Design and Implementation of a VME Based Event Building Protocol for
the New ALEPH Data Acquisition System

Josep A. Perlas
CERN, CH-1211 Geneva 23, Switzerland

ALEPH 94-062
DATACQ 94-001
J. A. Perlas

06.05.1994

Abstract

This paper describes and discusses the design and implementation
of the protocol for event building in the new ALEPH VME readout
system. Special emphasis is given to the consequences of dealing

with a large and complex multi-crate system, a feature that is not
incorporated in the specification of the VME standard.

INTRODUCTION

The new ALEPH readout system con-
tains 20 VME crates. The original system
was implemented using Fastbus [1] and
has recently been replaced by commercial
VME hardware, while keeping Fastbus in
the front-end digitizers [2]. The readout
protocol had to be revised and a new im-
plementation made.

Data generated in each detector com-
ponent has to be collected and assembled
correctly. The readout protocol guaran-
tees that this is done properly. The pro-
tocol is implemented as a software library,
the readout library, that ensures that it is
strictly obeyed by detecting protocol vio-
lations during event assembly.

To implement a multi-crate VME
based protocol to perform event building
for ALEPH, different possibilities have
been considered. This includes proto-
cols based on pure VMEbus and VICbus
resources and also protocols based on
processor-specific resources. The advan-
tages and inconveniences of the consid-
ered cases will be discussed and the final
choice justified and described.

ABSTRACT PROTOCOL OVERVIEW

In the old Fastbus readout system, the
abstract event building protocol was as
follows. The readout function was sep-
arated into two independent and asyn-
chronous tasks: the sender and the re-
ceiver, which ran in different processors
in the different stages of the event build-
ing “tree”. The sender was responsible
for detecting the presence of a new event
and asserting a request indicating data
available. The receiver read the different
pieces of data according to the requests
received from its sources until the whole
event had been assembled.

The complete description of the ab-
stract data transfer protocol, together
with the Finite State Machine model used
to handle the different phases of it, can be
found elsewhere [3,4].

A PROTOCOL FOR A VME
MULTI-CRATE SYSTEM

After having decided to move to a
new readout hardware, a revision of the
old readout protocol had to be made.
We started by looking at the function-



alities that the new hardware could pro-
vide, classifying the considered possibil-
ities into two main groups: protocols
based on resources of pure external busses
(VMEbus and VICbus) and protocols
based on processor-specific resources’.

In the first group we can shortly men-
tion the following:

o Using VMFE interrupts. The sources
in a VME crate generate a VME in-
terrupt which is then translated to
a VIC interrupt and finally to a new
VME interrupt in the destination
crate. This needs a VME interrupt
handler to identify the source. In
addition, the identification informa-
tion of the different sources is not
easy to handle.

e Using VIC mailbozes. A source in
a VME crate writes in one of the
mailboxes of the VIC module its
identification information, generat-
ing a VIC interrupt. This generates
a VME interrupt in the destination
crate. It has the limitation of eight
sources per crate and needs also an
interrupt handler.

In the second one we can emphasize:

e Using FIC mailbozes. A source
writes directly its identification in-
formation into the receiver mail-
box RAM, generating a CPU inter-
rupt. This allows for a big number
of requests but it doesn’t provide
enough freedom for the source iden-
tification information data struc-

ture.

1See [5,6] for an explanation of the technical
concepts used in the following discussion.

e Using FIC fifos. The sources also
write directly into the receiver using
the VIC module in transparent ac-
cess but in this case they write into
the fifo port of the FIC. This gener-
ates a CPU interrupt in the receiver
who will then read the source iden-
tification information in a special
memory accessible through VME.

Clearly, a protocol based on the
first group offers the advantage of being
processor-independent, which means that
it can be replaced by any other VME pro-
cessor without changing anything in the
readout configuration. Nevertheless. the
poor resources offered by VME (e.g. the
difficulties in handling the identification
of the different sources) means the proto-
col would not be robust, which was con-
sidered essential in the design.

On the other hand, a protocol based
on the second group, although it is
processor-dependent, offers more robust-
ness since it is ‘simpler’ and doesn’t rely
on additional software to support, for in-
stance, VME interrupt handling.

At this phase of the design, we didn’t
consider it as absolutely necessary to fol-
low the specifications given by [4]. Never-
theless, since we had a positive experience
running with this approach, we wanted
the new design not to be very different
from the old one. assuming that a correct
implementation could be found. For in-
stance, although a push protocol?® is also
a valid one, it introduces completely new
schemes of work with the corresponding
new problems and our lack of experience.
Consequently, rather than investigating
further the push protocols, we decided to

’In a push protocol it is the source who writes
its data into the receiver instead of the receiver
reading the source.



Sender RDY Shared Receiver REQ
task fito Memory task fifo
: write source identification info
send request
read source identification info:

read déla from all sub-events

send acknowledge

1 Destination

Figurel: ‘Event trace’ diagram for the
ALEPH readout protocol.

(n Sources)

chose the old and safe pull protocol, as
described in the previous section.

Taking into account its anticipated ro-
bustness and simplicity, and given the
fact that we had decided to chose a
FIC8234 as processor after an evaluation
performed on several processor boards [2],
we finally decided to use the “FIC fifos™
option to implement our readout proto-
col. Furthermore, the ‘enable request’
phase as specified in [4] was considered
not necessary and has been removed from
the protocol.

DESCRIPTION OF THE IMPLEMENTATION

In the design of an event building pro-
tocol, two important aspects have to be
considered: how the sources notify the re-
ceiver of available data and how the re-
ceiver identifies the different sources.

