ALEPH 94-092
SOFTWR 94-007
J. Boucrot

16 June 1994

ALPHA User’s Guide

ALPHA
ALEPH PHY®SICS ANALYSI}S PACKAGE

Version 117/118

Authors:

H.Albrecht , E.Blucher and J. Boucrot

With contributions from:

A.Belk, B.Bloch—Devaux, C.Bowdery, D.Brown, J .Carr. D.Cinabro. R. Forty,
C.Gay,G.Graefe, R.Hagelberg, S.Haywood, J.Hilgart. R. Jacobsen, P.Janot. R.Johnson.
E.Lancon, J.P.Lees, M.N.Minard, H.G.Moser, J.Nash, M.Pepe—Altarelli, P.Perez,
F.Ranjard, M.Scarr, D.Schlatter, 0.Schneider,H.Seywerd, M.Talby, G.Taylor,
S.Wasserbaech, J.Wear, and T.Wildish

Contents

1 Introduction
2 Getting Started

3 User routines

3.1 General COMIMENtS « « « « o v v o oo oo o s s oo s
3.1.1 Name CONVENtIONS . o o v v v o v v v v v e e oo
3.1.2 Including ALPHA features in Fortran code
3.1.3 “HAC” Parameters « « o« oo oo m o s s mm s
3.1.4 Implicit NOME . . o o v o v v v
3.1.5 Booking of BOS banks in ALPHA

3.9 User Initialization . . « o « v oo e h e

3.3 Event analysis TOUtINE . . . v o o o o v oo

3.4 User termination Toutine« « o v

3.5 Other User Subroutineso o ot vt e
351 New RUIL .« v v v o v e o v e e e e e e e e
3.5.2 Unkown Record T¥ype . . . o v oo v v vt i v
3.5.3 Initialize the histogram packageo e
3.5.4 Terminate the histogram packageo oo
3.5.5 Initialize BOS . « o o o o i i e

4 Data Cards

4.1 Input/Output

..

4.2

4.3

4.4

4.5

4.6

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.1.1 ALEPH file types. S 9

4.1.2 FILL: Inputfiles ittt 10
413 FILO :OQutputfiles i 12
4.1.4 Event Directories« v v v v v v i e e e e e e e e 13
4.1.5 COPY: Copying events oo v v v v vt viive e 15
ALPHA Process €ardS . . - v v v v v v v v e it e e e e e e e e e e e e e e 15
UNPK: POT / DST / MINI unpacking 16
READ: Input from different card files 16
DEBU: Debug output . . .« v v v vt e i 17
TIME: Job time control« o i i e e e e e e e e 17
HistOgrams o v v v v v o et i e e e e e e e e 17
4.7.1 HIST: Write histogram file 17
4.7.2 HTIT: General histogram title 18
4.7.3 NOPH: Histogram Printing 18
FIEL: Magnetic fieldo i i e 18
FRFO0: Use track fit without vertex detector (POT/DST only) 18
Weight factors for calorimeters 18
EFLW and EFLJ: Energy Flow oo 19
Particle table e e 19
4.12.1 PMOD: Modify particle attributes oo 19
4.12.2 PNEW: New particles i 19
4.12.3 PTRA: Modify particle names in the MC particle table 20
SYNT: Syntax Check o o o i i 20
QFND: Calling the QFNDIP package 20
Special Cards @ oo e 21

ii

5 Creating Histograms and Ntuples 22

5.1 Booking and Filling Histograms JNtuples . . .o oo 22
5.1.1 Book a 1—dimensional histogramo e 22
5.1.2 Book a 2—dimensional histogramo e e 23
5.1.3 Book a Profile histogram« .o s s e s 23
51.4 Bookam NEUPIe . . o v v v v v oo oo s 23
5.1.5 Book an Ntuple with run, event NUMDbEr .« o o e e e e e e e e e e 24
5.1.6 Fill Ntuple plus run, event number oo e e 24
5.1.7 Fill Ntuple with many variableso v e e e e 24
5.1.8 Fill Ntuple with many variables plus run, event number 24
5.1.9 Sample ALPHA program to book and fill histogram, Ntuple 25
5.1.10 Limitations to the ALPHA histogram facilities . . . -« v oo 25

5.2 Histogram output — the ALPHA cardsfile e 26
5.2.1 HIST: Write histogram file e 26
5.2.2 NOPH: Histogram Printing e 27
5.2.3 HTIT: General histogram titleo o oo oo e e 27

6 Mnemonic symbols 28

6.1 Mathematical and physical constants oo e 28

6.2 Run INfOTMAtION .+ « o o v v v v v e e 28

6.3 Event information oo« v 29
6.3.1 Event header: from bank EVEH 29
6.3.2 Event directory information« ..o 30
6.3.3 Event generator status: from bank KEVH oo 30
6.3.4 Detector HV status: from banks REVH,LOLE 30
6.3.5 Trigger Information: from XTEB or XTRB,XTCN 30
6.3.6 General event information: from bank DHEA 31

ili

6.3.7 Beam position from BOM system: from bank BOMB 32

6.4 ECAL Wire Energies« o o o vt i v i oot i e 32
6.5 ALPHA Internal Constants, Variables 32
6.5.1 Event counts v v v it i e 32
6.5.2 Program statiiso e e 32
6.5.3 Event statls . . « v v o v v e 32
6.5.4 Input / output Umitso e 33
6.5.5 TIMHNE .+ « « v v o v e e e e e e e e 33
6.5.6 Character variables BRI 33
ALPHA “Tracks” and “Vertices” 34
7.1 Access by Fortran DOloops e e e e e e e e e e e e e 34
7.1.1 ALPHA “TRACKS” : e e e e e e e e 35
7.1.2 ALPHA “VERTICES” : ciivetnen e T 36
7.2 Loops over ECAL and HCAL objectso 36
7.3 Relationships between objects in different subdetectors - 1)
7.4 Direct access toparticleso 38
7.4.1 Particlenameand classo o oo e e 38
7.4.2 Example: Loop over all MC generated positrons 38
7.4.3 Particle name versus illteger particle code — time consumption 39
7.4.4 Loops over a particle and its antiparticle00 0L 39
7.4.5 Analysis of particle systems: Examples 00 40
7.5 Mother — daughter relationships Lo oLl 41
7.5.1 Mother todaughters Lo 41
7.5.2 Daughter to mother(s) L 42
7.6 Access tothe “same” object oo 42

7.6.1 Loops over copies of the “same” object using KSAME

iv

7.6.2 Find original copy of a charged tracko oo 43

77 Match reconstructed tracks and MC trutho 43
7.8 Track — vertex relationships« « « v o oo e 44
ALPHA Track and Vertex Attributes 45
8.1 “Track” attTibutes. . . « o o v v o v v vt e 45
8.1.1 Basic attributes o a e 45
B.1.2 VO MEASs . « v o v v v e 45
8.1.3 Track error covariance MatriX . . . « .« o o oo v v e 46
8.1.4 Distance to the beam position: oo oo 46
8.1.5 Stability COde . . . o v o e e 47
8.1.6 Test a particle’s nameo 47
8.1.7 Test if particles are based on the same object cc oo v e 48
8.1.8 Flags, POINLETS, €6C. . « « o v v o v v s e e 48
8.2 “Track” related detector data o o o v vt 48
8.2.1 Global geometrical track fit: Bank FRFToevee e 49
8.2.2 Number of coordinates used for the global fit: Bank FRTL 49
8.2.3 Charged—particle identification: Bank FRID 49
8.2.4 dE/dx data: Bank TEXSo vvvv o e 50
8.2.5 FElectron identification: Bank EIDTo oo e e v 50
8.2.6 Muon — HCAL association: Bank HMADoov oo ee e 51
8.9.7 Muon chamber data: Bank MCADo v v oo e e 51
8.2.8 QMUIDO Muon Identification: Bank MUIDo 51
8.2.9 ECAL objects: Bank PECOo e 52
8.2.10 ECAL objects: Bank PEPTo oo viv e e e e 52
8.2.11 HCAL objects: Bank PHCOo v e 52
8.2.12 Reconstructed VOs: Bank YVOVo oo 53

8.2.13 GAMPEC Photons, Bank EGPC (Obsolete since July 1993) 53
8.2.14 Photons from GAMPEX: Bank PGPCo 54
8.2.15 Energy Flow: Bank EFOL oot c e 54
8.2.16 Neutral objects from PCPA: Bank PCQA 55

8.3 Vertex attributes o o oo 55
9 Kinematics and Track Operations 56
9.1 Scalar quantitieso 56
0.2 Vector quantitieso oo 57
9021 General Remarks -« o o L e 57
9.2.2 Add 4—momenta of particles Lol 58
9.2.3 Recalculate 4—Vector of VO oo 59
9.24 COPY @ETACK .« « o v v v v e e e e e e e e e 59
0.2.5 Cross Product . « . v v v vttt 60
0.2.6 Droptracks oo .o e 60
9.2.7 Copy track attributes into a Fortran arrayo 60
028 CreateanNew tTack . . o v v« c v v v vt bt e e e e e e 61
0.2.0 Save a tTaCk . « « v v v v e 61
9.2.10 Save a track inside particle/antiparticle loop 0oL 62
9.2.11 Save a track and set itsmass oo B 62
0.2.12 Save a track with class ICLASS oo i o 62
9.2.13 Modify track parameters.o 63
0.2.14 Set User Track Flags o i it i i i 64
0.2.15 Subtract track momentao i e e e e 64
0.2.16 Zero track attributes L L 65

9.3 Kinematic fitting« 65
9.4 Vertex fitting with YTOPo oo 65

vi

9.5 Auxiliary routine for VOS . . .« o oo

0.6 Lorentz transformations o« o oo e s
9.6.1 Boost a track and its daughterso e e
0.6.2 BOOSt @ tTACK . « v v v v v v e e e e e
0.6.3 Boost all tracks of a given classo e

10 Event Topology Routines
10.1 Options for “QUxxxx” TOULINES . . .« v v o v
10.1.1 Set option for reconstructed objectso e e e e
10.1.2 Set option for MC particles oo oo e
10.2 Lock tracks / subsamples of tracks« o oo
10.2.1 Lock a single “tTack” . . .+« o oo e s e e e
10.2.2 Unlock a single “track™ oo oo
10.2.3 Lock a track “family”« oo oo
10.2.4 Unlock tracks (locked with QLOCK) « o v e
10.2.5 Reverse the lock state (corresponding to QLOCK) .. . v v v oo oo
10.2.6 Second LOCK . « v v v v v v e

10.3 Add momenta of all particles of a given-classo e e

10.3.2 RESUIES « o o v v o v v e o e e
10.4 Momentum tensor eigenvalues and eigenvectorso oee e
10.5 Linearized momentum tensor eigenvalues and eigenvectorso
10.6 SPRETICIEY « « « « o v v v v oo e e
107 THIUSE « « o o v v e e e e e e oo e e e e e e
10.8 Fox—Wolfram MOMENS . . . o« v v v oo oo mm e
10.9 Divide event into two hemispheres oo e

10.10Missing energy, mass, MOMEDLUIN. . .« « « « o« oo o s s s m e s m s s

vii

10.117et FINding . « « ¢ v ¢ o v i e e e e e e e 79

10.11.1Scaled Invariant Mass Squared Algorithms 79
10.11.2Scaled Minimum Distance Algorithm oo oo 82
10.11.3JETSET algorithm LUCLUS from LUND 82
10.11.4PTCLUS: Jet-finding algorithm oo 83

11 Energy Flow 84
11.1 ENFLW Energy Flow 0o s 84
11.2 Mask Energy Flowo oo i 86
11.3 PCPA-based Energy Flow o 86
12 Other ALPHA Physics Routines 88
12.1 dE/dx Analysis oo a e 88
12.1.1 Calculate dE/dx for Track ITK oo 88
12.1.2 Modified QDEDX for Monte Carloo oo 89
12.1.3 QDEDXMornot QDEDXM 7 89
12.1.4 Check TPC High Voltage for dE/dx 90
12.1.5 Check Existence of dE/dx Calibration for Run 90

12.2 PhOtOn CONVETSIONS .« « & « v v v o v o v e e e e e it e e e et e e e e e e e e e 91
12.3 Muon Identification: QMUIDO o 92
12.4 Utility Routines for VDET Analysis oo 93
12.4.1 Number of VDET hits per layer for track ITk 93
12.4.2 VDET HV status o ¢ o v v o i e i e i it e e e i e e et e e e e e 94
12.4.3 VDET Readout Status« « o o v i v i i vt i e e 94

12.5 B-Tagging routine QIPBTAG oo 94
12.5.1 General considerations« « vt oo i it e e e e e e e 94
12.5.2 Calling the QIPBTAG routine, 95

12.5.3 Data cards for QIPBTAG o o o v vt i 96

12.5.4 Remarks on QIPBTAG o .ot v it c s 96

12.6 QVSRCH : Secondary vertices and b-tagging c oo e 98
12.7 QPIODO : 7° finding Toutine 99
13 ALPHA Utility Routines: Printing, Writing Events, Timing, etc. 101
13.1 Program termination « .« o bt oo 101
13.2 Write the current event on the output file oo 101
13.3 Set classification word written to event directoryo 101
13.4 THIEDE .+ « ¢ v oo v v e v v oo e e e 102
13.4.1 Print job time consumptiono 102
13.4.2 Measure time consumption of part of program 102

13.5 Print TOUIMES « « o« ¢ v v o e e e e e e e e e e e e e e e e e 103
13.5.1 Prilt @ MeSSAE . - « « o v v v o o e e e e e e e e e 103
13.5.2 Print a message plus run, event number 103
13.5.3 Print full event summary (many Pages) . . - - « o« oo oo e e e e 103
13.5.4 Print event header (omeline) 104
13.5.5 Print full event header (many lines) 104
13.5.6 Print information for “track™o oo 104
13.5.7 Print information for vertexo oo 105
13.5.8 Print summary for categories of tracks or vertices 105
13.5.9 Print decay treeof track ITK..« . oo oo 105

14 Modifying ALPHA banks 106
14.1 User track / vertex sections« oo 106
14.1.1 Reserve user space for trackso 106
14.1.2 Reserve user space for vertices oo 107

14.2 Modifying track / vertex attributes oo 107

ix

15 Particle Table 108

15.1 DeSCIIPtion . « v o v v v i e e e e e e 108
15.2 Particle name, particle codeo 108
15.3 How to spell particle names oo oo 109
15.4 Data cards for particle table e 109
15.4.1 PMOD: Modify particle attributes« ... 109

15.4.2 PNEW: New particleso v vt ivi i ee e e 110

15.4.3 PTRA: Modify particle names in the MC particle table 110

15.5 Access to particle propertieso 111

A Program Structure 112
B Bank description 113
C Where to find ALPHA at CERN 118
C.1 ALPHA on CERNVM e e e e e e e e e e e e e e e e 118
C.2 ALPHA on VXCERN, ALWS oo I 119
C.3 ALPHA on Dec ALPHA AXP (AXALat CERN) oo ve v 120
C.4 ALPHA on UNIX : SHIFT,CSF,ALPHA OSF,.SAGAo 120
C.5 SFALPHA :rtun on SHIFT from CERNVM or ALWS 121

D Using the Mini-DST with ALPHA 123
D.1 Doing analysis with the Mini 123
D.2 Differences between POT/DST and Mini-DST 124
D.3 Writing a Mini-DST oo 124

E Using the NanoDst with ALPHA 126
E.l1 How to get Information from a NanoDst 126
E.1.1 The commonblock NANCOM v, 127

E.1.2 Infczmation from ALPHA variables« oo oo
E.1.3 Information from commondecks:« . o oo
E.1.4 Subroutines working on the NanoDst: o v oo oo e
E.2 Routines that can‘t be used with a NanoDsto v oo v v

F Standard particle table

G Definition of Event Directory Classes

H C-Extended ALPHA

137

139

143

Chapter 1

Introduction

The ALEPH Physics Analysis package ALPHA is intended to simplify Fortran programs for physics
analysis. Although all ALEPH data types can be processed with ALPHA, the program is designed
primarily for analysis of JULIA output (POT, DST, or MINI). All event input/output is done by
ALPHA — the user has to provide only the name(s) of the input /output data set(s). ALPHA also
provides easy access to physical variables (e.g., momentum, energy), so the user can write physics
analysis programs without detailed knowledge of the ALEPH data structure (tabular BOS banks).
An extensive set of utility routines (e.g., kinematics, event shape, etc.) is available as part of the
ALPHA package.

The program structure (Appendix A) is extremely simple. Three Fortran routines are normally
supplied by the user: job initialization, event processing, and job termination (see Ch. 3). Recon-
structed objects (tracks, vertices, cal. objects) can be accessed with simple DO loops. For Monte
Carlo generated events, the MC “truth” information is accessible in the same way as reconstructed
tracks and vertices (see Ch. 7).

This document describes all features of the ALPHA program. For first—time users, the impor-
tant parts to read are Ch. 2 (getting started), Ch. 3 (user routines), Ch. 4 (event input), Ch. 7
(loops over tracks), and Ch. 8 (track attributes).

ALPHA has grown up with time , several general utility packages coming from UPHY being
incorporated as they become more popular and tested :

ALPHA 114 in September 1992 : QMUIDO , interfaces to YTOP

ALPHA 115 in May 1993 : ENFLW , SLUMOK

ALPHA 116 in December 1993 : GET_BP . QFNDIP , QIPBTAG

ALPHA 117 in May 1994 : QPI0DO , QVSRCH , NANO Dst reading package

Chapter 2

Getting Started

Two files must be provided to run an ALPHA job:

1. A file which contains the Fortran or Historian code for the user subroutines (see Ch. 3).

2. A card file which contains names of input / output data files, as well as other parameters (see

Ch. 4).

The libraries needed to link the program are described in Appendix C. To run ALPHA, the
following files must be assigned:!

unit

6 Print output file

7 Card file

76 (optional)In an interactive session, this unit may be assigned to the terminal. Short

messages will be sent to the terminal and long listings sent to the output file.

Command files are available for ALWS (ALPHARUN), IBM (ALPHARUN), and UNIX (alpharun
or SFALPHA if you run from ALWS or CERNVM on a UNIX platform) which make these file
assignments, and also perform the following tasks:

1. compile and link the Fortran (Historian) code ;
2. link all additional libraries if needed (e.g. JULIA or ALENFIW) ;

3. run the program interactively or submit a BATCH job.

On the VAX, ALPHARUN also facilitates the use of a set of VAX debugger command files which
simplify ALPHA program debugging (see Appendix C).

1Other units used by ALPHA are listed in Section 6.5.4; units 90, 91, 92, and 93 are always free for private output
files.

Chapter 3

User routines

In this chapter, ALPHA routines which are intended to be modified by the user are described.
Normally, only three routines are provided by the user: initialization (QUINIT), event analysis
(QUEVNT), and program termination (QUTERM). Models for these three subroutines are avail-
able (see Appendix C). Other subroutines which may be modified by the user are also described
here. User routines can be provided either as a plain Fortran file or as a Historian input file; the
ALPHARUN command file described in Chapter 2 supports both options. For all user routines,
default versions exist on the ALPHA library which are loaded automatically if no user code is given.

