ALEPH 93-1
SOFTWR 93-1

E. Blucher

16 December 1992

ALPHA User’s Guide

ALPHA

ALEPH PHYSICS ANALYSIS PACKAGE
Version 114/115

Authors:

H.Albrecht and E.Blucher

With contributions from:

A.Belk, B.Bloch—Devaux, J.Boucrot, C.Bowdery, J.Carr, D.Cinabro, R. Forty, C.Gay,
R.Hagelberg, S.Haywood, J.Hilgart, R. Jacobsen, P.Janot, R.Johnson, E.Lancon,
M.N.Minard, H.G.Moser, J.Nash, M.Pepe— Altarelli, P.Perez, F.Ranjard, M.Scarr,

D.Schlatter, H.Seywerd, M.Talby, G.Taylor, S.Wasserbaech, J.Wear, and T.Wildish

Contents

1 Introduction
2 Getting Started

3 User routines

3.1 General Comments e e e e e e e e
3.1.1 Name conventions i e e e e
3.1.2 Including ALPHA features in Fortrancode
3.1.3 “HAC” parameters o v i i i e e e e e e e e e e e
3.14 Implicit None o e

3.2 User Initialization e e

3.3 Event analysis routine e e

3.4 User termination routineo e e e

3.5 Other User Subroutines e
351 NewRun e
3.5.2 Unkown Record Type it it iiie .
3.5.3 Initialize the histogram package
3.5.4 Terminate the histogram package
3.5.5 Inmitialize BOS e e

4 Data Cards
4.1 Input/Output o e e e e e e e

4.1.1 ALEPHffiletypes. o e e

4.1.2 FILL: Input files e 9

4.1.3 FILO: Output files 11
4.1.4 Event Directories L e 12
4.1.5 COPY: Copying events o v v v v ittt 13
4.2 ALPHA Processcardso i ittt 14
4.3 UNPK:POT /DST unpacking 14
4.4 READ: Input from different card files 15
4.5 DEBU: Debugoutput 15
4.6 TIME: Job time control 15
4.7 Histograms e e e e e e e e e e 16
4.7.1 HIST: Write histogram file 16
4.7.2 HTIT: General histogram title 16
4.7.3 NOPH: Histogram Printing 16
4.8 FIEL: Magneticfield 16
4.9 FRFO0: Use track fit without vertex detector 17
4.10 Weight factors for calorimeters 17
4.11 EFLW and EFLJ: Energy Flow 17
4.12 Particle table e 17
4.12.1 PMOD: Modify particle attributes 18
4.12.2 PNEW: New particles i it 18
4.12.3 PTRA: Modify particle names in the MC particle table 18
4.13 SYNT: Syntax Check e 19
Creating Histograms and Ntuples 20
5.1 Booking and Filling Histograms/Ntuples 20
5.1.1 Beok a 1—dimensioral histogram e e e e e e e 20
5.1.2 Beok a 2—dimensioral histogram L 0L L. 21

ii

5.1.3 Bookan Ntuple. 21

5.1.4 Book an Ntuple with run, event number 22
5.1.5 Fill Ntuple plus run, event number 22
5.1.6 Fill Ntuple with many variables 22
5.1.7 Fill Ntuple with many variables plus run, event number 22
5.1.8 Sample ALPHA program to book and fill histogram, Ntuple 23
5.2 Histogram output — the ALPHA cardsfile 23
5.2.1 HIST: Write histogram file 23
5.2.2 NOPH: Histogram Printing 24
5.2.3 HTIT: General bistogram title 24
Mnemonic symbols 25
6.1 Mathematical and physical constants 25
6.2 Runm informationot P 25
6.3 Event information e 26
6.3.1 Event header: from bank EVEH | e 26
6.3.2 Event directory information 26
6.3.3 Event genefator status: from bank KEVH ’. .. .: 27
6.3.4 Detector HV status: from banks REV H,LOLE 27
6.3.5 Trigger Information: from XTEB or XTRB, XTCN . .’ 27
6.3.6 General event information: from bank DHEA R 28
6.3.7 Beam position from BOM system: from bank BOMB L 28
6.4 ECAL Wire Ehergies 29
6.5 ALPHA Internal Constants, Variables 29
6.5.1 Eventcounts e e 29
6.5.2 Programstatus e e e e e e e e e 29
6.5.3 Eventstatus e e e e e e 29

iii

6.5.5 Timing 30
6.5.6 Character variables L 30
7 ALPHA “Tracks” and “Vertices” 31
7.1 Access by Fortran DO loops e 31
7.1.1 ALPHA “TRACKS” e 32
7.1.2 ALPHA VERTICES: et e i i e e 33
7.2 Loops over ECAL and HCALobjects. 33
7.3 Relationships between objects in different subdetectors 34
7.4 Direct access toparticles L e 35
7.4.1 Particlenameandclass 35
7.4.2 Example: Loop over all MC generated positrons 35
7.4.3 Particle name versus integer particle code — time consumption 36
7.4.4 Loops over a particle and its antiparticle 36
7.4.5 Analysis of particle systems: Examples. 37
7.5 Mother — daughter relationships 38
7.5.1 Mother todaughters 38
7.5.2 Daughter tomother(s) 39
7.6 Access tothe “same” object L L 39
7.6.1 Loops over copies of the “same” object using KSAME 39
7.6.2 Find original copy of a charged track, 40
7.7 Match reconstructed /tracks and MC truth 40
7.8 Track — vertex relationships e 41
8 ALPHA Track and Vertex Attributes 42
8.1 “Track” attributes. L 42

6.5.4 Input /outputumits e 29

iv

8.1.1 Basicattributes. oo 42
812 VOMass. e e e 42
8.1.3 Track error covariance matrix o Lo 43
8.1.4 Distance to the beam position:, 43
8.1.5 Stability code e 44
8.1.6 Test a particle’s name L L e e 44
8.1.7 Test if particles are based on the same object 45
8.1.8 Flags, pointers, etc. e e e e e e 45
8.2 “Track” related detectordata 45
8.2.1 Global geometricalxtrack fit: Bank FRFT 46
| 8.2.2 Number of coordinates used for the global fit: Bank FRTL 46
8.2.3 Charged—particle identification: Bank FRID o 46
8.2.4 dE/dx data: Bank TEXS L 47
8.2.5 Electron identiﬁca,tion:’ Bank EIDT, 47
8.2.6 Muon — HCAL association: Bank HMAD 48
8.2.7 Muon chamber data: ‘Bank MCAD 48
8.2.8 QMUIDO Muon Identification: Bank MUID 48
8.2.9 ECAL objects: Bank PECO 49
8.2.10 ECAL objects: Bank PEPT o 49
8.2.11 HCAL objects: Bank PHCO 49
8.2.12 Reconstructed VOs: Bank YVOV oo . 50
8.2.13 Photons from GAMPEC: Bank EGPC, 50
8.2.14 Energy Flow: Bank EFOL 51
8.2.15 Neutral objects from PCPA: Bank PCQA 51
8.3 Vertex attributes o oo ... 51

9 Kinematics and Track Operations 52

9.1 Scalar quantities L. L e e e e e 52
9.2 Vector quantities L L e e e 53
9.2.1 General Remarks 53
9.2.2 Add 4—-momenta of particles L o L oo 54
9.2.3 Recalculate 4—Vectorof VO oo oo oo 55
9.24 Copyatrack e e 55
9.25 CrossproduCt v i i i e e e e e e e e e 56
9.2.6 Droptracks Lo e e e 56
9.2.7 Cecpy track attributes into a Fortran array 56
9.2.8 Createanewtrack Lo e 57
929 Saveatrack. e e 57
9.2.10 Save a track inside particle/antiparticle loop, 58
9.2.11 Save atrack and setitsmass 58
9.2.12 Save a track with class ICLASS oo, 58
9.2.13 Modify track parameters. oo e 59
9.2.14 Set User Track Flags i .. 60
9.2.15 Subtract track momenta L Lo L e 60
9.2.16 Zerc track attributes oL oo o o oo 61
9.3 Kinematic fitting L e 61
9.4 Vertex fitting with YTOP 0. oo 61
9.5 Lorentz transformations L L L e 63
9.5.1 Boost a track and its daughters L L0000, 63
95.2 Boostatracko o e 63
9.5.3 Boost all tracksof agivenclass Lo oL 64

vi

10 Event Topology Routines 65

10.1 Options for “QJXXXX” routines o o v i v it i i i e e e e 65
10.1.1 Set option for reconstructed objects L. 65
10.1.2 Set option for MC particles L o oL 66

