Observation of $D_s^+ \to \overline{K^{*0}}K^{*+}$

David E. Jaffe, S.C.R.I. Florida State University April 22, 1994

1 Introduction

Reconstruction of the decay modes of the D_s^+ are of interest in the study of B_s^0 $-\overline{B_s^0}$ mixing and measurements of the B_s^0 lifetime [1, 2]. The branching ratio $D_s^+ \to \overline{K^{*0}}K^{*+}$ has been measured to be $1.8 \pm 0.5 \times Br(D_s^+ \to \phi \pi^+)[3, 4]$; after accounting for the decays of the D_s^+ daughters, the rate relative to the popular $\phi \pi^+$ mode is

$$\frac{\text{Br}(D_s^+ \to \overline{K^{*0}} \ K^{*+} \) \text{Br}(\overline{K^{*0}} \ \to K^-\pi^+) \text{Br}(K^{*+} \ \to K^0\pi^+) \text{Br}(K^0 \to K_s^0 \to \pi^+\pi^-)}{\text{Br}(D_s^+ \to \phi\pi^+) \text{Br}(\phi \to K^+K^-)} = 0.6 \pm 0.2$$

Although $D_s^+ \to \overline{K^{*0}}K^{*+}$ will suffer from the K_s^0 reconstruction efficiency, it will have a mass resolution as good as the $\phi \pi^+$ mode and should not be affected by reflections because of the constraints imposed by the intermediate resonances, $\overline{K^{*0}}$ and K^{*+} .

2 Selection criteria

Approximately 1.64 million hadronic Z decays with the VDET operational were selected from the 1991, 1992 and 1993 MINIs. K_s^0 candidates with a momentum greater than 2.0 GeV were selected from the YV0V bank if their mass was within 3 standard deviations of a momentum-dependent " K_s^{0n} mass[5] and neither daughter was consistent with coming from the primary $\text{vertex}(\chi^2(\text{QV0CHK}) > 32)$. Remaining candidates were required to be successfully refit using YTOP and their mass was set to the known K_s^0 mass(QVSETM). Rejection of K_s^0 consistent with Λs or photon conversions was not performed. The resulting K_s^0 were combined with a K^- candidate and two π^+ candidates.

The K- candidate criteria:

- $P(K^-) > 2.0 \text{ GeV}$, and
- $\chi_{\rm K} + \chi_{\pi} < 1$ (if dE/dx information was available), $\chi_i \equiv \frac{I_{\rm meas} I_{i,{\rm exp}}}{\sigma_{i,{\rm exp}}}$

The π^+ candidate criteria:

- $P(\pi^+) > 0.5$ GeV, and
- $|\chi_{\pi}| < 2$ (if dE/dx information was available).

Acceptable $\overline{K^{*0}}$ and K^{*+} candidates satisfied

1.
$$|M(K_s^0\pi_1^+) - M(K^{*+})| < 50 \text{ MeV}$$
 and $|M(K^-\pi_2^+) - M(\overline{K^{*0}})| < 50 \text{ MeV}$, or $|M(K_s^0\pi_2^+) - M(K^{*+})| < 50 \text{ MeV}$ and $|M(K^-\pi_1^+) - M(\overline{K^{*0}})| < 50 \text{ MeV}$,

- 2. $X(\overline{K^{*0}}) > 0.045$, and
- 3. $X(K^{*+}) > 0.045$.

Only one combination is kept if both assignments of π_1^+ and π_2^+ are compatible with cut 1 above. Finally, D_s^+ candidates were formed from $\overline{K^{*0}}$ and K^{*+} candidates which satisfied

- $X(D_{\bullet}^{+}) > 0.15$, and
- $Prob(D_s^+ vertex) > 0.0001$.