3.1 General Comments

3.1.1 Name conventions
All Fortran symbols defined in the ALPHA package start with Q, K, C, or X:

subroutines; real functions, variables, or arrays
integer functions, variables, or arrays

logical functions, variables, or arrays

Q ©X RN O

character functions, variables, or arrays (always in combination with Q as 2nd character).

To avoid conflicts with the hundreds of variables defined in the ALPHA package, it would be safest
if your own Fortran names for subroutines. variables. etc. did NOT start with Q. K. X, or CQ.

3.1.2 Including ALPHA features in Fortran code

In addition to subroutines, the ALPHA package consists of a set of statements which have to be
included at the beginning of user subroutines or functions. There are two sets of these statements:

QCDE COMMONs, DIMENSIONs, EQUIVALENCEs, PARAMETERSs, DATAs, type
declarations (all ALPHA symbols starting with C or X are individually declared
as CHARACTER or LOGICAL, respectively).

QMACRO statement function definitions (from the user’s point of view, statement functions
look exactly like “normal” Fortran functions, but their execution is faster).

The BOS array RW(...) and IW(...), as well as the BMACRO statement functions (RTABL, etc.),
are included in QCDE and QMACRO.

These sets of statements can be included in user subroutines by machine—dependent Fortran
statements or by Historian statements, as shown below.

VAX / VXCERN, ALWS, ALPHA Open VMS stations

INCLUDE ’PHYINC:QCDE.INC’
INCLUDE ’PHYINC:QMACRO.INC’

IBM / CERNVM

INCLUDE ’QCDE INC *°
INCLUDE ’QMACRO INC *°

UNIX / SHIFT, SAGA, CSF, ALPHA OSF

INCLUDE ’/aleph/phy/qcde.inc’
INCLUDE ’/aleph/phy/qmacro.inc’

using HISTORIAN

*CA QCDE
*CA QMACRO

Important! The following sequence of statements must be observed:

1. SUBROUTINE or FUNCTION statement

2. QCDE, your own COMMONSs, DIMENSIONS, etc.

3. DATA statements

4. QMACRO, your own statement function definitions (if any)
5

. your executable Fortran statements

3.1.3 “HAC” parameters

The HAC (Handy ACcess) parameters denote the offset of attributes within each BOS bank. For
banks accessible by mnemonic symbols in ALPHA (see Ch. 6). this offset is taken into account
automatically, and the corresponding HAC parameters are available in QCDE (note that names of
HAC parameters and mnemonic symbols are closely related).

A separate include file / comdeck QHAC is provided for the HAC parameters of all banks
appearing on POT/DST/MINI event files which are NOT available in QCDE. QHAC can be
included in the same way as QCDE and may be used in conjunction with it.

4

3.1.4 Implicit None

The include file (common deck) QDECL contains the declaration (integer, real) of all ALPHA
variables and statement functions in QCDE and QMACRO. People wishing to use IMPLICIT
NONE should include QDECL in the same way as QCDE.

3.1.5 Booking of BOS banks in ALPHA

To be faster , ALPHA stores internally a lot of BOS bank indices in the ALPHA commons .
Therefore one should absolutely avoid any BOS garbage collection during the execution of ALPHA
since the program would crash immediately .

If the user needs to book BOS banks for its own use , the BOS routines NBANK , MBANK ,
WBANK must be used . One should absolutely avoid the use of the ALEPHLIB routine AUBOS
since it performs a BOS garbage collection if the space is too small in the BOS array . Of course ,
the use of the BOS routine BGARB is absolutely forbidden .

3.2 User Initialization

[SUBROUTINE QUINIT |

This routine should be used to book histograms and to perform other user initialization. All
standard initialization work is performed automatically in the ALPHA subroutine QMINIT before
QUINIT is called. The standard ALPHA initialization includes

e Initialization of BOS (600,000 words working space)
e Initialization of HBOOK (100,000 words working space)

Reading special files containing constants and calibrations

e Reading the user’s data cards
¢ Opening the ALEPH data base
e Initialization of ALPHA.

These space allocations are large enough for most applications; they can be increased by modifying
the routines described in sections 3.5.3 and 3.5.5.

3.3 Event analysis routine

SUBROUTINE QUEVNT(QT.KT,QV.KV)

QUEVNT is called once for each event. The current event is read in, unpacked, and ready to
be analyzed when QUEVNT is called.

Subroutine arguments Q7T,KT,QV,KV are used for special applications; see 14.2. The subrou-
tine arguments must be given even if they are not used.

IMPORTANT: Do NOT perform a BOS garbage collection in QUEVNT or in any routine called
by QUEVNT : this would cause ALPHA to crash irrecoverably . If you must use private BOS
banks : you have to book them using the BOS NBANK or MBANK routines . DO NOT
use the AUBOS routine from the ALEPHLIB , which performs an automatic BOS garbage
collection when no more space is available .

3.4 User termination routine

[SUBROUTINE QUTERM |

This subroutine can be used for anything which needs to be done at the end of a job (e.g., his-
togram manipulations). Histogram output is done automatically in the ALPHA routine QMTERM.

QUTERM must never be called directly. For program termination, use the statement (see 13.1):
CALL QMTERM (’any message’)

QMTERM, in turn, calls QUTERM. QMTERM is called automatically after all input files have
been processed.

3.5 Other User Subroutines

The routines in this section normally do not have to be modified. As mentioned above, default
versions of all user routines are loaded if no new versions are provided.

3.5.1 New Run

SUBROUTINE QUNEWR (IROLD.IRNEW)

This routine is called from QMNEWR once a new run is encountered on the event input file,
ie.,

e cither a run record is read on the input file
e or the run number in an event record has changed

e or both conditions are fulfilled.

QUNEWR may be used to initialize run—dependent data or to print run statistics.

Input arguments

IROLD old run number: = 0 if called for the first time.
IRNEW new run number: = 0 if called from QMTERM during the program termination.
Default no action: RETURN.

3.5.2 Unkown Record Type

[SUBROUTINE QUSREC|

This routine is called whenever a record is read that is neither a run nor event record (e.g., slow
control record); the routine can be used to analyze these special records.

Default: no action: RETURN.

3.5.3 Initialize the histogram package

[SUBROUTINE QUIHIS |

NOT intended for histogram booking (use QUINIT).

e Called automatically from QMINIT.
Default: Initialize HBOOK4: CALL HLIMIT (100000).

Warnings : If the above size of the HBOOK array is too small , which can happen with a very
large number of scatter plots and/or Ntuples , one can increase it by modifying the parameter
LQPAW in the QUIHIS routine . Users who want to write on output file very large NTUPLES
(more than 16 Mbytes) will have to give appropriate NREC and/or RECL parameters in their

HIST data card (see 5.2.1 on p. 26) .

3.5.4 Terminate the histogram package

[SUBROUTINE QUTHIS |

e Called automatically from QMTERM.

Default: Terminate HBOOK: CALL HISTDO If the HIST data card is given, write
output on histogram file.

3.5.5 Initialize BOS

[SUBROUTINE QUIBOS |

The length of the BOS working space COMMON /BCS/ is explicitly declared in this subroutine.

e Called automatically from QMINIT.

Default:

initialize BOS with 600,000 words working space. If you need more space ,
you have to extract this routine from the ALPHA library, to increase the value
of the PARAMETER LQBOS to the desired value , and to load the modified
QUIBOS routine in your HISTORIAN INPUT or in to your FORTRAN user
file.

Chapter 4

Data Cards

In this chapter, the ALPHA data cards are described. The cards file is used to control input and
output for ALPHA, and is used to control many ALPHA features. For completeness, all ALPHA
cards are listed in this chapter; some cards are described in more detail in other chapters.

The following rules should be followed for all entries in the card file.

1. Start the text of your cards in column 1.

2. Use only upper case characters unless the lower case characters are significant.
3. Except for FILI cards (4.1.2), data cards can be given in any order.

4. The ENDQ card must be the last entry in the card file.

Data cards may also be used to enter your own data into the program. If your cards are given
in standard BOS format, their contents will be available as standard BOS banks. For example, if
the card CUTS 4 3.7 appears in the ALPHA card file, the following Fortran may be used to get
access to the values:

ICUTS=IW(NAMIND(’CUTS’))
IF(ICUTS.NE.O) THEN
ICUT1=IW(ICUTS+1)
RCUT1=RW(ICUTS+2)
ENDIF

4.1 Input/Output

4.1.1 ALEPH file types
There are several ALEPH file types:

NATIVE machine—dependent input/output
EPIO machine—independent input/output
EDIR event directories

DAF direct access files (e.g., data base)

CARDS card image files (e.g., ALPHA data cards)
HIS histogram files (machine—dependent HBOOK format)
EXCH histogram files (machine—independent HBOOK format)

The ALEPH file type cannot be recognized automatically. The file type should be given as 2nd
part of the data set name (extension on VAX; file type on IBM).

Examples:
On VAX:
MYFILE.EPIO
On IBM:
MYFILE EPIO *

ALPHA uses the data set name to determine the format. For file names which do not follow
this convention, see the following section.

4.1.2 FILIL: Input files

Format FILI ‘data—set—name | parameters’

Any number of FILI cards may be given — the data sets are read in the order the cards are
given. Different file formats (e.g., NATIVE, EPIO) and data from POT, DST, and MINI can be
processed in the same job. The program SCANBOOK can be used to create FILI cards with the
proper format.

How to specify data set names on cards: Examples

Disk files:

VAX / ALWS IBM / CERNVM
1 FILI ’PHY:HADRON.NATIVE’ FILI *HADRON.NATIVE’
2 FILI ’SCR:HADRON.EPIO | EPIO’ FILI ’HADRON.EPIO | EPIO’
3 FILI ’SCR:HADRON.DATA | EPIO’ FILI °HADRON.DATA | EPIO’
4 FILI ’AL$EDIR:M0012700.EDIR’ FILI ’M0012700.EDIR | GIME EDIR’
5 FILI ’I12345 | EDIR’ FILI ’I12345 | EDIR | GIME EDIR’

10

Explanation:

1. Complete specification. “ .NATIVE” defines the file format.

2. “| EPIO” can be omitted here because the format is already specified in the data set name.
The vertical bar separates the file name from the parameters.

3. “DATA” is non—standard and not recommended. In such a case, the format must be given
as a parameter: “ | EPIO”.

4. On IBM: Execute a GIME of the event directory disk (GIME EDIR is equivalent to GIME
PUBXU 209).

5. This short format may be used only for standard data files: ABxxxx or Ixxxxx.

Staged tapes and cartridges:
The same format can be used for IBM, ALWS, and UNIX:
FILI ’ALDATA | EPIO | CART AC0349.1.SL options’

Here, ALDATA is the data set name, AC0349 is the cartridge VID, 1 is the FSEQ, and SL denotes
a standard labelled tape. The options are different for each computer.

On the IBM, the option SIZE 200 is usually used to allocate space for the tape, because the
default size allocation is only 22 Mbytes. This SIZE parameter is mandatory on IBM systems ,
and has no effect on the other platforms .

Don’t forget that the best solution to have access to cartridges , either real data or Monte Carlo
data with or without EDIRs , is to use the FILI CARDS generated by the SCANBOOK interactive
facility. Doing that will ensure that the FILI data cards are in the correct format for the datasets
you want to analyse . Moreover , on IBM systems , they will be generated with the exact SIZE
parameter corresponding to each dataset .

Run / event selection

The following cards may be used to select particular runs or events for analysis.

SEVT 152 46 8 —11 Select EVenTs 2,4,6,8,9,10,11 of run 15 The 1st number is a run num-
ber, the following ones are event numbers. Negative numbers define a
range of events. It is possible to include several SEVT cards in a card
file, but only one SEVT card can be given for each run. The SEVT
card, as well as the SRUN card described below, will work if the input
files are ordered to have increasing run/event numbers. If the input
files are not in sequential order, the selection cards will work correctly
only if the NSEQ card (see below) is included in the card file.

SRUN 2 -4 6 8 —-10 Select RUNs 2,3,4,6,8,9,10. See note under SEVT on sequential order
of runs.

11

IRUN 1 5 7 11 —9999999 Ignore RUNs 1,5,7,11,12,13,14,...,9999999

NEVT 5 -7 Select the 5th, 6th, and 7th records (in the order they are stored on
the input file regardless of their run / event numbers). :
NEVT 3 Select the 1st, 2nd, and 3rd records. More than two numbers are not
allowed on this card. -
NSEQ This card must be included to use the selection functions described
above with files that do not have run/event numbers in increasing
order.
NWRT 1000 This card allows to write only the first 1000 selected events on output

tape . More that 1 number is not allowed on this card .

4.1.3 FILO : Output files

Event output is controlled by the FILO card and by the subroutine QWRITE (see 13.2). The data
set name and options are given on the FILO card. Calling QWRITE writes the current event to
the output file. The COPY card (see 4.1.5) may also be used to write events to a file. If a FILO
card is given, all run records will be written out by default (see ALLR, NORU, and SELR below).

Format: FILO ‘data—set—name | parameters’

data set name same as on FILI cards; see examples in 4.1.2.
File format NATIVE, EPIO, or EDIR
parameters: (optional)

ALLR write all Tun records to the output file (Default when writing output POTs/ DSTs).
Must be used if you intend to read the output file/EDIR with the QFND
option for real data of 1993 and after (QFNDIP needs special banks from
the run header) .

NORU write no run records to the output file.

SELR write run records as soon as the first event record corresponding to it is
written (Default when writing a MINI) . It can be used if few events
are selected from a large data sample; without this option. the output file
may consist mainly of run records. With SELR, only run records which
are followed by event records are written. DO NOT use this option if you
write an output EDIR !

SREC write all “special” records to the output file. Without this card, all records
which are neither event nor run records will not be written. .
NOOV simple—minded protection against involuntarily overwriting data sets. If

this parameter is given AND the output data set already exists, the program
will stop. Note that problems with overwriting do not arise on the VAX.

12

DISP

Examples:

UNIX:

The DISPose option ensures that your EPIO file will be sent back to the
user’s reader on IBM if one is running ALPHA on a UNIX platform using
SFALPHA on VM , or written to the user’s main directory if one is running
from ALWS . Warning ! the file is not directly readable on the host com-
puter and must be transformed using the RECFSH EXEC on CERNVM
or the FIXATR command on ALWS as described in Appendix C.5 on p.
121.

FILO ‘ABC NATIVE | SELR | NATIVE| NOOV’ The 2nd “NATIVE” is
redundant; see 4.1.2.

FILO ‘MYDATA EPIO | EPIO | DISP’ The output EPIO file will be sent
back to the computer where you run SFALPHA .

More than one FILO card is not accepted. If you want to write on several output units simul-
taneously, use the standard BOS routines.

The output event type (POT, DST, MINI — see 4.1.1) is the same as the input event type
unless the MINI card is given (see below). Event directories can be created from any input event

type (see 4.1.4).

MINTI: Select Mini-DST for output file

If the MINI card is given, the output file specified with the FILO card will be written in Mini-DST
format; see Appendix D and the Mini-DST User’s Guide for details.

COMP: Data compression

Integer numbers are written in compressed format by default. The data card

COMP ‘NONE’

suppresses the compression.

NWRT: Number of events to write out

NWRT 15

Set maximum number of events to be written on the output file to 15.

4.1.4 Event Directories

Event directories make it possible to read ALEPH data files in direct access mode.

13

Creating Event Directories

There are two ways to create an event directory with ALPHA.

e One can specify EDIR as a file type in the FILO card:
FILO *TEST.EDIR’

The event directory can be created by using the COPY data card, or by calling QWRITE
from the user program.

e It is also possible to create the event directory at the same time as another output file. The
required FILO card is

FILO *TEST.EPIO | WITH TEST.EDIR ’.

With either of the above options, it is also possible to set the 30 bit classification word stored for
each event in the event directory. For each bit which is to be set, the user must call the routine

QWCLAS (see 13.3):
CALL QWCLAS(IBIT) IBIT = 1, 30

If three bits are to be set, QWCLAS has to be called three times. Note that a call to QWCLAS
simply turns on a single bit while leaving other bits unchanged. The intial classification word is the
one read from the input file; therefore, the classification word must be zeroed by calling QWCLAS
with IBIT=0 before storing your own values. If QWCLAS is not called, the classification word will
be set equal to that on the input file.

Reading data with event directories

The event directory must be specified in the FILI card:
FILI °TEST.EDIR’

All of the run / event selection cards (Sec. 4.1.2) can be used with event directories. If the CLAS
card (described below) is given in the card file, only events with certain classification words will be
read from the input file.

CLAS: Select events with certain classification word

Format CLAS ibitl, ibit2, ... , ibitn read events with bit ibitl and/or ibit2 etc. =1

It is also possible to make more complicated selections based on the event classification word
by supplying a new version of the routine BSELEC. This routine should be extracted from the
BOS77 library and modified. The default version of BSELEC, shown below, checks to see if a
MASK has been supplied with the CLAS card. If so, it checks to see if the event classification

14

word IWORD and MASK have any bits in common. Events are read in only if BSELEC is .TRUE.
The line KCLASW=IWORD should not be changed; this line allows access to the event directory
classification word inside of ALPHA (e.g., insidle QUEVNT).

LOGICAL FUNCTION BSELEC (IWORD,MASK)

INCLUDE ’QCDE INC =*°

BSELEC = .TRUE.

IF (MASK.NE.O .AND. IAND(MASK,IWORD).EQ.O) BSELEC = .FALSE.
KCLASW=IWORD

END

4.1.5 COPY: Copying events

The COPY card directs ALPHA to copy events using the data cards described above (i.e., FILI,
FILO, SEVT, SRUN, IRUN, NEVT, NWRT).

Format COPY (no parameters)

All ALPHA features except data card handling and event input / output are switched off.
User routines are never called. Most data cards not referring to event input / output are ignored.
Therefore, if the COPY card is used, any ALPHA program (Fortran code or load module) can
serve as a simple copy job which digests the standard ALPHA data cards.

4.2 ALPHA Process cards

To reduce processing time, certain categories of objects can be excluded from ALPHA analysis (i.e.
the ALPHA variables will not be filled).

NOMC no Monte Carlo “truth”

NOCH no CHarged tracks (also excludes VO0s)

NOEM no Error Matrix for charged tracks

NOVo no VO0s

NOCO no CalOrimeters

NOPC no NEutral OBjects (from PCPA)

NOGA no GAmpec objects (from EGPC or PGPC()

NONE no ALPHA banks will be filled. This option is useful if you don’t want to use any

of ALPHA’s “track” and vertex sections, but you want to use ALPHA to do all of
the I/O and bank unpacking.

15

4.3 UNPK: POT / DST / MINI unpacking

Unpacking of POT / DST / MINI banks is performed automatically. To save time, coordinates
and some other banks are normally NOT unpacked. The default unpack options can be modified
with the UNPK card.

Format UNPK ‘abcd ef ...~

The two—character options have the following meanings:

AL all banks are unpacked but no coordinate sorting is done
VD VDET coordinates

IT ITC coordinates

TP TPC coordinates

TE dE/dx

EC ECAL (electron id.)