10.2 Lock tracks / subsamples of trackso ... 66
10.2.1 Lock asingle “track” L L e e 67
10.2.2 Unlock a single “track” e 67
10.2.3 Lock a track “family” e e 67
10.2.4 Unlock tracks (locked with QLOCK) 68
10.2.5 Reverse the lock state (corresponding to QLOCK) 68
10.2.6 Second Lock e 68

10.3 Add momenta of all particles of agivenclass 68
10.3.1 Input argument L e e e e e e e e e e 69
10.3.2 Results o e e e 69

10.4 Momentum tensor eigenvalues and eigenvectors 70

10.5 Linearized momentum tensor eigenvalues and eigenvectors 70

10.6 Sphericity v o i i e 70

10.7 Thrust L e e e e e e 71

10.8 Fox—Wolfram Moments e 71

10.9 Divide event into two hemispheres oo o L. 72

10.10Missing energy, mass, mbmentum 73

10.11Jet Finding o o L e e e e 73
10.11.1Scaled Invariant Mass Squared Algorithm 73
10.11.2Scaled Minimum Distance Algorithm, 75
10.11.3JETSET algorithm LUCLUS from LUND 75
10.11.4PTCLUS: Jet-finding algorithm 76

vii

11 Energy Flow

11.1 ENFLW Energy Flow

11.2 Mask Energy Flow e

11.3 PCPA-based Energy Flow

12 Other ALPHA Physics Routines

12.1 dE/dx Analysiso e e

12.2

12.1.1 Calculate dE/dx for Track ITK
12.1.2 Modified QDEDX for Monte Carlo
12.1.3 Check TPC High Voltage fordE/dx
12.1.4 Check Existence of dE/dx Calibration for Run

Photon conversions e e e e e e

12.3 Muon Identification: QMUIDO e

12.4 Utility Routines for VDET Analysis

12.4.1 Number of VDET hits per layer for track ITK

12.4.2 VDET HV status o o e e e e s e e s e e e s

13 ALPHA Utility Routines: Printing, Writing Events, Timing, etc.

13.1

13.2

13.3

13.4

13.5

Print routines

Program termination L .
Write the current event on the cutput file

Set classification word written to event directory

..

13.4.2 Measure time consumption of part of program

..

77

77

78

79

81

81

81

82

82

83

83

84

86

86

86

87

88

13.5.2 Print a message plus run, event number
13.5.3 Print full event summary (many pages)
13.5.4 Print event header (oneline)
13.5.5 Print full event header (many lines)
13.5.6 Print information for “track”
13.5.7 Print information for vertex
13.5.8 Print summary for categories of tracks or vertices

13.5.9 Print decay tree of track ITK..

14 Modifying ALPHA banks

14.1 User track / vertex sections
14.1.1 Reserve user space fortracks
14.1.2 Reserve user space for vertices

14.2 Modifying track / vertex attributes

15 Particle Table

15.1 Description
15.2 Particle name, particlecode
15.3 How to spell particlenames
15.4 Data cards for particle table

15.4.1 PMOD: Modify particle attributes

15.4.2 PNEW: New particles

15.4.3 PTRA: Modify particle names in the MC particle table

15.5 Access to particle properties L. ...

A Program Structure

B Bank description

ix

............

............

............

............

93

93

93

94

94

95

95

95

96

96

96

97

97

98

99

100

C Where to find ALPHA at CERN
C.1 ALPHA on CERNVM e e e e
C.2 ALPHA on VXCERN, ALWS i
C.3 ALPHA onthe CRAY e

C.4 ALPHA on DECstations, SHIFT

D Using the Mini-DST with ALPHA
D.1 Doing analysis with the Mini
D.2 Differences between POT/DST and Mini-DST

D.3 Writing a Mini-DST o e

E Standard particle table

Index

105

105

106

107

107

109

109

110

110

112

114

Chapter 1

Introduction

The ALEPH Physics Analysis package ALPHA is intended to simplify Fortran programs for physics
analysis. Although all ALEPH data types can be processed with ALPHA, the program is designed
primarily for analysis of JULIA output (POT, DST, or MINI). All event input/output is done by
ALPHA — the user has to provide only the name(s) of the input/output data set(s). ALPHA also
provides easy access to physical variables (e.g., momentum, energy), so the user can write physics
analysis programs without detailed knowledge of the ALEPH data structure (tabular BOS banks).
An extensive set of utility routines (e.g., kinematics, event shape, etc.) is available as part of the
ALPHA package.

The program structure (Appendix A) is extremely simple. Three Fortran routines are normally
supplied by the user: job initialization, event processing, and job termination (see Ch. 3). Recon-
structed objects (tracks, vertices, cal. objects) can be accessed with simple DO loops. For Monte
Carlo generated events, the MC “truth” information is accessible in the same way as reconstructed
tracks and vertices (see Ch. 7).

This document describes all features of the ALPHA program. For first—time users, the impor-
tant parts to read are Ch. 2 (getting started), Ch. 3 (user routines), Ch. 4 (event input), Ch. 7
(loops over tracks), and Ch. 8 (track attributes).

Chapter 2

Getting Started

Two files must be provided to run an ALPHA job:

1. A file which contains the Fortran or Historian code for the user subroutines (see Ch. 3).

2. A card file which contains names of input / output data files, as well as other parameters (see

Ch. 4).

The libraries needed to link the program are described in Appendix C. To run ALPHA, the
following files must be assigned:!

unit

6 Print output file

7 Card file

76 (optional)In an interactive session, this unit may be assigned to the terminal. Short

messages will be sent to the terminal and long listings sent to the output file.

Command files are available for the VAX (ALPHARUN), IBM (ALPHARUN), CRAY (CRAL-
PHA on CERNVM), and UNIX (alpharun and SFALPHA on CERNVM) which make these file
assignments, and also perform the following tasks:

1. compile and link the Fortran (Historian) code;

2. run the program interactively or submit a BATCH job.

On the VAX, ALPHARUN also facilitates the use of a set of VAX debugger command files which
simplify ALPHA program debugging (see Appendix C).

'Other units used by ALPHA are listed in Section 6.5.4; units 90, 91, 92, and 93 are always free for private output
files.

Chapter 3

User routines

In this chapter, ALPHA routines which are intended to be modified by the user are described.
Normally, only three routines are provided by the user: initialization (QUINIT), event analysis
(QUEVNT), and program termination (QUTERM). Models for these three subroutines are avail-
able (see Appendix C). Other subroutines which may be modified by the user are also described
here. User routines can be provided either as a plain Fortran file or as a Historian input file; the
ALPHARUN command file described in Chapter 2 supports both options. For all user routines,
default versions exist on the ALPHA library which are loaded automatically if no user code is given.

3.1 General Comments

3.1.1 Name conventions
All Fortran symbols defined in the ALPHA package start with Q, K, C, or X:

subroutines; real functions, variables, or arrays

K integer functions, variables, or arrays
X logical functions, variables, or arrays
C

character functions, variables, or arrays (always in combination with Q as 2nd character).

To avoid conflicts with the hundreds of variables defined in the ALPHA package, it would be safest
if your own Fortran names for subroutines, variables, etc. did NOT start with Q, K, X, or CQ.

3.1.2 Including ALPHA features in Fortran code

In addition to subroutines, the ALPHA package consists of a set of statements which have to be
included at the beginning of user subroutines or functions. There are two sets of these statements:

QCDE COMMONSs, DIMENSIONs, EQUIVALENCEs, PARAMETERs, DATAs, type
declarations (all ALPHA symbols starting with C or X are individually declared
as CHARACTER or LOGICAL, respectively).

QMACRO statement function definitions (from the user’s point of view, statement functions
look exactly like “normal” Fortran functions, but their execution is faster).

The BOS array RW(...) and IW(...), as well as the BMACRO statement functions (RTABL, etc.),
are included in QCDE and QMACRO.

These sets of statements can be included in user subroutines by machine—dependent Fortran
statements or by Historian statements, as shown below.

VAX / VXCERN, ALWS

INCLUDE ’PHYINC:QCDE.INC’
INCLUDE ’PHYINC:QMACRO.INC’

IBM / CERNVM

INCLUDE ’QCDE INC %’
INCLUDE ’QMACRO INC =%’

CRAY

INCLUDE ’QCDE.INC’
INCLUDE ’QMACRO.INC’

UNIX / DECstation, SHIFT

INCLUDE °’/aleph/phy/qcde.inc’
INCLUDE °’/aleph/phy/qmacro.inc’

using HISTORIAN

*CA QCDE
*CA QMACRO

Important! The following sequence of statements must be observed:

1. SUBROUTINE or FUNCTION statement

2. QCDE, your own COMMONSs, DIMENSIONS;, etc.

3. DATA statements

4. QMACRQO, your own statement function definitions (if any)

5. your executable Fortran statements

3.1.3 “HAC” parameters

The HAC (Handy ACcess) parameters denote the offset of attributes within each BOS bank. For
banks accessible by mnemonic symbols in ALPHA (see Ch. 6), this offset is taken into account
automatically, and the corresponding HAC parameters are available in QCDE (note that names of
HAC parameters and mnemonic symbols are closely related).

