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PREFACE

In the past the total number of events collected by ALEPH has nearly doubled every year,
the number of algorithms supposed to be useful for many analyses has increased as well as their
complexity and therefore their execution time. Even if the computers are faster the time effort
for a heavy flavour analysis is bigger then 2 years ago. For this reason more and more people are
interested to use the NanoDst in future. So it became nesseccary to change a lot compared to
the last version (111) to get a small data set which contains almost the same information used for
analyses as larger ones like the MiniDst or the Dst. Some new features which are supposed to be
useful for many analyses have also been introduced.

The main difference between SANDY111 and SANDY115 is the V°- section where the V°s found
by YRMIST were replaced by those from the YVOV bank. A consequence of this is the change of
a lot of mnemonics in the VOT section. However, due to the fact that it was always policy of the
SANDY authors to keep the NanoDst as small as possible not all V% from YVOV are kept. For
more details see section 5.4.

In the last NanoDst production leptons were taken from the LEPTAG output and -separated
by electrons and muons- put in different banks. This has changed as they are now kept in the new
NDBM bank which is a reduced LEPTAG output bank BMLT. The LEPTAG code was changed
to run on the NanoDst as well as on the Mini or Dst. However it is not nesseccary in all cases to
call LEPTAG, this is explained in 5.8.

QIPBTAG will work now on the NanoDst taking information from the NBIP bank which is
new too. Unfortunately this has some restrictions, read section 5.12 for more.

Completely new is the GCO- section (5.5) which contains Gamma COnversions. They were
found either by QPAIRF or by a new routine called QACONV and stored in the NDGC bank.
Inside SANDY they are loaded into the work bank and can be accessed via pointers like tracks.

The main vertex is stored for the first time on the NanoDst and can be acessed via a statement
function (3.2). Another statement function have been introduced for true VO- vertices in Monte-
Carlo events (5.6).

Internally there is another difference between the old and the new format, all NanoDst banks
(Nxxx) are integerized now and therefore their numbers were changed from 0 to 1. The integeriza-
tion gives the opportunity to leave some day the input/output through BOS routines which will
give a remarkable speed up in reading the NanoDst (factor 3-5 ). Of course it is connected with
a little loss of precision compared to the Dst but on this could not be avoided as in future the
NanoDst has to be produced from the MiniDst. As all MiniDst banks are integerized as well all
quantities stored on the NanoDst are as precise as they are on the MiniDst.

For the platforms without HISTORIAN three 'new’ files are avaliable, NCDE. INC, NMACRO.
INC and NDECL.INC which can be loaded via an INCLUDE statement. An example can be found
in NANO:NUUSER.FOR.
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Chapter 1

INTRODUCTION

Preliminary Remark

The structure of the SANDY package was to a large extent inspired by ALPHA
(ALEPH PHysics Analysis package). Many ideas were therefore ‘stolen’ from it and
hence we acknowledge the work of its authors, H. Albrecht and E. Blucher. As there
exists a very nice and detailed manual for ALPHA (ALEPH-note 94-092, SOFTWR
94-007), please refer to it for more details about those features and routines which are
mentioned here as being similar or having the same functionality.

The NanoDST (Nano - Data Summary Tape) and SANDY (the package which reads it) have been
created to solve several problems:

1. Running with ALPHA on the full DST sample has become very time-consuming and CPU-
intensive. One would like to be able to go through the complete data sample within a few
hours or to debug the programs on a significant part of the data within a few minutes.

2. Disk space is low, especially at homelabs. It is thus important to store the data in a form as
compact as possible.

3. When a working group divides its analysis in various tasks, it is important that everybody in
the group uses the same event selection, the same particle identification, etc., and it is also
preferable that each of these processings are done by routines optimized by specialists.

These three main features of the NanoDST}; time-saving, diskspace-saving, and standardization,
have benefitted the D* group and other individuals.

Time is saved by not having to rerun the time-consuming algorithms several times; the thrust
axis, pre-clustering into jets, the lepton identification, photon and V° finding, are done once and
for all. The tracks! are sorted by hemisphere, by charge, and ordered in momentum, in order to
save time in the combinatorics.

Space is saved by keeping only the final quantities, the ones which are needed to do the analysis
or to check it. For each quantity (momentum vector of a track for instance) control quantities are
also stored (number of hits, x? per degree of freedom from the track fit). For the Monte Carlo
information, only stable? tracks’ momenta, particle type code and mother-daughter relationships

1The word track is used throughout this note with an extended meaning: it implies both charged and neutral
particles.
2The exact meaning of stable will be explained in section 5.6.



are stored: the intermediate four-momenta are reconstructed from this basic information at reading
time.

The general philosophy of the NanoDST consists of running a long ALPHA program once in
a few months (this task being done by ALPROD) and to save only the useful quantities on a
file, which can be read many times a day. For the user, the analysis becomes almost interactive.
Space is saved without mercy: information is packed on a minimal number of bits wherever the
maximal accuracy of 32 bits is not necessary. For instance, the dE/dx information consists of the
track length, the number of samples and the truncated mean ionization with its error; these four
quantities are packed into two 32 bits words. The unpacking is done by SANDY, and the routine
NDEDX/NDEDXM (SANDY versions of the ALPHA routines QDEDX/QDEDXM) can be called
as in ALPHA.

For analyses requiring all the details of track hits or calorimeter stories or any other additional
information, SANDY provides a simple tool (routine MAKSEV) to write SEVT cards which can
be used directly in an ALPHA job to select DST events.

Comments, suggestions and bug reports should be made via E-mail to BOUCROTQCERNVM
or GRAEFEQALWS.CERN.CH

1.1 Acknowledgements

I would like to thank all those who helped with their comments and suggestions. In particular,
thanks are due to J. Boucrot for introducing the NanoDST datasets into SCANBOOK, to R.
Edgecock for their production with ALPROD, to R. Hagelberg for creating and installing the
NANO disk on CERNVM, to S. Haywood for lots of suggestions and constructive criticism, and
finally to H. Meinhard for installing the NANO directory on ALWS and the copying the datasets
on the ALWS disks. Finally, I thank all the users, for SANDY would not exist without them.



Chapter 2

USER’S GUIDE

Corrections, modifications or updates not yet included in this manual can be found in the file
SANDYnnn.NEWS (nnn is the version number).

2.1 Getting started

For the user, SANDY is very similar to ALPHA. To run a SANDY job, one has to supply:

1. A file with the user routines in HISTORIAN input or FORTRAN format.

2. A card file containing the names of input/output data files, as well as any other parameter
cards.

Three routines should be provided by the user: initialisation (NUINIT), event analysis
(NUEVNT), and termination (NUTERM). Examples for these user routines are given in the file
NUUSER.INPUT or NUUSER.FOR which can be found in the NANO directory or disk. There is an-
other user routine, NUNEWR (same purpose as QUNEWR in ALPHA), which may be modified
by the user. All user routines exist as dummy versions in the library.

Data and Monte Carlo NanoDST files are produced by ALPROD. For inquiries about the
available datasets or creation of FILI cards, please use SCANBOOK.

2.2 Name conventions
Most FORTRAN symbols! defined in the SANDY package start with Q, K, C, X or N:

Subroutines, real functions, variables, or arrays
Integer functions, variables, or arrays

Logical functions, variables, or arrays

a X X O

Character functions, variables, or arrays

IThere are few exceptions: SUBROUTINE MAKSEV, and a few variables.



N Subroutines; functions, variables, or arrays of different types (mostly internal, or originat-
ing from the NanoDST production code running in ALPHA)

The names of user routines or variables should not start with any of these letters to avoid
possible confusions and problems.

2.3 Access to SANDY variables

To access the SANDY variables and pointers, one must include a set of statements at the beginning
of the routine, in the same way as for an ALPHA job. There are also two sets of statements:

NCDE COMMONSs, DIMENSIONs, PARAMETERs, type declarations (like QCDE in
ALPHA)
NMACRO statement functions (like QMACRO in ALPHA)

They exist as decks in the HISTORIAN library and should therefore be included using:

*CA NCDE
*CA NMACRO

Of course one could use a statement like

INCLUDE ’> NANO:NCDE.INPUT °’ (VAX-VMS syntax)
INCLUDE ’ NANO:NMACRO.INPUT ° (VAX-VMS syntax)

instead, but it is recommended to use HISTORIAN except on those platforms where this is not
implemented: this guarantees that you get the correct decks without having to worry about the
version of the NCDE input file (for versions older than the current one, the files are renamed
NCDEnnn . INPUT, resp. NMACRnnn.INPUT).

2.3.1 Implicit none

The deck NDECL contains the declaration (integer, real) of all SANDY variables and statement
functions in NCDE and NMACRO, as well as of all SANDY functions. People wishing to use
IMPLICIT NONE in their code should include NDECL preceding NCDE.



2.4 User routines

2.4.1 User initialisation routine NUINIT

This routine should be used to book histograms as well as for any other user initialisations. Stan-
dard initialisation work is performed automatically before the subroutine NUINIT is called which
includes:

o Initialisation of BOS (500 000 words working space and 2000 bank names)
e Initialisation of HBOOK (500 000 words working space)
e Reading data cards

e Opening the ALEPH database

The booking of histograms and n-tuples should be made via the normal HBOOK subroutine
calls. There are no equivalents of the ALPHA QBOOK, etc., routines in SANDY.

For row-wise n-tuples, ‘SANDY” is the top directory name of the RZ file given in the HIST card
(please refer to chapter 3 of the HBOOK Reference Manual Version 4.17 for more details).

2.4.2 Event analysis routine NUEVNT

This routine is called once for each event. The pointers to be used to loop over the objects (charged
tracks, Monte Carlo tracks, photons, jets, etc.) are described in chapters 4 and 5. Notice that the
charged tracks are sorted in four groups according to their charge and the event hemisphere to which
they belong (defined by the thrust axis). They are further sorted within each group by increasing
momentum. This allows substantial speed-up when combining tracks to compute invariant masses.
An example illustrating how to make the most efficient use of this feature is given in section 5.1.
The photons are also grouped according to the event hemisphere (same as for charged tracks), and
in decreasing energy within each group.

2.4.3 User termination routine NUTERM

This routine can be used for anything which needs to be done at the end of the job, e.g.
histogram manipulations. Histogram printing is done automatically in the SANDY routine
NMTERM, as well as histogram output if you give a HIST card.

WARNING: this routine should never be called directly. To force program termination, you
should call the main termination routine NMTERM with a statement like:

CALL NMTERM(’any message’)

NMTERM, in turn, will call NUTERM. NMTERM is called automatically after all input files have
been processed.



2.4.4 New run NUNEWR(IROLD,IRNEW)

This routine is called automatically once a new run is encoutered on the event input file.

2.5 Running a SANDY job

VAX

The SANDY package (i.e. libraries, source code and other relevant files like NUUSER.INPUT
(example of user routines) can be found under the logical NANO.