HC HCAL

MU Muons

F1 track fits

SO to sort coordinates in phi to redo pattern recognition
CR cal. object relationship banks

> ¢ NO unpacking

The default options correspond to the card: UNPK *TE EC HC MU FI % TPC and ITC coordinates
are not unpacked by default.

4.4 READ: Input from different card files

The READ card allows input cards to be read from different card files.
Format READ ‘card—file—name’

The default file format is CARDS.
Card files may contain any number of READ cards. Files specified on a READ card may contain
other READ cards. Recursive READ cards (file Z contains a READ ‘Y’ card, and file Y a READ

“Z’ card) are not allowed.

Note that each card file specified with a READ card must end with an ENDQ card.

16

4.5 DEBU: Debug output

There are two debug levels:

DEBU 0 minimum debug output (no BOS summary and no particle table printed).

DEBU 1 (default) Print BOS statistics and particle table summary at the end of the job.
Print a message for each step in the ALPHA initialization and termination.

The debug level is available as the variable KDEBUG.

4.6 TIME: Job time control

TIME 5 causes program termination (CALL QMTERM) if less than 5 seconds are available.

Remarks If no TIME card is given, 65 seconds is assumed by default on UNIX systems ,
15 seconds on other computers . The number on the TIME card must be given
WITHOUT a decimal point. In ALPHA, it is converted to a floating point number
and is available as the variable QTIME (see 6.5.5). On all CERN computers, time
is counted in IBM 370/168 seconds.

4.7 Histograms

The cards used in connection with the histogram package are described in detail in Chapter 5. For
completeness, the cards are listed here also.

4.7.1 HIST: Write histogram file

The HIST card must be supplied to write histograms and Ntuples to a histogram file which can be
edited / modified / analyzed in a subsequent interactive session (PAW).

Format HIST ‘data—set—name | parameters’

data set name see 4.1.1.

Default file format HIS

parameters: (optional — described in 5.2.1)
UPDA

NOOV

DISP

NREC

RECL

17

4.7.2 HTIT: General histogram title

The HTIT card corresponds to the HBOOK routine HTITLE; it assigns a general title to all
histograms.

Format: HTIT ‘This is the general title’

4.7.3 NOPH: Histogram Printing

Including the NOPH card suppresses the printing of HBOOK histograms to the terminal or log
file; histograms will still be written to a direct access file if the HIST card was used.

Format: NOPH

4.8 FIEL: Magnetic field

Magnetic field can be set to a given value:

FIEL 15. Set magnetic field to 15 KGauss.

4.9 FRFO: Use track fit without vertex detector (POT/DST only)

If the FRFO card is included, the FRFT bank with NR=0 (which has track parameters found
without hits from the vertex detector) will be used to fill the charged track variables rather than
FRFT NR=2. Only FRFT NR=2 is available on the MiniDST. :

4.10 Weight factors for calorimeters

Weight factors for the 3 ECAL stacks can be given by the data card
CEEW 1. 1. 1. Set weight factors to 1. for each stack (default).
A weight factor for the HCAL stack can be given by the data card

CHEW 1. set weight factor to 1. for HCAL (default).

18

4.11 EFLW and EFLJ: Energy Flow

The EFLW card enables the filling of energy flow objects in ALPHA (see Ch. 11). By default, the
EFLW card selects the ENFLW (Janot) energy flow package. Using the same card with option 2:
EFLW 2

will select the mask energy flow algorithm. The mask energy flow is not available on the MiniDST.

Replacing the EFLW card with the EFLJ card causes ALPHA to store jets based on energy
flow objects in addition to the energy flow objects themselves (see Ch. 11).

If you run on a POT or a DST , you must in addition load the ALENFLW library to get
ENFLW executed ; this is done automatically by the ALPHARUN facilities (see Appendix C) .

4.12 Particle table

The cards used in connection with the ALPHA particle table are described in detail in Chapter 15.
For completeness, the cards are listed here also.

4.12.1 PMOD: Modify particle attributes

Format PMOD ‘part—name antipart—name * mass charge life—time width

Parameters:

‘part—name antipart—name’ see 15.3. The attributes of a particle and its antiparticle are
modified at the same time. If a particle is its own anti— particle, the same
name has to be given twice.

mass charge life—time width: Real numbers (with decimal point). The charge of the antipar-
ticle is set to —charge. If less than four numbers are given, the remaining
particle attributes are not changed.

4.12.2 PNEW: New particles
Modify attributes of an existing particle.
Format PNEW ‘part—name antipart—name ~mass charge life—time width

Same parameters and format as PMOD; used to create new particles.

19

4.12.3 PTRA: Modify particle names in the MC particle table
The PTRA card can be used to assign an arbitrary particle name to a specific MC integer code.

Format PTRA ‘part—name antipart—name’ iMCcode iMCanticode

Parameters:

‘part—name antipart—name’ see 15.4.3. denote the names for the particle and its antiparticle
which have to be used inside the ALPHA program.

iMCcode: integer particle code used in the MC generator (WITHOUT decimal point
and NOT included in apostrophes.)

iMCanticode: integer particle code used by the MC generator for the corresponding an-
tiparticle.

4.13 SYNT: Syntax Check

The general structure of the BOS card reading routines does not allow for a thorough syntax check
of data cards. To prevent long jobs from dying as a result of syntax errors, ALPHA provides a
facility to check the data cards. If the data card

SYNT is given, then

e all data cards are read in;

o the existence (or, if required, the non—existence) of all input/output files is
checked;

NO files (except the log file) are created or modified even if the log file indicates
otherwise;

e NO events are processed.

4.14 QFND: Calling the QFNDIP package

The QFNDIP package of D. Brown et al. (see ALEPH Note 92-47, March 1992) performs a precise
determination of the interaction point on an event—by—event basis . It uses the beam constraint
from the event—chunk beam position computed in the routine QFGETB_BP automatically called
in ALPHA .

You should NOT call yourself neither GET_BP nor QFNDIP . GET_BP is called automatically
for each event ; QFNDIP is called when you put the QFND card .

Warning ! the event—chunk beam position is NOT available for real data taken in 1989 and

1990 . Therefore the interaction point cannot be determined by QFNDIP for these years of data
taking . It is available for all Monte-Carlo data .

20

If the data card :

QFND is given, then QFNDIP is called automatically and the results are stored in the
main vertex variables QVX(KFREV),QVY(KFREV),QVZ(KFREV) . Remember
that QFNDIP must have been called if you want to use the b—tagging package
QIPBTAG .

4.15 Special Cards :

Hereafter are described some special data cards , generally to be used only by specialists .

MEXT Forces the muon track extrapolation through HCAL and muon chambers . This
works only on POTs/DSTs , with the ALENFLW routines being loaded .

EFOU Forces the writing of the Energy Flow bank EFOL on the output tape .

REVO Forces the V0s to be redone with VDET coordinates , the result being put in the

bank YVOV , NR=3 , even if old V0s are present (YVOV NR = 0 or 1). This
works only on POTs/DSTs. Please note that all MINIs done since June 1993 have
been done with this option .

REGA Calls automatically the GAMPEX routine to redo the photon banks PGPC and
PGID . This works only on POTs/DSTs , with the ALENFLW routines being
loaded . Please note that all MINIs done since June 1993 have been done with this
option .

21

Chapter 5

Creating Histograms and Ntuples

The standard histogram package in ALPHA is HBOOK4. If you don’t want to use HBOOK, the
only system routines which are called automatically and which refer to HBOOK are the histogram
initialization / termination routines QUIHIS and QUTHIS (3.5.3 and 3.5.4). Some utility routines
which simplify calls to HBOOK routines or provide additional protection against deleting existing
histograms are described below. Histogram output is directed by entries in the card file, and is
described in section 5.2.

5.1 Booking and Filling Histograms/Ntuples

All of these routines call standard HBOOK4 routines.

5.1.1 Book a 1—-dimensional histogram

CALL QBOOK1 (ID, CHTITL, NX, XMI, XMA, VMX)

The arguments are the same as for CALL HBOOK1 (...):

Input arguments:

ID histogram ID number — nonzero integer

CHTITL histogram title — character variable up to 80 characters
NX number of bins

XMI lower edge of lowest bin

XMA upper edge of highest bin

VMX normally set equal to 0.— see HBOOK manual for details.

HBOOK1 always deletes an existing histogram and creates a new one. To make it possible
to update existing histograms (see 4.7.1), QBOOK1 creates a new histogram only if it does not
yet exist. An existing histogram remains unchanged. Therefore, whenever you want to update
histogram files, use QBOOK1 instead of HBOOK1. For new histograms, QBOOK1 and HBOOK1

are identical.

22

5.1.2 Book a 2—dimensional histogram

WALL QBOOK2 (ID, CHTITL, NX, XMI, XMA, NY, YMI, YMA, VMX)

QBOOK2 includes the same features as QBOOK]1. The arguments are the same as for CALL

HBOOK2 (...):

Input arguments:

D
CHTITL
NX

XMI
XMA
NY

YMI
YMA
VMX

histogram ID number — nonzero integer

histogram title — character variable up to 80 characters
number of bins in X

lower edge of lowest X bin

upper edge of highest X bin

number of bins in Y

lower edge of lowest Y bin

upper edge of highest Y bin

normally set equal to 0.— see HBOOK manual for details.

5.1.3 Book a Profile histogram

CALL QBPROF (ID, CHTITL, NX, XMI, XMA, YMI, YMA, CHOPT)

QBPROF includes the same features as QBOOK2. The arguments are the same as for CALL
HBPROF (...): - see HBOOK manual .

5.1.4 Book an Ntuple

CALL QBOOKN (ID, CHTITL, NVAR, TAGS)

The arguments are NOT the same as for CALL HBOOKN (...):

Input arguments:

ID
CHTITL
NVAR
TAGS

Ntuple ID number — nonzero integer
Ntuple title — character variable up to 80 characters
number of variables

name of character array of dimension NVAR containing names for variables to be
stored.

23

CALL QBOOKN (ID,CHTITL,NVAR,TAGS)
corresponds to :
CALL HBOOKN (ID,CHTITL,NVAR,’ALPHA’,1024,TAGS).

'ALPHA’ is the ZEBRA directory name referring to the file given on the HIST card (5.2.1). See
5.1.1 (QBOOK1 vs. HBOOK1) : Existing Ntuples will not be overwritten (see 5.1.1).

5.1.5 Book an Ntuple with run, event number

CALL QBOOKR (ID, CHTITL, NVAR, TAGS)

The arguments are the same as for CALL QBOOKN (...). QBOOKR books a Ntuple with
NVAR+2 variables. The two additional variables contain the run and event number. TAGS
consists of NVAR array elements. Two tags KRUN and KEVT are appended automatically.

5.1.6 Fill Ntuple plus run, event number

CALL QHFR (ID, A)

Fills the Ntuple ID with the array A and with run and event number. The arguments are the
same as for HFN (ID, A). KRUN and KEVT are filled as variables NVAR+1 and NVAR+2 (see
QBOOKR).

5.1.7 Fill Ntuple with many variables

CALL QHFN (ID, A1, A2, A3, ..., An)

Fills the Ntuple ID with the variables Al ... An (n < 50). CALL QHFN (ID, Al, A2)
corresponds to

DIMENSION A(50)
A(1) = A1
A(2) = A2
CALL HFN (ID, A)

5.1.8 Fill Ntuple with many variables plus run, event number

CALL QHFNR (ID, A1, A2, A3, ..., An)

Fills the Ntuple ID with the variables Al ... An (n < 50; see QHFN) and with run / event
number as variables n+1 and n+2 (see QHFR).

24

5.1.9 Sample ALPHA program to book and fill histogram, Ntuple

The following example books and fills a histogram and Ntuple. See Chapters 7 and 8 for explana-
tions of the ALPHA variables used.

SUBROUTINE QUINIT

CHARACTER*4 TAGS(2)

DATA TAGS/’ECHG’,’NTRK’/
C--- Book histogram to store momentum distribution for all charged
C--- tracks.

CALL QBOOK1(1,’Momentum’,100,0.,50.,0.)

C--- Book Ntuple to store charged energy and number of charged tracks
C--- per event.
CALL QBOOKN(1000,’Event parameters’,2,TAGS)
END
SUBROUTINE QUEVNT (QT,KT,QV,KV)
o Sttt
INCLUDE ’PHYINC:QCDE.INC’ 'VAX
DIMENSION QT(KCQVEC,1), KT(KCQVEC,1), QV(KCQVRT,1), KV(KCQVRT,1)
INCLUDE ’PHYINC:QMACRO.INC’ 1VAX
o ettt ittt
IF (KNCHT.EQ.O)RETURN
ECHRG=0.
C
C--- sum energy; histogram track momentum
C
DO 20 IT=KFCHT,KLCHT
ECHRG=ECHRG+QE(IT)
CALL HF1(1,QP(IT),1.)
20 CONTINUE
CALL QHFN(1000,ECHRG,FLOAT(KNCHT))
END

5.1.10 Limitations to the ALPHA histogram facilities

The default length (100000 words) of the /PAWC/ buffer of HBOOK may be too short for special
uses . It may be increased by modifying the parameter LQPAW in the QUIHIS routine .

There are no ALPHA facilities to book of fill column-wise Ntuples .

If the user wants to use Ntuples with more than 50 variables . he has to use the standard
HBOOK calls . The output file must be open using HROPEN and written using HROUT/HREND
. See the HBOOK manual for more details .

If the user wants write very large Ntuple files which exceed the default maximum length of 64
Mbytes , he has to use the NREC and RECL parameters in the HIST data card , as described in
5.2.1.

25

5.2 Histogram output — the ALPHA cards file

5.2.1 HIST: Write histogram file

Unless the NOPH card is included in the card file (see below), 1— and 2—dimensional histograms
are written to the log file in the program termination phase (i.e., after return from QUTERM; see
3.4 and 3.5.4).

The HIST data card is necessary for writing histograms and Ntuples to a histogram file which
can be used in a subsequent interactive session (PAW). Users who want to write files larger than
the maximum default size of 64 Mbytes must give appropriate NREC and RECL parameters in
their HIST Card , see below .

Format HIST ‘data—set—name | parameters’

data set name see 4.1.1.
Default file format HIS
parameters (optional) :

UPDA Update existing histograms. Can be used deliberately if a previous job
terminated due to time limit etc. but ...

CAUTION with this option, the old histogram file will be overwritten
(even on VAX).

NOOV Overwrite protection (see 4.1.3). Cannot be used with UPDA.

On VAX : Unnecessary.

On IBM : Strongly recommended. The first HBOOK action is to
clear an existing file unless UPDA is specified.

DISP Returns the resulting Histogram File to the original computer from which
the ALPHA job was submitted . Must be used if you are running ALPHA
on a UNIX platform using SFALPHA either from ALWS or CERNVM .
The Histogram File is returned in EXCH (machine-independant) format
. Warning ! this file is not readable by PAW on the host computer and
must be transformed using the RECSHIS EXEC (on CERNVM) or the
FIXATR command (on ALWS) as described in Appendix C.5on p. 121

NREC nmax Sets the maximum number of records in the file to nmax’. If parameter
NREC is missing, or if 'nmax’ is missing or not in the range 100-100000.
the default of 16000 records is used. The NREC parameter cannot be
used with the UPDA parameter.

RECL nwords Specifies the record length in the file to be 'nwords’. If parameter RECL is
missing, or if 'nwords’ is missing or not in the range 1-999999, the default
record length is used. The default record length is 1024 if the UPDA

26

parameter is missing. If the UPDA parameter is present, the default
record length is 0 to let ZEBRA try to determine the record length from
the file itself (if ZEBRA fails to determine the record length, ALPHA
retries with RECL=1024; if the file can still not be opened the user must
specify explicitely the record length that was used to create the file).

Only one histogram file can be specified using the HIST card. If you need several output
files, use the standard HBOOK4 input / output routines and book Ntuples with different ZEBRA
directory names. The directory name used by ALPHA is ¢ //ALPHA’.

5.2.2 NOPH: Histogram Printing

Including the NOPH card in the card file will suppress the printing of HBOOK histograms to the
terminal or log file; histograms will still be written to a direct access file if the HIST card is used.

Format : NOPH

5.2.3 HTIT: General histogram title

The HTIT card assigns a general title to all histograms; it corresponds to the HBOOK routine
HTITLE.

Format : HTIT ‘This is the general title’

Chapter 6

Mnemonic symbols

Mnemonic symbols are Fortran variables, arrays, parameters, functions, or statement functions.
Mnemonic symbols which give access to information for specific reconstructed or Monte Carlo
objects are described in Chapter 8. When possible, the names of the mnemonic symbols follow the
same convention as the HAC parameters.

The units used in ALPHA are cm, sec, GeV, GeV/c, GeV/c?, kG.

6.1 Mathematical and physical constants

QQE
QQPI
QQ2PI
QQPIH
QQRADP
QQC
QQIRP

QQH
QQHC

e = 2.718282

7 = 3.141593

27

/2

180/

speed of light = 2.997925E10 cm/sec

speed of light in units cm / KGauss (inverse track bending radius — track mo-
mentum)

Planck constant / 27 = 6.582173E—25 GeV sec
QQH * QQC

Note: The standard ALEPH constants (ALCONS) are also available.

6.2 Run information

KRINNE
KRINLF
KRINDQ
QRINLU

number of events in run (with HV on)
LEP fill number
data quality (see bank description for RLUM variable RQ)

Luminosity (from database if available)

28

KRINNZ number of Z — hadrons (from database if available)
KRINNB number of Bhabhas (from database if available)
QELEP LEP energy (from database if available)

QMFLD magnetic field (best estimate). Taken from data card FIEL (if given), run header
bank RALE, or run header bank AFID for MC events. If ABS(QMFLD) > 20
QMFLD is set to 15.

QVXNOM, QVYNOM, QVZNOM run-by run position of interaction point used to calculate
the distance between tracks and interaction point; taken from the database bank
LFIL (see KBPSTA below) . People doing precise lifetime or impact parameter
studies should better use the much more precise event—chunk beam position from
the GET_BP package (see XGETBP below).

QVXNSG, QVYNSG, QVZNSG (Statistical error) 2 on QVXNOM etc.; not the beam width.
KBPSTA Beam Position Status: method used to determine QVXNOM, QVYNOM, etc.

e KBPSTA = 0: No mean beam position for the run

e KBPSTA = 1: Mean beam position computed with VDET, per RUN (this is
the status of most of the runs in 1991)

e KBPSTA = 2: Mean beam position computed with VDET, per FILL (this
happens when the run has too few events)

e KBPSTA = 3: Mean beam position computed WITHOUT VDET, per FILL
(this is the status of all runs in 1989/1990 and of the runs in 1991 which do
not have a working VDET)

QDBOFS average systematic offset of DO0; see 8.1.4.