A separate include file / comdeck QHAC is provided for the HAC parameters of all banks

appearing on POT/DST/MINI event files which are NOT available in QCDE. QHAC can be
included in the same way as QCDE and may be used in conjunction with it.

3.1.4 Implicit None

The include file (common deck) QDECL contains the declaration (integer, real) of all ALPHA
variables and statement functions in QCDE and QMACRO. People wishing to use IMPLICIT
NONE should include QDECL in the same way as QCDE.

3.2 User Initialization

|SUBROUTINE QUINIT |

This routine should be used to book histograms and to perform other user initialization. All
standard initialization work is performed automatically in the ALPHA subroutine QMINIT before
QUINIT is called. The standard ALPHA initialization includes

e Initialization of BOS (500,000 words working space)
e Initialization of HBOOK (100,000 words working space)

Reading data cards
Opening the ALEPH data base
Initialization of ALPHA.

These space allocations are large enough for most applications; they can be increased by modifying
the routines described in sections 3.5.4 and 3.5.5.

3.3 Event analysis routine

SUBROUTINE QUEVNT(QT,KT,QV,KV)

QUFEVNT is called once for each event. The current event is read in, unpacked, and ready to
be analyzed when QUEVNT is called.

Subroutine arguments QT,KT,QV,KV are used for special applications; see 14.2. The subrou-
tine arguments must be given even if they are not used.

IMPORTANT: Do NOT perform a BOS garbage collection in QUEVNT or in any routine called
by QUEVNT.

3.4 User termination routine

|SUBROUTINE QUTERM |

This subroutine can be used for anything which needs to be done at the end of a job (e.g., his-
togram manipulations). Histogram output is done automatically in the ALPHA routine QMTERM.

QUTERM must never be called directly. For program termination, use the statement (see 13.1):
CALL QMTERM (’any message’)

QMTERM, in turn, calls QUTERM. QMTERM is called automatically after all input files have
been processed.

3.5 Other User Subroutines

The routines in this section normally do not have to be modified. As mentioned above, default
versions of all user routines are loaded if no new versions are provided.

3.5.1 New Run

SUBROUTINE QUNEWR (IROLD,IRNEW)

This routine is called from QMNEWR once a new run is encountered on the event input file,
i.e.,

e cither a run record is read on the input file
e or the run number in an event record has changed

e or both conditions are fulfilled.
QUNEWR may be used to initialize run—dependent data or to print run statistics.

Input arguments

IROLD old run number: = 0 if called for the first time.
IRNEW new run number: = 0 if called from QMTERM during the program termination.
Default no action: RETURN.

3.5.2 Unkown Record Type

|SUBROUTINE QUSREC |

This routine is called whenever a record is read that is neither a run nor event record (e.g., slow
control record); the routine can be used to analyze these special records.

Default: no action: RETURN.

3.5.3 Initialize the histogram package

SUBROUTINE QUIHIS}

NOT intended for histogram booking (use QUINIT).

e Called automatically from QMINIT.
Default: Initialize HBOOK4: CALL HLIMIT (100000).

Note: Users of very large NTUPLES will sometimes have to make modifications to the call to
HROPEN included in QMIHIS. See CERN Computer Newsletter CNL201 p. 21 for details.

3.5.4 Terminate the histogram package

[SUBROUTINE QUTHISJ

e Called automatically from QMTERM.

Default: Terminate HBOOK: CALL HISTDO If the HIST data card is given, write
output on histogram file.

3.5.5 Initialize BOS

SUBROUTINE QUIBOS'

The length of the BOS working space COMMON /BCS/ is explicitly declared in this subroutine.

e Called automatically from QMINIT.

Default: initialize BOS with 500,000 words working space.

Chapter 4

Data Cards

In this chapter, the ALPHA data cards are described. The cards file is used to control input and
output for ALPHA, and is used to control many ALPHA features. For completeness, all ALPHA
cards are listed in this chapter; some cards are described in more detail in other chapters.

The following rules should be followed for all entries in the card file.

1. Start the text of your cards in column 1.

2. Use only upper case characters unless the lower case characters are significant.
3. Except for FILI cards (4.1.2), data cards can be given in any order.

4. The ENDQ card must be the last entry in the card file.

Data cards may also be used to enter your own data into the program. If your cards are given
in standard BOS format, their contents will be available as standard BOS banks. For example, if
the card CUTS 4 3.7 appears in the ALPHA card file, the following Fortran may be used to get
access to the values:

ICUTS=IW(NAMIND(’CUTS’))
IF(ICUTS.NE.O) THEN
ICUT1=IW(ICUTS+1)
RCUT1=RW(ICUTS+2)
ENDIF

4.1 Input/Output

4.1.1 ALEPH file types
There are several ALEPH file types:

NATIVE machine—dependent input/output
EPIO machine—independent input/output
EDIR event directories

DAF direct access files (e.g., data base)

CARDS card image files (e.g., ALPHA data cards)
HIS histogram files (machine—dependent HBOOK format)
EXCH histogram files (machine—independent HBOOK format)

The ALEPH file type cannot be recognized automatically. The file type should be given as 2nd
part of the data set name (extension on VAX; file type on IBM).

Examples:
On VAX:
MYFILE.EPIO
On IBM:
MYFILE EPIO *

ALPHA uses the data set name to determine the format. For file names which do not follow
this convention, see the following section.

4.1.2 FILI: Input files

Format FILI ‘data—set—name | parameters’

Any number of FILI cards may be given — the data sets are read in the order the cards are
given. Different file formats (e.g., NATIVE, EPIO) and data from POT, DST, and MINI can be
processed in the same job. The program SCANBOOK can be used to create FILI cards with the
proper format.

How to specify data set names on cards: Examples

Disk files:
VAX / ALWS IBM / CERNVM
1 FILI ’PHY:HADRON.NATIVE?’ FILI °HADRON.NATIVE’
2 FILI ’SCR:HADRON.EPIO | EPIO’ FILI *HADRON.EPIO | EPIOD’
3 FILI ’SCR:HADRON.DATA | EPIO’ FILI *HADRON.DATA | EPIO’
4 FILI °AL$EDIR:M0012700.EDIR’ FILI °M0012700.EDIR | GIME EDIR’
5 FILI °I12345 | EDIR’ FILI °I12345 | EDIR | GIME EDIR’
CRAY

6 FILI ’D0006898 EDIR | GIME PUBXU 209’

Explanation:

1. Complete specification. “ .NATIVE” defines the file format.

2. “| EPIO” can be omitted here because the format is already specified in the data set name.
The vertical bar separates the file name from the parameters.

3. “DATA” is non—standard and not recommended. In such a case, the format must be given
as a parameter: “ | EP1O”.

4. On IBM: Execute a GIME of the event directory disk (GIME EDIR is equivalent to GIME

PUBXU 209).

5. This short format may be used only for standard data files: ABxxxx or Ixxxxx.

6. File will be “acquired” from the IBM disk and stored as /pool/aleph/BBP22409.EPIO.

Staged tapes and cartridges:

The same format can be used for IBM, CRAY, and UNIX:

FILI *ALDATA | EPIO | CART AC0349.1.SL options’

Here, ALDATA is the data set name, AC0349 is the cartridge VID, 1 is the FSEQ, and SL denotes
a standard labeled tape. The options are different for each computer. On the IBM, the option
SIZE 200 is usually used to allocate space for the tape, because the default size allocation is only

22 Mbytes.

Run / event selection

The following cards may be used to select particular runs or events for analysis.

SEVT 152 46 8 —-11

SRUN 2 -4 6 8 —-10

Select EVenTs 2,4,6,8,9,10,11 of run 15 The 1st number is a run num-
ber, the following ones are event numbers. Negative numbers define a
range of events. It is possible to include several SEVT cards in a card
file, but only one SEVT card can be given for each run. The SEVT
card, as well as the SRUN card described below, will work if the input
files are ordered to have increasing run/event numbers. If the input

files are not in sequential order, the selection cards will work correctly
only if the NSEQ card (see below) is included in the card file.

Select RUNs 2,3,4,6,8,9,10. See note under SEVT on sequential order
of runs.

IRUN 1 5 7 11 —9999999 Ignore RUNs 1,5,7,11,12,13,14,...,9999999

NEVT 5 -7

NEVT 3

Select the 5th, 6th, and 7th records (in the order they are stored on
the input file regardless of their run / event numbers).