To run a SANDY job, just type
SANDYRUN [xxx|7]

(the short form SANDY is also accepted) where xxx is an optional file of type NOPT and containing
the job options (similar to the ALPHA option file myalpha.OPT). If there is no such option file
in the current directory, it will be created for you. A ‘7’ as argument will provide some help.
Furthermore, you can type ‘?” at any question to get help. Note that the batch job name (if you
run in batch mode), process name and log file name are set equal to the option file name (SANDY
by default), and that the so-called program name is what will be used for the FORTRAN file (file
type FOR), the object file (file type 0BJ) and the executable (file type EXE). These two names are
independent, such that you can run several jobs simultaneously with the same executable 2 if they
differ only by their respective card files. With a NSPY card, the process name of a SANDY job
will be modified every thousandth processed event to indicate how many events it has processed so
far. The user can monitor the running of his SANDY jobs very easily, e.g. with the DCL command

SHOW USER/BATCH/FULL my_name
which will provide the following information

Username Node Process Name PID Terminal
my_name AL1FO1 job_name > 95K 22C006A3 (batch)

indicating that more than 95 000 events have been processed so far.

Any running SANDY job can be terminated at any time without losing the results from the so
far processed events; the job terminates correctly after a forced call to the main termination routine
NMTERM. This forced call is activated by creating a file with the same name as the job name and
file type STOP in the user’s login directory (SYS$LOGIN). The content of the file is irrelevant. Once
the file has been created, the job will end after the next event where KNEVT = (0 modulo 1000).

2Executables and especially FORTRAN files grow fast into very large files such that space saving becomes
interesting...



IBM

A REXX procedure SANDY EXEC similar to the SANDYRUN on VAX exists on the NANO
minidisk on CERNVM. There are also examples of INPUT, CARDS and EXEC files which you
should copy onto your disk and edit to your needs.

2.6 Control cards

FILI
SEVT
SRUN
IRUN
NEVT
NSEQ
FILO
COPY
READ
TIME
HIST
NOPH
MASS

JETB n

JETC ’new_mass’

NSEL ’filename’

NSPY

Same syntax and functionality as in ALPHA.
Same syntax and functionality as in ALPHA.
Same syntax and functionality as in ALPHA.
Same syntax and functionality as in ALPHA.
Same syntax and functionality as in ALPHA.
Same syntax and functionality as in ALPHA.
Same syntax and functionality as in ALPHA.
Same syntax and functionality as in ALPHA.
Same syntax and functionality as in ALPHA.
Same syntax and functionality as in ALPHA.
Same syntax and functionality as in ALPHA.
Same syntax and functionality as in ALPHA.

(no arguments) The mass of a charged track is automatically set equal to
that of the lightest particle for which the hypothesis bit is set (e.g. if XEL
and XKA are TRUE for track I, the mass of track I is set equal to the electron
mass).

The jets are based by default on energy flow (P. Janot) objects (mass cut
4 GeV/c?). By including a JETB card with n = 1, one can select jets with
charged tracks only (mass cut 4 GeV/c?), but the track-jet relations will no
longer be available.

The evolution of the chosen jets to the new mass cut is done automatically
when the event is read in.

Allows you to specify the name of the SEVT cards file produced by the
routine MAKSEV.

(no arguments) The process name of the SANDY job is modified every thou-
sandth processed event to indicate how many events it has processed so far
(for VAX-VMS batch only, see section 2.5).

Do not forget the ENDQ card at the end of the cards file.



Chapter 3

MNEMONIC SYMBOLS

Mnemonic symbols are FORTRAN variables, arrays, parameters, functions or statement functions.
Those marked with a * are identical to the corresponding ones in ALPHA.

3.1 Mathematical and physical constants

*QQPI = pi

*QQE = e

*QQ2PI = 2 * pi

*QQPIH = pi / 2

*QQRADP = 180 / pi

*QQC = speed of light [cm/s]

*QQH = Planck constant / ( 2 * pi ) [GeV/s]
*QQHC = QQH * QQC

*QQIRP = speed of light [cm/KGauss]

3.2 Run and event information

*KRUN : RUN number
*KEVT : EVenT number
*KNEVT : Number of EVenTs processed

*XMCEV : T if Monte-Carlo event
KFLAV : event flavor (u=1,d=2,s=3,c=4,b=5)

*XLUMOK: T if event used to compute luminosity

NXHVOK: T if ITC and TPC voltage OK

NXDEOK: T if TPC dE/dx voltage and calibration OK

NXVDOK: T if good VDET data

NXMUOK: F if QMUIDO/MUREDQO failed

NXLEPT: F if LEPTAG failed

NXBJSC: F if Boosted Jet Sphericity Product on CHarged tracks failed
NXBJSF: F if Boosted Jet Sphericity Product on ENflw objects failed
NXBEES: F if BEETAG failed



NXGIPT: F if event not useful for QIPBTAG

NXIPBT: F if QIPBTAG failed

NXGAMP: F if GAMPEX failed

NXQFVX: T if main vertex from QFNDIP, from JULIA otherwise
NXQFFA: T if QFNDIP failed

*KREVDS: detector status word from REVH bank

NJETB : jet bank loaded into JET section O=EJET (default)
1=NDJT

3.2.1 Main Vertex

Per default the main vertex is determined by QFNDIP. Only if this program fails, the JULIA main
vertex is kept; use NXQFVX to get the origin of the vertex.

QMV(1): x-coordinate of main vertex
QMV(2): y-coordinate of main vertex
QMV(3): z-coordinate of main vertex

3.2.2 From GETLEP

QELEP : LEP center of mass Energy [GeV/c**2]

IFILL : Fill number

BEAMX : X,Y,Z values of beam crossing for this rumn , in [cm]
DBEAMX: Errors on BEAMX , in [cm]

NHADBX: Number of HADronic events used to compute BeamX , dbeamx

3.2.3 Event tags

Before using the tags, one should check that the tag computation was successful with the appro-
priate flag (see section 3.2). The authors of the algorithms are indicated. C. Bowdery’s algorithm
is used with a yeue = 0.02 and a boost of 0.965. B. Brandl’s algorithm is used with a boost of 0.96.

BJSPCH: Boosted Jet Sphericity Product, on CHarged tracks (C.Bowdery)
BJSPEF: Boosted Jet Sphericity Product, on ENflw objects (C.Bowdery)
BBSPR1: Boosted hemisphere 1 sphericity product (B.Brandl)

BBSPR2: Boosted hemisphere 2 sphericity product (B.Brandl)

BEETT1: BEETAG transverse mass hemi 1 (E.Manelli)

BEETT2: BEETAG transverse mass hemi 2 (E.Manelli)

BEETM1: BEETAG moment of inertia hemi 1 (E.Manelli)

BEETM2: BEETAG moment of inertia hemi 2 (E.Manelli)



3.2.4 Input/Output logical units

KUPRNT :
KUPTER :

log file = 6
terminal (VAX interactive mode only)

3.2.5 Character variables

SAVERS:
NCLPOT:
NCLRUN:
NCLNDS:

SANDY version

List of POT/DST/MINI banks on this NanoDST
List of run banks on this NanoDST

List of NanoDST banks on this NanoDST

10



Chapter 4

SANDY OBJECTS

When running a SANDY job, for each event you have access to global quantities which are stored
in variables, and to ‘tracks’ (i.e. any object which can be described by a 4-vector). These objects
are all stored in the rows of the same array, but in different sections. This allows to use the same
macro (statement function) to access a given physical quantity, regardless of the kind of the object.
Similarly, the same routines can be used to perform kinematics or track operations on any object.
Each object is assigned a unique number, which will be referred to as the SANDY number of the
object. FORTRAN DO loops can then be used to loop over most types of objects. For each type
of object, three variables are defined: KFxxx, KLxxx and KNxxx, where xxx represents the object
type. The first two are pointers to the beginning and the end of the corresponding section, and
KNxxx is the number of objects of type xxx. DO loops must be made from KFxxx to KLxxx. The
following types of objects are currently filled:

e CHT : charged tracks

o JET : jets

e GAM : photons (from GAMPEX)

e VOT : V° candidates (from YVOV)

e GCO : gamma conversions (from QPAIRF and QACONV)
e MCT : Monte Carlo truth

General macros which can be used with any object are described in section 4.1. Kinematics and
track operations are described in section 4.2. Macros and routines to access specific information
for the different types of objects are described in the various sections of chapter 5.

4.1 Macros

Macros marked with a * are identical to the corresponding ones in ALPHA.

I is the SANDY track number.

*QSQT(Q) signed square root
*QP (1) momentum of vector I
*QX(I) X momentum component

11



*QY (1)

*QZ(I)

*QE(I)

*QM(I)

*QCH(I)

*KCH(I)

*QCT (1)

*QPH(I)

*QPT(I)
*QMSQ2(1,J)
*QMSQ3(I1,J,K)
*QMsQ4(I1,J,K,L)
*QMSQ5(I,J,K,L,M)
*QM2(I,J)
*QM3(I,J,K)
*QM4(1,J,K,L)
*QM5(I,J,K,L,M)
*QDMSQ(I, J)

*QBETA (I)

*QGAMMA (I)
*QDOT3(I,J)
*QDOT4(I,J)
*QCOSA(I,J)
*QPPAR(I,J)
*QPPER(I,J)
PTOT(I)

ENER(I)

XE(P,A,B)

PFRX(X,A,B)

y momentum component

z momentum component

energy

mass

charge

INT(QCH(I))

cos(polar angle)

azimuth (radians)

transverse momentum (w.r.t. the beam line)

invariant mass squared of particles I and J

invariant mass squared of particles I, J and K

invariant mass squared of particles I, J, K and L
invariant mass squared of particles I, J, K, L and M
invariant mass of particles I and J

invariant mass of particles I, J and K

invariant mass of particles I, J, K and L

invariant mass of particles I, J, K, L and M

mass squared of the 4-momentum difference P(I) - PQJ).
In a decay I -> J + x, QDMSQ(I,J) gives the mass squared
of x.

beta

gamma

scalar product of momentum vectors I and J (3-vectors)
scalar product of 4-vectors I and J = QE(I)*QE(J)-QDOT3(I,J)
cos(angle between tracks I and J) (lab frame)

momentum component of particle I parallel to particle J
momentum component of particle I perpendicular to particle J
computes total momentum of "track" I from QX, QY, and QZ
computes energy of "track" I from QP and QM

energy scaled by the beam energy B for a particle of
momentum P and mass A

momentum of a particle of mass A and scaled energy X when
the beam energy is B

4.2 Kinematics and track operations

Routines marked with a R are identical to the corresponding one in ALPHA. Routines marked with
a 1 return values stored on the NanoDST as truncated integers and hence may not have the same
precision as in ALPHA. For the number of bits used to code these numbers, please refer to the

DDL (appendix A).

4.2.1 Create a new track

itk=KVNEW (dummy) | R
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4.2.2 Create a copy of a track

itknew=KVCOPY (itk) |

4.2.3 Copy a track

CALL QCOPY(itkin,itkout)

Copy all attributes of track itkin into track itkout (i.e. from itkin to itkout). itkin and
itkout are both input arguments!

4.2.4 Set the mass of a track

CALL QVSETM(itk,amass) |R

Only the energy is recomputed.

