− 3.6(stat.)± 1.3(syst.) ‘lepton + jets’ mode

The Nuclotron accelerator complex
The Nuclotron acclerator (Fig. 5) is competitive with other world ion facilities for the acceleration of
polarized deutrons and helium ions with an intensity higher than 1011 particles/cycle. It can accelerate
heavy ions up to uranium.

In the next few years the Nuclotron will be equipped with new sources both for polarized light ions
and for heavy ions. The energy will be increased up to 6 GeV/nucleon. That will allow one to investigate
spin structure of nucleons and nuclei and to study phase transitions in nuclear matter.

Among the challenging tasks carried out at the Nuclotron, of special interest is a search for the
mixed phase corresponding to the first-order chiral phase transition and probably to the deconfinement
transition (Fig. 6).

It is predicted by a group of JINR theoreticians (A. Sissakian, A. Sorin, M. Soleimanov, V. Toneev,
G. Zinovjev et al.) that at the highest possible energies of the Nuclotron heavy-ion beams the mixed
phase formation may become possible. This will open a new perspective in the physics programme of
the Nuclotron.
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Fig. 5: Nuclotron (superconducting synchrotron)

Fig. 6: Heavy-ion collisions in relativistic 3-fluid hydrodynamics

2.3.2 The Road Map in the field of Nuclear Physics
The priorities in heavy-ion physics are

– physics and chemistry investigations of the super heavy nuclei with Z ≥ 112; structure and prop-
erties of the neutron reach light exotic nuclei;

– acceleration technology;
– heavy-ion interaction with matter and applied research.

To accomplish these tasks the JINR FLNR Cyclotron Complex will be upgraded for producing
intense beams of accelerated ions of stable (48Ca, 58Fe, 64Ni, 86Kr) and radioactive (6He, 8He) isotopes.

The main experimental facility of the Flerov Laboratory of Nuclear Reactions is the complex of
two heavy-ion cyclotrons—U400 and U400M. For the last decade, heavy-ion physics has been the most
dynamically developing area of low- and intermediate-energy physics and JINR has become one of the
leading scientific centres in heavy-ion physics in the world.
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Let me remind you that at the end of 1998, scientists of JINR, in collaboration with colleagues
from the Lawrence Livermore National Laboratory (USA), synthesized a new, long-lived superheavy
element with atomic number 114. This discovery crowned 35 years of international research efforts
in search of the ‘stability island’ for superheavy nuclei. A wide resonance followed new experiments
accomplished in 1999–2005 at the JINR U400 accelerator on the synthesis of new elements with atomic
numbers 116, 118, 115 and 113.

Fig. 7: Cyclotron complex of JINR FLNR - DRIBS-1

During the last few years, the DRIBs facility (Dubna Radioactive Ion Beams) has been developed
at JINR. The main task of this machine is to produce intense beams of accelerated ions of stable and
radioactive isotopes. The first experiment with the 6He radioactive beam was carried out at DRIBs in
2005. The world record for intensity (5× 106 pps) with this beam on the target was achieved (Fig. 7)

2.3.3 The Road Map in the field of Condensed-Matter Physics
The priorities are

– modernization of the IBR-2,
– condensed-matter research with neutrons,
– material science with heavy ions,
– radiobiological research.

The programme in the field of condensed-matter physics is oriented towards the use of nuclear-
physical methods developed at JINR to solve topical problems of present-day natural sciences, concerned
with the properties of matter in a condensed state.

The main facility here is the IBR-2 pulsed reactor (Fig. 8) which is in a phase of modernization.
As a result JINR will have in operation a unique world-class pulsed neutron source—the only machine
of this sort in the JINR Member States. Its parameters will be unique in many aspects which will allow
a rich research programme for another 20–30 years. IBR-2 is included in a 20-year strategic programme
of neutron scattering research in Europe.

Summarizing this part of my lecture I would like to note that while developing the Road Map we
should take due account of the main supporting activities:

– theory of particle physics, nuclear physics, condensed-matter physics
– modern mathematical physics
– networking and computing
– training of young staff
– physics methods.
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Fig. 8: IBR-2 pulsed reactor with neutron
flux 1016n cm−2s−1

Fig. 9: V.G. Kadyshevsky and A.N. Sissakian

3 Dubna as an educational centre
The educational programme plays an important role in the activities of JINR. It should be stressed that
the concept of JINR’s development is the integration of fundamental science, technological studies, and
education. To achieve this task, in 1991 we established the JINR University Centre (Head: Dr S. Ivanova)
and in 1994, together with the Russian Academy of Natural Sciences, the authorities and management of
Moscow Region the ‘Dubna’ International University for Nature, Society, and Man (President: Academi-
cian V. Kadyshevsky, Vice-president: Professor A. Sissakian (Fig. 9), Rector: Professor O. Kuznetsov).