Select the 1st, 2nd, and 3rd records. More than two numbers are not
allowed on this card.

10

NSEQ This card must be included to use the selection functions described
above with files that do not have run/event numbers in increasing
order.

4.1.3 FILO: Output files

Event output is controlled by the FILO card and by the subroutine QWRITE (see 13.2). The data
set name and options are given on the FILO card. Calling QWRITE writes the current event to
the output file. The COPY card (see 4.1.5) may also be used to write events to a file. If a FILO
card is given, all run records will be written out by default (see ALLR, NORU, and SELR below).

Format: FILO ‘data—set—name | parameters’

data set name same as on FILI cards; see examples in 4.1.2.

File format NATIVE, EPIO, or EDIR

parameters: (optional)

ALLR write all run records to the output file (default).

NORU write no run records to the output file.

SELR write run records as soon as the first event record corresponding to it is

written. It can be used if few events are selected from a large data sample;
without this option, the output file may consist mainly of run records. With
SELR, only run records which are followed by event records are written.

SREC write all “special” records to the output file. Without this card, all records
which are neither event nor run records will not be written.

NoOooVv simple—minded protection against involuntarily overwriting data sets. If
this parameter is given AND the output data set already exists, the program
will stop. Note that problems with overwriting do not arise on the VAX.

Examples: FILO ‘ABC NATIVE | SELR | NATIVE | NOOV’The 2nd “NATIVE” is
redundant; see 4.1.2.
CRAY: FILO ‘MYDATA EPIO | EPIO | DISPOSE’ The output file will be sent

back to the user’s reader on IBM.
More than one FILO card is not accepted. If you want to write on several output units simul-
taneously, use the standard BOS routines.

The output event type (POT, DST, MINI — see 4.1.1) is the same as the input event type
unless the MINI card is given (see below). Event directories can be created from any input event
type (see 4.1.4).

11

MINI: Select Mini-DST for output file

If the MINT card is given, the output file specified with the FILO card will be written in Mini-DST
format; see Appendix D and the Mini-DST User’s Guide for details.

COMP: Data compression

Integer numbers are written in compressed format by default. The data card

COMP ‘NONE’ suppresses the compression.

NWRT: Number of events to write out

NWRT 15 Set maximum number of events to be written on the output file to 15.

4.1.4 Event Directories

Event directories make it possible to read- ALEPH data files in direct access mode.

Creating Event Directories

There are two ways to create an event directory with ALPHA.

e One can specify EDIR as a file type in the FILO card:
FILO ’TEST.EDIR’

The event directory can be created by using the COPY data card, or by calling QWRITE |
from the user program.

e It is also possible to create the event directory at the same time as another output file. The
required FILO card is

FILO °TEST.EPIO | WITH TEST.EDIR ’.

With either of the above options, it is also possible to set the 30 bit classification word stored for
each event in the event directory. For each bit which is to be set, the user must call the routine

QWCLAS (see 13.3):
CALL QWCLAS(IBIT) IBIT = 1, 30

If three bits are to be set, QWCLAS has to be called three times. Note that a call to QWCLAS
simply turns on a single bit while leaving other bits unchanged. The intial classification word is the
one read from the input file; therefore, the classification word must be zeroed by calling QWCLAS
with IBIT=0 before storing your own values. If QWCLAS is not called, the classification word will
be set equal to that on the input file.

12

Reading data with event directories

The event directory must be specified in the FILI card:
FILI °TEST.EDIR’
All of the run / event selection cards (Sec. 4.1.2) can be used with event directories. If the CLAS

card (described below) is given in the card file, only events with certain classification words will be
read from the input file.

CLAS: Select events with certain classification word

Format CLAS ibit1, ibit2, ... , ibitn read events with bit ibitl and/or ibit2 etc. =1

It is also possible to make more complicated selections based on the event classification word
by supplying a new version of the routine BSELEC. This routine should be extracted from the
ALPHA library and modified. The default version of BSELEC, shown below, checks to see if a
MASK has been supplied with the CLAS card. If so, it checks to see if the event classification
word IWORD and MASK have any bits in common. Events are read in only if BSELEC is .TRUE.
The line KCLASW=IWORD should not be changed; this line allows access to the event directory
classification word inside of ALPHA (e.g., inside QUEVNT).

LOGICAL FUNCTION BSELEC (IWORD,MASK)

INCLUDE ’QCDE INC =*’

BSELEC = .TRUE.

IF (MASK.NE.O .AND. IAND(MASK,IWORD).EQ.0) BSELEC = .FALSE.
KCLASW=IWORD

END

4.1.5 COPY: Copying events

The COPY card directs ALPHA to copy events using the data cards described above (i.e., FILI,
FILO, SEVT, SRUN, IRUN, NEVT, NWRT).

Format COPY (no parameters)

All ALPHA features except data card handling and event input / output are switched off.
User routines are never called. Most data cards not referring to event input / output are ignored.
Therefore, if the COPY card is used, any ALPHA program (Fortran code or load module) can
serve as a simple copy job which digests the standard ALPHA data cards.

13

4.2 ALPHA Process cards

To reduce processing time, certain categories of objects can be excluded from ALPHA analysis (i.e.
the ALPHA variables will not be filled).

NOMC no Monte Carlo “truth”

NOCH no CHarged tracks (also excludes VO0s)

NOEM no Error Matrix for charged tracks

NOVo no V0s

NOCO no CalOrimeters

NOPC no NEutral OBjects (from PCPA)

NOGA no GAmpec objects (from EGPC)

NONE no ALPHA banks will be filled. This option is useful if you don’t want to use any

of ALPHA’s “track” and vertex sections, but you want to use ALPHA to do all of
the I/O and bank unpacking.

4.3 UNPK: POT / DST unpacking

Unpacking of POT / DST banks is performed automatically. To save time, coordinates and some
other banks are normally NOT unpacked. The default unpack options can be modified with the
UNPK card.

Format UNPK ‘ab cdef ...~

The two—character options have the following meanings:

AL all banks are unpacked but no coordinate sorting is done
VD VDET coordinates

IT ITC coordinates

TP TPC coordinates

TE dE/dx

EC ECAL (electron id.)

HC HCAL

MU Muons

FI track fits

SO to sort coordinates in phi to redo pattern recognition

14

CR cal. object relationship banks
¢ NO unpacking

The default options correspond to the card: UNPK "TE EC HC MU FI ’ TPC and ITC coordinates
are not unpacked by default.

4.4 READ: Input from different card files

The READ card allows input cards to be read from different card files.
Format RFAD ‘card— file—name’

The default file format is CARDS.

Card files may contain any number of READ cards. Files specified on a READ card may contain
other READ cards. Recursive READ cards (file Z contains a READ ‘Y’ card, and file Y a READ
‘Z’ card) are not allowed.

Note that each card file specified with a READ card must end with an ENDQ card.

4.5 DEBU: Debug output

There are two debug levels:

DEBU 0 minimum debug output (no BOS summary and no particle table printed).

DEBU 1 (default) Print BOS statistics and particle table summary at the end of the job.
Print a message for each step in the ALPHA initialization and termination.

The debug level is available as the variable KDEBUG.

4.6 TIME: Job time control

TIME 5 causes program termination (CALL QMTERM) if less than 5 seconds are available.

Remarks If no TIME card is given, 15 seconds is assumed by default. The number on the
TIME card must be given WITHOUT a decimal point. In ALPHA, it is converted
to a floating point number and is available as the variable QTIME (see 6.5.5). On
all CERN computers, time is counted in IBM 370/168 seconds.

15

4.7 Histograms

The cards used in connection with the histogram package are described in detail in Chapter 5. For
completeness, the cards are listed here also.

4.7.1 HIST: Write histogram file

The HIST card must be supplied to write histograms and Ntuples to a histogram file which can be
edited / modified / analyzed in a subsequent interactive session (PAW).

Format HIST ‘data—set—name | parameters’

data set name see 4.1.1.

Default file format HIS

parameters: (optional — described in 5.2.1)
UPDA

NOOV

4.7.2 HTIT: General histogram title

The HTIT card corresponds to the HBOOK routine HTITLE; it assigns a general title to all
histograms.

Format: HTIT ‘This is the general title’

4.7.3 NOPH: Histogram Printing

Including the NOPH card suppresses the printing of HBOOK histograms to the terminal or log
file; histograms will still be written to a direct access file if the HIST card was used.

Format: NOPH

4.8 FIEL: Magnetic field

Magnetic field can be set to a given value:
FIEL 15. Set magnetic field to 15 KGauss.

