THE INCLUSIVE Λ BARYON PRODUCTION IN MULTIJETS

J.F.Lin, Q.Ouyang, Y.G.Xie IHEP,Beijing

1. Introduction

The baryon production rates are sensitive to different hadronization mechanisms, in particular, the enhancement of baryons production rates can not be satisfactorilly explained by some phenomenological models ^[1]. In LEP energy region the jet effect become more obvious which is directly related to partons by the parton-jet matrix, ^[2], i.e. the fraction of multijet configuration defined by JADE algorithm depending on Y_{cut} is related to initial partons $(q\bar{q}, q\bar{q}g, q\bar{q}gg...)$. Thus, the difference of the multiplicities between quark and gluon jets as well as between heavy flavour and light quark jets are interesting ^[3,4]. Furthermore, with Shangdong quark combinational model^[5] the different baryon multiplicities referring to different jets are investigated ^[4]. This motivates that except those parameters as multiplicity, jet width angle, energy distribution etc, trying to measuring multiplities of specific baryons in different kind jets, at least in 2-3-4-5 jets are attractive which helps to know the essence of fragmentation of gluon and quarks or more detailed, with or without heavy flavours. As the fundamental step, here the Λ multiplicities in different multi-jets are measured.

2. Datasets and Selection Conditions

The data of 100000 events from 1991 and 90000 events from 1993 $q\bar{q}$ (class 16) and 144136 events of Monte Carlo Jetset 7.3 are used.

The selection conditions of Λ used here have been discussed in our last note and very low backgrounds have been obtained ^[6].

3. Results

The multiplicity of Λ per jet for 2-3-4-5 jets under different Y_{cut} (0.02,0.04) are shown in Tab.1 and Tab.2, in which no significant feature of 3-4 jets including gluon jet components are shown with represent to 2 jets standing for only $q\bar{q}$. The multiplicity of Λ per jet in

2-3-4-5 jets slightly decreases smoothly for Y_{cut} =0.02, but for Y_{cut} =0.04 the multiplicities of Λ per jet for 5 jets is anomalously large both for MC and data which is now being analyzed.

Table 1:

	Number of Λ /jet				
ycut=0.02	2 jet	$3 ext{ jet}$	4 jet	5 jet	
MC	0.1562 ± 0.0013		0.1275 ± 0.0021		
91 data	0.1567 ± 0.0048	0.1333 ± 0.0046	0.1288 ± 0.0113	0.1122 ± 0.0541	
93 data	0.1557 ± 0.0050	0.1326 ± 0.0049	0.1294 ± 0.0118	0.1091 ± 0.0569	

Table 2:

	Number of Λ/jet				
ycut=0.04	2 jet	$3 ext{ jet}$	4 jet	5 jet	
MC	0.1642 ± 0.0011	0.1442 ± 0.0012	0.1383 ± 0.0045	0.1733 ± 0.0848	
91 data	0.1652 ± 0.0040	0.1452 ± 0.0055	0.1406 ± 0.0227	0.1701 ± 0.4005	
93 data	0.1635 ± 0.0042	0.1454 ± 0.0057	0.1418 ± 0.0240	0.1788 ± 0.4133	

REFERENCE

- [1] Scheck Phys. Lett.B224(1989)343.
- [2] P. Abreu et al.(DELPHI), Z.Phys.C56(1992)63.
- [3] J.Pumplin, Phys.Rev.D48(1993)1112.
- G.Alexander et al.(OPAL), Phys. Lett. B(1991)462
- [4] Liu Ximing, High energy physics and Nuclear Physics 18(1994)829.
- [5] XIE Qubing and Liu Ximing, Phys.Rev.D38(1987)2169.
- [6] J.F.Lin, Y.G.Xie, Q.Ouyang, ALEPH Note 94-179.