XGETBP — TRUE. if the event—chunk beam position from GET.BP is available All the
quantities below are defined only if XGETBP is .TRUE. :

QVTXBP(I) I=123: xy,z beam positions from GET.BP (in cm)
QVTEBP(I) I=1,23: x,y; errors on beam positions from GET_BP (in cm)
QVTSBP(I) I=123: x,y,z size of the beam spot from GET_BP (in cm)

6.3 Event information

6.3.1 Event header: from bank EVEH

KEXP Exp Number
KRUN Run Number
KEVT Event Number

KEVERT Run Type
KEVEDA DAte

29

KEVETI TIme

KEVEMI(I) trigger Mask [, I=1to4
KEVETY event TYpe

KEVEES Error Status

6.3.2 Event directory information

KCLASW Event directory classification word

6.3.3 Event generator status: from bank KEVH

KKEVID process ID
QKEVWT WeighT

6.3.4 Detector HV status: from banks REVH, LOLE

XHVTRG =.TRUE. if XLUMOK checks are satisfied. (To save time, XHVTRG should be
used rather than the function XLUMOK.)

KREVDS Detector status word from REVH bank

XVLCAL = .TRUE. if the LCAL is OK (i.e., the LOLE bank is present and there is no error
condition)

XVSATR = .TRUE. if SATR HV is OK

XVITC = .TRUE. if ITC HV is OK

XVTPC = .TRUE. if TPC HV is OK (bit 15)

XVTPCD = .TRUE. if all TPC HV is OK (dE/dx bit — bit 4)

XVECAL = .TRUE. if ECAL HV is OK (i.e., all ECAL HV bits are on)

XVHCAL = .TRUE. if HCAL HV is OK (i.e., all HCAL HV bits are on)

Note: For VDET HYV status, see Sec. 12.4.2.

6.3.5 Trigger Information: from XTEB or XTRB, XTCN

KXTET1 Level 1 trigger bit pattern

KXTET?2 Level 2 trigger bit pattern

KXTEL2 Level 2 bit pattern after applying the enabled trigger mask
KXTCGC Number of GBXs since the last event readout

30

KXTCLL Number of level 1 yes conditions since the last event readout
KXTCBN e~ bunch number

KXTCCL level 1 control word

KXTCHV HV status word (equivalent to KREVDS above)

KXTCEN mask of enabled triggers

6.3.6 General event information: from bank DHEA

KDHEFP Flag for Physics identification
KDHENX Number of reconstructed vertices
KDHENP Number of positive reconstructed tracks
KDHENM Number of negative reconstructed tracks
KDHENYV Number of reconstructed VO0’s
KDHENJ Number of reconstructed jets
QDHEEC total Energy of Charged tracks
QDHEEL total Energy of CaL objects

QDHEPF abs(P) of energy Flow

QDHETH THeta of energy flow

QDHEPH PHi of energy flow

QDHEEF Energy Flow

QDHEET abs value of Et

QDHET1 Theta of momentum tensor axis 1
QDHEP1 Phi of momentum tensor axis 1
QDHET2 Theta of momentum tensor axis 2
QDHEP2 Phi of momentum tensor axis 2
QDHEE1 1st Eigenvalue of momentum tensor
QDHEE2 2nd Eigenvalue of momentum tensor
QDHEE3 3rd Eigenvalue of momentum tensor

Note: These quantities are no more available in MINT version 9 and after . The energy flow results
in this bank are based on the mask energy flow algorithm run in JULIA.

31

6.3.7 Beam position from BOM system: from bank BOMB

QVXBOM z beam position from BOM
QVYBOM y beam position from BOM
KERBOM Error code for BOM

e < 0 fatal error, QVXBOM and QVYBOM are filled with QVXNOM and
QVYNOM

e = 0 BOM data good

¢ = 1 BOM data in z disagrees with VDET average

e = 2 BOM data in y disagrees with VDET average

e = 3 BOM data in both = and y disagrees with VDET average

6.4 ECAL Wire Energies

QEECWI(IMOD) ECAL wire energy for module IMOD in GeV. Modules 1 — 12 refer to
endcap A, 13 — 24 to the barrel, and 25 — 36 to endcap B.

6.5 ALPHA Internal Constants, Variables

6.5.1 Event counts

KNEVT Total number of events read in

KNEFIL Number of events read from the current input file

KNREIN Number of records read from the current input file (including run records)
KNEOUT Number of events written to the output file

6.5.2 Program status

KSTATU —1: program initialization; 0: event processing; 1: program termination

KDEBUG debug level (see 4.5)

6.5.3 Event status

XMINI — .TRUE. if event read from Mini-DST = .FALSE. if event read from POT or
DST '
XMCEV — .TRUE. if MC truth available for the event

32

6.5.4 Input / output units

KUINPU event input = 20, 21
KUOUTP event output = 50

KUEDIN event directory input = 30
KUEDOU event directory output = 60
KUCONS data base = 4

KUPRNT logfile =6

KUPTER terminal = 76 or 0 (see Ch. 2)
KUCARD card input = 7

KUCAR2 second card input = 8
KUHIST histogram output unit = 15
KURTOX EXCH format histogram output on UNIX machines = 16

Note: Units 90, 91, 92, and 93 are always free for private output files.

6.5.5 Timing

QTIMEL time remaining before time limit
QTIME seconds given on the TIME card (see 4.6)

On all CERN computers, the time units are IBM 370/168 seconds.

6.5.6 Character variables

CQVERS ALPHA version number (6 digits)

CQDATE date at start of job (8 char)

CQTIME time at start of job (8 char)

CQFOUT data set name of event output file = ¢ " if no output file given

33

Chapter 7

ALPHA “Tracks” and “Vertices”

Before QUEVNT is called for each event, ALPHA fills its own data structure with information
from the event. Each “tracklike” object (eg., tracks, calorimeter objects, energy flow objects, etc.)
is assigned a unique number. (A “tracklike” object is any object which can be described with a 4
vector.) This ALPHA “track” number is equal to the JULIA “track” number + a constant. Unique
ALPHA numbers are also assigned to vertices (reconstructed vertices and Monte Carlo vertices).
The constant is introduced in order to obtain a unique numbering scheme for all species of “tracks”
or vertices (in JULIA and GALEPH, different species start with the number 1). In the description
below, ITK always refers to an ALPHA “track” number and IVX to an ALPHA vertex number.

The properties of the tracks and vertices are found using functions which refer to the ALPHA
«“track” and vertex numbers. For example, the energy of ALPHA “track” ITK is QE(ITK). The
properties available for each tracklike object and each vertex are described in sections 8.1 and 8.3,
respectively.

In the following sections, several methods for determining ALPHA track and vertex numbers are
described. All of these methods can be nested. Functions which give simple access to relationships
between different types of objects are also described.

7.1 Access by Fortran DO loops

In ALPHA, fortran DO loops can be used to loop over most types of objects. For each type of
object, three variables are defined: KFxxx, KLxxx, KNxxx. xxx represents the type of object.
The last letter of the variables is either T (tracklike) or V (vertex). DO loops must be made from
KFxxx to KLxxx; KNxxx is the number of objects of type xxx.

For example, the following three lines will make a histogram of the momentum spectrum of
charged particles.

DO 10 ITK = KFCHT, KLCHT
CALL HF1 (47,QP(ITK),1.)
10 CONTINUE

KFCHT,KLCHT number of first (last) charged track.
ITK loop index = ALPHA track number

34

QP(ITK) momentum of track ITK (see 8.1.1)

The number of charged tracks is given by the variable KNCHT. KNCHT stands for KLCHT —
KFCHT + 1. Therefore, if KNCHT = 0, KLCHT = KFCHT - 1.

The objects which can be accessed with these DO loops are listed in the following two sections.

7.1.1 ALPHA “TRACKS” :

Charged Tracks: KFCHT, KLCHT, KNCHT If the FRFO card is present in the ALPHA
cards file, the NR=0 version of the FRFT bank (track parameters determined without
vertex detector coordinates) will be used. Otherwise, the NR=2 version of FRFT
(TPC + ITC + VDET tracks) will be used. Only FRFT NR=2 tracks are available
on the MiniDST.

Calorimeter Objects: KFCOT, KLCOT, KNCOT Calorimeter objects can be any of the
following:

e ECAL objects with no associated HCAL ob ject.!

e HCAL objects with no associated ECAL object.

e Composite cal. objects consisting of at least one ECAL and HCAL object as-
sociated to each other. See 7.2 for getting access to the contributing ECAL
and HCAL objects separately. See the end of Section 7.3 for a more detailed
description of composite cal. objects in ALPHA.

Calorimeter objects can be further divided into:

ISolated cal. objects: KFIST, KLIST, KNIST Cal objects with NO associated
charged track.

ASsociated cal. objects: KFAST, KLAST, KNAST Cal objects with one or
more associated charged track.

«“REconstructed” objects: KFRET, KLRET, KNRET “REconstructed” objects are:

o Charged tracks;
e Calorimeter objects (see above) which are NOT associated to charged tracks
(ISolated cal. objects).

Reconstructed V0s: KFVOT, KLVOT, KNVOT See Section 7.5.1 for comments on the daugh-
ters of VO0s.

Tracks from DeCay Vertices: KFDCT, KLDCT, KNDCT Charged tracks outgoing from
reconstructed DeCay vertices. The momenta for these tracks are calculated relative
to the secondary vertex position. Currently, this section includes the daughter tracks
from reconstructed VOs.

Energy Flow objects: KFEFT, KLEFT, KNEFT This section includes selected charged tracks
and ECAL and HCAL clusters remaining after subtracting track energies. These
objects may also be accessed with their particle name ‘EFLW’ using the functions
KPDIR and KFOLLO (described in 7.4). This section is not filled unless the EFLW
card is included in the card file (see Ch. 11);

1For ECAL wire energies, see 6.4.

35

NEutral Calorimeter Objects: KFNET, KLNET, KNNET Neutral objects derived from
the PCPA bank. These objects may also be accessed with their particle name ‘NEOB’
using the functions KPDIR and KFOLLO (described in 7.4).

Photons from GAmpec: KFGAT, KLGAT, KNGAT These objects may also be accessed
with their particle name ‘GAMP’ using the functions KPDIR and KFOLLO (described
in 7.4).

Jets from EJET: KFJET, KLJET, KNJET Jets based on EFLW objects using QIMMCL
with YCUT = 0.003. These objects may also be accessed with their particle name
‘EJET’ using the functions KPDIR and KFOLLO (described in 7.4). They may be
used as input for jet finding with a higher YCUT (see 10.11.1 and 11.1).

Monte Carlo particles (“truth”) KFMCT, KLMCT, KNMCT

7.1.2 ALPHA “VERTICES” :

REconstructed Vertices: KFREV, KLREV, KNREV Currently, this category includes only
the main vertex (which is the first vertex, KFREV , when it exists) , and VOs. If
there is no main vertex , KFREV is the first VO .

Monte Carlo vertices (“truth”): KFMCV, KLMCV, KNMCV

ALPHA “tracks” and vertices are stored in the banks QVEC and QVRT, respectively.

7.2 Loops over ECAL and HCAL objects

If ECAL and HCAL objects are topologically associated to each other, the loops described above
give access to composite calorimeter objects rather than to each contributing ECAL and HCAL
object separately. It is also possible to get access to all ECAL and HCAL objects, regardless of
whether or not they are associated to other reconstructed objects. (The loops described below are
equivalent to looping through the PECO and PHCO banks.)

The following statements perform a loop over all ECAL objects; see 7.4. (DO loops cannot be
used because the objects are not stored in consecutive locations.)

I0BJ = KPDIR (’ECAL’, KRECO)
10 IF (IOBJ .EQ. 0) GO TO 999

cC... Analysis of the ECAL object IOBJ ...
10BJ = KFOLLO (IOBJ)
GO TO 10

(The functions KPDIR and KFOLLO are described in 7.4.) The corresponding loop for HCAL
objects is:

I0BJ = KPDIR (’HCAL’, KRECO)
10 etc ...

36

7.3 Relationships between objects in different subdetectors

The JULIA program provides relationships between objects reconstructed in the various detector
components if they are topologically associated to each other. These relations are available in AL-
PHA and can be used for charged tracks, ECAL objects, HCAL objects, and composite calorimeter
objects. (Below, IOBJ is any ALPHA “track” number referring to a charged track, cal. object,
ECAL object, or HCAL object.)

KNCHGD (I0BJ) Number of charged tracks associated to IOBJ.
KCHGD (I0BJ, N) The Nth charged track associated to IOBJ.

For example,

I0BJ = ... any calorimeter object ...
DO 10 N = 1, KNCHGD (IOBJ)
ICHGD = KCHGD (IOBJ, N)
C ... analysis of a charged track ICHGD associated to IOBJ .
10 CONTINUE

Note: If IOBJ in the example above is a charged track itself, then KNCHGD (IOBJ) is 1 and
KCHGD (IOBJ,1) gives IOBJ. Similarly:

KNECAL (IOBJ) Number of ECAL objects associated to IOBJ.
KECAL (IOBJ, N) The Nth ECAL object associated to IOBJ.
KNHCAL (IOBJ) Number of HCAL objects associated to IOBJ.
KHCAL (IOBJ, N) The Nth HCAL iject associated to IOBJ.

The relation from a composite calorimeter object ICOMP to each of its contributing ECAL
and HCAL object is provided by the relations described above: KECAL (ICOMP,N) and KHCAL
(ICOMP,N). In addition, the composite object is treated as “mother” of the contributing ECAL
and HCAL objects, so the mother—daughter or daughter—mother relation described in 7.5 can be
used for all calorimeter objects.

Note that the composite calorimeter objects in ALPHA are not identical to those in the PCRL
bank. ALPHA composite calorimeter objects include at most one HCAL object, while the PCRL
objects may include many HCAL objects. ALPHA starts with each HCAL object and adds the
ECAL objects that are associated to it. If an ECAL object is associated to more than one HCAL
object, its energy is divided equally among the HCAL objects.

7.4 Direct access to particles

7.4.1 Particle name and class

In addition to the loops described above, it is possible to access particles by their name. In many
cases, this method is faster and the code is easier to read than the standard loops described in 7.1.
Two quantities must be specified:

e The particle name (example: ‘E+’ or ‘GAMMA’); see 15.1.

e The object (= track = particle) class which distinguishes between reconstructed tracks, the
Monte—Carlo truth, and any Lorentz frame derived from one of them:

— Class KRECO: Reconstructed objects read from the event input file and everything
derived from them except Lorentz boosted objects.

— Class KMONTE: Monte—Carlo truth.

— Fach Lorentz frame is considered as its own class (see 9.6). These classes are denoted
by the number of the object which defines the Lorentz rest frame.

KRECO and KMONTE are available everywhere as integer Fortran parameters. Their actual
values are —1 and —2, respectively. Positive integers denote Lorentz frames. Integers less than —2
can be used to create your own particle classes (see KVSAVC in 9.2.12).

The particle name of MC particles is specified in the MC particle table (see 15.1). Reconstructed
objects have the names ‘CHARGED’, ‘ECAL’,‘HCAL’, ‘CALOBJ’, ‘EFLW’,"NEOB’, and '‘GAMP’
for charged tracks, ECAL objects, HCAL objects, unspecified (e.g., composite) calorimeter objects,
energy flow objects, neutral calorimeter objects, and GAMPEC photons, respectively. The func-
tions KVSAVE, KVSAVC, and KIDSAV (see 9.2.11) can be used to create new tracks with a name.
A list of standard particle names is given in App. F. New particle names can be introduced by
using them in ALPHA subroutine calls or by specifying them on data cards (see 15.4.2).

7.4.2 Example: Loop over all MC generated positrons

ITK = KPDIR (’E+’, KMONTE)
10 IF (ITK .EQ. 0) GO TO 90

C ... e+ analysis ...
ITK = KFOLLO (ITK)
GO TO 10

90 CONTINUE ..

KPDIR (’particle—name’, ICLASS) 7particle—name’: Character string (1 to 12 characters).
ICLASS: Track class (see 7.4.1): KRECO or KMONTE or a track number
ITKRST if ITKRST has been used before to define the rest frame for a Lorentz
boost (see 9.6).

KFOLLO (ITK) The following particle with the same particle name in the same class.

38

*

Remarks: The term “FOLLOwing” refers to some arbitrary ordering. Lower case char-
acters in particle names are translated to upper case. It is safest, however, to
use only upper case characters with ALPHA.

» 4.3 Particle name versus integer particle code — time consumption

Using character particle names in function calls makes the code easier to read, but it implies a
lookup in a table. Although the lookup is fast, in nested loops it may be desirable to save this
time. Consequently, some (not all) functions are provided in two versions: one which expects the
particle name as an argument and another which expects the corresponding integer particle code
and thus saves the lookup time. The second version is denoted by a “C” (= “Code”) as the 2nd
character of the function name.

Using integer particle codes, the example given in section 7.4.2 becomes:

C ... somewhere in the job or subroutine initialization:
IP = KPART (’E+’)

c ...

ITK = KCDIR (IP, KMONTE)

10 IF (ITK .EQ. 0) GO TO 90

C ... analysis of the e+ ...
ITK = KFOLLO (ITK)
GO TO 10

90 CONTINUE ...

IP = KPART(’name’) must be called before IP is used. The particle name is the basic
reference to a particle. The integer code may change from one job
to another.

KCDIR (IP, ICLASS) First particle with the given particle code in class ICLASS.

7.4.4 Loops over a particle and its antiparticle

The particle table contains the relation between particles and antiparticles, so loops over particles
(or systems of particles) and their corresponding (systems of) antiparticles can be performed easily.

Example: Loop over MC — generated e+ and e—:

DO 90 IANTI = 0,1
ITK = KPDIRA (’E+’, KMONTE, IANTI)
10 IF (ITK .EQ. 0) GO TO 90

C ... analysis of the et or e- ...
ITK = KFOLLO (ITK)
GO TO 10

90 CONTINUE .

39

KPDIRA (’particle-name’, ICLASS, IANTI) If IANTI=0, KPDIRA returns the first par-
ticle with the given name in the class ICLASS. If IANTI is not equal
to 0, the first corresponding antiparticle is given.

To use the integer particle code (see 7.4.3), replace
KPDIRA (’E+’, KMONTE, IANTI) with KCDIRA (IP, KMONTE, IANTI).
7.4.5 Analysis of particle systems: Examples

Systems of particles can be analyzed by nesting loops with KPDIR and KPDIRA. The two examples
given below illustrate cases in which care must be taken to avoid multiple counting of the same
particle combinations.

Combinations of the same particles: 7+ 77

C---First select pion candidates
DO 5 ITK=KFCHT,KLCHT
IF(condition to select pions) THEN
ISAVE=KIDSAV(ITK, ’PI+’)
ENDIF
5 CONTINUE
C---Loop over selected pioms.
IPIONE = KPDIR (’PI+’, KRECO)
10 IF (IPIONE .NE. 0) THEN
IPITWO = KFOLLO (IPIONE) <--- important
20 IF (IPITWO .NE. 0) THEN
.. analysis of the pi+ pi+ system ...
IPITWO = KFOLLO (IPITWO)
GO TO 20
ENDIF
IPIONE = KFOLLO (IPIONE)
GO TO 10
ENDIF

The 2nd 7+ (IPITWO) has to be initialized with KFOLLO and NOT with KPDIR. See section
9.2.11 for the use of KIDSAV.