4.2.5 Add 2 tracks

CALL QVADD2(isum,itkl,itk2)

The momentum components and the energy are added, and the total momentum and charge is
computed.: The jet assignement is taken from track itki. The mass is the invariant mass of the
two tracks. isum is an input argument!

4.2.6 Add 3 tracks

CALL QVADD3(isum,itkl,itk2,itk3) |c.f. QVADD2

4.2.7 Add 4 tracks

CALL QVADD4 (isum,itk1l,itk2,itk3,itk4) |c.f. QuADD2

4.2.8 Add 5 tracks

CALL QVADDS5(isum,itkl,itk2,itk3,itk4,itk5) |c.f. QUADD2
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4.2.9 Copy the momentum 3-vector of a track

CALL QVGET3(p,itk)

Copy the momentum 3-vector of track itk into array p.

4.2.10 Copy the momentum 4-vector of a track

CALL QVGET4(p,itk)

Copy the momentum 4-vector (p, py, p, ) of track itk into array p.

4.2.11 Set the momentum 3-vector of a track

CALL QVSET3(itk,p)

Copy the array p into the momentum 3-vector of track itk and recompute the total momentum
and energy with the old mass.

4.2.12 Set the momentum 4-vector of a track

CALL QVSET4(itk,p)

Copy the array p (ps, Py, P., E) into the momentum 4-vector of track itk and recompute the
total momentum and mass.

4.2.13 Compute the cosine of the 2-body decay angle

angle=QDECA2(i, j)

For the 2-body decay M — m(i) 4 m(J), this function calculates the cosine of the angle between
the M line of flight and the m(i) momentum vector in the M rest frame. Notice that care is taken
of the accuracy (usage of double precision and special grouping of terms).

4.2.14 Compute the cosine of the n-body decay angle

angle=QDECAN(i, j)

For the decay M(i) — m(j)+...+m(n), this function calculates the cosine of the angle between
the M(i) momentum vector and the m(j) momentum vector in the M(1) rest frame.
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Chapter 5

OBJECT ATTRIBUTES

Mnemonic symbols marked with a * are identical to the corresponding ones in ALPHA. All variables
are stored on the NanoDST as truncated integers and hence may not have the same precision as
in ALPHA if a DST is used as input. Compared to a MINI the precision is almost the same. For
the number of bits used to code these numbers, please refer to the DDL (appendix A).

5.1 Charged tracks

Only charged tracks satisfying the ‘good track’ selection criteria are kept on the NanoDST. However,
if a charged track is found to be the decay product of a V® candidate, it is always kept. In this
case, if the track is not a ‘good track’, then it will be in a special ‘bad track’ section. When looping
over charged tracks from KFCHT to KLCHT, these ‘bad tracks’ will not be included. They will
be included when looping from KFACT to KLACT.

The ‘good tracks’ are sorted in four groups according to their charge and the event hemisphere
(defined by the thrust axis) in which they lie. They are further sorted within each group by
increasing momentum. Following is the list of variables and pointers defined for the CHT section:

KFCHT : First CHarged Track

KLCHT : Last CHarged Track

KFPH1 : First Positive Track in Hemisphere 1

KLPH1 : Last Positive Track in Hemisphere 1

KFNH1 : First Negative Track in Hemisphere 1

KLNH1 : Last Negative Track in Hemisphere 1

KFPH2 : First Positive Track in Hemisphere 2

KLPH2 : Last Positive Track in Hemisphere 2

KFNH2 : First Negative Track in Hemisphere 2

KLNH2 : Last Negative Track in Hemisphere 2

KFBCT : First ’Bad’ Charged Track

KLBCT : Last ’Bad’ Charged Track

KFACT : First of All Charged Tracks (including ’bad’ tracks)
KLACT : Last of All Charged Tracks (including ’bad’ tracks)

KNCHT : Number of CHarged Tracks

KNPH1 : Number of Positive Tracks in Hemisphere 1
KNNH1 : Number of Negative Tracks in Hemisphere 1
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KNPH2 : Number of Positive Tracks in Hemisphere 2

KNNH2 : Number of Negative Tracks in Hemisphere 2

KNBCT : Number of ’Bad’ Charged Tracks

KNACT : Number of Charged Tracks (All, including ’bad’ tracks)

5.1.1 Example

We shall illustrate here how to make the most efficient use of the track ordering feature with an
example from the D* selection (ALEPH D* group).

A D** decays into a D° plus 7t (called soft pi), and the D° further decays into a K~ and a 7%+
(called hard pi). From the kinematics of the D** decay, one can compute an upper and lower bound
for the soft pi momentum (P_MAX resp. (PMIN). A FORTRAN DO loop to select three charged
tracks before combining them to see if they are compatible with being the decay products of a D+
would then look like:

DO 30 i_soft_pi = KFPH1,KLPH1
IF( ...cut3... ) GOTO 30
IF( QP(i_soft_pi) .LT. P_MIN ) GOTO 30
IF( QP(i_soft_pi) .GT. P_MAX ) GOTO 40 ! all the following i_soft_pi
! will have greater momentum
! and can be safely skipped
DO 20 i_hard_pi = KFPH1,KLPH1
IF( ...cut2... ) GOTO 20
IF(i_hard_pi.EQ.i_soft_pi) GOTO 20
DO 10 i_kaon = KFNH1,KLNH1
IF( ...cutl... ) GOTO 10

...here you have 3 charged tracks to compute an invariant mass...

10 CONTINUE
20 CONTINUE
30 CONTINUE

40 CONTINUE

The standard ‘good track’ preselection was already performed at the NanoDST production step;
cutl, cut2 and cut3 are any further cuts that might be necessary.

This program section is repeated for the four different conditions given by the D* charge and
the hemisphere (Monte Carlo studies have shown that there is a negligible efficiency loss due to
the splitting into hemispheres). One thereby avoids the tests on the charge of the tracks as well
as trying combinations of tracks from opposite hemispheres. Together with the skipping when the
next track is above the momentum threshold, these ‘tricks’ allow a considerable speed-up in the
execution time.
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5.1.2 Mnemonics

I is the SANDY track number of any charged track.

XFRF(I) : T if Chi"2 per d.o.f. is available for track I
XC20V(I) : T if Chi~2 per d.o.f. OVERFLOW
QC2DOF(I) : Chi~2 per d.o.f.

XSIG(I) . T if relative error on momentum is available for track I
XSIGOV(I) : T if relative error on momentum OVERFLOW (>B\W)

QSIGP(I) : error on momentum

QRSIGP(I) : relative error on momentum (QSIGP/QP) (set to 50\} if OVERFLOW)
KJET(I) . associated jet (ONLY for standard jets from bank EJET); can be O!
*QDB(I) . distance of closest approach to beam axis

*QZB(I) . z coordinate of track point where QDB is measured

*KTN(I) . JULIA/GALEPH track number

*KFRTNI(I) : number of coordinates in ITC

*KFRTNT(I) : number of coordinates in TPC

KFRTNV(I) : number of coordinates in VDET. "3" means "3 or more"
XvoD(I) . T if track comes from a VO candidate

KvoD(I) . SANDY number of corresponding VO candidate

5.2 Jet finding

Clustering into jets is computing-time intensive (especially the first steps) and therefore performed
during the NanoDST production step. The chosen algorithm is the minimal mass algorithm
(QIMMCL — see ALPHA manual). Since jets can be evolved to a higher mass cut at any time,
the clustering is done with a small mass cut (4.0 GeV/ ¢?) to accomodate most analyses.

Two sets of jets are available: the NDEJ bank contains jets obtained by clustering energy flow
objects, and the NDJT bank charged tracks only. However, the track — jet relationship is only
available for the energy flow jets, and furthermore some tracks may be associated to none of them.
It is therefore necessary to always check that KJET(I) is not 0 before using it as a pointer to a
jet. The NDEJ jets are loaded by default into the JET section. To load NDJT instead, JETB 1
should be added to the cards.

By including JETC ’new_ mass’ in the cards, the evolution of the chosen jets to the new mass
cut is performed automatically when the event is read in. The jet evolution can also be performed
at any time by a call to the NEWJET routine (section 5.2.2). Following is the list of variables and
pointers defined for the JET section:

KFJET : First JET
KLJET : Last JET
KNJET : Number of JETs
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5.2.1 Mnemonics

J is the SANDY ”track number” of any jet.

KIJMUL(J) : charged track multiplicity in the jet J

5.2.2 Jet evolution

CALL NEWJET(njets,rmcut)

Evolve the jets from section JET to a higher mass cut. The old jets are overwritten.

Inputs:

- rmcut /R : cluster mass cut value ( Ycut = (rmcut/EVIS)**2 )
Outputs:

- njets /I : number of jets found or error code if <O

Calls NGJMMC, the improved, generalised Jade algorithm jet finder

with the arguments set to ’E’ scheme and normal JADE algorithm
for SANDY (interface to FJIMMCL).

5.2.3 Scaled invariant mass squared algorithm

CALL NJMMCL(njets,kfi,kli,kfo,klo,rmcut,evis)

Jet finder using the scaled invariant mass squared algorithm. Any set of objects can be fed in.

Inputs:
- kfi /I : SANDY track number of first input object
- kli /I : SANDY track number of last input object
- rmcut /R : cluster mass cut value ( Ycut = (rmcut/EVIS)**2 )
- evis /R : visible energy for normalisation
(if EVIS=0., it is computed from the
input particle energies)
Outputs:
- njets /I : number of jets found or error code if <O
- kfo /I : SANDY track number of first output object
- klo /I : SANDY track number of last output object

Calls NGJMMC, the improved, generalised Jade algorithm jet finder
with the arguments set to ’E’ scheme and normal JADE algorithm
for SANDY (interface to FJMMCL).
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5.3 Photons

Photons from the PGPC bank (found by GAMPEX) are stored on the NanoDST in the NDPH
bank, and loaded into the GAM section. Notice that when there were more than 4 photons in a
PECO cluster, only the first 4 were kept and stored. Following is the list of variables and pointers
defined for the GAM section:

KFGAM : First GAMma

KLGAM : Last GAMma

KFGH1 : First GAMma in Hemisphere 1
KLGH1 : Last GAMma in Hemisphere 1

KFGH2 : First GAMma in Hemisphere 2
KLGH2 : Last GAMma in Hemisphere 2

KNGAM : Number of GAMmas (in bank NDPH)
KNGH1 : Number of GAMmas in Hemisphere 1
KNGH2 : Number of GAMmas in Hemisphere 2

5.3.1 Mnemonics

I is the SANDY track number of any photon.

barrel
endcap
overlap
0 = crack or dead storey(s)
KGMUL(I) : number of photons in the PECO cluster 1,2 or 3. 0 if >=4
KGPECO(I) : PECO number
This is useful for scanning, or to know which photons belong
to the same PECO cluster.

