THE INCLUSIVE Λ BARYON PRODUCTION IN MULTIJETS J.F.Lin, Q.Ouyang, Y.G.Xie IHEP,Beijing ## 1. Introduction The baryon production rates are sensitive to different hadronization mechanisms, in particular, the enhancement of baryons production rates can not be satisfactorilly explained by some phenomenological models ^[1]. In LEP energy region the jet effect become more obvious which is directly related to partons by the parton-jet matrix, ^[2], i.e. the fraction of multijet configuration defined by JADE algorithm depending on Y_{cut} is related to initial partons $(q\bar{q}, q\bar{q}g, q\bar{q}gg...)$. Thus, the difference of the multiplicities between quark and gluon jets as well as between heavy flavour and light quark jets are interesting ^[3,4]. Furthermore, with Shangdong quark combinational model^[5] the different baryon multiplicities referring to different jets are investigated ^[4]. This motivates that except those parameters as multiplicity, jet width angle, energy distribution etc, trying to measuring multiplities of specific baryons in different kind jets, at least in 2-3-4-5 jets are attractive which helps to know the essence of fragmentation of gluon and quarks or more detailed, with or without heavy flavours. As the fundamental step, here the Λ multiplicities in different multi-jets are measured. #### 2. Datasets and Selection Conditions The data of 100000 events from 1991 and 90000 events from 1993 $q\bar{q}$ (class 16) and 144136 events of Monte Carlo Jetset 7.3 are used. The selection conditions of Λ used here have been discussed in our last note and very low backgrounds have been obtained ^[6]. ## 3. Results The multiplicity of Λ per jet for 2-3-4-5 jets under different Y_{cut} (0.02,0.04) are shown in Tab.1 and Tab.2, in which no significant feature of 3-4 jets including gluon jet components are shown with represent to 2 jets standing for only $q\bar{q}$. The multiplicity of Λ per jet in 2-3-4-5 jets slightly decreases smoothly for Y_{cut} =0.02, but for Y_{cut} =0.04 the multiplicities of Λ per jet for 5 jets is anomalously large both for MC and data which is now being analyzed. Table 1: | | Number of Λ /jet | | | | | |-----------|--------------------------|---------------------|---------------------|---------------------|--| | ycut=0.02 | 2 jet | $3 ext{ jet}$ | 4 jet | 5 jet | | | MC | 0.1562 ± 0.0013 | | 0.1275 ± 0.0021 | | | | 91 data | 0.1567 ± 0.0048 | 0.1333 ± 0.0046 | 0.1288 ± 0.0113 | 0.1122 ± 0.0541 | | | 93 data | 0.1557 ± 0.0050 | 0.1326 ± 0.0049 | 0.1294 ± 0.0118 | 0.1091 ± 0.0569 | | Table 2: | | Number of Λ/jet | | | | | |-----------|----------------------------------|---------------------|---------------------|---------------------|--| | ycut=0.04 | 2 jet | $3 ext{ jet}$ | 4 jet | 5 jet | | | MC | 0.1642 ± 0.0011 | 0.1442 ± 0.0012 | 0.1383 ± 0.0045 | 0.1733 ± 0.0848 | | | 91 data | 0.1652 ± 0.0040 | 0.1452 ± 0.0055 | 0.1406 ± 0.0227 | 0.1701 ± 0.4005 | | | 93 data | 0.1635 ± 0.0042 | 0.1454 ± 0.0057 | 0.1418 ± 0.0240 | 0.1788 ± 0.4133 | | # REFERENCE - [1] Scheck Phys. Lett.B224(1989)343. - [2] P. Abreu et al.(DELPHI), Z.Phys.C56(1992)63. - [3] J.Pumplin, Phys.Rev.D48(1993)1112. - G.Alexander et al.(OPAL), Phys. Lett. B(1991)462 - [4] Liu Ximing, High energy physics and Nuclear Physics 18(1994)829. - [5] XIE Qubing and Liu Ximing, Phys.Rev.D38(1987)2169. - [6] J.F.Lin, Y.G.Xie, Q.Ouyang, ALEPH Note 94-179.