16

4.9 FRFO: Use track fit without vertex detector

If the FRFO card is included, the FRFT bank with NR=0 (which has track parameters found
without hits from the vertex detector) will be used to fill the charged track variables rather than
FRFT NR=2. Only FRFT NR=2 is available on the MiniDST.

4.10 Weight factors for calorimeters

Weight factors for the 3 ECAL stacks can be given by the data card
CEEW 1. 1. 1. Set weight factors to 1. for each stack (default).
A weight factor for the HCAL stack can be given by the data card

CHEW 1. set weight factor to 1. for HCAL (default).

4.11 EFLW and EFLJ: Energy Flow

The EFLW card enables the filling of energy flow objects in ALPHA (see Ch. 11). By default, the
EFLW card selects the ENFLW (Janot) energy flow package. Using the same card with option 2:

EFLW 2
will select the mask energy flow algorithm. The mask energy flow is not available on the MiniDST.

Replacing the EFLW card with the EFLJ card causes ALPHA to store jets based on energy
flow objects in addition to the energy flow objects themselves (see Ch. 11).

4.12 Particle table

The cards used in connection with the ALPHA particle table are described in detail in Chapter 15.
For completeness, the cards are listed here also.

17

4.12.1 PMOD: Modify particle attributes

Format PMOD ‘part—name antipart—name ’ mass charge life—time width

Parameters:

’part—name antipart—name’ see 15.3. The attributes of a particle and its antiparticle are
modified at the same time. If a particle is its own anti— particle, the same
name has to be given twice.

mass charge life—time width: Real numbers (with decimal point). The charge of the antipar-
ticle is set to —charge. If less than four numbers are given, the remaining
particle attributes are not changed.

4.12.2 PNEW: New particles
Modify attributes of an existing particle.
Format PNEW ‘part—name antipart—name ’ mass charge life—time width

Same parameters and format as PMOD; used to create new particles.

4.12.3 PTRA: Modify particle names in the MC particle table
The PTRA card can be used to assign an arbitrary particle name to a specific MC integer code.

Format PTRA ‘part—name antipart—name’ iMCcode iMCanticode

Parameters:

’part—name antipart—name’ see 15.4.3. denote the names for the particle and its antiparticle
which have to be used inside the ALPHA program.

iMCcode: integer particle code used in the MC generator (WITHOUT decimal point
and NOT included in apostrophes.)

iMCanticode: integer particle code used by the MC generator for the corresponding an-
tiparticle.

18

4.13 SYNT: Syntax Check

The general structure of the BOS card reading routines does not allow for a thorough syntax check
of data cards. To prevent long jobs from dying as a result of syntax errors, ALPHA provides a
facility to check the data cards. If the data card

SYNT is given, then

e all data cards are read in;

e the existence (or, if required, the non—existence) of all input/output files is
checked;

e NO files (except the log file) are created or modified even if the log file indicates
otherwise;

e NO events are processed.

19

Chapter 5

Creating Histograms and Ntuples

The standard histogram package in ALPHA is HBOOK4. If you don’t want to use HBOOK, the
only system routines which are called automatically and which refer to HBOOK are the histogram
initialization / termination routines QUIHIS and QUTHIS (3.5.3 and 3.5.4). Some utility routines
which simplify calls to HBOOK routines or provide additional protection against deleting existing
histograms are described below. Histogram output is directed by entries in the card file, and is
described in section 5.2.

5.1 Booking and Filling Histograms/Ntuples

All of these routines call standard HBOOK4 routines.

5.1.1 Book a 1-dimensional histogram

CALL QBOOK1 (ID, CHTITL, NX, XMI, XMA, VMX) |

The arguments are the same as for CALL HBOOK1 (...):

Input arguments:

ID histogram ID number — nonzero integer

CHTITL histogram title — character variable up to 80 characters
NX number of bins

XMI lower edge of lowest bin

XMA upper edge of highest bin

VMX normally set equal to 0.— see HBOOK manual for details.

HBOOKI1 always deletes an existing histogram and creates a new one. To make it possible
to update existing histograms (see 4.7.1), QBOOKI1 creates a new histogram only if it does not
yet exist. An existing histogram remains unchanged. Therefore, whenever you want to update
histogram files, use QBOOKI1 instead of HBOOKI1. For new histograms, QBOOK1 and HBOOK1

are identical.

20

5.1.2 Book a 2—dimensional histogram

CALL QBOOK?2 (ID, CHTITL, NX, XMI, XMA, NY, YMI, YMA, VMX)

QBOOK?2 includes the same features as QBOOKI1. The arguments are the same as for CALL
HBOOK2 (...):

Input arguments:

1D histogram ID number — nonzero integer

CHTITL histogram title — character variable up to 80 characters
NX number of bins in X

XMI lower edge of lowest X bin

XMA upper edge of highest X bin

NY number of bins in Y

YMI lower edge of lowest Y bin

YMA upper edge of highest Y bin

VMX normally set equal to 0.— see HBOOK manual for details.

5.1.3 Book an Ntuple

CALL QBOOKN (ID, CHTITL, NVAR, TAGS)

The arguments are NOT the same as for CALL HBOOKN (...):

Input arguments:

ID Ntuple ID number — nonzero integer

CHTITL Ntuple title — character variable up to 80 characters

NVAR number of variables

TAGS name of character array of dimension NVAR containing names for variables to be
stored.

CALL QBOOKN (ID,CHTITL,NVAR,TAGS)

corresponds to :
CALL HBOOKN (ID,CHTITL,NVAR,’ALPHA’,1024,TAGS).

"ALPHA’ is the ZEBRA directory name referring to the file given on the HIST card (5.2.1). See
5.1.1 (QBOOK1 vs. HBOOK1) : Existing Ntuples will not be overwritten (see 5.1.1).

21

5.1.4 Book an Ntuple with run, event number

CALL QBOOKR (ID, CHTITL, NVAR, TAGS)

The arguments are the same as for CALL QBOOKN (...). QBOOKR books a Ntuple with
NVAR+2 variables. The two additional variables contain the run and event number. TAGS
consists of NVAR array elements. Two tags KRUN and KEVT are appended automatically.

5.1.5 Fill Ntuple plus run, event number

CALL QHFR (ID, A)

Fills the Ntuple ID with the array A and with run and event number. The arguments are the
same as for HFN (ID, A). KRUN and KEVT are filled as variables NVAR+1 and NVAR+2 (see
QBOOKR).

5.1.6 Fill Ntuple with many variables

CALL QHFN (ID, A1, A2, A3, ..., An)

Fills the Ntuple ID with the variables A1 ... An (n < 50). CALL QHFN (ID, A1, A2)
corresponds to

DIMENSION A(50)
A(1) = A1
A(2) = A2
CALL HFN (ID, A&)

5.1.7 Fill Ntuple with many variables plus run, event number

CALL QHFNR (ID, A1, A2, A3, ..., An) |

Fills the Ntuple ID with the variables A1 ... An (n < 50; see QHFN) and with run / event
number as variables n+1 and n+2 (see QHFR).

22

5.1.8 Sample ALPHA program to book and fill histogram, Ntuple

The following example books and fills a histogram and Ntuple. See Chapters 7 and 8 for explana-
tions of the ALPHA variables used.

SUBROUTINE QUINIT
CHARACTER*4 TAGS(2)
DATA TAGS/’ECHG’,’NTRK’/

C-~- Book histogram to store momentum distribution for all charged
C--- tracks.
CALL QBOOK1(1,’Momentum’,100,0.,50.,0.)
C--- Book Ntuple to store charged energy and number of charged tracks
C--- per event.
CALL QBOOKN(1000,’Event parameters’,2,TAGS)
END
SUBROUTINE QUEVNT (QT,KT,QV,KV)
C —— - - -
INCLUDE ’PHYINC:QCDE.INC’ 1VAX
DIMENSION QT(KCQVEC,1), KT(KCQVEC,1), QV(KCQVRT,1), KV(KCQVRT,1)
INCLUDE ’PHYINC:QMACRO.INC’ 'VAX
C-=———- ———— ———— —— e e e e e e e e e e e e e e e e e e e
IF(KNCHT.EQ.O)RETURN
ECHRG=0.
C
C--- sum energy; histogram track momentum
C

DO 20 IT=KFCHT,KLCHT
ECHRG=ECHRG+QE(IT)
CALL HF1(1,QP(IT),1.)
20 CONTINUE
CALL QHFN(1000,ECHRG,FLOAT(KNCHT))
END

5.2 Histogram output — the ALPHA cards file

5.2.1 HIST: Write histogram file

Unless the NOPH card is included in the card file (see below), 1— and 2—dimensional histograms
are written to the log file in the program termination phase (i.e., after return from QUTERM; see
3.4 and 3.5.4).