Since 1995, the University Centre of JINR has been offering postgraduate training. The Univer-
sity Centre offers graduate programmes in the fields of nuclear physics, elementary particle physics,
condensed-matter physics, theoretical physics, technical physics, and radiobiology.

Our strategic plan is to develop JINR as a kind of ‘superuniversity’ centre with the aim of training
specialists from the JINR Member States and other countries. These specialists will be engaged in the
research activities in Dubna, as well as possibly joining future megaprojects like the LHC, TESLA, and
others.
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4 Innovation activities
Along with fundamental research, which is the main direction of JINR’s development, we have a large
number of applied studies and activities, including development of high technologies:

– New technological developments, R&D and construction of detectors and large facilities for sci-
entific research and applied studies.

– Multichannel amplitude analysers, fixed and portable spectrometers of nuclear radiation, portal
monitors.

– Development of IT, including Grid technology
– Ecological monitoring using methods of nuclear physics analysis.
– New materials based on track membranes.
– Medical beams at the Phasotron, JINR’s Med-Nuclotron.
– Ultrapure radioisotopes for nuclear medicine and ecology.
– Detector ‘DVIN’ for identification of explosives, fissile materials, and narcotic substances.

At the present time, we have a good basis for developing the so-called ‘innovation belt’ around the
Institute. Based on the huge intellectual and industrial–technological potential of JINR, it is proposed to
actively participate in the creation of a ‘Dubna’ technopark (including development of the JINR ‘inno-
vation belt’) as well as in the use of the mechanism of private and state partnership for creating a Special
Economic Zone in Dubna, in accordance with the legislation of the host country of our Institute. JINR
will play the role of scientific leader in this partnership. The well-known Russian company AFK ‘Sys-
tema’ will act as business partner. The administration of the city, the ‘Dubna’ international university,
and a number of Dubna enterprises are also engaged in the process of technopark creation.

13

SCIENTIFIC PROGRAMME OF THE JOINT INSTITUTE FOR NUCLEAR RESEARCH

267



5 JINR’s long-term research programme
Elaborating on the JINR Road Map it is noteworthy to consider a proposal of an ambitious large-scale
project to be created in Dubna. Among the possible megaprojects we are considering is the ILC project
(International Linear Collider, see Fig. 10).

Fig. 10: Possible location for the ILC in the vicinity of Dubna (Russia)

ILC is a collaborative international project aimed at the design of a high-energy, large-scale
positron–electron collider. The ILC would provide a tool for scientists to address many of the most
challenging tasks of the 21st century. We consider the proposal on ILC (or may be some other proposals
on megaprojects) as a ‘maximum programme’ of JINR’s strategic development for approximately 20–25
years ahead.

6 Conclusion
We understand well that science is united. The methods, experience, and knowledge accumulated in high-
energy physics research could be useful in other sciences too. We should think it over in order to find
an appropriate interface with other actively developing branches of knowledge, for instance astroparticle
physics and cosmology, informatics, nanotechnologies, biology and medicine, quantum computers, and
others.
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The physics of ski jumping

W. Müller
Department of Biophysics, Medical University of Graz, Austria

1 Introduction
The Olympian ideal of going faster, jumping further and leaping higher than the opposition is central to
competitive sports. Winning or losing in sport is related to a number of factors, and biomechanics, an-
thropometrics, and aerodynamics play a major role in many sports. This lecture focuses on ski jumping.

Performance in ski jumping is determined not only by the motor abilities of the athlete, but also
to a large extent by the aerodynamic features of the equipment used and by a low body weight. Many
ski jumpers were extremely underweight to the point of having a body mass index (BMI = m/h2 of
16.4 kgm−2 (height h = 1.73m, body mass m = 49 kg).