3 Results

Two mass distributions are shown in Figure 1. The upper plot contains a sample enhanced in $b\to D_s^+$ with the requirement that the projected decay length of the D_s^+ must be at least 2 standard deviations in front of the primary vertex. There is a clear signal of 124^{+31}_{-29} events with a fitted mass of $1969.9^{+1.9}_{-2.1}$ MeV/c² and a resolution of $7.0^{+2.0}_{-3.7}$ MeV/c² which is consistent with expectations from Monte Carlo simulation. The lower plot contains a sample enhanced in $c\to D_s^+$ with the requirements that $X(D_s^+)>0.40$ and $\frac{\vec{V}\cdot\vec{P}}{|\vec{V}||\vec{P}|}>0.99$, where \vec{V} is a vector from the primary to the D_s^+ vertex and \vec{P} is the D_s^+ momentum. There are 51^{+20}_{-15} events in the peak with a fitted mass of $1970.9^{+2.2}_{-3.1}$ MeV/c² and a resolution of $6.1^{+3.9}_{-3.0}$ MeV/c².

The $D_s^+ \to \overline{K^{*0}}K^{*+}$ candidates were also combined with a standard lepton and the unlike- and like-sign spectra are shown in Figure 2. Additional cuts for these spectra:

- 1. The lepton and at least 2 of the 3 charged D_s^+ daughters must have at least one VDET hit in both the $r\phi$ and z views,
- 2. The D_s⁺ decay length must be positive,
- 3. The D_s⁺, lepton vertex probability must be greater than 0.0001,
- 4. $3.0 < M(D_s^+, lepton) < 5.5 \text{ GeV/c}^2$ and
- 5. The QIPBTAG uds probability for the opposite hemisphere must be less than 10% or the QVSRCH B-tag of the opposite hemisphere must be greater than 4.

Cuts 1,2 and 5 were inspired by similar cuts in [1]. The resulting efficiency is $4.0\pm0.2\%$ as determined from 9000 special Monte Carlo events where the B_s^0 is forced to decay semi-leptonically, the D_s^+ to $\overline{K^{*0}}K^{*+}$ and the D_s^+ daughters to the desired charged final states. The quoted efficiency takes into account a very small $(0.05\pm0.02\%)$ amount of double counting which occurs when a fragmentation π is used instead of a π from $\overline{K^{*0}}$ or K^{*+} . The peak in Figure 2 contains $7.7^{+3.9}_{-3.2}$ unlike—sign events, a $\approx 2.2\sigma$ effect, at a fitted mass of $1971.6\pm3.6 \text{MeV/c}^2$ with the width of the gaussian fixed at 7 MeV/c^2 . If the origin of this peak entirely due to $B_s^0 \to D_s^- l^+ \nu X$ then the product branching ratio $Br(\overline{b} \to B_s^0) Br(B_s^0 \to D_s^- l^+ \nu X) = 0.035^{+0.018}_{-0.015} \pm 0.012$ where the first error is statistical and the second is due to the uncertainty on $Br(D_s^+ \to \overline{K^{*0}}K^{*+})$. This result is consistent with [6].

4 Acknowledgements

Thanks to Martyn Corden and Christos Georgiopoulos for comments and help with the Monte Carlo event generation.

References

- [1] Measurement of the B_s⁰ lifetime with D_s⁺ + hadron events, G. Rizzo and J. Walsh, ALEPH 94-044, PHYSIC 94-004
- [2] Measurement of the B_s⁰ lifetime, ALEPH Collaboration, D. Buskulic et.al., Phys. Lett. B322 (1994) 275.
- [3] The measurement of D_s⁺ and D⁺ meson decays into K*0 K*+, ARGUS Collaboration, H.Albrecht et.al., Z. Phys. C53 (1992) 361.
- [4] Review of Particle Properties, Particle Data Group, Phys. Rev. D45 June 1992.
- [5] Tracking Studies Using Kos and As, David Brown, ALEPH 94-046, SOFTWR 94-004.
- [6] Observation of the Semileptonic Decays of B_s⁰ and Λ_b Hadrons at LEP, ALEPH Collaboration, D. Buskulic et.al., CERN-PPE/92-73, (1992).

Figure 1: The $\overline{K^{*0}}K^{*+}$ mass spectra for a b-enhanced (c-enhanced) D_s^+ sample in the upper (lower) plot. The dashed lines represent the spectra when the assignment of π_1^+ and π_2^+ are unambiguous. The results of the fits are given in the text.

Figure 2: The $\overline{K^{*0}}K^{*+}$ mass spectra correlated with a lepton. See text for details of the fit.