ALEPH 95-123
DATACQ 95-002
October 30,1995

EXPERIENCE USING DATABASES IN THE ALEPH DATA ACQUISITION
AND CONTROL SYSTEM®

P. MATO, O. CARMONA, M. FRANK, J. HARVEY, B. JOST, D. MICHAUD,
W.TEJESSY
CERN, 1211 Geneve 23, Switzerland

A.PACHECO
Institut de Fisica d’Altes Energies, 08193 Bellaterra (Barcelona), Spain

0. CALLOT, 1. VIDEAU
Laboratoire de I’Accelerateur Lineaire, 91405 Orsay, France

D. BOTTERILL
Rutherford Appleton Laboratory, Oxon OX11 OQX, United Kingdom

The Aleph data acquisition and control system (DAQ) relies heavily on the use of databases to hold
descriptions of the detector, the readout, trigger, control and data monitoring systems. In this paper we
review the overall architecture of these databases and to describe the problems we have encountered
with the current system mainly in the area of the physical implementation and standardization which
influence directly the effort needed for long term maintenance of the DAQ system for a big
experiment.

1 Introduction

The DAQ system for the Aleph experiment [1] has been running successfully during the
last 5 years and needs to be maintained for another 5 years. Just to maintain such a
system as it is, is a challenge in itself, especially taking into account the manpower
available. In order to improve the maintenance, the reliability and the operation of the
system we had to re-engineer parts of it to simplify and standardize as much as possible.
All the modifications and upgrades since the startup in 1989 have been with these
objectives in mind. One of the areas, where we could improve its maintenance and
enhance its operational aspects, is the area of databases.

Our management and configuration software [2] relies heavily on the use of
databases to hold descriptions and parameters of the detector, the readout, trigger,
control and data monitoring systems. It is important that the contents of these databases
are described in a complete and consistent way and without redundancy. Using these
databases makes our DAQ system completely data-driven. This gives us a good deal of
flexibility since changes on the configuration or running conditions do not require any
program to be re-compiled or re-linked, it only demands a few changes in some of the

" Presented at the Computing in High Energy Physics conference, Rio de Janeiro,
September 18-22, 1995



databases. Also, the fact that the parameters are stored in a database insures that all the
programs use the same set of parameters, thus the coherence is guaranteed across the
system. And finally, data-driven programs can be re-used in different environments and
running conditions, thus reducing the maintenance load.

We have currently about 40 databases, each one specialized to a given domain of the
on-line system. Examples of these databases include the Fastbus database, containing
descriptions of the front-end electronics, the VME database, which describes the readout
configuration, the trigger and slow control databases, as well as databases describing
software components, such as the histogram database.

2 Main features for the current database design

2.1 Many relatively small databases

If one looks at the current implementation of our DAQ system, one soon realizes that are
being used many rather small databases instead of using a big and unique database, as is
the case for example in the off-line data analysis and reconstruction system. In fact, the
exact number of databases depends on how we define them, it is of the order of 40. The
reason for this diversity of databases is that the whole data is partitioned into small ones
containing closely related information (domains). The information is partitioned
following these two axes:

e Functional decomposition of the complete system in common subsystems and
functional units. For example we have databases for task scheduling, detector
description, read-out description, Fastbus configuration, data monitoring, slow
control, etc..

e Sub-detector specific databases which are needed since each sub-detector uses
different detection techniques and requires different nature and number of
parameters to be stored. This decomposition also allowed several groups of people
that built the sub-detector and developed the software to work in parallel. Examples
of these databases are the calibration constants, geometry, running parameters.

Figure 1: Some of the databases for the central read-out system and their relationships.

The domain specific databases are related between them as is shown in Fig. [1] as an
example for some of the central read-out databases. The complexity of these databases
in terms of number of tables varies from 1 to 20. And the sizes from few Kbytes to
several Mbytes.



2.2 Entity relationship modeling

Most the databases, specially the central ones which are in common to all the sub-
detectors has been designed using the entity relationship data model [3], which results in
a tabular structure of data with relationships. The database schema is described using a
Data Dictionary Language (DDL).

2.3 Distributed databases and concurrent access

Each task from the more than 100 which run on the system needs to access a few
databases to gather all the necessary parameters. These databases are distributed among
several nodes in the on-line cluster. On some occasions, like the start of a data taking
run, many of these tasks need to access the database at the same time.