Severe eating disorders (e.g., anorexia nervosa, bulimia; [1]) were health problems of major con-
cern in this sport. Strategies for improving the health, fairness, and safety of the athletes by modifying
the regulations have been developed by the lecturer and his research team in close co-operation with
the International Ski Federation (FIS), the International Olympic Committee (IOC), and the Austrian
Research Funds (FWF). Based on our scientific studies the FIS has passed changes to the ski jumping
regulations which relate relative body weight (in terms of BMI) to the maximum ski length permitted.
Shorter skis (i.e., ‘smaller wings’) compensate for the advantage of very low weight and thus it is not
attractive for the athletes to be underweight any more [2].

Our analyses of contemporary ski jumping employ field studies during World Cup and Olympic
Games competitions, wind tunnel measurements, computational fluid dynamic (CFD) modelling of aero-
dynamic forces and torques, computer simulations of the flight trajectory, and computer-modelling-based
design of jumping hills [3–7].

2 The dynamics of ski jumping: a brief description
Ski jumping puts high demands on the athlete’s ability to control posture and movement. During the
in-run the athlete tries to maximize acceleration by minimizing both the friction between skis and snow
and the aerodynamic drag in order to obtain a maximum in-run speed v0, which has a high degree of
influence on the jump length. The friction between skis and snow is not well understood. The physics
text book solutions to this problem do not reflect reality. The theoretical as well as the empirical basis for
these complex problems are not sufficiently developed. The reduction of aerodynamic drag in the in-run
phase is primarily a question of the athlete’s posture and his dress. Owing to the curved form of the in-run
just before the ramp, the athlete has to counteract the centrifugal force acting on him (as seen from the
athlete’s point of view) and this phase is immediately followed by the athlete’s acceleration perpendicular
to the ramp due to the muscular forces exerted. During this decisive phase of approximately 0.3 s duration
the athlete has to produce a maximal momentum mvp0 perpendicular to the ramp (m: mass of the athlete
plus equipment) through which an advantageous take-off angle has to be attained. The take-off velocity
vector ~v00 is given by ~v00 = ~v0 + ~vp0 with ~vp0 being the velocity perpendicular to the ramp due to the
athlete’s jump. Simultaneously, the athlete must produce an angular momentum forwards in order to
obtain an advantageous angle of attack as soon as possible after leaving the ramp. During the jump
phase the athlete must anticipate the magnitude of the backward torque due to the air-stream so that the
forward rotation will be stopped at the right moment. If the forward angular momentum is too low, a
disadvantageous flight position reduces velocity and, therefore, results in bad competitive performance.
Worse is the production of too much forward angular momentum because this substantially increases the
tumbling risk. During the flight the gravitational force Fg, the lift force Fl, and the drag force Fd act
upon the athlete:
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Fg = mg ; Fl =
ρ

2
v2clA =

ρ

2
v2L ; Fd =

ρ

2
v2cdA =

ρ

2
v2D .

The velocity of motion along the flight path v has the components ẋ and ẏ

v2 = ẋ2 + ẏ2 .

The athlete can strongly influence the aerodynamic forces by changing his posture. He can affect the
drag force, the lift force and the torque, and thereby significantly influence changes in his flight position
relative to the air stream. The flight path is described by the following non-linear differential equations
which can be solved numerically by using proper iterative procedures:

v̇x =
(−Fd cos ϕ− fl sin ϕ)

m
v̇y =

(−Fd sin ϕ− fl cos ϕ)
m

− g .

ẋ = vx ẏ = vy

In order to achieve highly realistic computer simulations, it is necessary to be able to simulate changes
in posture and position during the simulated flight, i.e., changes in the resulting aerodynamic forces. We
developed such a computer model of ski jumping in 1995 [3, 4].

2.1 Basic aerodynamic problems
Aerodynamic questions related to sports are complex and manifold. For this reason the influencing
phenomena should be investigated by both theoretical and experimental approaches.