40

A+t — p 1t

Proton and pion candidates must be selected and saved with KVSAVE or KIDSAV before this code
is reached (see 9.2.9).

IPROT = KPDIR (’P’, KRECO)
10 IF (IPROT .NE. O0) THEN
IPIPLU = KPDIR (°PI+’, KRECO)
20 IF (IPIPLU .NE. 0) THEN
IF (.NOT.XSAME(IPROT,IPIPLU)) THEN <--- important
C ... analysis of the p pi+ system .
ENDIF
IPIPLU = KFOLLO (IPIPLU)
GO TO 20
ENDIF
IPROT = KFOLLO (IPROT)
GO TO 10
ENDIF

The logical function XSAME (see 8.1.7) tests whether the two contributing particles are based
on different reconstructed objects or simply on different mass hypotheses of the same reconstructed
object.

7.5 Mother — daughter relationships

7.5.1 Mother to daughters

The connection from a mother to its daughters is available for MC particles and for composite
particles established by the QVxxxx routines described in 9.2.2.

IMOTH = ... (track number of a mother particle)
DO 10 I = 1, KNDAU (IMOTH)
IDAUGH = KDAU (IMOTH,I)
CALL HFILL (47, QP(IDAUGH))
10 CONTINUE

KNDAU (ITK) number of daughters for track ITK = 0 if no daughter exists
KDAU (ITK,I) track number of Ith daughter

Note for VOs: The daughters of a VO (section VOT) are stored in the DCT section (see 7.1).
These tracks are copies of tracks in the CHT section, but their momenta are recalculated relative
to the secondary vertex position. The function KCHT (see 7.6.2) returns the CHT track number
corresponding to a track in the DCT section.

41

Example:

DO 10 IVO=KFVOT,KLVOT

c--- First daughter of VO (in DCT section)
I1DCT=KDAU(IVO,1)
C --- Corresponding track in CHT section.
I1CHT=KCHT (I1DCT)
10 CONTINUE

7.5.2 Daughter to mother(s)

The connection from a daughter to its mother(s) is available for MC particles and for daughters of
“saved” composite particles (see KVSAVE in 9.2.9). The QVADDx routines (9.2.2) and the jet /
event topology routines 10) do NOT set up this relation.

IDAUGH = ... (track number of a daughter particle)
DO 10 I 1, KNMOTH (IDAUGH)
IMOTH = KMOTH (IDAUGH,I)
CALL HFILL (47, QP(IMOTH))
10 CONTINUE

KNMOTH (ITK) Number of mothers of track ITK. Note that MC particles as read in from
the event input file have no or one mother.

KMOTH (ITK,I) Track number of the Ith mother.

7.6 Access to the “same” object

The “same” object means:

e any copy of an object;

e for reconstructed tracks, the “same” object with different mass or vertex hypothesis;

e The “same” object boosted into any Lorentz frame.

7.6.1 Loops over copies of the “same” object using KSAME

Example:

ITKSAM = KSAME (ITK)
10 IF (ITKSAM .EQ. ITK) GO TO 90
C ... analysis of the same object, e.g.: search for the object
C in a specific Lorentz frame ITKRST (see >):

42

IF (KCLASS (ITKSAM) .EQ. ITKRST) THEN

C ce
ENDIF
ITKSAM = KSAME (ITKSAM)
GO TO 10
90 CONTINUE ...
Remarks: This loop is terminated if it arrives at the original track. KSAME never returns

0. The same particle can be boosted several times into the same Lorentz frame
provided that the boosts are performed with different mass or other hypotheses
(see 9.6.1); if you start with the original track ITK, the most recently boosted
hypothesis is reached first.

7.6.2 Find original copy of a charged track

For copies of charged tracks, the function KCHT returns the original track number in the CHT
section.

KCHT (ITK) If KFCHT < ITK < KLCHT,KCHT (ITK) is equal to ITK. Otherwise
(ie., ITK is a copy of a track in the CHT section), KCHT (ITK) equals
the corresponding track number in the CHT section. This function can be
used only for charged tracks; for other objects, use KSAME.

7.7 Match reconstructed tracks and MC truth

The relation between reconstructed and MC particles is not necessarily one—to—one. Therefore, a
loop has to be constructed:

ITK1 = ... (any given MC or reconstructed track number)
DO 10 I = 1, KNMTCH(ITK1)
IF (KSMTCH (ITK1,I) .LE. (min. required shared hits)) GO TO 10
ITK2 = KMTCH (ITK1,I)
C cee
10 CONTINUE
If ITK1 is a reconstructed track then ITK2 is a matching MC track. If ITK1 is a MC track then
ITK?2 is a matching reconstructed track.

KNMTCH (ITK) Number of matching candidates for track ITk.
KMTCH (ITK,I) Track number of Ith matching particle.
KSMTCH (ITK,I) Number of shared hits between MC and reconstructed track.

43

Remarks:

e The match is performed on the basis of shared hits in the TPC and IPC.

e The correspondence between MC and calorimeter objects is stored in the POT banks PEMH
and PHMH. This information will be made available in a future version of ALPHA.

7.8 Track — vertex relationships

IVX = KORIV (ITK) origin vertex of a track
IVX = KENDV (ITK) end vertex of a track
ITK = KVINCP (IVX) particle incoming to vertex IVX

To find the tracks outgoing from a vertex, the following loop must be performed:

IVX = ... (vertex number; defined before)
DO 10 I = 1, KVNDAU (IVX)
ITK = KVDAU (IVX,I)
CALL HFILL (47, QP(ITK))
10 CONTINUE

KVNDAU (IVX) number of outgoing tracks
KVDAU (IVX,I) track number of Ith outgoing track

44

Chapter 8

ALPHA Track and Vertex Attributes

Not all of the attributes listed in this chapter are available when using the Mini-DST. See Appendix
D, as well as the Mini-DST User’s Guide, for a list of variables which are filled from the MINI.

The units used throughout ALPHA are cm, sec, GeV, GeV /c, GeV/c?, kG.

8.1 “Track” attributes.

These quantities are defined for all ALPHA “tracks” (e.g., charged tracks, cal. objects, MC truth,
etc.) “I” always refers to the ALPHA “track” number.

8.1.1 Basic attributes

QP (I) P = momentum of vector L.

QX (I) 2 momentum component
QY (I) y momentum component
QZ (1) z momentum component

QE (I) Energy

QM (I) Mass (use QMASVO for VO mass; see below)
QCH (I) CHarge

KCH (I) NINT (QCH(I)) (be careful with quarks)

For charged tracks, the pion mass is assumed; the mass can be changed with QVSETM (see 9.2.13).
For angles and more kinematics quantities, see 9.1.

8.1.2 VO Mass

QMASVO (I,’name’) Mass of VO with hypothesis ‘name’

The function QMASV0(I,'name’) provides the mass for a given VO hypothesis, where ‘name’ is the
name from the ALPHA particle table or the abbreviation listed here:

45

e KOS’ or ‘KO’

e ’Lam0’ or ‘LA’

e 'Lam#0’ or ‘AL’

e '"GAMMA’ or ‘GA’.

This function can be used only for KFVOT < I < KLVOT. See also QIDVO0, Sec. 9.2.3.

The argument 'name’ in QMASVO can be given in lower or upper case .

8.1.3 Track error covariance matrix

XSIG (I) .TRUE. if covariance matrix available

QSIG (I,N,M) element (N,M) of the covariance matrix N,M = 1,2,3,4in the order QX,QY,QZ,QE
QSIGEE (I) Error? on energy

QSIGE (I) Error on energy
QSIGPP (I) Error? on momentum
QSIGP (I) Error on momentum

QSIGMM (I) Error? on mass

QSIGM (I) Error on mass The mass error is not defined for particles with mass = 0.

QSIG (I,1,1) is set to —1 if the matrix is not available.

8.1.4 Distance to the beam position:

Available for charged reconstructed tracks.

QDB (I) distance of closest approach to beam axis

QDBS2 (I) error? on QDB

QZB (I) z coordinate of track point where QDB is measured
QZBSs2 (I) error? on QZB

QBC2 (I) \? due to QDB and QZB.

The coordinates of the beam position used for these values are QVXNOM. QVYNOM. and QVZNOM
(see 6.2). The average value of QDB may have a small offset from zero as a result of systematic
tracking errors. The offset QDBOFS (see 6.2), which is typically less than 50 microns, may be
subtracted from QDB(I) in order to yield <QDB> = 0.

For more geometrical track attributes, see sections 8.2.1 and 9.1.

46

8.1.5 Stability code

KSTABC (I) Stability code

The stability code is designed to avoid double counting when making loops over Monte Carlo
particles. The possible values of KSTABC are:

1 Particle does not decay.

2 Neutral particle that decays in the calorimeter volume. Charged particle that decays in
the TPC or calorimeter volume. Here, TPC and calorimeter volumes are full cylinders
(including the beam pipe region).

3 One of the ancestors of this stable particle has interacted with matter. Energy and mo-
mentum are NOT conserved.

0 Decay products of “stable” particles including all garbage in the calorimeter.

-1 Particle decays immediately (resonance etc.).

-2 Particle decays with finite decay length but before reaching the detector volume (see
above).

-3 Particle interacts with matter before reaching the detector volume. The decay products

do not conserve energy and momentum.

A loop over all MC particles with KSTABC > 0 selects the generation of decay particles which
will probably be visible in the detector — energy is never counted twice. The energy sum of these
particles gives the total generated energy omly if no particle interacted with matter inside the
detector volume. A loop over MC particles with KSTABC = 1, 2, and —3 is similar, but it always
gives the generated total energy.

8.1.6 Test a particle’s name

XPEQU (I,’part—name’) = .TRUE. if track I is a particle with the name ‘part—name’.

XPEQOR (I,’part—name’) = .TRUE. if track I is a particle with the name ‘part—name’
or if it is the corresponding antiparticle.

XPEQAN (I,’part—name’, JANTI) = .TRUE. if track Lis a particle with the name ‘part—name’
and if IANTI = 0. = .TRUE. if track I is the antiparticle cor-
responding to ‘part—name’ and if IANTT is not equal to 0.

Important remark : From ALPHA 116 onwards , the above functions have been completely
rewritten both to be much faster and to run without problem on UNIX machines . They MUST
now be called with ‘part—name’ being a member of the official list of ALPHA particle names given
in Appendix E. In particular , these functions are now CASE-SENSITIVE and do not work if you
supply the wrong particle name .

The same functions exist for integer particle codes IPC = KPART (’part—name’) instead of the
particle names (see 7.4.3):

47

XCEQU (I, IPC)
XCEQOR (I, IPC)
XCEQAN (I, IPC, IANTI)

8.1.7 Test if particles are based on the same object

XSAME (1,J) = .TRUE. if tracks I and J or one of their daughters, granddaughters, etc.
are based on the same object (see 7.6) or, in other words, belong to the same
family (see 10.2.3). I and J must both be reconstructed tracks or MC particles; -
they may, however, belong to different Lorentz frames. XSAME uses the same
bit masks as the lock algorithm. XSAME(IJET,ITK) can be used for testing
whether a track ITK belongs to a given jet (see 10.3). An example how to use
XSAME in reconstructing decay chains is given in 7.4.5, example 2.

8.1.8 Flags, pointers, etc.

Pointers to other tracks and to vertices: see ch. 7.

KTN (I) JULIA / GALEPH track number
KCLASS(I) Track class:

e —1 (= KRECO) for reconstructed tracks
e —2 (= KMONTE) for MC truth

e = 0: track attributes = 0

e > 0: Lorentz frame. See 7.4.

KTPCOD (I) track’s Particle Code

CQTPN (I) track’s particle name (12 char.). = * ’ if particle code = 0
KLUNDS (I) LUND status code (MC particles only)
XMC (I) .TRUE. if MC particle

KRDFL (I,LIFLAG) Integer value of user flag IFLAG (IFLAG=1-18). Flag is set to IVAL
with CALL QSTFLI(LIFLAG,IVAL); see 9.2.14.

QRDFL (I,LIFLAG) Floating—point value of user flag IFLAG (IFLAG=1-18). Flag is set to
VAL with CALL QSTFLR(IIFLAG,VAL); see 9.2.14.

8.2 “Track” related detector data

These mnemonic symbols give access to information in BOS banks corresponding to an ALPHA
“track”. These symbols return the integer or floating point value 0 if detector data are not avail-
able for a track. The names of these mnemonic symbols follow the same convention as the HAC
parameters.

48

8.2.1 Global geometrical track fit: Bank FRFT

If the FRFO card is present in the ALPHA cards file, the NR=0 version of the FRFT bank (track
parameters determined without vertex detector coordinates) will be used. Otherwise, the NR=2
version of FRFT (TPC + ITC + VDET tracks) will be used.

XFRF (I)
QFRFIR (I)

QFRFTL (I)
QFRFPO (I)
QFRFDO (I)
QFRFZo (I)

QFRFAL (I)

. TRUE. if track fit data are available for track I

Inverse radius of curvature in x—y projection Signed positive if track bends
counterclockwise, negative if track bends clockwise

Tangent of dip angle
Phi at closest approach to the z axis
Distance of closest approach to z axis

z coordinate of track point where QFRFDO is measured Note: QDB and QZB
(see 8.1.4) correspond to the closest approach to the beam axis.

Multiple scattering angle between TPC and ITC

QFRFEM (I,N,M) Element N,M of the error covariance matrix NM = 1,2,3,4,5.6 in the order

QFRFC2 (I)
KFRFDF (I)
KFRFNO (I)

IR,TL,PH,D0,Z0,AL. Note that for data processed before April 1993 the error
matrix is valid at the innermost point used in the track fit, and therefore does
not include multiple scattering in material before the tracking chambers. For
data processed - or reprocessed - after April 1993 the error matrix is valid at
the interaction point and therefore includes the effect of multiple scattering .

X7 of helix fit

Number of degrees of freedom

Option flag for track fit

8.2.2 Number of coordinates used for the global fit: Bank FRTL

KFRTNV (I)
KFRTNI (I)
KFRTNE (I)
KFRTNT (I)
KFRTNR (I)

Number of coordinates in Vdet
Number of coordinates in ITC
Number of coordinates in ITC in following spirals
Number of coordinates in TPC

Number of coordinates in TPC in following spirals

8.2.3 Charged—particle identification: Bank FRID

KFRIBP (I)
KFRIDZ (I)

Bit pattern for tracking devices

Dead zone pattern for tracking devices

49

KFRIBC (I) Bit pattern for calorimeters
KFRIDC (I) Dead zone pattern for calorimeters
QFRIPE (I) Electron probability

QFRIPM (I) Muon probability

QFRIPI (I) Pion probability

QFRIPK (I) Kaon probability

QFRIPP (I) Proton probability

QFRINK (I) No Kink probability

KFRIQF (I) Track Quality Flag from UFITQL
XFRIQF (I) .TRUE. if KFRIQF(I) = 1 or 3

8.2.4 dE/dx data: Bank TEXS

Note: These functions return uncalibrated numbers. In general, dE/dx information should be
accessed with subroutines QDEDX and QDEDXM (see 12.1).

XTEX (I) .TRUE. if dE/dx is available for track I
KNTEX (I) Number of TPC sectors on track I

In the following, N is the loop index of: DO 10 N = 1, KNTEX(I)

KTEXSI (I,N) Sector slot number

QTEXTM (I,N) Truncated Mean of dE/dx measurements
QTEXTL (I,N) Useful Track Length for dE/dx
KTEXNS (I,N) Number of Samples used for dE/dx
QTEXAD (I,N) Average Drift length of samples

8.2.5 Electron identification: Bank EIDT

XEID (I) .TRUE. if electron identification is available for track I
KEIDIF (I) Quality flag

QEIDRI (I,N) R(N) estimator, N = 1 ... 7. N = 1: Energy balance; N = 2: compactness; N
= 3.4: long. profile; N = 5: dE/dx: N = 6: Dtheta barycenter; N = 7: Dphi
barycenter.

QEIDEC (I) Corrected energy with electron hypothesis
KEIDIP (I) Particle hypothesis (= 1 if electron)
QEIDEI (I,N) Energy in centered storeys stack N

50

8.2.6 Muon — HCAL association: Bank HMAD

XHMA (I) .TRUE. if HCAL data are available for track I
KHMANF (I) Number of Fired planes

KHMANE (I) Number of Expected fired planes

KHMANL (I) Number of Fired planes within Last ten planes
KHMAMH (I) Mult Hits: number of clusters in last ten planes
KHMAIG (I) IGeomflag: flag of possible dead zone
QHMAED (I) Energy Deposit in corresponding HCAL storey
QHMACS (I) «?

KHMAND (I) Number of Degrees of freedom

KHMAIE (I) Expected bit map

KHMAIT (I) True bit map

KHMAIF (I) Preliminary identification flag

8.2.7 Muon chamber data: Bank MCAD
XMCA (I) .TRUE. if muon chamber data are available for track I
N = 1,2: Int/Ext chambers
KMCANH (I,N) Number of associated hits
QMCADH (I,N) Minimum distance hit—track
QMCADC (I,N) Cutoff on hit—track distance
QMCAAM (I) Min. angle between extrapolated and measured (in muon ch.) track
QMCAAC (I) cutoff on minimum angle

8.2.8 QMUIDO Muon Identification: Bank MUID

XMUI (I) .TRUE. if QMUIDO information is available for track I
KMUIIF (I) Identification Flag

QMUISR (I) Sum of HCAL residuals

QMUIDM (I) Distance between track and closest muon chamber hit.
KMUIST (I) FRFT track number of shadowing track

51

8.2.9 ECAL objects: Bank PECO

XPEC (I)

QPECER (I)
QPECEI1 (I)
QPECE2 (I)
QPECTH (I)
QPECPH (I)
QPECEC (I)
KPECKD (I)
KPECCC (I)
KPECRB (I)
KPECPC (I)

.TRUE. if ECAL data (PECO) are available for track I
Raw energy.

Fraction of energy in stack 1

Fraction of energy in stack 2

Theta

Phi

Energy corrected for geometrical effects

Region code — see ALEPH 88-134

Correction code — see bank description

Relation bits — see bank description

PCOB number of associated cal. object

8.2.10 ECAL objects: Bank PEPT

XPEP (I)

QPEPT1 (I)
QPEPP1 (1)
QPEPTS3 (I)
QPEPP3 (I)

.TRUE. if ECAL data (PEPT) are available for track I
Theta in stacks 1 and 2

Phi in stacks 1 and 2

Theta in stack 3

Phi in stack 3

8.2.11 HCAL objects: Bank PHCO

XPHC (I)

QPHCER (I)
QPHCTH (I)
QPHCPH (I)
QPHCEC (I)
KPHCKD (I)
KPHCCC (1)
KPHCRB (I)
KPHCPC (I)

.TRUE. if HCAL data (PHCO) are available for track I
Raw energy

Theta

Phi

Energy corrected for geometrical effects

Region code — see ALEPH 88-134

Correction code — see bank description

Relation bits — see bank description

PCOB number of associated cal. object

52

8.2.12 Reconstructed VO0s: Bank YVOV

XYVo (I)
KYVO0K1 (I)

KYVOK2 (I)

QYVOVX (I)
QYVOVY (I)
QYVOVZ (I)
QYVO0X1 (I)
QYVo0X2 (I)
QYVo0C2 (I)
KYVOIC (I)
QYVODM (I)
QYV0S1 (I)
QYV0S2 (I)

.TRUE. if VO data are available for track I

JULIA/FRFT track number of positive track from VO (NOT the ALPHA track
number !)