For the first function, an inter-
processor interrupt facility has been used.
This is based on the FIC8234 fifos [5], a
powerful resource of this processor. In
this approach, the source has simply to

write a longword (with a pre-determined
format) into the fifo port of the receiver.
This is done by writing to the local VME
bus at a certain address such that if the
VIC8251F module [6] is used in transpar-
ent access, this generates a remote VME

cycle through the VIC bus.

To implement this facility, an OS9 de-
vice driver and library have been written.
Its purpose is to buffer the fifo messages
and dispatch them to the requesting pro-
cesses. Furthermore, since our data ac-
quisition system supports the concept of
partitioning 1], the driver uses different
channels to dispatch the fifo messages. A
channel is a number used by the driver to
create a link between two communicating
tasks. In this way, the library implements
multi-user access to any fifo.

A limitation in the functionality of
the fifo port has influenced the proto-
col implementation: it is not possible to
perform DMA transfers into it. Conse-
quently, our original idea of writing the
source identification information (consist-
ing on 4 longwords: ID number, event
buffer offset, event length and trigger
number) into the fifo port was discarded.
Instead, we use a special memory (sepa-
rated from the OS9 system memory and
having a colour number) called shared
memory, accessible through VME.

To implement the protocol, our first
approach was to allocate three fifos in
each processor of the readout tree. One
to signal Data Available (called REQ fifo),
another for Data Ready (RDY fifo) and a
third one used to store the indices to the
shared memory of the receiver (IDX fifo);
this last one is not attached to the driver
and it is merely used as a FIFO memory.

When a source has data available, it
takes an index from the IDX fifo and



uses it as a pointer to the shared mem-
ory where it writes its identification in-
formation. Then it writes the index into
the REQ fifo of its receiver to interrupt
it and be read-out. Once all the sources
are read, the receiver writes into the RDY
fifo of its slaves who then free their event
buffer and prepare for the next event.

After having exercised this implemen-
tation in the real experiment (see below),
we decided to locate the shared memory
in the sources instead of in the receiver
and not to use the IDX fifo. The aim was
to minimize the number of ‘dead locks’ in
the VIC bus. See Fig. 1 for the corre-
sponding ‘event trace’ diagram.

TESTS AND PERFORMANCE

Extensive tests in the laboratory have
been performed to check the viability,
reliability and performance of the pro-
tocol described in the previous section.
In a first test a single crate was used,
containing 1 receiver reading 3 sources.
The sources generated small events (64
bytes) at a rate of about 240 Hz (these
conditions were chosen to generate very
frequent VME arbitrations). The test
showed almost no error after more than
14 million events.

In a second test, two VME crates in-
terconnected with a VIC bus were used:
one housing the receiver and the other
the 3 sources. This time the aim was to
gain experience with the potential dead
lock situations, expected as ‘normal’ er-
rors when more than one bus is used. As
expected, after having enabled the ‘VME
retry’ mechanism we only found Bus Er-
rors in some DMA transfers (when the re-
ceiver was reading a source) which were
cured by a single software retry at the

level of the readout library?.

Although the tests done in the labora-
tory gave us some confidence that the pro-
tocol was working very nicely, the real ex-
periment with the real readout configura-
tion was the ultimate check. Preliminary
tests performed with a small partition of
the ALEPH detector containing 1 receiver
and 6 sources showed immediately hard-
ware imperfections in the VME Bus Re-
quester module of the VME Master Inter-
face of the FIC and also in its VME Slave
Interface and in the Slot 1 Function pro-
vided by the CES VMDIS 8004 display
module. All these problems were tem-
porarily overcome by adding checks in all
the VME actions performed by the read-
out library and retrying if a Bus Error
was found.

After having solved the hardware
problems, made more robust readout soft-
ware and tuned the different parameters
in the VME system (arbitration scheme,
requester mode and bus timeout values),
the event building was running well. The
cosmic runs made during the commission-
ing period add another prove to this.

CONCLUSIONS

The upgrade of the ALEPH readout
system from Fastbus to commercial VME
hardware motivated a revision of the old
event building protocol and led to a new
implementation of it. Amongst several
considered possibilities we have chosen
one that adapts well to our needs while
being robust and acceptably simple for
a multi-crate VME system. The mecha-
nisms used to achieve this have also been
described. The extensive tests performed

3The BMA hardware provided with the
FIC8234 to perform DMAs does not have the
‘retry feature’.



in the laboratory and in the real exper-
iment during the commissioning phase
show that this design adequately fulfills
the original requirements.

ACKNOWLEDGEMENTS

I would like to thank B. Jost, of the
ALEPH online group, for many useful dis-
cussions.

REFERENCES

1. W. von Riiden, “The ALEPH data
acquisition system”, IEEE Trans. on
Nucl. Science Vol. 36, no. 5, 1444-
1448 (1989).

2. D. Botterill et al., “Report of the
Study Group for a New ALEPH
Readout Processor”, ALEPH internal
communication (1991).

3. J.A. Perlas et al., “The new imple-
mentation of the event building pro-
tocol for the ALEPH data acquisition
system”, IEEE Trans. on Nucl. Sci-
ence (1993).

4. ALEPH Dataflow Group, “ALEPH
Data Acquisition System Hardware
Functional Specifications”, ALEPH
DATACQ note 85-21, CERN (1985).

5. Creative Electronic Systems S.A.
(Geneva), “FIC8234 Dual 68040 Fast
Intelligent Controller, User’'s Man-
ual” (1993).

6. Creative Electronic Systems S.A.
(Geneva), “VIC8251F VIC to VME
Interface with Mirrored Memory,
User’s Manual” (1993).



	
	
	
	
	