The HIST data card is necessary for writing histograms and Ntuples to a histogram file which
can be used in a subsequent interactive session (PAW).

Format HIST ‘data—set—name | parameters’

23

data set name see 4.1.1.
Default file format HIS
parameters (optional) :

UPDA Update existing histograms. Can be used deliberately if a previous job
terminated due to time limit etc. but ...

CAUTION with this option, the old histogram file will be overwritten
(even on VAX).

NOOoV Overwrite protection (see 4.1.3). Cannot be used with UPDA.

On VAX : Unnecessary.

On IBM : Strongly recommended. The first HBOOK action is to
clear an existing file unless UPDA is specified.

The histogram file is a direct access file in machine—dependent format as required for PAW
input. The command files RTOX and RFRX transform those files into machine—independent
sequential files (file type EXCH) and vice versa. (The histogram files returned from the CRAY are
in EXCHange format; they must be converted to direct access files with RFRX before they can be
used with PAW.)

Only one histogram file can be specified using the HIST card. If you need several output

files, use the standard HBOOK4 input / output routines and book Ntuples with different ZEBRA
directory names. The directory name used by ALPHA is ‘//ALPHA’.

5.2.2 NOPH: Histogram Printing

Including the NOPH card in the card file will suppress the printing of HBOOK histograms to the
terminal or log file; histograms will still be written to a direct access file if the HIST card is used. .

Format : NOPH

5.2.3 HTIT: General histogram title

The HTIT card assigns a general title to all histograms; it corresponds to the HBOOK routine
HTITLE.

Format : HTIT ‘This is the general title’

24

Chapter 6

Mnemonic symbols

Mnemonic symbols are Fortran variables, arrays, parameters, functions, or statement functions.
Mnemonic symbols which give access to information for specific reconstructed or Monte Carlo
objects are described in Chapter 8. When possible, the names of the mnemonic symbols follow the
same convention as the HAC parameters.

The units used in ALPHA are cm, sec, GeV, GeV/c, GeV/c?, kG.

6.1 Mathematical and physical constants

QQE e = 2.718282

QQPI T = 3.141593

QQ2PI 2r

QQPIH /2

QQRADP 180/7

QQcC speed of light = 2.997925E10 cm/sec

QQIRP speed of light in units cm / KGauss (inverse track bending radius — track mo-
mentum)

QQH Planck constant / 27 = 6.582173E—25 GeV sec

QQHC QQH * QQC

Note: The standard ALEPH constants (ALCONS) are also available.

6.2 Run information

KRINNE number of events in run (with HV on)

KRINLF LEP fill number

KRINDQ data quality (see bank description for RLUM variable RQ)
QRINLU Luminosity (from database if available)

25

KRINNZ number of Z — hadrons (from database if available)
KRINNB number of Bhabhas (from database if available)
QELEP LEP energy (from database if available)

QMFLD magnetic field (best estimate). Taken from data card FIEL (if given), run header
bank RALE, or run header bank AFID for MC events. If ABS(QMFLD) > 20
QMFLD is set to 15.

QVXNOM, QVYNOM, QVZNOM run-by run position of interaction point used to calculate
the distance between tracks and interaction point; taken from the database bank
LFIL. (See KBPSTA below.)

QVXNSG, QVYNSG, QVZNSG (Statistical error) 2 on QVXNOM etc.; not the beam width.
KBPSTA Beam Position Status: method used to determine QVXNOM, QVYNOM, etc.

e KBPSTA = 0: No mean beam position for the run

e KBPSTA = 1: Mean beam position computed with VDET, per RUN (this is
the status of most of the runs in 1991)

e KBPSTA = 2: Mean beam position computed with VDET, per FILL (this
happens when the run has too few events)

e KBPSTA = 3: Mean beam position computed WITHOUT VDET, per FILL
(this is the status of all runs in 1989/1990 and of the runs in 1991 which do
not have a working VDET)

QDBOFS average systematic offset of DO0; see 8.1.4.

6.3 Event information

6.3.1 Event header: from bank EVEH

KEXP Exp Number
KRUN Run Number
KEVT Event Number

KEVERT Run Type

KEVEDA DAte

KEVETI TIme

KEVEMI(I) trigger Mask [, I = 1 to 4
KEVETY event TYpe

KEVEES Error Status

6.3.2 Event directory information

KCLASW Event directory classification word

26

6.3.3 Event generator status: from bank KEVH

KKEVID

process ID

QKEVWT WeighT

6.3.4 Detector HV status: from banks REVH, LOLE

XHVTRG

KREVDS
XVLCAL

XVSATR
XVITC
XVTPC
XVTPCD
XVECAL
XVHCAL

=.TRUE. if XLUMOK checks are satisfied. (To save time, XHVTRG should be
used rather than the function XLUMOK.)

Detector status word from REVH bank

= .TRUE. if the LCAL is OK (i.e., the LOLE bank is present and there is no error
condition)

= .TRUE. if SATR HV is OK

= .TRUE. if ITC HV is OK

= .TRUE. if TPC HV is OK (bit 15)

= .TRUE. if all TPC HV is OK (dE/dx bit — bit 4)

= .TRUE. if ECAL HV is OK (i.e., all ECAL HV bits are on)
= .TRUE. if HCAL HV is OK (i.e., all HCAL HV bits are on)

Note: For VDET HV status, see Sec. 12.4.2.

6.3.5 Trigger Information: from XTEB or XTRB, XTCN

KXTET1
KXTET2
KXTEL2
KXTCGC
KXTCLL
KXTCBN
KXTCCL
KXTCHV
KXTCEN

Level 1 trigger bit pattern

Level 2 trigger bit pattern

Level 2 bit pattern after applying the enabled trigger mask
Number of GBXs since the last event readout

Number of level 1 yes conditions since the last event readout
e~ bunch nurnbef

level 1 control word

HV status word (equivalent to KREVDS above)

mask of enabled triggers

6.3.6 General event information: from bank DHEA

KDHEFP Flag for Physics identification
KDHENX Number of reconstructed vertices
KDHENP Number of positive reconstructed tracks
KDHENM Number of negative reconstructed tracks
KDHENV Number of reconstructed V0’s
KDHENJ Number of reconstructed jets
QDHEEC total Energy of Charged tracks
QDHEEL total Energy of CaL objects

QDHEPF abs(P) of energy Flow

QDHETH THeta of energy flow

QDHEPH PHi of energy flow

QDHEEF Energy Flow

QDHEET abs value of Et

QDHET1 Theta of momentum tensor axis 1
QDHEP1 Phi of momentum tensor axis 1
QDHET2 Theta of momentum tensor axis 2
QDHEP2 Phi of momentum tensor axis 2
QDHEE1 1st Eigenvalue of momentum tensor
QDHEE2 2nd Eigenvalue of momentum tensor
QDHEE3 3rd Eigenvalue of momentum tensor

Note: The energy flow results in this bank are based on the mask energy flow algorithm run in
JULIA.

6.3.7 Beam position from BOM system: from bank BOMB

QVXBOM z beam position from BOM
QVYBOM y beam position from BOM
KERBOM Error code for BOM
e < 0 fatal error, QVXBOM and QVYBOM are filled with QVXNOM and
QVYNOM
= 0 BOM data good
= 1 BOM data in z disagrees with VDET average

= 2 BOM data in y disagrees with VDET average
= 3 BOM data in both z and y disagrees with VDET average

28

6.4 ECAL Wire Energies

QEECWI(IMOD) ECAL wire energy for module IMOD in GeV. Modules 1 — 12 refer to
endcap A, 13 — 24 to the barrel, and 25 — 36 to endcap B.

6.5 ALPHA Internal Constants, Variables

6.5.1 Event counts

KNEVT Total number of events read in

KNEFIL Number of events read from the current input file

KNREIN Number of records read from the current input file (including run records)
KNEOUT Number of events written to the output file

6.5.2 Program status

KSTATU —1: program initialization; 0: event processing; 1: program termination

KDEBUG debug level (see 4.5)

6.5.3 Event status

XMINI = .TRUE. if event read from Mini-DST = .FALSE. if event read from POT or
DST
XMCEV = .TRUE. if MC truth available for the event

6.5.4 Input / output units

KUINPU event input = 20, 21
KUOUTP event output = 50

KUEDIN event directory input = 30
KUEDOU event directory output = 60
KUCONS data base = 4

KUPRNT log file =6

KUPTER terminal = 76 or 0 (see Ch. 2)
KUCARD card input = 7

KUCAR2 second card input = 8

29

KUHIST histogram output unit = 15
KURTOX EXCH format histogram output on CRAY = 16

Note: Units 90, 91, 92, and 93 are always free for private output files.