KGREG(I) : region code

1
2
3

XGE1(I) : T if energy fraction in stack 1 > 0
WARNING: only for versions >= 111.3
XGE2(I) : T if energy fraction in stack 2 > fraction in stack 1 or

if energy fraction in stack 2 > fraction in stack 3
WARNING: only for versions >= 111.3

5.3.2 =Y finder QPIODO

CALL QPIODO

The 7° finder QPIODO (J.-P. Lees) is fully implemented in SANDY. It builds 7° candidates
from GAMPEX photons taken in the GAM section of SANDY, and refits their energy-momentum
applying a 7° mass constraint 2 - w; - wo(1 — cosbi3) = mqo. The error on the angles of the two
photons is neglected and one finds, with a Lagrange multiplier approximate solution, the refitted
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2 2
energies w;, W, Minimizing x? = (ELS_TWL) + (ELS;—'“Z> with wy, w, the refitted energies, Ey, Es

the measured energies and S;, S, the error on these energies.

The user needs only to call the routine QPI0DO (no arguments), and the results will be filled
‘nto the GAMPIO COMMON. However, the routines XXPOF1 (G. Batignani) or KINEFIT (M.
Maggi) can be used in a standalone mode to refit the 7° momentum using the 7° mass constraint
(see the subroutine header for the description of the argument list).

Description of common GAMPIO:

*CD GAMPIO
PARAMETER (MXPI0=200)
COMMON/GAMPIO/IQPIO, NTPIO, PIOMOM(4,MXPIO0),ITYPIO(MXPIO),
+ IPIOGAM(2,MXPIO),CHIPIO(MXPIO)

IQPIO . return code O0-->0K, 1-->0 pi0, 2-->N piO>MXPIO
PIOMOM(4,MXPIO) : PIO refitted 4 momentum

IPTOGAM(2;MXPIO): gam 1 & 2 number in the GAT section
CHIPIO(MXPIO) : chi2 value after refit (-999. if no convergence)
ITYPIO(MXPIO) : piO type, see below

Description of piO types:

TY=1: 2 photons in same PECO, with N=2 photons in the PECO

TY=2: 2 photons in same PECO, with N>2 photons in the PECO

TY=3: 2 photons in different PECO, with N=1 photons in each PECO
TY=4: 2 photons in different PECO, with N>1 photons in one PECO

Book QPIODO histograms

CALL QPIOBK

Books some control histograms which will then be filled by QPIODO.

Print #° candidates

[CALL PIODEB|

Prints the 7° candidates found by QPIODO.

54 VO

VO candidates found by the standard V° - finder (M.A. Ciocci, L. Rolandi) are stored on the
NanoDST in the NDVO bank and loaded into the VOT section. Note that some cuts to the V°
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candidates are applied before putting them on the NANO DST.
Following is the list of variables and pointers defined for the VOT section:

KFVOT : First VO candidate (was KFDVO before)
KLVOT : Last VO candidate (was KLDVO before)
KNVOT : Number of VO candidates (was KNDVO before)

5.4.1 Mnemonics

I is the SANDY track number of any VO candidate.

KVOHYP(I) : Fit hypothesis (bit O set:K0,1:Lambda,2:Antilambda,3:Gamma)
KVONTN(I) : FRFT track number of positive VO daughter track
KVOPTN(I) : FRFT track number of negative VO daughter track
KVOPOT(I) : SANDY track number of positive VO daughter track
KVONEG(I) : SANDY track number of negative VO daughter track
KVOIC(I) : IcodevO from bank YVOV (see there for desription)
QVOCH(I) : Chi square of fit

QVOVM(I) : Fitted VO momentum

QVOTH(I) : Polar angle of VO direction

QVOPH(I) : Azimuthal angle of VO direction

QVOVTX(I) : x-coordinate of VO decay vertex

QVOVTY(I) : y-coordinate of VO decay vertex

QVOVTZ(I) : z-coordinate of VO decay vertex

QVODL(I) : Decay length

QVOEDL(I) : Error on decay length

XVOSVA(I) : T if ambiguous secondary vertex
XVOKIA(I) : T if ambiguous with another hypothesis
XVOTRA(I) : T if VO shares a track with another VO
XKO(I) : T if KO hypothesis bit TRUE
XLACI) T if Lambda hypothesis bit TRUE
XAL(I) T if Antilambda hypothesis bit TRUE

T

XGA(T) if Gamma hypothesis bit TRUE

Attributes of positive daughter from V°:

QVOPP(I) : Fitted momentum at decay vertex

QVOPTH(I) : Fitted polar angle at decay vertex

QVOPPH(I) : Fitted azimuthal angle at decay vertex
QVOPPX(I) : Fitted x component of momentum at decay vertex
QVOPPY(I) : Fitted y component of momentum at decay vertex
QVOPPZ(I) : Fitted z component of momentum at decay vertex
QVOPCH(I) : Chi square increase from QVOCHK

Attributes of negative daughter from V°:

QVONP(I) : Fitted momentum at decay vertex
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QVONTH(I) : Fitted polar angle at decay vertex

QVONPH(I) : Fitted azimuthal angle at decay vertex

QVONPX(I) : Fitted x component of momentum at decay vertex
QVONPY(I) : Fitted y component of momentum at decay vertex
QVONPZ(I) : Fitted z component of momentum at decay vertex
QVONCH(I) : Chi square increase from QVOCHK for negative track

I is the SANDY track number of any charged track.

XVOD(I) : T if track comes from a VO candidate
KVOD(I) : SANDY number of corresponding VO candidate (or YRFT row)

5.5 Converted Photons

Gamma Conversions are stored in the NDGC bank and loaded into the GCO section. Two different
routines have been used to find gamma conversions for the NanoDst. One of them is the standard
pair finder QPAIRF, the other one is the new routine QACONV by S. Schael (ALEPH note 94-104).
The advantage of the latter one is that it reconstructs converted photons where only one track is
found in addition to pairs. To allow comparisons between both routines where a photon decays
into two ’visible’ tracks none of the conversions are removed from the NanoDst. Therefore a pair
of tracks forming a gamma can be twice within the NDGC bank if it was found by both routines.
So the user has to take care that these photons are used only once in an analysis.

Following is the list of variables and pointers defined for the GCO section:

KFGCO : First converted Photon
KLGCO : Last converted Photon
KNGCO : Number of converted Photons

5.5.1 Mnemonics

I is the SANDY track number of any converted Photon candidate.

KGCTYP(I) : Type and origin of converted gamma:
0: from QPAIRF
from routine QACONV:
1: from QFNDVO
2: from QPAIRF
3: single electron

Remember: Track numbers may be 0 if KGCTYP(I).eq.3
KGCPTN(I) : JULIA track number of positive daughter

KGCNTN(I) : JULIA track number of negative daughter
KGCPOT(I) : SANDY track number of positive daughter
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KGCNET(I) : SANDY track number of negative daughter

QGCVX(I) : X - position of conversion point
QGCVY(I) : Y - position of conversion point
QGCVZ(I) : Z - position of conversion point

The following quantities only exist if KGCTYP(I).eq.O:

QGCDXY(I) : Distance in xy - plane between tracks at conversion point
QGCDZ(I) : Distance in z - direction between tracks at conversion point

5.6 Monte Carlo

Monte Carlo truth particles are divided into two categories according to the value of the ALPHA
stability code (KSTABC):

o unstable particle (NDNT bank): if KSTABC is -1 or -2
o stable particle (NDMS bank): for any other value of KSTABC

The momentum of an unstable particle is not stored, as it can be reconstructed from the momenta
of its decay products. However, because of technical details specific to the different generators, this
procedure does not work for the partons and the initial quarks, which are therefore also stored as
stable particles (in the NDMS bank). Pointers are defined for the “final’ partons (at the end of the
parton shower).

For V° particles, the ‘true’ decay vertex is stored on the NanoDST in the NDLV bank.
Following is the list of variables and pointers defined for the MCT section:

KFMCT : First Monte Carlo Track

KLMCT : Last Monte Carlo Track

KFMUT : First Monte Carlo Unstable Track
KLMUT : Last Monte Carlo Unstable Track
KFMST : First Monte Carlo Stable Track
KLMST : Last Monte Carlo Stable Track

KQ . initial Quark (direct daugther of the Z0)
KQBAR : initial anti-Quark (direct daugther of the Z0)

KFPAR : First ’final’ parton (not correct for HERWIG)
KLPAR : Last ’final’ parton (not correct for HERWIG)

KNMCT : Number of Monte Carlo Tracks

KNMUT : Number of Monte Carlo Unstable Tracks (in bank NDNT)
KNMST : Number of Monte Carlo Stable Tracks (in bank NDMS)
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5.6.1 Mnemonics

I is the SANDY track number of any Monte Carlo truth track.

XMCNE(I) : T if this MC "track" is a neutral particle
XMCCH(I) : T if this MC "track" is a charged particle
XMCGA(I) : T if this MC "track" is a gamma
KPTCH(I) : bank containing the matched track
(0=neutral , 1=photon,2=charged,-1=unstable)
*KTPCOD(I) : ALEPH particle code
*KNDAU(I) : number of daughters of track I
*KDAU(I,J) : SANDY number of the Jth daughter of track I
*KNMOTH(I) : number of mothers of track I
KMOTH(I) : SANDY number of the mother of track I
*KSTABC(I) : stability code (see ALPHA manual)
WARNING: only for versions >= 111.3
QVOVX(I) : X coordinate of VO decay vertex (for true MC VO only)
QUOVY(I) : Y coordinate of VO decay vertex (for true MC VO only)
QUOVZ(I) : Z coordinate of VO decay vertex (for true MC VO only)

5.6.2 Matched track

match=KMTCH (itk)

Returns the SANDY reconstructed track number which matches the Monte Carlo truth track
itk best. The matching is done at the NanoDST production step. For charged tracks, at least
5 shared hits are required, and then the closest track (euclidian distance in 3-momentum space)
is kept. For the photons, only distance (euclidian distance in 3-momentum space) is used, and
the closest reconstructed photon is kept. One can therefore have many Monte Carlo truth photons
matched to the same reconstructed photon, but it does not mean that all these links are meaningful;
it is left to the user to decide upon a maximal distance cut.

5.6.3 z of heavy quark fragmentation

z=QZFR(itk) |t

For a Monte Carlo truth track itk originating from a heavy quark decay, returns the z value
used for the Peterson fragmentation function. The returned value is 0 for any other Monte Carlo
truth track.

5.6.4 Descendants of a MC track

CALL DECSEA(mothr,nd,ns,itks)
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Find all Monte Carlo truth tracks itks that come from mothr, including all intermediate states
to the ‘“final’ particles.

Inputs:
- mothr/I : SANDY track number of mother
Qutputs:
- nd /1 : number of [[grand]”n -]daughters
- ns /1 : number of ’stable’ particles
- itks /I : 2-dim array with

(1,i) the SANDY track number of the
[[grand]"n -]ldaughter

(2,i) the generation (mother is generation 0)
Negative generation means ’stable’
particle

The array starts at generation 1.

For all tracks in the list of MC track, make an iterative search
up the parenthood tree until we find the [[grand]"n -]lmother
mothr or 0. If the end result is O, then that particle does not
originate from mothr.