2.4 Physical implementation

The majority of databases are physically implemented as disk based VMS global
sections (shared memory). Oracle is used as a backend for backups and management.
The Fortran and C data structures are generated automatically from the DDL. However,
the developer must write a set of access routines and an editor for each database. Other
physical implementations co-exist like text files, indexed files, etc..

3 Problems and limitations

Based on our experience running and maintaining the system we have identified some of
the areas where there are some problems or we are somehow limited. Here are some of
them:

e Many domain-specific databases make the system more modular so in some way
more maintainable. However it complicates the implementation of the relationships
which exists between domains. The way we have overcome this complication is by
duplicating small portions of information or by using implicit links based often on
strong naming conventions.

e Due to the fact that different people collaborated in the development, you get
different application program interfaces (API) to the data and editors with different
look-and-feel. And since similar code had been produced many times you may get
similar bugs replicated. This diversity discourages even more the navigation
between databases and complicates the interaction to databases for the people
operating the system.

e The current physical implementation renders difficult the evolution of the system
since changes in the database schema are not always easy.

4 Areas of improvement

4.1 Single database schema

Conceptually, we should view all the databases as a single database schema. The links
between databases should be made explicit, so that duplication of information is
completely avoided thus eliminating potential incoherences. See figure 2.



DB Domain A

DB Domain B

A Trme

explicit external
relationships

DB Domain C

—@ Associations(links)
i A Inheritance )

Figure 2: Sketch showing the idea of domain-specific databases with external relationships.

4.2 Data access routines

The application code should never access the data directly. We think that at least two
layers of software should be in between. The first layer should be provided by a generic
database management system (DBMS) and the second layer should be domain specific
and implement only the queries and manipulations which are needed by the application.
The user application should only call routines on the top layer. With this layer model the
evolution and the eventual replacement of the DBMS should be transparent.

4.3 DBMS Standardization

The benefits of using a unique DBMS which satisfies our requirements are numerous. It
does not need to be the state-of-the-art industry standard but at least it must be the
standard inside the collaboration. In particular, one should standardize the functionality
of the application program interface.

5 DBtool

We have recently developed a simple database framework called DBtool [4] to be our
standard DBMS. DBtool should overcome all the limitations we have encountered with
the old database implementation.

5.1 Some features of DBtool

DBtool supports database external links by the mechanism of importing remote classes.
Using this feature we can build the global schema maintaining the idea of separated



database domains. External and internal links are viewed the same way through the
application program interface. Thus, for the developer it is very easy to navigate the
entire global database.

DBtool stores the database schema as metadata in the database itself, thus allowing
us the possibility of creating data-driven generic tools. In particular, with DBtool we
have developed a generic editor which is used to fill and update all databases. This is the
way we provide a uniform user interface to the people operating the DAQ system.

DBtool provides program interfaces to Fortran/C/C++ and it runs currently on VMS,
0S9 and UNIX. The performance is improved by using disk caches and hashing
algorithms for data retrieval and is comparable to the performance achieved using the
global section implementation.

5.2 Current Usage

Since the beginning of this year all new databases have been implemented using DBtool.
Also, a number of the old databases have been converted to use the new tool. In some of
them, the data model has been enhanced, on others each entity set has been translated to
a DBtool class. These new developments and re-implementations have allowed us to
consolidate the tool and verify that no functionality is missing.

We intend to continue converting databases and to review the global schema to make
use of the new features provided, such as inheritance and external links. In particular,
inheritance can be very useful for sub-detector databases which contain specific
information and which then can be added in a very natural way to common objects.

6 Conclusions

There are many benefits resulting from developing a data-driven DAQ system such as
are flexibility, coherence, code re-usability, ease of maintenance, etc.. We believe that is
worth the effort even if it costs more to produce. One way to encourage developers is to
provide an easy to learn and use DBMS.

The standardization of the application program interface to the DBMS is needed from
the beginning of the development. The functionality of it should be fixed. However, the
calling sequence, language binding, the actual DBMS can change and evolve during the
lifetime of the experiment.

We believe that converting our databases to DBtool and revising the global schema
will improve the operation and maintenance of our system.

References

7

1. 'W. von Ruden, IEEE Trans. on Nucl. Sci., vol 36-5, 1444-1448 (1989).
2. A.Belket al., IEEE Trans. on Nucl. Sci., vol 36-5, 1534-1540 (1989).
3. P.P. Chen, ACM Trans. on Database Systems, vol 1-1, 9-36 (1976).

4. P.Mato, D. Michaud, Dbtool user’s Guide, Aleph Online internal note.



	
	
	
	
	