6.5.5 Timing

QTIMEL time remaining before time limit
QTIME seconds given on the TIME card (see 4.6)

On all CERN computers, the time units are IBM 370/168 seconds.

6.5.6 Character variables

CQVERS ALPHA version number (6 digits)
CQDATE date at start of job (8 char)
CQTIME time at start of job (8 char)

CQFOUT data set name of event output file = ¢’ if no output file given

30

Chapter 7

ALPHA “Tracks” and “Vertices”

Before QUEVNT is called for each event, ALPHA fills its own data structure with information
from the event. Each “tracklike” object (eg., tracks, calorimeter objects, energy flow objects, etc.)
is assigned a unique number. (A “tracklike” object is any object which can be described with a 4
vector.) This ALPHA “track” number is equal to the JULIA “track” number + a constant. Unique
ALPHA numbers are also assigned to vertices (reconstructed vertices and Monte Carlo vertices).
The constant is introduced in order to obtain a unique numbering scheme for all species of “tracks”
or vertices (in JULIA and GALEPH, different species start with the number 1). In the description
below, ITK always refers to an ALPHA “track” number and IVX to an ALPHA vertex number.

The properties of the tracks and vertices are found using functions which refer to the ALPHA
“track” and vertex numbers. For example, the energy of ALPHA “track” ITK is QE(ITK). The
properties available for each tracklike object and each vertex are described in sections 8.1 and 8.3,
respectively.

In the following sections, several methods for determining ALPHA track and vertex numbers are
described. All of these methods can be nested. Functions which give simple access to relationships
between different types of objects are also described.

7.1 Access by Fortran DO loops

In ALPHA, fortran DO loops can be used to loop over most types of objects. For each type of
object, three variables are defined: KFxxx, KLxxx, KNxxx. xxx represents the type of object.
The last letter of the variables is either T (tracklike) or V (vertex). DO loops must be made from
KFxxx to KLxxx; KNxxx is the number of objects of type xxx.

For example, the following three lines will make a histogram of the momentum spectrum of
charged particles.

DO 10 ITK = KFCHT, KLCHT
CALL HF1 (47,QP(ITK),1.)
10 CONTINUE

KFCHT,KLCHT number of first (last) charged track.
ITK loop index = ALPHA track number

31

QP(ITK) momentum of track ITK (see 8.1.1)

The number of charged tracks is given by the variable KNCHT. KNCHT stands for KLCHT —
KFCHT + 1. Therefore, if KNCHT = 0, KLCHT = KFCHT - 1.

The objects which can be accessed with these DO loops are listed in the following two sections.

7.1.1 ALPHA “TRACKS”

Charged Tracks: KFCHT, KLCHT, KNCHT If the FRFO card is present in the ALPHA
cards file, the NR=0 version of the FRFT bank (track parameters determined without
vertex detector coordinates) will be used. Otherwise, the NR=2 version of FRFT
(TPC + ITC + VDET tracks) will be used. Only FRFT NR=2 tracks are available
on the MiniDST.

Calorimeter Objects: KFCOT, KLCOT, KNCOT Calorimeter objects can be any of the
following:

e ECAL objects with no associated HCAL object.!

e HCAL objects with no associated ECAL object.

e Composite cal. objects consisting of at least one ECAL and HCAL object as-
sociated to each other. See 7.2 for getting access to the contributing ECAL
and HCAL objects separately. See the end of Section 7.3 for a more detailed
description of composite cal. objects in ALPHA.

Calorimeter objects can be further divided into:

ISolated cal. objects: KFIST, KLIST, KNIST Cal objects with NO associated
charged track.

ASsociated cal. objects: KFAST, KLAST, KNAST Cal objects with one or
more associated charged track.

“REconstructed” objects: KFRET, KLRET, KNRET “REconstructed” objects are:

e Charged tracks;

e Calorimeter objects (see above) which are NOT associated to charged tracks
(ISolated cal. objects).

Reconstructed V0s: KFVOT, KLVOT, KNVOT See Section 7.5.1 for comments on the daugh-
ters of VO0s.

Tracks from DeCay Vertices: KFDCT, KLDCT, KNDCT Charged tracks outgoing from
reconstructed DeCay vertices. The momenta for these tracks are calculated relative
to the secondary vertex position. Currently, this section includes the daughter tracks
from reconstructed VO0s.

Energy Flow objects: KFEFT, KLEFT, KNEFT This section includes selected charged tracks
and ECAL and HCAL clusters remaining after subtracting track energies. These
objects may also be accessed with their particle name ‘EFLW’ using the functions
KPDIR and KFOLLO (described in 7.4). This section is not filled unless the EFLW
card is included in the card file (see Ch. 11);

'For ECAL wire energies, see 6.4.

32

-

NEutral Calorimeter Objects: KFNET, KLNET, KNNET Neutral objects derived from
the PCPA bank. These objects may also be accessed with their particle name ‘NEOB’
using the functions KPDIR and KFOLLO (described in 7.4).

Photons from GAmpec: KFGAT, KLGAT, KNGAT These objects may also be accessed
with their particle name ‘GAMP’ using the functions KPDIR and KFOLLO (described
in 7.4).

Jets from EJET: KFJET, KLIET, KNJET Jets based on EFLW objects using QJMMCL
with YCUT = 0.003. These objects may also be accessed with their particle name
‘EJET’ using the functions KPDIR and KFOLLO (described in 7.4). They may be
used as input for jet finding with a higher YCUT (see 10.11.1 and 11.1).

Monte Carlo particles (“truth”) KFMCT, KLMCT, KNMCT

7.1.2 ALPHA VERTICES:

REconstructed Vertices: KFREV, KLREV, KNREV Currently, this category includes only
the main vertex (the first vertex, KFREV) and VO0s.

Monte Carlo vertices (“truth”): KFMCV, KLMCV, KNMCV

ALPHA “tracks” and vertices are stored in the banks QVEC and QVRT, respectively.

7.2 Loops over ECAL and HCAL objects

If ECAL and HCAL objects are topologically associated to each other, the loops described above
give access to composite calorimeter objects rather than to each contributing ECAL and HCAL
object separately. It is also possible to get access to all ECAL and HCAL objects, regardless of
whether or not they are associated to other reconstructed objects. (The loops described below are
equivalent to looping through the PECO and PHCO banks.)

The following statements perform a loop over all ECAL objects; see 7.4. (DO loops cannot be
used because the objects are not stored in consecutive locations.)

I0BJ = KPDIR (’ECAL’, KRECO)
10 IF (IOBJ .EQ. 0) GO TO 999

C... Analysis of the ECAL object IOBJ ...
I0BJ = KFOLLO (IOBJ)
GO TO 10

(The functions KPDIR and KFOLLO are described in 7.4.) The corresponding loop for HCAL
objects is:

IOBJ = KPDIR (°HCAL’, KRECO)
10 etc ..

33

7.3 Relationships between objects in different subdetectors

The JULIA program provides relationships between objects reconstructed in the various detector
components if they are topologically associated to each other. These relations are available in AL-
PHA and can be used for charged tracks, ECAL objects, HCAL objects, and composite calorimeter
objects. (Below, IOBJ is any ALPHA “track” number referring to a charged track, cal. object,
ECAL object, or HCAL object.)

KNCHGD (I0BJ) Number of charged tracks associated to IOBJ.
KCHGD (IOBJ, N) The Nth charged track associated to IOBJ.

For example,

I0OBJ = ... any calorimeter object .
DO 10 N = 1, KNCHGD (IOBJ)
ICHGD = KCHGD (IOBJ, N)
C ... analysis of a charged track ICHGD associated to IOBJ ..
10 CONTINUE

Note: If IOBJ in the example above is a charged track itself, then KNCHGD (IOBJ) is 1 and
KCHGD (IOBJ,1) gives IOBJ. Similarly:

KNECAL (I0BJ) Number of ECAL objects associated to IOBJ.
KECAL (I0BJ, N) The Nth ECAL object associated to IOBJ.
KNHCAL (I0BJ) Number of HCAL objects associated to IOBJ.
KHCAL (IOBJ, N) The Nth HCAL object associated to IOBJ.

The relation from a composite calorimeter object ICOMP to each of its contributing ECAL
and HCAL object is provided by the relations described above: KECAL (ICOMP,N) and KHCAL
(ICOMP,N). In addition, the composite object is treated as “mother” of the contributing ECAL
and HCAL objects, so the mother—daughter or daughter—mother relation described in 7.5 can be
used for all calorimeter objects.