2.1.1 Theoretical approach
The Navier–Stokes equations which describe the dynamics of Newtonian fluids have inherent major
mathematical difficulties. Exact solutions are only possible in special cases involving objects with simple
geometries that do not exist in sports. The numerical solution becomes increasingly difficult as Reynolds
numbers increase, even when supercomputers are used for the numerical solution of these non-linear
partial differential equations. Owing to the non-linearity of the equations, a variation of the geometrical
and fluid mechanical parameters can result in bifurcations and the non-linear fluid system can display
deterministic chaos. Computational fluid dynamics is proving to be invaluable at the early stage of
trend analysis prior to prototype testing in several kinds of sports (e.g., Formula 1, yachting). Initial
studies of ski jumping have also been made. However, the thin boundary layers around moving bodies
have to be resolved accurately and the associated physical effects are notoriously difficult to predict
accurately in CFD. A combination of measurement and CFD is the state-of-the-art approach necessity
when appropriate predictions for sports aerodynamics are desired. The best configurations found in wind
tunnel tests still have to be tested in the field by the athletes before their competition debut. In ski
jumping (and many other sports as well) the characteristic dimensions of the body and/or equipment and
the typical velocities result in Reynolds numbers between Re = 104 and Re = 106 where pronounced
changes in the drag coefficient may occur: cd = cd(Re). This was already shown for the sphere in
1912 by G. Eiffel [8] and in 1914 by C. Wieselsberger [9]. The sensitivity of the transition from laminar
to turbulent flow on the roughness of the surface (or on small surface obstacles) was also shown. The
theoretical approach describing the lift forces is at least as difficult as the discussion of the drag, and
science still does not have a complete understanding when turbulence phenomena occur. Micro effects
can be the starting point for major flow changes in a system and to discount them in modern turbulence
models or even to ignore them leads to completely inaccurate predictions of the whole process.

2.1.2 Experimental approach
Small changes in the lift and/or drag coefficients can have pronounced consequences for the sport con-
cerned. Therefore, accurate measurements in the wind tunnel are necessary when these data are to be
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used for subsequent mapping of ‘real world’ problems. A wind tunnel with a sufficiently large cross-
section is necessary to minimize blockage effects. Because the athletes must be studied in various pos-
tures in full gear, adequate positioning devices are required. However, these devices can cause secondary
errors even when the forces acting solely on the devices are considered. Positioning devices that lead
to small disruptions in the air flow around the athletes need to be designed. The experimental problems
are smaller for those questions where only relative changes in the aerodynamical parameters are to be
considered. However, the design of experiments reflecting the special circumstances of different sports
is not trivial at all. A reliable interpretation of the effects associated with different aerodynamical charac-
teristics usually necessitates a computer-based analysis of the experimental data. So, for instance, a given
increase of the drag area D = cdA during the initial flight phase reduces the jump length much more than
would be the case during the final phase of the flight. Analogously, a change in the drag coefficient of the
athlete in the crouched position may occur during the in-run phase due to a Reynolds-number increase
beyond the critical value (e.g., when the velocity increases). These phenomena may strongly depend
on individual body dimensions of the athletes. Therefore, a computer-assisted analysis of the resulting
effects based on experimental aerodynamic data is the only way of appropriate treatment (based on the
equations of motion for the in-run phase). For all kinds of sports where a minimal aerodynamic drag is
important, the factors influencing the shift of the drop in the drag coefficient within the critical Reynolds-
number range are most important. These factors have not been sufficiently understood in the context of
sports involving complex objects like human bodies. The surface structure (dress, jumping suit, down-
hill suit, etc.), temperature effects, vibration of surfaces like human skin, tension of the surface material
etc. are all influential factors. Considering the significant influence of, for example, the geometry of a
sphere versus an aerodynamically well-shaped object on the lift and drag coefficients (the difference can
be a factor of 100; see, for example, H. Schlichting and K. Gersten [10]) the predominant importance of
improvements in this direction is evident.

Very little is known about the drag and lift forces acting on the complex structure of a human body
in an air-stream. From the aerodynamic data according to flight positions it is evident that the lift forces
in ski jumping are of the same magnitude as the drag forces and that the flight length is very sensitive to
changes in both. It is well known that pronounced changes of the lift coefficients of wings occur in the
critical range of the Reynolds number, and it has been found from measurements in low-turbulence wind
tunnels that the degree of turbulence of the outer flow has an important influence on the lift coefficient of
a wing. Yet, no systematic study of these characteristics in relation to human bodies in the air-stream has
been made. Our knowledge of wings cannot be adequately transferred to the flow around human bodies
because the geometric form is not at all similar and wings usually do not work at angles of attack of up
to 50 degrees.
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Figures
Examples of experimental results

Fig. 1: A ski jumper at the K = 120 m jumping hill in Park City. The nomenclature used for the position
angles is indicated, w is the resulting air stream vector.
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Fig. 2: Field research results obtained during the 19th Olympic Winter Games (Salt Lake City, 2002;
venue in Park City). The histograms show the average values and standard deviations of position angles
from the best ten athletes in each of the five runs at the K = 120 m jumping hill. The number of angle
measurements ranged from 18 to 50 at each position. The angle V of the skis to each other was determined
from digitized images taken from the end of the run out.
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Fig. 3: Schematics of the wind tunnel measurements. The figure shows the apparatus, which enabled
almost all postures of athletes and skis imaginable, and demonstrates the nomenclature used for the
position angles. This study used the large wind tunnel at Arsenal Research in Vienna. The tunnel has a
cross-section of 5 × 5 m2. A 1.8 MW motor produces a maximum wind speed of 32 m s−1.