JULIA/FRFT track number of negative track from VO (NOT the ALPHA
track number !)

V0 x coordinate

V0 y coordinate

VO z coordinate

First constraint on VO mass (r in ALEPH 88-46)
Second constraint on VO mass (b in ALEPH 88-46)
x? of VO vertex fit

Fit hypothesis (see YVOV bank description)
Minimum distance between helices

Psi angle for + track from VO

Psi angle for — track from VO

8.2.13 GAMPEC Photons, Bank EGPC (Obsolete since July 1993)

This bank was written on POTs , DSTs and MINIs before July 1993 (JULIA versions 264 and
before . MINI version 8 and before) . On these datasets , the photons from the new GAMPEX

9

package (bank PGPC , see below) are not yet available . PGPC may be obtained from old
POTs/DSTs by putting a data card REVO in the CARDS file and loading the ALENFLW and
JULIA libraries (see Appendix C) .

XEGP (I)
QEGPRI1 (I)
QEGPR2 (I)
QEGPF4 (I)
QEGPDM (I)
KEGPST (I)
KEGPQU(I)

KEGPPE (I)

.TRUE. if GAMPEC data are available for track I

Energy fraction in stack 1

Energy fraction in stack 2

Energy fraction in 4 central towers

Distance to the closest track (cm)

NST14+100xNST2+10000«NST3, NSTi=number of storeys in stack i
QUality flag

e CRCK + 10*DST1 + 100*DST2 + 1000*DST3
e DSTi = 1 if dead storey(s) in stack i
e CRCK = 1 if photon in crack region

Row number of corresponding PECO cluster

53

8.2.14 Photons from GAMPEX: Bank PGPC

This bank is written on POTs , DSTs and MINIs since July 1993 . On these datasets , the photons
from the old GAMPEC package (bank EGPC , see above) are no more available .

The above remarks hold for datasets written with JULIA version 265 and after , MINI version

9.0 and after .

XPGP (I)
QPGPR1 (I)
QPGPR2 (I)
QPGPF4 ()
QPGPDM (I)
QPGPST (I)
KPGPQU(I)

QPGPM1 (I)
QPGPM2 (I)
QPGPMA (I)
QPGPER (I)
QPGPTR (1)
QPGPPR (I)
KPGPPE (I)

. TRUE. if GAMPEX data are available for track I

Energy fraction in stack 1

Energy fraction in stack 2

Energy fraction in 4 central towers

Distance to the closest track (cm)

NST1+100«NST2+10000«NST3, NSTi=number of storeys in stack i
QUality flag

e CRCK + 10*DST1 + 100¥*DST2 + 1000*DST3
e DSTi = 1 if dead storey(s) in stack i
¢ CRCK = 1 if photon in crack region

1st moment from CLMOMS analysis

2nd moment from CLMOMS analysis

Pi0 mass estimated from CLMOMS analysis
Raw energy of photon

Raw Theta of photon

Raw Phi of photon

Row number of corresponding PECO cluster

8.2.15 Energy Flow: Bank EFOL

XEFO (I)

KEFOTY (I)
KEFOLE (I)
KEFOLT (I)
KEFOLH (1)
KEFOLC (I)
KEFOLJ (I)

.TRUE. if energy flow (EFOL) data are available for track I
Type of energy flow object (see Sec. 11.2)

PECO number of associated ECAL object

FRFT number of associated charged track

PHCO number of associated HCAL object

PCOB number of associated calorimeter object

EJET number of associated jet

54

8.2.16 Neutral objects from PCPA: Bank PCQA

XPCQ (I) .TRUE. if PCQA data are available for track I
KPCQNA (I) NAture of neutral object (see Sec. 11.3)

8.3 Vertex attributes

The following attributes are all vertices. The argument (IVX) always refers to vertex IVX.

WARNING : for the main vertex (IVX = KFREV) the quantities below may have been
obtained either from the JULIA vertexing or from the QFNDIP package if you asked for it through
the data card QFND . See the entry QVCHIF below to know which package was used to give the
main vertex positions .

QVX (IVX) x position

QVY (IVX) y position

QVZ (IVX) 1z position

KVN (IVX) JULIA/GALEPH vertex number

KVTYPE(IVX) vertex type (as in PYER) = 1 for primary vertex; = 2 for secondary vertex

QVCHIF(IVX) Chisquare of the main vertex fit . Always 0 if the main vertex was found by
JULIA , or if IVX # KFREV . If the main vertex was found by QFNDIP , this
chisquare is positive . If QFNDIP was called and was unable to find a vertex , this
Chisquare is set to a huge negative value .

QVEM (IVX,N,M) element (N,M) of the covariance matrix N,M = 1,2,3 in the following order
: QVX,QVY,QVZ . This matrix is not defined if the vertex was found by JULIA
. QVEM (IVX,1,1) is set to —1. if the error matrix is not available.

See Section 7.8 for pointers between ALPHA tracks and vertices.

55

Chapter 9

Kinematics and Track Operations

In this chapter, the kinematics utility routines available in ALPHA are described. Also, many
routines for creating new tracks and modifying existing tracks are described. First, calculations with
scalar results are summarized. Next, routines with vector results are described (e.g., cross product).
Finally, routines for doing kinematic fits, vertex fits, Lorentz transformations are discussed.

9.1 Scalar quantities

The arguments I,J,K,L are ALPHA “track” numbers.

QCT (I) cos (polar angle)

QPH (I) PHi = azimuth (radians)

QPT (I) Transverse momentum (with respect to the beam line)
QBETA (I) beta (see 8.1.1 for mass assumption)

QGAMMA (I) gamma
Note: Returned masses are negative if (E? — p?) is negative.

QMsSsQz2 (1,J) (invariant mass)? of particles I and J
QM2 (1,J) invariant mass of particles I and J

QMSQ3 (I,J,K) (invariant mass)® of particles L. J, and K
QM3 (1,J,K) invariant mass of particles I, J, and K
QMSQ4 (1,J,K,L) (invariant mass)® of particles I, J, K. and L
QM4 (1,J,K,L) invariant mass of particles [, J. K, and L

QDMSQ (1,J) mass? of the 4—momentum difference p(I) — p(J). In a decay I —~> J + x,
QDMSQ(L,J) gives the mass® of x.

QPPAR (1,J) momentum component of particle I parallel to particle J

QPPER (1,J) momentum component of particle I perpendicular to particle J

56

QDOT3 (1,J) scalar product of momentum vectors I and J (3—vectors)
QDOT4 (1,J) scalar product of 4—vectors I and J = QE(I) * QE(J) — QDOT3(LJ)
QCOSA (1,3) cos (angle between tracks I and J) (lab frame)

QDECAZ2(1,J) cos (decay angle): In a two—body decay x — I + J, the decay angle is the
angle between particle x and particle I, measured in the rest frame of particle
x (i.e., the angle between the boost direction and particle I).

QDECAN(I,J) extension of QDECAZ2 for the n—body decay I — J + any. Note the different
meaning of the first argument in QDECA2 and QDECAN.

QMDIFF(I,’part’) mass difference between I and particle table mass of ‘part’.

QMCHI2(1,’part’) \? resulting from mass difference between I and particle table mass of ‘part’.
This function is equivalent to

(QM(ITK) - QPMASS('part — name'))?/QSIGM M(ITK).
QMCHIF(I) 2 of mass-constrained fit (KVFITM or KVFITA - see 9.3). QMCHIF(I)=-1
if track I was not the result of a fit.
QVDIF2(IV1,IV2) distance between vertices IV1 and IV2 in 7 — ¢ (see 9.4).
QVDIF3(IV1,IV2) distance between vertices IV1 and IV2 in 3 dimensions (see 9.4).

QVCHIF(IV) v2/NDF of vertex fit for vertex IV (KVFITN or KVFITV — see 9.4).

9.2 Vector quantities

9.2.1 General Remarks

Except where noted below (e.g., mass), the attributes of “tracks” read from the input tape cannot
be changed by the user. To modify attributes of an “input” track, a copy of the track must be
made.

The following example illustrates some features of the routines described in this section.

ISUM = KVNEW (DUMMY)
DO 10 ITK1 = ... , ...
DO 10 ITK2 = ... , ...
CALL QVADD2 (ISUM, ITK1, ITK2)

C ... analysis of the sum of ITK1 and ITK2, for example:
CALL HF2 (4711, QP(ISUM), QM(ISUM),1.)
10 CONTINUE

The function KVNEW (DUMMY) creates a new track (ISUM) in the system area which is
needed as working space for most of the subroutines described here (see 9.2.8). New tracks can
be created whenever necessary, but to avoid exceeding the size of the BOS array, they should not

57

be created inside loops. A warning is issued if an “input” track is used as working space (i.e.if an
“input” track is given as the output track of a routine).

Subroutine QVADD2 (ISUM, ITK1, ITK2) adds the 4—momenta of tracks ITK1 and ITK2 and
stores the resulting composite particle as track ISUM (see 9.2.2). All track—track and track—vertex
relations, flags, etc. are set in QVADD2. For example, all flags for the lock algorithm are set
(see 10.2.3). Thus, with CALL QLOCK (ISUM), you lock ITK1 and ITK2 as well as ISUM. The
mother—daughter relation (see 7.5.1) from ISUM to ITK1 and ITK2 is stored, but NOT the reverse
daughter—mother relation; see KVSAVE in 9.2.9).

In subroutine calls, the result is stored in the track denoted by the first subroutine argument:
for example, CALL QVCOPY (ITO, IFROM) copies track IFROM to track ITO.

Do not mix up tracks from different classes. ITK1 and ITK2 in QVADD2 must belong the

same class (KRECO or KMONTE or a Lorentz frame derived from one of them; see 7.4.1). If you
really want to mix up tracks from different classes, they must first be “saved” in the same class

(see KVSAVC in 9.2.12).

9.2.2 Add 4-momenta of particles

Add two particles

[CALL QVADD?2 (ISUM, ITK1, ITK2)

Add the 4—momenta of ITK1 and ITK2 and and store the result in ISUM.

Add three particles

CALL QVADD3 (ISUM, ITK1, ITK2, ITK3)

Add the 4—momenta of ITK1, ITK2, ITK3 and store the result in ISUM.

Add four particles

CALL QVADD4 (ISUM, ITK1, ITK2, ITK3, ITk4)

Add the 4—momenta of the particles ITkn (n =1 to 2.3, or 4) and store the result in ISUM.

Add N particles

CALL QVADDN (ISUM, ITK)

58

For adding more than four particles, either use QJADDP (see 10.3) or construct a loop with
QVADDN:

ISUM = KVNEW (DUMMY)
DO 10 ITK = ... , ...
10 CALL QVADDN (ISUM, ITK)

The sum of all track momenta is stored in ISUM.

Before using track ISUM in such loops, its momentum must be set to zero. This is done in
KVNEW. When reusing ISUM for another loop, however, it must be zeroed by CALL QVZERO
(ISUM).

9.2.3 Recalculate 4—Vector of VO

CALL QIDVO (ITK, ‘PI+’, ‘PI-")

Recalculates the 4—vector of a “V0” object ITK (i.e., a reconstructed neutral track pointing to
a V0) by using the 3—vectors of the decay particles and masses denoted by the two particle names
given as function arguments. The attributes of ITK are overwritten by the new 4—vector. The
attributes of the decay particles remain unchanged. For saving a V0 mass hypothesis, the function
KVSAVE (9.2.9) or KVFITM (9.3) must be called. For example,

DO 10 ITK=KFVOT,KLVOT
CALL QIDVO (ITK, ’P’, ’PI-’)
IF (QMCHI2 (ITK, ’LAMO’) .LE. 9.)
g ISAVE = KVFITM (ITK, ’LAMO’, IER)
CALL QIDVO (ITK, ’pi+’, ’p#’)
IF (QMCHI2 (ITK, ’LAMO’) .LE. 9.)
g ISAVE = KVFITM (ITK, ’LAM#0’, IER)
10 CONTINUE '

The particle names in the QIDV0 arguments may be given either in upper or lower case .

9.2.4 Copy a track

CALL QVCOPY (ITO, IFROM)

Copy the track attributes from IFROM to ITO. If one of the tracks is in the user’s track section,
only the basic attributes (see 8.1.1) are copied. Otherwise. all flags. relations. etc. are copied. See
remarks about lock algorithm in sections 10.2.1 and 10.2.3.

QVCOPY should be used only if a specific track ITO has to be overwritten. Another copy
routine which is protected against overwriting tracks is KVSAVE (9.2.9).

59

9.2.5 Cross product

CALL QVCROS (ICROSS, ITK1, ITK2)

Store the cross product of the vectors ITK1 and ITK2 in ICROSS. Space for ICROSS can be
reserved by ICROSS = KVNEW (DUMMY).

Mother — daughter relation: ITK1 and ITK2 are daughters of ICROSS.

9.2.6 Drop tracks

CALL QVDROP (’part—name’, ICLASS)

Drop all tracks with name ‘part—name’ in the class ICLASS. For example,
CALL QVDROP (’ ’, ICLASS)

will drop tracks with any track in class ICLASS. The main application of this subroutine is to drop
all tracks in a specific Lorentz frame. See the example in section 9.6.3.

If ICLASS = KRECO or ICLASS = KMONTE: Only tracks created in the analysis program
are dropped; tracks coming from the event input file cannot be dropped. No garbage collection
takes place.

9.2.7 Copy track attributes into a Fortran array

(To copy a Fortran array into a track, see section 9.2.13.)

Copy 3—momentum of a track

CALL QVGETS3 (ARR, ITK)

Copy the 3—momentum (px,py,pz) of track ITK into the Fortran array ARR with DIMENSION
ARR(3).

Copy 4—-momentum of a track

CALL QVGET4 (ARR, ITK)

Copy the 4—momentum (px,py,pz,E) of track ITK into the Fortran array ARR with DIMEN-
SION ARR(4).

60

Copy covariance matrix of a track

CALL QVGETS (ERRMAT, ITK)

Copy the 4*4 covariance matrix (order: px,py,pz,E) of track ITK into the symmetric Fortran
matrix ERRMAT with DIMENSION ERRMAT(4,4).

9.2.8 Create a new track

INEW = KVNEW (DUMMY)

Create a new track (see 9.2.1) with momentum = energy = 0. The corresponding space is
allocated dynamically and NOT kept when a new event is read in. INEW is a track without a
particle name. None of the access methods described in Ch. 7 give access to it; the only access to
the track is with the track number INEW. Consequently, it can never be dropped (see 9.2.6). The
new track does NOT belong to a specific class (KRECO / KMONTE / Lorentz frame).

9.2.9 Save a track

ISAVE = KVSAVE (ITK, ‘part—name’)

To save track ITK means to copy it into a new track ISAVE and to assign a particle name to
the track copy. This particle name can be used later for direct access to this particle (see 7.4).
Note that the mass is NOT changed in KVSAVE (see KIDSAV, 9.2.11).

The class (KRECO / KMONTE / Lorentz frame; see 7.4.1) of a saved track is given by its
history (in the example below, the class of JPSI is set equal to that of ITK1 and ITK). A dedicated
routine KVSAVC (see 9.2.12) makes it possible to copy a track into a different or new class.
KVSAVC must be used instead of KVSAVE if the track class cannot be deduced from the track
history (see example in 9.2.12).

If ‘part—name’ is equal to ¢ ’, KVSAVE only performs a copy, and the track copy has no particle
name. In contrast to QVCOPY (see 9.2.4), KVSAVE never overwrites a track.

In a decay chain, the daughter—mother relation is established by KVSAVE. The inverse relation
(mother—daughter) is established in routines like QVADDx.

Example: ¢ — ete™:

ISUM = KVNEW (DUMMY)
ITK1 = KPDIR (’E+’, KRECO)
10 IF (ITK1 .NE. 0) THEN
ITK2 = KPDIR (’E-’, KRECO)
20 IF (ITK2 .NE. 0) THEN
C ... all e+ e- combinations:

61

CALL QVADD2 (ISUM, ITK1, ITK2)
C ... cut on invariant mass and save J/psi candidates:
IF (ABS (QM(ISUM) - QPMASS (’JPSI’)) .LT. (your cut))
& ITKPSI = KVSAVE (ISUM, ’JPSI’)
ITK2 = KFOLLO (ITK2)
GO TO 20
ENDIF
ITK1 = KFOLLO (ITK1)
GO TO 10
ENDIF

The daughter—mother relation is established only for the accepted (i.e., saved) v¥s. In subse-

quent loops, the ¥(s) is (are) directly accessible by their name and can be used, for example, to
analyze ¢/ — ¥7r+7~ in the same way as ¢ — ete.

9.2.10 Save a track inside particle/antiparticle loop

ISAVE = KVSAVA (ITK, ‘part—name’, IANTI)

This routine has the same function as KVSAVE, but is intended to be used inside of loops over
particles and antiparticles. If IANTI is 0, the track is saved as ‘part—name’; if JANTI is nonzero,
the track is saved as the corresponding antiparticle.

9.2.11 Save a track and set its mass

ISAVE = KIDSAV (ITK, ‘part—name’)

This function does the same thing as KVSAVE, but also sets the mass of track ISAVE to the
mass of ‘part—name’. As in KVSAVE, the original track ITK is not changed. For charged tracks,
KIDSAV will save tracks as the appropriate particle or antiparticle depending on their charge. For
example KIDSAV(ITK, ‘K+’) will save positive tracks as Kt and negative tracks as ™.

9.2.12 Save a track with class ICLASS

ISAVE = KVSAVC (ITK, ‘part—name’, ICLASS)

Save (see 9.2.9) track ITK in track class ICLASS independent of the track history. Track classes
are described in 7.4.1. If class ICLASS does not yet exist, a new class is created. Note that the
maximum number of new classes is six (see 9.6).

It is possible but not recommended to put a reconstructed track into the class KMONTE (MC
truth) or vice versa. The lock algorithm will not work for these tracks.

62

Example: Create and save a beam particle in track class KRECO.

DIMENSION VEC(4)

VEC(1) = 0. pX

VEC(2) = 0. Py

VEC(3) = QELEP * 0.5 beam energy
VEC(4) = VEC(3) energy = momentum

INEW = KVNEW (DUMMY)
CALL QVSET4 (INEW, VEC)
IBEAM = KVSAVC (INEW, ’BEAME+’, KRECO)

KVSAVC has to be used here instead of KVSAVE because the track history of INEW does not
specify the track class. See 9.2.8 and 9.2.13 for explanations of KVNEW and QVSET4.