Does NOT count particles from decays of ’usually stable’ particles
such as pions, kaons and protons (i.e. if the mother of a particle
is a charged pion, charged kaon, or proton, it will not be
considered as a daughter).

A ’stable’ particle means: the particle has O daughters or it is
an electron, muon, charged pion, charged kaon or proton.
Anti-particles are always implied.

5.6.5 Decay tree of a MC track

CALL PRIDEC(itk)

Print the decay tree of MC particle itk.

Inputs:

- itk /I : SANDY track number
Outputs:

- none

First call DECSEA to get all the descendants, then print the

decay tree in the log file. A # means ’stable’ particle (see
description of routine DECSEA).
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5.6.6 Descendants of given type

CALL DAUSEA (mothr,kode,nd,itks)

Find all Monte Carlo truth tracks itks of type kode that come from mothr. The routine will
find all descendants of the given type, regardless how many intermediate states or resonances there
are in between.

Inputs:
- mothr /I : SANDY track number of mother
- kode /I : particle code
Outputs:
- nd /I : number of [[grand]"n -]daughters of type kode
- itks /I : array with the SANDY track number of the

[[grand]"n -]daughters

For all tracks of type kode in the list of MC track, make an
iterative search up the parenthood tree until we find the
[[grand] "n -Imother mothr or O. If the end result is O, then that
particle does not originate from mothr.

Does NOT count particles from decays of ’usually stable’ particles
such as pions, kaons and protons (i.e. if the mother of a particle
is a charged pion, charged kaon, or proton, it will not be
considered) .

5.7 dE/dx analysis

dE/dx information for charged tracks is stored on the NanoDST in the NDDE bank. This infor-
mation can be accessed directly with macros. However, it is recommended to use the NDEDX and
NDEDXM routines for the analysis.

WARNING: if the relative error on the momentum of a charged track is greater than 5%, it is
stored as an overflow at the NanoDST production step and will be set to 50% when reading the

NanoDST with SANDY. This can influence the sigma calculation, which may be overestimated for
some high momentum tracks.

5.7.1 Mnemonics

I is the SANDY track number of any charged track.

*XTEX(I) . T if dE/dx information available for track I
KITL(I) : useful track length in [mm]
KINS(I) : number of useful wire samples on track

XRIMOV(I) : measured ionisation OVERFLOW
QRIMES(I) : measured ionisation (measured and calibrated, except TC3X)
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XRSIOV(I) : Relative error on the dE/dx OVERFLOW

QRSIG(I) : Relative error on the dE/dx
The error to be used in analysis should be calculated from:
SIGMA**2= (RSIG*Iexp)**2 + SIG_P**2
where Iexp is the expected ionization for a given hypothesis,
and SIG_P is the contribution from momentum error.

5.7.2 dE/dx analysis of a charged track

CALL NDEDX(itk,n,rmass,q,ri,ns,tl,riexp,sigma,ier)

NB: this routine is a modified version of QDEDX, adapted for SANDY.

Input arguments:

itk SANDY track number.
n Number of hypotheses the user wishes to try.
rmass (n) Array of masses, one for each hypothesis.
q(n) Array of charges, one for each hypothesis.
Output arguments:
ri The measured truncated mean ionisation, normalised and
calibrated.
ns Number of useful wire samples on the track.
tl Useful track length [cm].
riexp(n) Expected ionisation for each mass hypothesis, normalised
sigma(n) One standard deviation resolution error for each hypothesis.

This is the expected dE/dx resolution, given ns,tl,riexp, and
the momentum resolution.
NB: one can calculate a Chi~2 with 1 d.o.f. as:
Chi~2 = ((ri-riexp)/sigma)
ier Error return code: O = successful completion

1 = not a good track

2 = can’t find dE/dx bank

3 = track has no dE/dx information
4 = can’t find calibration banks

TC1X, TC2X, and/or TC3X
5 = cannot find RUNH or EVEH bank
from which to get the run number

5.7.3 Modified NDEDX for Monte Carlo

CALL NDEDXM(itk,n,rmass,q,ri,ns,tl,riexp,sigma,ier)

NB: this routine is a modified version of QDEDXM, adapted for SANDY.

Analyse dE/dx for Monte Carlo events by faking the ionization with a gaussian random number.
If called for real data, the result will be the same as if NDEDX were called.
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Input arguments:
SANDY track number.
Number of hypotheses the user wishes to try.
Array of masses, one for each hypothesis.
Array of charges, one for each hypothesis.
Output arguments:
i The measured truncated mean ionisation, normalised and
calibrated.
Number of useful wire samples on the track.
Useful length of the track [cm].
Expected ionisation for each mass hypothesis, normalised
One standard deviation resolution error for each hypothesis.
This is the expected dE/dx resolution, given ns,tl,riexp, and
the momentum resolution.
NB: one can calculate a Chi”2 with 1 d.o.f. as:

Chi~2 = ((ri-riexp)/sigma)
Error return code: 0 = successful completion

itk

n
rmass(n)
q(n)

ri
ns
tl

riexp(n)
sigma(n)

ier

1 = not a good track

= can’t find dE/dx bank

track has no dE/dx information

= can’t find calibration banks
TC1X, TC2X, and/or TC3X

5 = cannot find RUNH or EVEH bank

from which to get the run number
6 = No MC truth

D W N
]

5.8 Lepton identification

Electrons and Muons are heavy flavor leptons selected with the LEPTAG package (M. Parsons and
I. ten Have) and put in the NDBM bank. Calling LEPTAG from inside SANDY will create the
full BMLT bank. This is only neccessary if the weights are needed, all other quantities are in the
NDBM bank and can be accessed via the following mnemonics.

5.8.1 Mnemonics

Iis the SANDY track number of a charged track where either XEL(I) or XMU(I) are TRUE.

KLETYP(I)

: Lepton typ
2 => et
12 => e+
22 => et
3 => e-
13 => e~
23 => e-

5 => mu+

e:

in
in
in
in

crack region
overlap region

crack region
overlap region
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6 => mu-
QLEPTI(I) : Transverse momentum lepton inclusive
QLEPTE(I) : Transverse momentum lepton exclusive
XLEMU3(I) : T if Muon IDF 13
XLEMU4(I) : T if Muon IDF 14
XLEGEL(I) : T if Genuine ELectron/positron

If the event is a Monte Carlo event (XMCEV true), then the following pointers are although set:

KLEPRQ(I) : PRimary Quark flavour from FINLEP. This should be the same as
KFLAV.
KLEDCA(I) : Decay CAtegory from FINLEP
1 => b -> mu + charmed hadrons

=> -> mu + non charmed hadrons
=> -> tau -> mu
=> -> Cc -> mu
cbar -> mu
=> -> mu

-> tau -> mu

-> c -> tau -> mu

=> K -> mu or pi -> mu

gamma -> mu

J/psi -> mu

psi’ -> mu

other decays to muon

tau decay

muon from other sources

misidentified hadron

muon -> electron

others

error in finding some mother

20 => assoc. Kingal track not found

21-35 => as 1-15 but e instead

negtve => parent quark is from a gluon

W 0 N O Ol WN
1l
A\

oo o oo oo
|
v

[ N = o S e
O 00 N O b WN - O
u on u onouwonou un o un
VvV VV V VYV VYV VYV

5.8.2 Tagging heavy flavour leptons

CALL LEPTAG(LDEBUG,LTOUT,IERR)

The Lepton tagging Package from M. Parsons and I. ten Have. Compared to the version on
UPHY the input arguments are different as some are useless because inside SANDY LEPTAG just
unpacks the NDBM bank and calls CALPOIDS to get the source weights for different kinds of
lepton decay chains before storing all the information in the BMLT bank. In the case these weights
are not needed it is not neccessary to run LEPTAG.
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Outputs:

IERR > O
IERR = 0

LOGICAL LDEBUG

INTEGER LTOUT

INTEGER IERR

and BMLT bank.

Controls whether or not debugging information
should be written out (.TRUE.) or not (.FALSE.).
Unit number on which debug and leptag error
information is to be written.

Completion return code defined as follows:

| The number of leptons found and stored in the BMLT bank.
I No suitable leptons found in event.

5.9 Particle identification

Electrons and muons are heavy flavor leptons. Pions, kaons, and protons are identified with a
dE/dx cut only.

5.9.1 Mnemonics

Iis the SANDY track number of any charged track.

NXPAHY(IHYP): T if particle hypothesis bit set for hypothesis IHYP
e.g. if NXPAHY(3)=.FALSE. then XPI(I) has NO meaning!
: electron hypothesis

: muon hypothesis

: pion hypothesis

kaon hypothesis

proton hypothesis

if particle hypothesis bit J is TRUE for track I

IHYP =

XPART(I,J):

XEL(I)
XMU(I)
XPI(I)
XKA(I)
XPR(I)

1
2
3
4
5

NN A T R I I A

1
2
3
4
5

: electron
: muon

: pion

: kaon

: proton

if electron hypothesis bit TRUE for track I
if muon hypothesis bit TRUE for track I

if pion hypothesis bit TRUE for track I

if kaon hypothesis bit TRUE for track I

if proton hypothesis bit TRUE for track I
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5.10 Thrust

The thrust value and axis of the event, calculated with the energy flow objects, are directly available:

QTHRU = THRUST value (scalar)

QTTHE = theta of THRUST axis

QTPHI = phi of THRUST axis

KTHRU = pointer to THRUST vector (has module equal to THRUST value)

NB_1: ONLY QX, QY, QZ and QP are defined for the thrust vector.
NB_2: The angles theta and phi (and hence the axis) are integerised
and stored with a precision of 10 [mrad] .

5.11 Particle properties

*KPART (’part-name’) integer particle code for ’part-name’
*CQPART (intg-code) particle name (12 characters; trailing characters
filled with blank spaces)
*KPANTI (’part-name’ ,IANTI) if IANTI=O : integer code for ’part-name’
if IANTI unequal to O : integer code for the
antiparticle of ’part-name’
*KCANTI(intg-code, IANTI) ..
*QPMASS (’ part-name’) nominal mass

*QCMASS (intg-code) e
*QPCHAR(’part-name’) charge
*QCCHAR (intg-code) R
*QPLIFE(’ part-name’) life time
*QCLIFE(intg-code) cen
*QPWIDT(’ part-name’) width

*QCWIDT (intg-code)

5.12 b-tagging

Apart from the event shape b- tagging algorithm outputs the QIPBTAG routine can now be used
inside SANDY. The routine is called in the usual way but internally it just fills information from
the NBIP bank into its output variables. Therfore the commonblock BTAGRAW is empty at the
end and other parameters given by JETF, TRA2 or VCUT cards have no effect. The only card
that can be used is the FITP card. For more details see ALEPH note 92-135.