Fig. 4: Wind tunnel measurements: The aerodynamic forces largely depend on the flight style. Large-
scale wind tunnel in Vienna; Andreas Goldberger, wr 225 m (2000).
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(a) Different angles of attack α. The body position was
held constant (β = 9.5◦ and γ = 160◦) and the angles
of attack were 30◦, 35.5◦ and 40◦. The opening of the
skis was held constant at V = 35◦. The interpolating
functions are: L = −0.43903 + 0.060743α − 7.192 ×
10−4α2; D = −0.032061+0.01232α+2.283x10−4α2.

(b) L and D values depending on the body-to-ski angle
β. The values shown have been taken at α = 35.5◦,
γ = 160◦ and V = 35◦. The interpolating functions
are: L = −0.645718+0.0126185β−3.348×10−4β2;
D = 0.408434 + 0.01364β + 3.9308× 10−5β2.

(c) L and D values depending on the body-to-ski angle
β. The values shown here have been taken at α = 30◦,
γ = 160◦ and V = 35◦. The interpolating functions are:
L = 0.75037 + 8.86746x10−3β − 2.99665× 10−4β2;
D = 0.578995 + 0.01201β + 2.91724× 10−5β2.

(d) L and D values depending on the hip angle γ. The
body-to-ski angle β and the angle of attack α were held
constant (β = 9.5◦ and α = 35.5◦). The opening of
the skis was held constant at V = 35◦. The interpolating
functions are: L = −2.442+0.04035γ−1.25×10−4γ2;
D = 1.722− 0.01365γ + 4.5× 10−5γ2.

Fig. 5: L and D values for model A (height h = 1.78 m)
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(a) Values are functions of time reflecting the ath-
lete’s position changes during the flight

(b) L/D ratio for the reference jump with model
A

Fig. 6: L and D values of reference jump of model A

Examples of computer simulations of ski jumping

Fig. 7: Results with the reference jump for model A. (a) shows the profile of the jumping hill in Sapporo
and the trajectory y = y(x). Jumping hill parameters for Sapporo (K = 120 m): a = 11◦, b = −37◦,
c = 35◦, H(K) = 59.449 m, N(K) = 103.391 m, r1 = 105 m, R2 = 120 m, M = 20 m, T = 7 m,
S = 3.3 m. (b) is the velocity of motion v (solid line) and the horizontal component of this velocity vx

(broken line). (c) shows the lift force Fl and drag force Fd acting on the athlete and his equipment. The
air density was set to 1.15 kg m−3; the mass of the athlete with equipment was 65 kg.
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(a) Jumping hill parameters for Park City (K = 120 m): α =
−10.5◦, β = 35◦, βP = 38◦, βL = 37.77◦, γ = 35◦,
h = 59.52 m, n = 103.51 m, r1 = 93 m, r2 = 105 m,
rL = 356.5 m, l1 = 18.67 m, l2 = 13.90 m, t = 6.7 m,
s = 3 m. For all jumping hills approved by the FIS the param-
eters can be found in the FIS Certificates of Jumping Hills. The
trajectories and velocities for three different masses (55, 65 and
75 kg) are shown. The approach velocity v0 was 26.27 m s−1,
the air density ρ = 1.0 kg m−3 and vp0 was 2.5 m s−1. The gust
velocity vg was set to 0.

(b) Height above ground hg for three differ-
ent masses as a function of the flight time
t. The solid line shows a jump simulation
using a mass of m = 55 kg, the dotted line
for m = 65 kg, and the broken line for m =
75 kg.

(c) Analogous to Fig. (a), however, in this
case a gust blowing constantly with vg =
3 m s−1(ζ = 135◦) during the whole flight
was used.

Fig. 8: Simulated jumps using the L and D tables from the reference jump for model A and the profile
of the jumping hill in Park City
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