9.2.13 Modify track parameters

(To copy a track into a Fortran array, see 9.2.7.)
The QVSxxx routines described below modify the specified track attributes but do not change

any flag or pointer. Thus, all track—track relations (KMOTH, KDAU, KSAME, etc.) which have
been established remain valid even if the routines completely overwrite the kinematic quantities.

Scale track momentum

CALL QVSCAL (ITK, FACTOR)

Multiply the momentum of track ITK by the factor FACTOR. The energy of ITK is set ac-
cording to the new momentum and the old mass value. QVSCAL can be called for “input” tracks.

Set mass of a track

CALL QVSETM (ITK, AMASS)

Set the mass of track ITK to AMASS. The new energy of ITK is set according to the new mass
and the old (unchanged) momentum. QVSETM can be called for “input”™ tracks.

Set 3—momentum of a track

CALL QVSET3 (ITK, ARR)

Copy the Fortran array ARR containing px, py, pz with DIMENSION ARR(3) into the mo-
mentum vector of track ITK. The new track energy is calculated from the new momentum and the
old mass.

63

Set 4—momentum of a track

CALL QVSET4 (ITK, ARR)

Copy the Fortran array ARR containing px, py, pz, E with DIMENSION ARR(4) into the
momentum vector of track ITK. All basic track attributes are recalculated. See example in section
9.2.12.

Set covariance matrix of a track

CALL QVSETS (ITK, ERRMAT)

Copy the 4*4 Fortran matrix ERRMAT containing the track’s covariance matrix in the order
px,py,pz,E with DIMENSION ERRMAT(4,4) into the covariance matrix of track ITK.

9.2.14 Set User Track Flags

CALL QSTFLR (ITK,IFLAG,VAL) and CALL QSTFLI(ITK,IFLAG,IVAL)

ITK ALPHA “track” number
IFLAG Flag number: 1 — 18
VAL, IVAL Value to be stored in flag IFLAG

Each ALPHA “track” has 18 user flags which may be set to any integer or real value. QSTFLR and
QSTFLI are used to set a flag to a real number or to an integer, respectively. Once these flags are
set, they can be read with the functions KRDFL(ITK,IFLAG) (integer) and QRDFL(ITK,IFLAG)

(real); see section 8.1.8.

9.2.15 Subtract track momenta

CALL QVSUB (IDIFF, ISUM, ISUB)

Subtract the vector ISUB from ISUM and store the result in IDIFF. Space for IDIFF can be
reserved by IDIFF = KVNEW (DUMMY).

o If QE(ISUM) < QE(ISUB), the result is meaningless.
e If QP(IDIFF) > QE(IDIFF), the result gets a negative mass.

e A warning is issued in either case.

64

9.2.16 Zero track attributes

CALL QVZERO (ITK)

Set all attributes (momentum, etc.) of ITK to 0. Note that KVNEW (see 9.2.8) implies
QVZERO.

9.3 Kinematic fitting

None of the functions described below can work when reading a NANO-Dst ,

IFIT = KVFITM (ITK, ‘part—name’, IER)

Performs a mass—constrained fit for the decaying particle ITK. This fit readjusts the 4—vector
of ITK by using the constraint E? — p? = mass(’part—name’)? (method: Lagrange multiplier). In
particular, the fit improves the 3—momentum resolution. KVFITM determines the 4—momentum
of the decaying particle only; the 4—vectors of the decay products are not recalculated and re-
main unchanged. Therefore, the momenta of the daughter particles will not add up to the fitted
momentum of the mother exactly.

IFIT = KVFITA (ITK, ‘part—name’, IER, IANTI)

This function is similar to KVFITM. It is intended to be used inside loops over particles and an-
tiparticles. The particle given by ‘part—name’ is used if IANTI is 0; the corresponding antiparticle
is used if IANTI is nonzero.

The y? for the track fit may be accessed with the statement function QMCHIF(IFIT) .

9.4 Vertex fitting with YTOP

The following functions provide an interface to the YTOPOL package in ALEPHLIB. All of them
build a new vertex available in QVRT with its full error matrix .

None of the functions described below can work when reading a NANO-Dst .

IFIT = KVFITN (ND, ID, ‘part—name’)

Fit ND tracks stored in ID to a common vertex. IFIT is the number of new track coming into the
vertex; this track is stored with the name ’part-name’ and can be accessed with KPDIR, etc. The
vertex number is the end vertex of track IFIT:

IVX = KENDV(IFIT).

IFIT = -1 if the fit fails.

65

IFIT = KVFITV (IV,ND, ID, ‘part—name’) |

Same as KVFITN except that vertex IV is used as an additional constraint in the fit.

Both functions refit the track parameters of the input tracks and calculate the 4-vector and
error matrix of the new track (IFIT) at the fit vertex. The fit vertex position and error matrix are
stored in the end vertex of IFIT: KENDV(IFIT). There can be any number of input tracks, but if
NTR > 10, KVFITx will first vertex tracks 1-10 and then add the following tracks to this vertex.
Input tracks can be either charged tracks, VOs, or tracks resulting from a previous fit.

The \2/NDF for the vertex fit may be accessed with the statement function QVCHIF(IVX),
where IVX is the end vertex of IFIT. The number of degress of freedom for the routines are:

NDF = 2 * ND -3 for KVFITN
NDF = 2 * ND for KVFITV

The following statement functions give the distance between two vertices IV1 and IV2.

DIST = QVDIF2(IV1,IV2) distance in 7 — ¢
DIST = QVDIF3(IV1,IV2) distance in 3 dimensions

Example:

Assume that you have a D° — K candidate (IDO0) and a lepton (ILEP) from a B-meson decay.
The following code finds the vertex of the B decay.

CALL QVSETM(IPION,QPMASS(’PI+’)) !pion mass
CALL QVSETM(IKAON,QPMASS(’K+’)) 'kaon mass
ITL(1) = IPION
ITL(2) = IKAON
IDO = KVFITN(2,ITL,’DOKp’)
IF(IDO.GT.0) THEN
RMDO = QM(IDO) ! vertex refitted DO mass
IVDO = KENDV(IDO) ! DO vertex
CHI2 = QVCHIF(IVDO) ! chi**2 of the DO vertex
C
ITL(1) = ILEP
ITL(2) = IDO
IB = KVFITN(2,ITL,’Blep’) ! fit B vertex

IF(IB.GT.0) THEN
IVB = KENDV(IB)
CHI2 = QVCHIF(IVDO)
DIST = QVDIF3(IVB,IVDO)

B vertex

chix*2 of B vertex
distance between B and DO
vertex

- sem sem e

ENDIF
ENDIF

66

IFIT = KVFITC (NTKD,ITKD,RMAS,DRMAS,‘part—name’)

Fits NTKD tracks in array ITKD to a common vertex with mass constraint RMAS in the fit.
The new track is stored with the name ’part—name’ and can be accessed as described above for
KVFITN or KVFITV : The vertex number is the end vertex of track IFIT:

IVX = KENDV(IFIT).
IFIT = -1 if the fit fails.

NTKD Number of input tracks to be fitted

ITKD Array of input ALPHA “track” numbers

RMAS Mass to which the tracks are constrained (in Gev)
DRMAS Error on Mass**2 = 2*RMAS*Sigma(DMAS)
’part—name’ Name which will be given to the new track

All above quantities are input arguments to KVFITC .

IFIT = KVFTMC (NTKD,ITKD,‘part—name’,USE,RMAS)

Fits a subset of NTKD tracks in array ITKD to a common vertex with mass constraint RMAS in
the fit. Same remarks as for KVFITC for the fitted vertex .

NTKD Number of input tracks in array ITKD

ITKD Array of input ALPHA “track” numbers

’part—name’ Name which will be given to the new track

USE Array of logicals of size NTKD defining which tracks to use in the fit
RMAS Mass to which the tracks are constrained

All above quantities are input arguments to KVFTMC .

9.5 Auxiliary routine for VOs

The following routine is an interface to the YCHIV2 routine in the ALEPHLIB .

ICALL QVOCHK(JULTR,CHI2.,IER)

Computes the chisquare of a charged track belonging to a VO with the constraint of the primary
vertex . This routine allows to do subsequent cuts on this chisquare to get a given efficiency and
purity of a VO sample . The routine works without restriction on POTs or DSTs .

On MINIs , it works only if the QFNDIP package has been called , using the QFND data card
in the input CARDS file .

67

JULTR JULIA “track” number .
BE CAREFUL ! It’s not the ALPHA track number !
If you know only the ALPHA track number ITK , you get the J ULIA track

number by the function KTN : JULTR = KTN(ITK) .

CHI2 Chisquare of track ITK with main vertex constraint , set to -999999. if no
calculation possible .

IER = 0if all OK , = 1 if no CHI2 calculation possible

Example of use of QVOCHK :

DO IVTK = KFVOT,KLVOT ! loop on all VO tracks
IF (XYVO(IVTK)) THEN ! information on daughters exists
IT1 = KYVOK1(IVTK) ! 1st VO daughter (JULIA track number)
IT2 = KYVOK2(IVTK) ! 2nd VO daughter (JULIA track number)

CALL QVOCHK(IT1,CHI1,IER1)
CALL QVOCHK(IT2,CHI2,IER2)
C here make checks or cuts on CHI1 , CHI2
ENDIF
ENDDO

Optimised cuts for KOs selection :

The suggested cuts to be used after calling QVOCHK in order to select KOs are as follows :

Cutl For each track the chi**?2 increase when constraining to the primary vertex
should be greater than 13.

Cut2 The sum of the TWO chi**2 for both VO tracks should be greater than 80.

Both conditions should be satisfied . Please notice that the above cuts are for KOs only and cannot
be applied to Lambdas.

68

9.6 Lorentz transformations

See also QDECAx (decay angle in the rest frame of a decaying particle) in 9.1.

9.6.1 Boost a track and its daughters

IBOOST = KTLOR (ITK, IREST)

Boost the track ITK into the rest frame of IREST and store the result in IBOOST.

The sample of all tracks boosted into the rest frame of any track IREST constitutes its own
track class which is denoted by the track number IREST, and which can be accessed directly as
described in 7.4. Another way to access boosted tracks is to use KSAME (see 7.6), which makes it
possible to jump from a given track to the same track in other Lorentz frames.

A track can be boosted into its own rest frame. The result is a vector with the initial direction
and a momentum very close to 0.

KTLOR does not boost a track into a given frame twice. It returns, instead, the number of the
already boosted track. This rule is only valid as long as you leave the mass and the particle name
unchanged.

If a composite track is to be boosted, all daughters, granddaughters, etc. (but NOT mothers,
etc!) of the track are boosted at the same time. The mother—daughter and daughter—mother
relationships among the boosted tracks are established. If these relationships are not needed, use
KTLOR1 or QTCLAS described below.

The track to be boosted (ITK) and the track which defines the rest frame (IREST) may belong
to different track classes. No check is done that the boost makes sense. Note, however, an important
restriction: If more than one track is boosted into a frame, all of them must come from the same
class. This restriction prevents putting reconstructed tracks and MC truth into the same track
class; see example in 9.6.3.

A maximum of six Lorentz frames can be used simultaneously. Frames which are not used any
more can be dropped by CALL QVDROP (¢, IREST) (see 9.2.6) to reduce the number of frames
in use, and to release the space occupied by the boosted tracks.

9.6.2 Boost a track

IBOOST = KTLOR1 (ITK, IREST)

Same function as KTLOR except that daughters are NOT boosted. A track boosted by KT-
LORI has no daughters or mothers, even if these relatives exist in the original frame.

69

9.6.3 Boost all tracks of a given class

CALL QTCLAS (ICLASS, IREST)

Boost the tracks in class ICLASS (= KRECO or KMONTE or a Lorentz frame previously
defined) into the rest frame of track IREST. The track selection follows exactly the same rules as
described for the event topology routines in Chapter 10. In particular, selection options can be
set by the routines QJOPTR or QJOPTM (see 10.1), and locked tracks are not boosted. As in
KTLOR1, daughters are NOT boosted and mother—daughter relations are NOT available.

Example:

IREST = ... this momentum vector defines the rest system.
C boost the reconstructed tracks:
CALL QTCLAS (KRECO, IREST)
C if you want to boost MC particles into the same frame, first make a
C copy of IREST - do not mix up KRECO and KMONTE in the same class:
ICOPY = KVSAVE (IREST, ’COPY’)
CALL QTCLAS (KMONTE, ICOPY)

C later reference to the boosted particles (see >)
ITK = KPDIR (’CHARGED’, IREST)

C use a loop with KFOLLO. The same for MC particles:

ITK = KPDIR (’E+’, ICOPY)

C drop all boosted tracks in frame IREST:
CALL QVDROP (’ ’, IREST)

Chapter 10

Event Topology Routines

All of the subroutines described in this chapter perform loops over tracks or particles. The argu-
ments and loop algorithms are similar for all of these subroutines, and are described in detail in
Section 10.3. The “tracks” to be considered are selected with the routines QJOPTR (for recon-
structed tracks) and QJOPTM (for Monte Carlo tracks); these routines also specify tracks to be
used by the Lorentz transformation routine QTCLAS (see 9.6.3). In addition, the LOCK routines
described in Section 10.2. can be used to exclude tracks from analysis by the QJxxxx routines
described in this chapter.

10.1 Options for “QJxxxx” routines

10.1.1 Set option for reconstructed objects

CALL QJOPTR (’reco—option’, "additional’)

Input arguments:
reco—option’ One of the following options:

e 'RE’: “REconstructed” tracks (default; see 7.1)

e ’CO’: Calorimeter Objects

e *CH’: CHarged tracks

¢ 'EF’: ENFLW or mask energy flow objects depending on ELFW option; see
Ch. 11.

e ’EJ’: YCUT=0.003 jets based on objects in EF section: see 11.2.

e 'PC’: PCPA-based energy flow using PCPA neutral objects and selected
charged tracks; see 11.3.

e AL’ All objects (charged tracks, cal. objects, ECAL objects, HCAL objects,
V0s, VO daughter tracks, etc.). If not applied skillfully together with LOCK,
many objects will be counted twice.

e *NO’: NO object. Only objects specified by ‘additional” (see below) will be
taken into account.

'additional’ Particle name of one or several additional particle(s) to be analyzed. If no addi-
tional particles are to be considered, the argument ’ > must be given (e.g., CALL
QJOPTR(’CO’, ")).

The following example would cause the QJ routines to consider charged tracks and all particles
called MISS—VECTOR; MISS—VECTOR might be a pseudo—particle created by one of the rou-
tines described later in this chapter.

CALL QJOPTR (’°CH’, ’MISS-VECTOR’).

Specifying additional reconstructed particles (QJOPTR) has no impact on MC particles (QJIOPTM)
and vice versa.

10.1.2 Set option for MC particles

CALL QJOPTM ("MC-option’, ’additional’)

"M C-option’ One of the following options:

e °VI’: Only particles with a stability codes > 0. VI stands for ‘best chance to
be visible’. (default: see 8.1.5)

e ’EP’: Only particles with stability codes 1, 2, or —3. EP stands for energy-
momentum conservation.

e AL’ All objects. If not applied carefully together with LOCK, many objects
will be counted twice.

e "NO’: No object. Only objects specified by ‘additional’ will be taken into
account.

’additional’ Same as for QJOPTR.

10.2 Lock tracks / subsamples of tracks

The “LOCK” routines described here make it possible to exclude tracks from analysis by the
routines (QJxxxx) described in this chapter. This feature can be used both to flag background
tracks and to restrict the analysis to a subsample of all tracks (e.g., to consider only tracks which
contribute to a given jet). In any user routine, you may test the lock status of a given track ITK
with XLOCK(ITK) which is .TRUE. if the track has been locked.

Every track has three independent locks: one simple one (QLTRK) and two more complicated
ones (QLOCK and QLOCK2) with a broader scope of applications. If desired, several locks can be

used simultaneously. A track is considered “unlocked” if and only if all three locks are open.

Opening and closing locks is done only in user routines: no track is locked unless it is explicitly
locked by the user.

72

10.2.

1 Lock a single “track”

CALL QLTRK (ITK)

ITK ALPHA “track” number

Remarks: In contrast to the other locks described below, QLTRK locks the object ITK
and its direct copies only (including the same object with a different vertex
assignment) —— no other associated objects are affected.

10.2.2 Unlock a single “track”

CALL QLUTRK (ITK)

ITK ALPHA “track” number

Remark: QLUTRK opens only the lock set by QLTRK. If another lock is still closed,
the track remains locked.

10.2.3 Lock a track “family”

CALL QLOCK (ITK)

ITK

ALPHA “track” number

The family of track ITK consists of:

The track ITK itself.

All copies of track ITK which have been made or will be made, including Lorentz boosts of
ITK.

For charged tracks, all associated cal. objects; for cal. objects, all associated charged tracks.

For reconstructed tracks, all tracks based on the same reconstructed object but assigned to
different vertices, used with different mass hypotheses, etc..

Daughters, granddaughters, great—granddaughters, ... : i.e., all kinship in descending line.

Mothers, grandmothers, great—grandmothers, ... ; i.e., all kinship in directly (!) ascending
line. If you use QLOCK for declaring a reconstructed particle to be background, all its
ancestors (composite particles based on it) are implicitly declared to be background.

Jets and other “pseudo particles” described in 10.3. If vou lock a jet. vou lock all contributing
particles. If you lock a particle, you lock all jet vectors to which the particle belongs. To lock
all particles not belonging to a jet, user QLREV described below.

Reconstructed tracks and MC truth are treated separately; locking a reconstructed track has no

effect
MC.

on any MC track and vice versa. Lock does not work if you mix up reconstructed tracks and

10.2.4 Unlock tracks (locked with QLOCK)

CALL QLZER (IREMC)

IREMC = KRECO for reconstructed tracks and KMONTE for MC truth

Note that the lock algorithm works for all Lorentz frames simultaneously, and that the specification
of a particular frame is NOT allowed (in contrast to 7.4.1). Reconstructed objects and Monte Carlo
objects are treated separately. QLZER opens the lock QLOCK for all tracks. Tracks may remain
locked if other locks are still closed. It is not possible to remove the lock QLOCK for a single track.
Using two locks simultaneously (see 10.2.6) should provide all the facilities that are needed.

10.2.5 Reverse the lock state (corresponding to QLOCK)

CALL QLREV (IREMC)

IREMC (see 10.2.4).

e All unlocked tracks will be locked.

e All locked tracks will be unlocked provided that there is no other closed lock and, for composite
particles, that there is no locked daughter, granddaughter, ... after the QLREV operation.

Calling QLREV a second time reestablishes the initial lock state. The mnemonic symbol XL-
REV(IREMC) is set to .TRUE. if the lock state is reversed. At the begin of the event processing
and after calling QLZER(IREMC), XLREV(IREMC) is .FALSE..

10.2.6 Second Lock

CALL QLOCK2(ITK)

QLOCK2 works in the same way as QLOCK. If one of these locks is used to flag background
tracks, the other one can be used to select subsamples of the non—background tracks. Also available:
CALL QLZER2 (IREMC), CALL QLREV2 (IREMC), and the logical function XLREV2(IREMC).