CALL QIPBTAG(IRET,NTRACK,NJET,TRKJET,FRF2TRK,PROBTRK, PROBJET,
PROBHEMI ,PROBEVT)

INPUT:
none
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QUTPUT :
iret : >0 didn’t find NBIP bank
= 0 else = 0.K.

ntrack (I) = # of tracks used to calculate PROBJET/HEMI/EVT
njet : (I) = # of jet found

TRKJET(njet) (I) = empty on NanoDst

NDTKTRK (ntrack) (I) = NDTK row number of tracks used for analysis
probtrk(ntrack) (R) = array(ntrack) with probabilities of each track

with indices as in NDTKTRK
array(njet) with probabilities of each jet
with indices as in TRKJET
array(2) with probabilities of hemisphere
hemisphere(1) is defined by the leading jet
probability of the event

probjet(njet) (R)

probhemi(2) (R)

probevt (R)

-- The parameters for this routine are given
by the BOS cards ’FITP’
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Chapter 6

SANDY UTILITY ROUTINES

6.1 Print a message

CALL QWMESS(’any message’) |R

6.2 Print a message plus run, event number

CALL QWMESE(’any message’)|R

6.3 Event output

[CALL NWRITE]

You have to specify the name of the output file in a FILO card.

6.4 Print an event

[CALL NPRINT|

Makes a printout of the current event in the log file. Prints also the Monte Carlo truth if
applicable.

6.5 Produce a SEVT card for this event

[CALL MAKSEV]|

At the end of the job, all SEVT cards are automatically written out to a file if this routine
was called at least once. You can specify the filename with the NSEL card, or it will be called

33



SEVT.CARDS by default. The maximum number of selected event is 10000. WARNING: do not call
this routine more than once per event!

6.6 Print the NanoDST production parameters

[CALL NINFO|

Make a printout of all NanoDST production parameters in the log file, as well as of the RHAH
bank of the current run. The production parameters are available also as variables.

ECHMIN: MINimum CHarged Energy to accept the event

MINTRK: MINimum number of charged TRacKs

PCUTMI: lower momentum CUT for charged tracks

PCUTMA: upper momentum CUT for charged tracks

THCCUT: Cosine THeta CUT for charged tracks

NITCUT: minimum number of ITC coordinates for charged tracks
NTPCUT: minimum number of TPC coordinates for charged tracks
BDOCUT: upper DO CUT for charged tracks

BZOCUT: upper Z0 CUT for charged tracks

PCUMIJ: lower momentum CUT for charged tracks before clustering

PCUMAJ: upper momentum CUT for charged tracks before clustering

THCCUJ: Cosine THeta CUT for charged tracks before clustering

NITCUJ: minimum number of ITC coordinates for charged tracks before clustering

NTPCUJ: minimum number of TPC coordinates for charged tracks before clustering

BDOCUJ: upper DO CUT for charged tracks before clustering

BZOCUJ: upper ZO CUT for charged tracks before clustering

BMYCUT: mass cut for jet algorithm QJMMCL (on the chosen RECO)

ENEVIS: VISible ENErgy for jet algorithm QJMMCL

RECOOP: REConstructed Objects OPtion (available opt.: ’RE’,’CO’,’CH’)

VOCHSI: minimum CHi square increase of SIngle track from VO fitting back to
the main vertex.

VOCHBO: minimum CHi square increase of BOth tracks from VO fitting back to
the main vertex.

PHOCUT: lower energy CUT for PHOtons

REFMIN: MINimum energy for Energy Flow objects
RMYCUT: mass cut for jet algorithm QJMMCL (on Energy Flow objects)

ALIVER: Alephlib version
NCPROD: Version of NDSTPROD
NCALPH: ALPHa version and correction file used for production
NCDATE: DATE of the production
MCOPTI: options used for Monte-Carlo production
bit O set if real data

34



PMINMC:

bit
bit

bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit

1
2

W 0 N O 0w

10
11
12
13
14
15
16

ISEL :

ISIN

IPI
IKA
IMU

= IEL

INI
IGA
IPR
INE
10Q
IDQ
ISQ
IcqQ
IBQ
ITQ

gluons selection ( 1 = keep gluons )

: flag for using the single particle mode

= 1 read the following flags

0 ignore the following flags

When you select a single particle, only that
final particle and the quark will be kept

in the NDMC bank, for those events of the
chosen flavor. For the flavors where the
flag is 0, all tracks are kept.

: pion

: kaon

: muon

: electron
: neutrino
: gamma

: proton

: neutron

.

o0 ®n Qe

quark
quark
quark
quark
quark
quark

minimum momentum for MC tracks in the fragmentation

(-1. for real data)
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Appendix A

BANK DEFINITIONS (DDL)

Following is the ‘LBF’ output listing for the banks used in the SANDY NanoDST package.

Subschema: NANODST

R *
| NDAR | Nano Dst particle bank (from pARt)
*——— *
1 I Number of Columns (=7)
I Number of particles

...............................................................

1 PA I bit 0- 7 : Geant number [*, %]
bit 8-15 : Geant tracking code

1 = Photons
2 = Electrons
3 = Neutr. Hadrons +
Neutrinos
4 = Charged Hadrons
5 = Muons
6 = Geantinos
100 = Not tracked particle

bit 16-20 charge
bit 21-30 ANtiparticle
Corresponding antipart number
2-4 NA I particle names
5 MA I particle mass [*,%]
bit O- 8: exponent
9-32: mantissa
6 LT I particle lifetime [*,%]
bit O0- 8: exponent
9-32: mantissa
7 MW I particle width [*,*]
bit O- 8: exponent
9-32: mantissa
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| NDBM | Nano Dst leptag output bank (from BMLt)

...............................................................

Number of Columns (=4)
Number of leptons

...............................................................

1 I
2 I
1 TA I
2 PI I
3 PE I
4 DA I

bit

bit

0- 7 : NANO track number [*,*]
max (255)
8-15 : Particle type:
=> e+
=> e+ in crack region
=> e+ in overlap region
=> e-
=> e- in crack region
=> ¢- in overlap region
=> mu+
=> mu-
16-23 : Pointer to jet in
jet section
24-31 : IDF/Truth flag

Bit 24 : Muon IDF 13
Bit 25 : Muon IDF 14
Bit 26 : Genuine electron/

positron
Transverse momentum (keV) [0,*]
lepton inclusive
Transverse momentum (keV) [0, %]

lepton exclusive

bit

0- 3 : [*,%]

Primary quark flavour from FINLEP

B W N~ O

5
bit

=> not a MC q-gbar event
=> d quark

=> u quark

=> s quark

=> c quark

=> b quark

4-11 :

Decay category from FINLEP

W ~N O 0 WN

-> tau -> mu
-> ¢ -> tau -> mu

=> b -> mu + charmed hadrons
=> b -> mu + non charmed hadrons
=> b -> tau -> mu
=> b ->c ->mu
=> b -> cbar -> mu
=> ¢ -> mu
c
b
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9 =>K ->mu or pi -> mu
10 => gamma -> mu
11 => J/psi -> mu
12 => psi’ -> mu
13 => other decays to muon
14 => tau decay
15 => muon from other sources
16 => misidentified hadron
17 => muon -> electron
18 => others
19 => error in finding some mother
20 => assoc. Kingal track not found
21-35 => as 1-15 but e instead
negtve => parent quark is from a gluon
bit 12-21 : Code of the lepton

parent
bit 22-31 : Energy flow object
number
fmm———— +
| NDDE | Nano Dst DE/dx
Fomm——— +
1 I Number of Columns (=2)
2 I Number of selected tracks
with dE/dx info
1 LI I LenandIon [*,%]

Track length and ionisation
bit 0 -11 Track length in [mm]
bit 12-31 Measured truncated mean
......... ionisation * 100000

2 SE I SampandErr [*,%]
Samples and relative error
bit 0 - 8 Number of samples
bit 9 -31 Relative error on the
......... dE/dx * 100000

$mmm +
| NDEJ | Nano Dst reconstructed Eflow Jets
RN +
1 I Number of Columns (=4)
2 I Number of reconstructed jets
1 PX I PX (MeV) [*,%]



Momentum X component
PY (MeV) [*,*]

Momentum Y component
PZ (MeV) [*,%]

Momentum Z component
EnergyofJet(MeV) [0, %]
Energy of the Jet

2 PY I

3 Pz 1

4 EJ I

CHANGES vs version 111.4 :
integerized and was EJET
before

| NDGC | NDST Gamma-Conversion-Bank

...........................................................................

Number of Columns (=10)
Number of selected Gamma Conversion candidates
DAughter tracks [*,*]
bit 0-7 nano track number of positron candidate
bit 8-15 nano track number of electron candidate
bit 16-17 origin of conversion:
0 : from QPAIRF
1 : from QACONV
2 : from QACONV
3 : from QACONV
bit 18-31 free

DX DXy [*, %]
distance between the two tracks in the xy-plane
at the closest approach to the conversion point
(microns)
DZ DZ2 [*,%*]
z separation of the tracks at the closest approach
to the conversion point (microns)
XMa [*,*]
invariant mass of the tracks at the conversion
point assuming they are both electrons (keV)

Conversion coordinate (X) [*,*]

XM

cX

CY

CZ

PX

x-component of the
Conversion coordinate

y-component of the
Conversion coordinate

z-component of the
Photon momentum (X)

conversion point (microns)
(Y)  [x,%]
conversion point (microns)
(2)  [*,%]
conversion point (microns)

[*,%]

x-component of the momentum of the
gamma candidate (MeV)
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10 PZ

I

I

Photon momentum (Y)

[*, ]

y-component of the momentum of the
gamma candidate (MeV)

Photon momentum (Z)

[*,*]

z-component of the momentum of the
gamma candidate (MeV)

| NDHE |

Nano Dst event HEader

..............................................................

Number of Columns (=18)

Number of rows

..............................................................

5 PF

I

Run number
KEvt

Event number
ThRust

* 1 000 000

Thrust
TrkPointer

[, %]

Pointers to track groups

bit 0 - 7 First photon in hemisphere 2

bit 8 -15 First negative track in

.........
.........

PhysicsFlag
Flag
bit 0 .
bit 1

.........

.........

bit 15-24 Phi
bit 25 1=
bit 26 1=
bit 27 .. 1 =
bit 28 .. 0 =
bit 29 .. 0 =
bit 30 .. 0 =

hemisphere 1
First positive track in
hemisphere 2
First negative track in
hemisphere 2

[*,*]

. XLUMOK

. XMCEV

Event flavor

(0 for real data)

6 -14 Theta of thrust axis in
radians * 100 [0,3.14]

of thrustaxis in

radians * 100 [0,6.28]
= ITC and TPC voltage OK

TPC dE/dx voltage and
calibration OK

VDET data OK

Error in QMUIDO/MUREDO
Error in LEPTAG

Error in JETSPH
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............. (charged tracks only)

bit 31 .. 0 = Error in JETSPH

............. (ENFW objects)
SphprodCh [*,%]

* 1 000 000

Boosted jet sphericity product

using charged tracks only
SphprodEnflw [k, %]

* 1 000 000

Boosted jet sphericity product

using ENFW objects

DetStatus [x,%]
Detector status word KREVDS

trkPointer?2 [*,%]
Pointers

bit 0 - 7 First bad VO track

bit 8 ... 0 = Error in BEETAG

bit 9 ... 0 = Error in QIPBTAG
bit 10 .. 0 = Event not useful for
............. QIPBTAG analysis

bit 11 .. 0 = Error in GAMPEX

bit 12 - 15 = Return code from

QIPBTAG+8
bit 16 - 24 = Number of Jets from
QIPBTAG
bit 25 .. 0 = Mainvertex from JULIA
.. 1 = Mainvertex from QFNDIP
bit 26 .. 0 = QFNDIP OK.
.. 1 = QFNDIP failed
bit 27-31 Free
mainVtxXcoord [*,%]
(microns)
X coordinate of main vertex
mainVtxYcoord [*,%]
(microns)
Y coordinate of main vertex
mainVtxZcoord [*, %]
(microns)
Z coordinate of main vertex
Sphertagl [*,%]
* 1 000 000
Boosted sphericity hemil
Sphertag?2 [*,%]
* 1 000 000
Boosted sphericity hemi2
Transvmassil [*,%*]
* 1 000 000

BEETAG transverse mass hemi 1
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16 T2 I Transvmass2 [*,%]

* 1 000 000
BEETAG transverse mass hemi 2
17 M1 I Mominertial [*,%]
* 1 000 000
BEETAG moment of inertia hemi 1
18 M2 I Mominertia2 [*,%]
* 1 000 000

BEETAG moment of inertia hemi 2
CHANGES vs version 111.4 :
integerized

removed QIPBTAG probabilities
from word 10 - 12

put main vertex coordinates in
word 10 - 12

P2 : added bits 12-26

e +
| NBIP | Nano dst q(B)IPbtag summary bank
= +
1 I Number of Columns (=2)
2 I Number of tracks
i TF I Track Flag [*,*]

bit 0- 7 NANO track number
bit 8-21 QIPBTAG track flag
bit 22-25 jet assignment
bit 26-27 hemisphere assignment
bit 28-31 free

2 Ts I Track Significance [*,*]
track significance

* 1 000 000
O +
| NDJT | Nano Dst reconstructed JeTs
O +
1 I Number of Columns (=4)
2 I Number of reconstructed jets
1 PX I PX (MeV) [*,*]
Momentum X component
2 PY I PY (MeV) [*,%]

Momentum Y component
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3 Pz I  PZ (MeV) [*,*]
Momentum Z component

4 EJ I EnergyofJet(MeV) [0,*]
Energy of the Jet

CHANGES vs version 111.4 :

integerized
o ——— +
| NDLV | Nano Dst Monte-Carlo VO true
e + decay vertex
1 I Number of Columns (=4)
2 I Number of Monte-Carlo VO
1 PO I POinter [*,%]

Pointer to MC track
[in NDMS if > rows(NDNT)]
2 DX I DecayvertexX [*,*]
X coord of decay vertex
in microns
3 DY I DecayvertexY [*,%*]
Y coord of decay vertex
in microns
4 Dz I DecayvertexZ [*,*]
Z coord of decay vertex
in microns

CHANGES vs version 111.4 :

integerized
B +
| NDMS | Nano Dst Monte-Carlo Stable
to———— + tracks
1 I Number of Columns (=4)
I Number of stable Monte-Carlo
tracks
1 PX I PX (MeV) [*,%]
Momentum X component
2 PY I PY (MeV) [*,%]
Momentum Y component
3 PZ I PZ (MeV) [*, %]
Momentum Z component
4 HI I HIstory [*,*]
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Track history

bit 0 - 9 Particle code

bit 10-17 Pointer to matched track
bit 18-21 KSTABC+4

bit 22-30 Pointer to mother
......... [in NDMS if > rows(NDNT)]
bit 31 .. Type of matched track:
......... 0=Photon,1=Charged

CHANGES vs version 111.2 :

bit 18-21 Number of daughters

CHANGES vs version 111.1 :

bit 22-29 Pointer to mother

bit 30-31 Type of matched track:
......... 0=Neutral, 1=Photon,2=Charged

| NDNT | Nano Dst Monte-Carlo uNstable
+-————- + Tracks
1 I Number of Columns (=1)
2 I Number of unstable
Monte-Carlo tracks
1 HI I HIstory [*,%]
Track history
bit 0 - 9 Particle code
bit 10-17 Fragmentation variable z
......... INT((z+0.004)*250)-0.0001)
bit 18-21 KSTABC+4
bit 22-30 Pointer to mother
......... [in NDMS if > rows(NDNT)]

CHANGES vs version 111.2 :
bit 18-21 Number of daughters
CHANGES vs version 111.1 :
bit 22-29 Pointer to mother

| NDPH | Nano Dst PHotons

.............................................................

1 I Number of Columns (=4)
I Number of selected photons
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..............................................................

1 PX I PX (MeV) [*,%]
Momentum X component

2 PY I PY (MeV) [*,*]
Momentum Y component

3 Pz I PZ (MeV) [*,*]
Momentum Z component

4 PA I ParticleAttr [*, %]

Photon attributes

bit 0 - 7 PECO number

bit 8 - 9 Region code:O=crack,
......... 1=barrel,2=endcap,3=overlap
bit 10-11 Number of photons in this
......... PECO (3 = 3 or more)

bit 12 .. 1 = energy in stack 1 > O
bit 13 .. 1 = no minima in stack 2
bit 14-31 Free

Note: if >4 photons found in a PECO,
only first 4 kept.

CHANGES vs version 111.2 :
bit 12-31 Free

CHANGES vs version 111.4 :

integerized
fm—————— +
| NDST | Nano DST definition bank
fm————— +
1 I Number of Columns (=150)
2 I Number of rows
1 MT I MinTrk [1,255]
Minimum number of tracks
2 LP I LowerPcut (MeV) [0,20]
Lower momentum cut for NDTK
3 Up I UpperPcut (MeV) [0,200000]
Upper momentum cut for NDTK
4 CT I CosTheta [*,%]
Cos theta cut for NDTK
* 1000000
5 IH I ItcHits [0,255]
ITC hits cut for NDTK
6 TH I TpcHits [0,255]
TPC hits cut for NDTK
7 DO I DOcut (microns) [0,*]
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10

11

12

13

14

15

16

17

18

19

20-94

95

96-105

106

107-116

117

118-137

138

139-140

141-142

143

20

JL

JU

JC

JI

JT

JD

JZ

JY

VE

RO

LE

PH

NP

PB

NR

RB

NN

NB

PR

AV

DA

MC

DO (beam axis) cut
ZOcut (microns) [0,x*]
Z0 (beam axis) cut
JetLowerpcut (MeV) [0,20000]
Lower p cut before clustering
JetUpperpcut (MeV) [0,200000]
Upper p cut before clustering
JetCostheta [*,*]
Cos theta cut before cluster.
* 1000000

JetItchits [0,255]
ITC hits cut before cluster.
JetTpchits [0,255]

TPC hits cut before cluster.
JetDOcut (microns) [0,*]

DO cut before clustering
JetZOcut (microms) [0,%]

Z0 cut before clustering
JYcut (MeV) [0,10000]

Mass cut for jets
VisibleEner (MeV) [-10000,200000]

Visible energy for jets
RecoOption [,]

Reconstructed object option
LowerEcut (MeV) [0,20]

Lower energy cut for NDPH
PartHyp [*,%]

Parameters for Particle Hyp

* 1000

NumPotbanks [0,10]

Number of POT/DST/MINI banks
PotBanks [,]

List of POT/DST/MINI banks
NumRunbanks [0,10]

Number of run banks
RunBanks [,]

List of run banks
NumNdstbanks [0,20]

Number of NDST banks
NdstBanks [,]

List of NDST banks
PRoduction £,]

Version of NDSTPROD
AlphaVers C.1]

Alpha version and corr file
DAte C.1]

Date of the production
MCoptions [*,*]
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Options for MC data

144 MM I MinMomentum (MeV) [0,100.]
Min. mom. in fragmentation

145 AL I ALephlibvers [*,*]
Alephlib version * 1000

146 CE I ChargedEnergy (MeV) [0,10]
Minimum charged energy

147 ME I MinimumEnergy (MeV) [0,%]
Min. energy for ENFW objects

148 EM I EnfwjetMcut (MeV) [0, %]
ENFW jets mass cut

149 Cs I Chi2increaseSnglTrk [0,*]
Cut on chi square increase for
a single VO track coming from
main vertex

150 CB I Chi2increaseBothTrk [0,*]
Cut on chi square increase for
both VO tracks coming from
main vertex

CHANGES vs version 111.4 :
integerized
added words 149,150

et +
| NDTK | Nano Dst charged TrackKs
e +
1 I Number of Columns (=6)
2 I Number of selected charged
Tracks
1 PX I  PX (MeV) [*,*]
Momentum X component
2 PY I PY (MeV) [, %]
Momentum Y component
3 PZ I PZ (MeV) [*,%]
Momentum Z component
4 DZ I DzeroZzero [*, %]
DO and ZO

bit 0 -15 DO in [107-3 cml]
bit 16-31 ZO in [10°-3 cm]
5 TA I TrkAttr [*,*]
Track attributes
bit 0 - 7 JULIA track number (max 255)
bit 8 - 9 Number of VDET hits
......... (3 = 3 or more)
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bit 10 .. Charge (1=+1,0=-1)
bit 11-14 Jet number = row of NDEJ
......... (max 15)
bit 15-18 Lepton candidate number =
......... row of NDBM (max 15)
bit 19-26 Pointer to row in NDDE
......... (max 255)
bit 27 .. Electron hypothesis
bit 28 .. Muon hypothesis
bit 29 .. Pion hypothesis
bit 30 .. Kaon hypothesis
bit 31 .. Proton hypothesis
6 TQ I TrkQuality [*,*]
Track Quality
bit 0 -13 Chi square per degree of
......... freedom * 100
bit 14-22 Relative error on
......... momentum * 10000
bit 23-26 Number of ITC hits
bit 27-31 Number of TPC hits

CHANGES vs version 111.4 :

integerized
$o——— +
| NYVO | NDST VO-Bank
R +
1 I Number of words/VO (=13)
2 I Number of VO
1 HY I HYpothesis [*,%]
bit 0-3 Hypothesis (mass compat.)
bit 4 kinematic ambiguity
bit 5 free
bit 6 common track with another
VO candidate
bit 7 free
bit 8-15 IcodevO + 32 (s.YVOV bank)
bit 16-23 positive NANO track number
bit 24-31 negative NANO track number
2 VX I VXcoor [k, %]
Fitted VO x coordinate (micron)
3 VY I VYcoor [*,*]
Fitted VO y coordinate (micron)
4 VZ 1 VZcoor [*,*]

Fitted VO z coordinate (micron)
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5 VM I VMom [*,%*]
Fitted VO momentum (MeV)

6 TH I THeta [*,%*]
Theta of VO (mrad/10)

7 PH I PHi [*,*]
Phi of VO (mrad/10)

8-10 PP I PPos [*,*]

Momentum of positive
particle from VO (see VM,TH,PH)

11 ¢c2 I C2chisquare [0,%]

Chisquare of VO vertex fit*100
12 DL I DL [0,*]