10.3 Add momenta of all particles of a given class

CALL QJADDP (SCALAR, ‘vector—name’, ICLASS)

For adding momenta of a few particles, see 9.2.2. (NOTE: All of the QJxxxx routines have
similar arguments. The arguments are explained fully in this explanation of QJ ADDP.)

74

10.3.1 Input argument

ICLASS Class = KRECO or KMONTE or a Lorentz frame identifier (see 7.4.1). If ICLASS
is KRECO, note that initially all charged particles have the pion mass and all
neutral objects have mass = 0. This can be modified by CALL QVSETM (see
9.2.13). If ICLASS refers to a Lorentz frame, particles not boosted into the frame
are ignored without notification. The routine QTCLAS (see 9.6.3) performs a
Lorentz transformation of all tracks belonging to a class. If a particle has been
boosted several times into the same frame, the most recently boosted hypothesis
will be used (see remarks in 7.4.5).

10.3.2 Results

A scalar result is stored in the first subroutine argument. In QJADDP, the scalar result is the
3—momentum sum of all particles. An output vector is specified by its name, which is the second
subroutine argument ‘vector—name’. If you are interested in the scalar result only and not in the
output vector, specify a blank space ‘ . QJADDP has exactly one output vector: the sum of all
4—momenta. The following example shows how to use this vector.

CALL QJADDP (PSUM, ’ADD-ALL’, KRECO, ...)
ISUM = KPDIR (’ADD-ALL’, KRECO)
CALL HF2 (4711, QP(ISUM), QM(ISUM), 1.)

Other routines may output several vectors; a loop using KFOLLO (see 7.4.2) must be constructed
to access all of them.

Locking an output vector locks all particles contributing to it (see 10.2.3). You can test whether
a track ITK contributes to an output vector ISUM by using the logical symbol XSAME (ITK,
ISUM) (Sec. 8.1.7).

The output vectors of “QJ” routines are called “pseudo—particles”. In some routines described
below, these pseudo—particles represent an axis rather than a 3— or 4—vector; the momentum
value may or may not be meaningful. For consistency, an energy assuming mass = 0 is calculated
in these cases.

In addition, pseudo—particles are treated differently than “real” particles:

e A warning is issued if the same name is used for a pseudo—particle and a “real” particle.

o Existing pseudo—particles are dropped automatically if the same name and the same class is
used in another call to a “QJ” routine. Thus, in

CALL QJADDP (PSUM, ’ADD-ALL’, KRECO, ...)
CALL QJADDP (PSUM, ’ADD-ALL’, KRECO, ...)
CALL QJADDP (PSUM, ’ADD-ALL’, KMONTE, ...)

the output vector of the first call is not available after the second call. Thus, output vectors
from different calls are never mixed up. Since the third call refers to a different class, the
vector from the second call is not dropped. Note that you are free to invent new names in
every new call to a “QJ” or any other routine.

5

10.4 Momentum tensor eigenvalues and eigenvectors

CALL QJEIG (EIGVAL, ‘eigenvector’, ICLASS)

See also QJSPHE in 10.6 for sphericity value and axis.

Input argument:

ICLASS described in 10.3.
Results:
EIGVAL eigenvalues in descending order with DIMENSION EIGVAL(3).

e Sphericity = 1.5 * (1. — EIGVAL(1))
e Aplanarity = 1.5 * EIGVAL(3)
o Planarity = EIGVAL(2) — EIGVAL(3)

’eigenvector’ Three eigenvectors:

e IMAJOR = KPDIR (’eigenvector’, ICLASS)
¢ ISEMI = KFOLLO (IMAJOR)
o IMINOR = KFOLLO (ISEMI)

10.5 Linearized momentum tensor eigenvalues and eigenvectors

CALL QJTENS (EIGVAL, ‘eigenvector’, ICLASS)

Same as QJEIG except that a different normalization is used. The momentum tensor for this

calculation is defined as)
PjiPri
Mj, = P Ei ']T' (10.1)

jk=1,2,3 (10.2)

Input arguments and results are as described for QJEIG.

10.6 Sphericity

CALL QJSPHE (SPHERI, ‘spheri—axis’, ICLASS)

Calculates sphericity value and sphericity axis. See also QJEIG in 10.4 for eigenvalues and
eigenvectors of the momentum tensor.

Input argument:

ICLASS described in 10.3.
Results:
SPHERI Sphericity value

’spheri—axis’ Sphericity axis.
Error conditions:

Zero or one track SPHERI value 0.; output vector = 0.,0.,0.,0.
Two tracks SPHERI = 0.; output vector = track vector with largest p.

10.7 Thrust

CALL QJTHRU (THRUST, ‘thrust—axis’, ICLASS)

Input argument:

ICLASS described in 10.3.
Results:
THRUST Thrust value.

‘thrust—axis’ Thrust axis.
Error conditions:

No track THRUST value 0.; output vector = 0.,0.,0.,0.

One track thrust value = 1; output vector = track vector.

10.8 Fox—Wolfram Moments

CALL QJFOXW(FOXWOL, ICLASS)

Input argument:

ICLASS described in 10.3.
Result:
FOXWOL Fox—Wolfram moments HO — H4; DIMENSION FOXWOL(5).

7

10.9 Divide event into two hemispheres

CALL QJHEMI ('same—s’, ‘opp—s’, ICLASS, IVEC, COSCUT)

Input arguments:

ICLASS described in 10.3.
IVEC Track number of vector which defines the “hemi”spheres.
coscuT The cosine of the opening angle of a cone around IVEC. Tracks inside this cone

belong to the same side, and all other ones belong to the opposite side. The
word “hemisphere” is correct if COSCUT = 0.

Results:
‘same—s’ The 4—momentum sum of tracks on the same side as IVEC.
’opp-—-s’ The 4—momentum sum of tracks on the side opposite to IVEC.

The two output vectors can be used to assign tracks to one of the the two hemispheres with
the lock algorithm (10.2.3).

In the following example, the event is divided into two hemispheres according to the thrust axis.
Then, each hemisphere is boosted separately into the rest frame of all contributing tracks.

DIMENSION IVECT(2)
C---Thrust axis
CALL QJTHRU (THRU, ’THRUST’, KRECO)
ITHRU = KPDIR (’THRUST’, KRECO)
C---Two hemispheres:
CALL QJHEMI (’SAME’, ’OPP0’, KRECO, ITHRU, 0.)
IVECT(1) = KPDIR (’SAME’, KRECO)
IVECT(2) = KPDIR (’0PPO’, KRECO)
C---Lock all tracks in the ’oppo’ hemisphere:
CALL QLOCK (IVECT(2))
C---Loop over both hemispheres:
DO 10 IHEMI =1, 2
C---Transform all selected tracks into the rest frame of IVECT(IHEMI):
CALL QTCLAS (KRECO, IVECT(IHEMI))
C---Now, do the analysis. For example:
C---Plot the thrust in the boosted frame.
CALL QJTHRU (THRUB, ’ ’, IVECT(IHEMI))
CALL QHF1 (4711, THRUB, 1.)
C---QLREV: locked tracks -> unlocked tracks and vice versa.
C---This selects tracks in the hemisphere ’0PP0’ for next loop.
CALL QLREV (KRECOD)
10 CONTINUE

Note that in the above example, two of the maximum six Lorentz frames are in use. They can be
dropped by the statement CALL QVDROP (* ¢, IVECT(IHEMI)) inside the loop (see 9.2.6).

10.10 Missing energy, mass, momentum

CALL QJMISS (PMISS, 'miss—vector’, ICLASS, ITOTAL)

Input arguments:

ICLASS described in 10.3.
ITOTAL = 0: Missing energy, etc. is calculated with respect to the total energy
vector (0.,0.,0.,QELEP). > 0: Calculation is done with respect to vector
ITOTAL.
Results:
PMISS Missing momentum.
’miss—vector vector containing missing momentum, mass, and energy.

Error conditions:

e Total energy > LEP energy QELEP.
e Missing momentum > missing energy.

e In both cases, the output vector contains energy = PMISS and mass = 0.

10.11 Jet Finding

1 10.11.1 Scaled Invariant Mass Squared Algorithms

There are two algorithms available , each with the same 3 variants (or schemes) . The first
algorithm is known as the JADE algorithm , which defines the invariant mass as :

M? = 2E, Es(1 — cos 6;2).

The second is known as the DURHAM algorithm and uses a proposal by Dokshitzer for invariant
mass , which is less sensitive to soft gluons :

M? = 2(AIIN(E1, Ez))z(l — COSs 012).

Both algorithms combine particles into jets using one of the following combination schemes :

79

E scheme P;=P+ P
Ei;=E + E;

P scheme P;=PFP+F
Eu = IPtJl

E, scheme E;; = E;
P; = Ei;j(Pi + B;)/|P: + Fj|

For more details , please read the internal report ALEPH 91-151 (SOFTWR 91-006).

JADE Algorithm with E scheme :

CALL QIMMCL (NJETS, ‘name’, ICLASS, YCUT, EVIS)

A loop runs over all pairs of tracks and finds the pair which has the smallest invariant mass M.
If (M/EVIS)? < YCUT, these 2 tracks are merged (i.e., 4—momenta added).

The loop is then rerun over the new list of tracks which has lost 2 particles and gained the
merged pair. When no remaining pair has a low enough mass, the track list contains a set of
merged tracks called jets.

Input arguments:

ICLASS described in 10.3.

YCUT Cut on the scaled invariant mass of 2 tracks. Pairs of tracks are merged if their
scaled invariant mass is smaller than YCUT.

EVIS The visible energy of the event. If EVIS equals 0 , the visible energy is computed
as the sum of the input particle energies.

Results:
NJETS is the number of “jets” .
e > 0 = number of jets found
e — 1 = input error with EVIS . or no particles
e — 2 = error in one of the particles
¢ — 3 = too many jets found
e — 4 = unknown combination scheme requested
e — 5 = unknown algorithm requested
e — 99 = Not enough BOS workspace to do jet finding
’name’ Vectors containing 4—momenta of the jets.
EXAMPLE:

80

DIMENSION LISTEJ(300)
CHARACTER*13 CNAM
C---Select option: charged tracks
CALL QJOPTR(’CH’,’ ?)
C---calculate visible energy from input tracks:
EVISRE = 0.
YCUT = 0.02
CALL QJMMCL(NJT,’MMCLUS_RE_vis’,KRECO,YCUT,EVISRE)
CNAM = ’MMCLUS_RE_vis’
WRITE(KUPRNT,*)’ # of jets reconstructed ’, CNAM, ’:’, NJT
IF(NJT.GT.0) THEN
C--- get ALPHA number for first jet found:
JJ = KPDIR(CNAM,KRECO)
20 IF(JJ .NE. O) THEN
C--- get the list of tracks merged into this jet:
LL =0
DO 211 L = KFCHT, KLCHT
C--- check if this track belongs to this jet:
IF(.NOT.XSAME(JJ,L)) GOTO 211
LL=LL + 1
LISTEJ(LL) = L
211 CONTINUE
WRITE(KUPRNT,*) ’Jet # ’, J
WRITE(KUPRNT,*) QX(JJ),QY(JJ),QZ(JJ),QE(JI)
WRITE(KUPRNT,*) ’List of tracks merged into this jet:’
WRITE(KUPRNT,*) (LISTEJ(L),L=1,LL)
C--- get ALPHA number for next jet found:
JJ = KFOLLO(JJ)
GOTO 20
ENDIF
ENDIF

DURHAM Algorithm with E scheme :

CALL QDMMCL (NJETS, ‘name’, ICLASS, YCUT, EVIS)

The arguments and usage are identical to that for QJMMCL above .

Generalised Version of the JADE/DURHAM algorithm

CALL QGJMMC (NJETS, ‘name’, ICLASS, YCUT, EVIS,SCHEME,VERSN)

The arguments and usage are identical to that for QJMMCL above , except for the extra input
arguments :

81

Input arguments:

SCHEME CHARACTER*2: 'E’or 'P’ or ’Ey’ (see above)
VERSN CHARACTER*6: 'JADE’ or ' DURHAM’ for JADE (resp. DURHAM) algorithm

Note that 'NORMAL’ and "BETTER’ are alternatives for 'JADE’ and "TDURHAM’ for historical
reasons .

QIJMMCL and QDMMCL both call this routine , which itself calls the ALEPHLIB routine
FIMMCL , which actually does the jet finding .

10.11.2 Scaled Minimum Distance Algorithm

CALL QJMDCL (NJETS, ‘name’, ICLASS, ALPHA, DELTA, ETA, EVIS)

A loop runs over all pairs of tracks and finds the pair which has the smallest invariant mass
M. If (M/EVIS*)? < /2(1 — cos 26), these 2 tracks are merged (i.e., 4—momenta added). The
loop is then rerun over the new list of tracks which has lost 2 particles and gained the merged pair.
When no remaining pair has a low enough mass, the track list contains a set of merged tracks. If
these tracks have energies bigger than 2nEwvis, they are called jets.

Input arguments:

ICLASS described in 10.3.

ALPHA Weight of track energies and Evis, in the calculation of the scaled mass. Pairs of
tracks are merged if their scaled mass is smaller than \/2(1 — cos 2).

DELTA Half opening angle cut in degrees.

ETA Cut on jet energies (fraction of 2Evis); only jets with energies > 2nEvis are kept.

EVIS The visible energy of the event; if EVIS equals 0 , the visible energy is computed

as the sum of the input particle energies.

Results:
NJETS is the number of “jets”.
’name’ Vectors containing 4—momenta of the jets.

10.11.3 JETSET algorithm LUCLUS from LUND

CALL QJLUCL (NJETS, ‘name’, ICLASS, MINCLU, DMAX1, DMAX2,MULSYM, TGEN, DMIN)

3

Input arguments:

82

ICLASS
MINCLU

DMAX1
DMAX2
MULSYM

Results:

NJETS

TGEN
DMIN

‘name’

described in 10.3.

Minimum number of clusters to be reconstructed. (if <0, work space momenta are
used as a start) (usually=1)

Max. distance to form starting clusters (usually=0.25GeV)
Max. distance to join 2 clusters (usually=2.5 GeV)

e = 1 for symmetric distance criterion (usual)
e = 2 for multicity distance criterion

is the number of “jets”

e = —1 if not enough particles

—2 if not enough working space (KTBOMX)

Il

Generalized thrust
Minimum distance between 2 jets

e = 0 when only 1 jet
o = —1, -2 as for NJET

Vectors containing 4—momenta of the jets.

10.11.4 PTCLUS: Jet-finding algorithm

CALL QJPTCL (NJETS, name’,JCLASS,NJTLIM,YJTLIM,EVIS) l

The PTCLUS jet-finding algorithm is described in ALEPH 89 — 150.

Input arguments:

ICLASS
NJLITM

YJLITM

EVIS

Results:

NJETS
TGEN

‘name’

described in 10.3.

maximum number of jets to search for; if NJLITM=0, the algorithm finds the
number of jets using YJTLIM.

maximum allowed distance between two clusters (in M? / EVIS?); 0.02 is a typical
value.

visible energy. If EVIS=0, the visible energy is calculated.

is the number of “jets”. (-1 if algorithm fails)
Generalized thrust

Vectors containing 4—momenta of the jets.

83

Chapter 11

Energy Flow

Three energy flow packages have been used in ALEPH: the mask algorithm of Minard and Pepe-
Altarelli, the PCPA—based energy flow of Bonissent, and the ENFLW package of Janot. In this
chapter, the ALPHA interfaces for these algorithms are described. Since the release of ALPHA 115
(May 1993) , the ENFLW package is fully integrated in ALPHA ; there is no guarantee that all
the features of the other two packages will be maintained . Therefore, users are strongly advised
to use the ENFLW energy flow.

11.1 ENFLW Energy Flow

To use the ENFLW energy flow analysis, the EFLW card must be given in the ALPHA card file.!
If the EFLW card is present, the EFT section of ALPHA will be filled with selected charged tracks
and neutral ECAL and HCAL clusters. These objects can be accessed with DO loops (KFEFT,
KLEFT, KNEFT - see 7.1.1) or with the particle name ‘EFLW’ using the functions KPDIR and
KFOLLO (described in 7.4). The charged tracks that appear in the EFT section are copies of
standard ALPHA charged tracks from the CHT section. Therefore, if a charged track in the CHT
section is locked (using QLTRK or QLOCK), the corresponding track in the EFT section will be
locked also (and vice versa). All statement functions providing information about charged tracks
can be used directly with charged tracks in the EFT section .

The following statement functions may be used to access additional information on EFLW
objects:

XEFO (I) .TRUE. if energy flow (EFOL) data are available for “track” I
KEFOTY (I) Type of energy flow object:

e 0 = Charged Track
e 1 = Electron

e 2 = Muon

e 3 = Track from VO
e 4 = Electromagnetic

1As stated in Appendix C, additional libraries must be linked to use ENFLW with the POT or the DST. AL-
PHARUN users will be asked whether they want to use ENFLW or QMUIDO with DSTs when they run the exec -
the proper libraries will then be linked automatically. Users of the MINI do not need to load these libraries since the
results of the ENFLW package are stored on the MINI and decoded automatically.

84

e 5 = ECAL hadron/residual
e 6 = HCAL element
o 7 = LCAL element
o 8 = SICAL element

KEFOLE (I) PECO number of associated ECAL object
KEFOLT (I) FRFT number of associated charged track
KEFOLH (I) PHCO number of associated HCAL object
KEFOLC (I) PCOB number of associated calorimeter object
KEFOLJ (I) EJET number of associated jet

To use the event topology routines described in Chapter 10 with these energy-flow objects, use
option *EF’ with subroutine QJOPTR (see 10.1):

CALL QJOPTR(’EF’,’)
Example:

The following code calculates the total energy energy of an event and finds the thrust using
energy flow objects.

E=0.
DO 10 I = KFEFT, KLEFT
E=E + QE(I)
10 CONTINUE
C--- Find thrust :
CALL QJOPTR(’EF’, ’)
CALL QJTHRU(THRU, ’THRU’, KRECO)

Jets based on energy flow objects using QIMMCL with YCUT = 0.003 (see Sec. 10.11.1) are
stored in the EJET bank. If the EFLJ card is used instead of the EFLW card, the EFT section
will be filled as described above, and these jets will be stored in the JET section. The jets may be
accessed with DO loops (KFJET, KLJET, KNJET) or with the particle name "EJET’ using the
functions KPDIR and KFOLLO. The energy flow objects making up these jets can be found with
XSAME as described in Sec. 8.1.7. To save time, these jets may be used as input for jet-finding
with a higher YCUT (see 10.11.1) by calling QJOPTR with the option EJ:

CALL QJOPTR(’EJ’,’ ?).

XSAME may be used to find the original energy flow objects (in the EFT section) making up the
final jets.

85

11.2 Mask Energy Flow

The mask energy flow is not available on the MiniDST, and may eventually be dropped from the
DST. Therefore, users are advised to use the ENFLW energy flow described above.

The use of this algorithm is identical to that of the ENFLW algorithm except that the EFLW
card must be u<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>