Error on decay length (micron)
13 TT I TT [0,%]

bit 0-15 (chi for track1)*10 (QVOCHK)
bit 16-31 (chi for track2)*10 (QVOCHK)

CHANGES vs version 111.4 :
bank completly redefined

t—————- +
| NVEC | SANDY work bank (not in
- + NanoDST files)
1 I Number of Columns (=29)
I Number of selected Tracks
1 Qp F QP [0.0,%]
Momentum
2 X F QX [*, %]
Momentum X component
3 QY F QY [*, %]
Momentum Y component
4 QZ F Qz [*,*]
Momentum Z component
5 QE F QEnergy [0.0,%]
Energy
6 QM F QMass [0.0,%]
Mass
7 CH F CHarge [*,%]
Charge
8 DB F DB [*,%]
DO
9 ZB F ZB [*,%]
Z0
10 TN I TrackNumber [*,*]

Track number
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11 PJ I PointerJet [0,15]
Pointer to jet
12 PL I PointerLepton [0,15]
Pointer to lepton cand. NDEC/UC

13 PO I POinter [0,15]
Pointer to other bank

14 PI I PointerIon [0,255]
Pointer to dE/dx (NDDE bank)

156 HY I HYpothesis [*,%]
Particle HYpothesis
bit O ... Hypothesis 1 = e
bit 1 ... Hypothesis 2 = mu
bit 2 ... Hypothesis 3 = pi
bit 3 . Hypothesis 4 = K
bit 4 ... Hypothesis 5 = p
bit 5 -31 Free

16 C2 F Chi2perdof [0.0,%]
Chi square per degree of
freedom

17 RS F RelSigma [0.0,%]
Relative error on momentum

18 IH I ItcHits [0,15]
ITC Hits

199 TH I TpcHits [0,31]
TPC Hits

20 VH I  VdetHits [0,3]
VDET Hits

21 MC I McCode [0,1023]
Monte Carlo particle code

22 MA I MAtchedtrack [0,255]
Matched reconstructed track

23 MD I McDaughters [0,15]
Number of daughters

24 MM I McMother [0,511]
Pointer to mother

256 MT I McType [0,2]

Type of MC particle
O=Neutral,i=Photon,2=Charged

26 ZF F ZFragment [0.0,1.00]
Fragmentation variable z

27 MK I McKstabc [-4,11]
Stability code KSTABC

28 MF I McFirstdaug [0,*]
Pointer to first daughter

29 MN I McNextsister [0, *]

Pointer to next sister

..............................................................
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Appendix B

INSTALLING SANDY

B.1 VAX

1. Define, preferably in the system table, the logical NANO to point to ALEPH$GENERAL : [NANO].
9. Add the command @NANO:SANDYDEF in the system or the ALEPH login procedure.

3. If the automatic update of ALEPH software (ALEPH_UPDATE, author: D. Candlin) is in-
stalled on your site, you should update the set-up (i.e. add a NANO.FETCH and/or a
NANGPROD. FETCH) .

B.2 IBM

The source reference for IBM systems is the NANO minidisk on CERNVM (GIME NANO).
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Appendix C

What to change when going from SANDY to ALPHA

In this section it is explained how to change a fortran file written to be used inside SANDY to one
to be used inside ALPHA.

SANDY: ALPHA:
Commondecks:

NCDE QCDE

NMACRO QMACRO

Subroutines (same arguments):

NDEDX QDEDX
NDEDXM QDEDXM
NMTAIL QMTAIL
NWRITE QWRITE
NPRINT QWEVNT
NINFO QNINFO

Subroutines (different arguments and different names) :
(For details see the manuals)

QCOPY (IFROM,ITO) QVCOPY(ITO,IFROM)

NJMMCL(njets,kfi,kli, QJMMCL(njets, ’name’,iclass,
kfo,klo,rmcut,evis) ycut,evis)

PRIDEC(ITK) QWTREE(ITK,’Option’)

C.1 Variables, Functions and Subroutines not usable inside AL-
PHA

The variables, functions and subroutines listed below are generally not available inside ALPHA.
Some other -namely all those which are related to the NanoDst production- are only available if
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the input is from a NanoDst. They are not listed here.

e General Variables

— variables
The following variables are output variables from the Alephlib routine GETLEP. For that
CALL GETLEP(KRUN, IFOUN, IFILL, NHADBX, QELEP, BEAMXYZ, DBEAMXYZ)

will get the same information as in SANDY.

SANDY: ALPHA:
IFILL IFILL
QELEP QELEP
BEAMX BEAMXYZ (1)
BEAMY BEAMXYZ(2)
BEAMZ BEAMXYZ(3)
DBEAMX DBEAMXYZ (1)
DBEAMY DBEAMXYZ(2)
DBEAMZ DBEAMXYZ(3)
NHADBX NHADBX
SAVERS (CQVERS)

— functions

QMV (1) gives back the X,Y and Z coordinate of the main vertex. To get the same inside
ALPHA the user has to perform a loop over all vertices and to ask for KVTYPE(IVX)
eq 1 (primary vertex, see section ALPHA ”VERTICES” in the ALPHA manual). For

this vertex the corresponding variables are:

SANDY: ALPHA:
QMV (1) QVX(IVX)
QMV(2) QVY(IVX)
QMV(3) QVZ(IVX)
— subroutines
There are no equivalences for the following SANDY routines inside ALPHA:
MAKSEV

e Charged Tracks

in general tracks are not ordered inside ALPHA so everything connected to that is not avail-
able. For bad tracks see the appendix to the ALPHA manual 'Using the NanoDst with
ALPHA’.

— variables
There are no equivalences for the following SANDY variables inside ALPHA:

KFPH1, KLPH1, KFNH1, KLNH1, KFPH2, KLPH2, KFNH2, KLNH2, KFBCT,
KLBCT, KFACT, KLACT, KNPH1, KNNH1, KNPH2, KNNH2, KNBCT, KNACT

— functions
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SANDY: ALPHA:

PTOT(I) QP(I)
ENER(I) QE(I)
Xc20v(I) .FALSE.
QC2DOF(I) QFRFC2(I) /FLOAT (KFRFDF(I))
XSIG(I)
XSIGOV(I) .FALSE.
QSIGP(I) QSIGP(I)
QRSIGP(I) QSIGP(I)/QP(I)
KJET(I)
XvVoD(I)
KVoD(I)
XE(P,A,B) SQRT(P*P+A*A) /B
PFRX(X,A,B) SQRT(X*X*B*B-A*A)
° Jets

— variables
SANDY: ALPHA:
KFJET KFJET
KLJET KLJET
KNJET KNJET

— functions

There are no equivalences for the following SANDY functions inside ALPHA:
KIMUL(I)

— subroutines
SANDY: ALPHA:
NEWJET QJMMCL

e Photons
Some of the variables listed below have a corresponding one inside ALPHA.

— variables
SANDY: ALPHA:
KFGAM KFGAT
KLGAM KLGAT
KNGAM KNGAT
KFGH1
KLGH1
KFGH2
KLGH2
KNGH1
KNGH2
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— functions

SANDY:

KGREG(I)
KGMUL (1)
KGPECO(I)
XGE1(I)
XGE2(I)

o VO

ALPHA:

KPGPPE(I)

QPGPR1(I) gt 0.0

QPGPR2(I) gt QPGPR1(I) or

QPGPR2(I) gt (QPGPF4(I) - QPGPR1(I))

Most of the variables listed below have a corresponding ones inside ALPHA except the particle
hypothesis flags. They have been set if a VO candidate is less then 30 MeV away from the
correct mass of a given hypothesis. So the user can easily set them by him(her)self.

— variables

SANDY:

KFVOT
KLVOT
KNVOT

— functions

SANDY:

KVOHYP (IVO)
KVONTN (IVO)
KVOPTN (IVO)
KVOPOT (IVO)
KVONEG(IV0)
KVOIC(IVO)
QVOCH(IVO)
QVOTH(IVO)
QVOPH(IVO)
QVOVTX(IVO)
QVOVTY(IVO)
QVOVTZ(IVO)
QVODL(IVO0)
QVOEDL (IV0)
XVOKIA(IVO)
XVOSVA(IVO)
XVOTRA(IVO)
XKO(IVO0)

XLA(IVO)

XAL(IVO)

XGA(IVO)

QVOPP (IVO)
QVOPTH(IVO)

ALPHA:

KFVOT
KLVOT
KNVOT

ALPHA:

KYVOK1(IVO)
KYVOK2(IVO)
KFCHT-1+KYVOK1(IVO)
KFCHT-1+KYVOK2(IVO)
KYVOIC(IVO)
QYVOC2(IVO0)
ACOS(QCT(IVO))
QPH(IVO)

QVX (KENDV (IVO))

QVY (KENDV(IVO))

QVZ (KENDV(IVO))

QP (KFCHT-1+KYVOK1(IV0))
ACOS (QCT (KFCHT-1+KYVOK1(IV0)))
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QVOPPH(IVO)
QVOPPX (IVO)
QVOPPY(IVO)
QVOPPZ(IVO)
QVONP (IVO)
QVONTH(IVO)
QVONPH(IVO)
QVONPX(IVO)
QVONPY (IVO)
QVONPZ(IVO)

e Converted Photons

QPH (KFCHT-1+KYVOK1(IV0))

QX (KFCHT-1+KYVOK1(IV0))

QY (KFCHT-1+KYVOK1(IV0))

QZ (KFCHT-1+KYVOK1(IV0))

QP (KFCHT-1+KYVOK2(IVO))

ACOS (QCT (KFCHT-1+KYVOK2(IVO)))
QPH(KFCHT-1+KYVOK2(IV0))

QX (KFCHT-1+KYVOK2(IV0))

QY (KFCHT-1+KYVOK2(IVO))

QZ (KFCHT-1+KYVOK2(IVO0))

No pointers or functions are inside ALPHA for converted photons. The user has to call
QPAIRF with a pair of tracks (11,12 where I1 here is assumed to be the positive) and after-
wards to the Alephlib routine PATRCP(XA, YA, ZAV) (for the vertex coordinates).

— variables

There are no equivalences for the following SANDY variables inside ALPHA:
KFGCO, KLGCO, KNGCO

— functions

SANDY:

KGCPTN(I)
KGCNTN(I)
KGCPOT(I)
KGCNET(I)
QGCDXY(I)
QGCDZ(I)

QGCVX(I)
QGCVY(I)
QGCVZ(I)

e Monte Carlo

— variables

ALPHA:

KTNO(I1)
KTNO(I2)
I1

12

DXY

DZ2

XA
YA
ZAV

There are no equivalences for the following SANDY variables inside ALPHA:
KFMUT, KLMUT, KNMUT, KFMST, KLMST, KNMST, KQ, KQBAR, KFPAR,

KLPAR

— functions

There are no equivalences for the following SANDY functions inside ALPHA:
XMCNE(I), XMCCH(I), XMCGA(I), KPTCH(I), QVOVX(I), QVOVY(I), QVOVZ(I),

QZFR(I)

— subroutines

There are no equivalences for the following SANDY subroutines inside ALPHA:

DECSEA, DAUSEA
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