Note that the composite calorimeter objects in ALPHA are not identical to those in the PCRL
bank. ALPHA composite calorimeter objects include at most one HCAL object, while the PCRL
objects may include many HCAL objects. ALPHA starts with each HCAL object and adds the
ECAL objects that are associated to it. If an ECAL object is associated to more than one HCAL
object, its energy is divided equally among the HCAL objects.

34

7.4 Direct access to particles

7.4.1 Particle name and class

In addition to the loops described above, it is possible to access particles by their name. In many
cases, this method is faster and the code is easier to read than the standard loops described in 7.1.
Two quantities must be specified:

e The particle name (example: ‘E4+’ or ‘GAMMA’); see 15.1.

e The object (= track = particle) class which distinguishes between reconstructed tracks, the
Monte~Carlo truth, and any Lorentz frame derived from one of them:

— Class KRECO: Reconstructed objects read from the event input file and everything
derived from them except Lorentz boosted objects.

— Class KMONTE: Monte—Carlo truth.

— Each Lorentz frame is considered as its own class (see 9.5). These classes are denoted
by the number of the object which defines the Lorentz rest frame.

KRECO and KMONTE are available everywhere as integer Fortran parameters. Their actual
values are —1 and —2, respectively. Positive integers denote Lorentz frames. Integers less than —2
can be used to create your own particle classes (see KVSAVC in 9.2.12).

The particle name of MC particles is specified in the MC particle table (see 15.1). Reconstructed
objects have the names ‘CHARGED’, ‘ECAL’, ‘HCAL’, ‘CALOBJ’, ‘EFLW’,’NEOB’, and "GAMP”’
for charged tracks, ECAL objects, HCAL objects, unspecified (e.g., composite) calorimeter objects,
energy flow objects, neutral calorimeter objects, and GAMPEC photons, respectively. The func-
tions KVSAVE, KVSAVC, and KIDSAV (see 9.2.11) can be used to create new tracks with a name.
A list of standard particle names is given in App. E. New particle names can be introduced by
using them in ALPHA subroutine calls or by specifying them on data cards (see 15.4.2).

7.4.2 Example: Loop over all MC generated positrons

ITK = KPDIR (’E+’, KMONTE)
10 IF (ITK .EQ. 0) GO TO 90

C ... et analysis ...
ITK = KFOLLO (ITK)
GO TO 10

90 CONTINUE ...

KPDIR (’particle—name’, ICLASS) ’particle—name’: Character string (1 to 12 characters).
ICLASS: Track class (see 7.4.1): KRECO or KMONTE or a track number
ITKRST if ITKRST has been used before to define the rest frame for a Lorentz
boost (see 9.5).

KFOLLO (ITK) The following particle with the same particle name in the same class.

35

Remarks: The term “FOLLOwing” refers to some arbitrary ordering. Lower case char-
acters in particle names are translated to upper case. It is safest, however, to
use only upper case characters with ALPHA.

7.4.3 Particle name versus integer particle code — time consumption

Using character particle names in function calls makes the code easier to read, but it implies a
lookup in a table. Although the lookup is fast, in nested loops it may be desirable to save this
time. Consequently, some (not all) functions are provided in two versions: one which expects the
particle name as an argument and another which expects the corresponding integer particle code
and thus saves the lookup time. The second version is denoted by a “C” (= “Code”) as the 2nd
character of the function name.

Using integer particle codes, the example given in section 7.4.2 becomes:

C ... somewhere in the job or subroutine initialization:
IP = KPART (’E+’)

cC ...
ITK = KCDIR (IP, KMONTE)

10 IF (ITK .EQ. 0) GO TO 90

C ... analysis of the e+ .
ITK = KFOLLO (ITK)
GO TO 10

90 CONTINUE ..

IP = KPART(’name’) must be called before IP is used. The particle name is the basic
reference to a particle. The integer code may change from one job
to another.

KCDIR (IP, ICLASS) First particle with the given particle code in class ICLASS.

7.4.4 Loops over a particle and its antiparticle

The particle table contains the relation between particles and antiparticles, so loops over particles
(or systems of particles) and their corresponding (systems of) antiparticles can be performed easily.

Example: Loop over MC — generated e+ and e—:

DO 90 IANTI = 0,1
ITK = KPDIRA (’E+’, KMONTE, IANTI)
10 IF (ITK .EQ. 0) GO TO 90

C ... analysis of the e+ or e- ..
ITK = KFOLLO (ITK)
GO TO 10

90 CONTINUE ...

36

KPDIRA (’particle—name’, ICLASS, TANTI) If IANTI=0, KPDIRA returns the first par-
ticle with the given name in the class ICLASS. If IANTI is not equal
to 0, the first corresponding antiparticle is given.

To use the integer particle code (see 7.4.3), replace
KPDIRA (’E+’, KMONTE, IANTI) with KCDIRA (IP, KMONTE, IANTI).
7.4.5 Analysis of particle systems: Examples

Systems of particles can be analyzed by nesting loops with KPDIR and KPDIRA. The two examples
given below illustrate cases in which care must be taken to avoid multiple counting of the same
particle combinations.

Combinations of the same particles: 7+ 7+

C--~-First select pion candidates
DO 5 ITK=KFCHT,KLCHT
IF(condition to select pions) THEN
ISAVE=KIDSAV(ITK, ’PI+’)
ENDIF
5 CONTINUE
C---Loop over selected pions.
IPIONE = KPDIR (’PI+’, KRECO)
10 IF (IPIONE .NE. O0) THEN
IPITWO = KFOLLO (IPIONE) <--- important
20 IF (IPITWO .NE. O0) THEN
. analysis of the pi+ pi+ system ..
IPITWO = KFOLLO (IPITWO)
GO TO 20
ENDIF
IPIONE = KFOLLO (IPIONE)
GO TO 10
ENDIF

The 2nd 7+ (IPITWO) has to be initialized with KFOLLO and NOT with KPDIR. See section
9.2.11 for the use of KIDSAV.

37

Att 5 p ot

Proton and pion candidates must be selected and saved with KVSAVE or KIDSAV before this code
is reached (see 9.2.9).

IPROT = KPDIR (’P’, KRECO)
10 IF (IPROT .NE. O) THEN
IPIPLU = KPDIR (’PI+’, KRECOD)
20 IF (IPIPLU .NE. 0) THEN
IF (.NOT.XSAME(IPROT,IPIPLU)) THEN <--- important
C ... analysis of the p pi+ system ...
ENDIF
IPIPLU = KFOLLO (IPIPLU)
GO TO 20
ENDIF
IPROT = KFOLLO (IPROT)
GO TO 10
ENDIF

The logical function XSAME (see 8.1.7) tests whether the two contributing particles are based
on different reconstructed objects or simply on different mass hypotheses of the same reconstructed
object.

7.5 Mother — daughter relationships

7.5.1 Mother to daughters

The connection from a mother to its daughters is available for MC particles and for composite
particles established by the QVxxxx routines described in 9.2.2.

IMOTH = ... (track number of a mother particle)
DO 10 I = 1, KNDAU (IMOTH)
IDAUGH = KDAU (IMOTH,I)
CALL HFILL (47, QP(IDAUGH))
10 CONTINUE

KNDAU (ITK) number of daughters for track ITK = 0 if no daughter exists
KDAU (ITK,I) track number of Ith daughter

Note for VO0s: The daughters of a VO (section VOT) are stored in the DCT section (see 7.1).
These tracks are copies of tracks in the CHT section, but their momenta are recalculated relative
to the secondary vertex position. The function KCHT (see 7.6.2) returns the CHT track number
corresponding to a track in the DCT section.

38

Example:

DO 10 IVO=KFVOT,KLVOT

c--- First daughter of VO (in DCT section)
I1DCT=KDAU(IVO,1)
C --- Corresponding track in CHT section.

T1CHT=KCHT(I1DCT)
10 CONTINUE

7.5.2 Daughter to mother(s)

The connection from a daughter to its mother(s) is available for MC particles and for daughters of
“saved” composite particles (see KVSAVE in 9.2.9). The QVADDx routines (9.2.2) and the jet /
event topology routines 10) do NOT set up this relation.

IDAUGH = ... (track number of a daughter particle)
DO 10 I = 1, KNMOTH (IDAUGH)
IMOTH = KMOTH (IDAUGH,I)
CALL HFILL (47, QP(IMOTH))
10 CONTINUE

KNMOTH (ITK) Number of mothers of track ITK. Note that MC particles as read in from
the event input file have no or one mother.

KMOTH (ITK,I) Track number of the Ith mother.

7.6 Access to the “same” object

The “same” object means:

e any copy of an object;
e for reconstructed tracks, the “same” object with different mass or vertex hypothesis;

e The “same” object boosted into any Lorentz frame.

7.6.1 Loops over copies of the “same” object using KSAME

Example:

ITKSAM = KSAME (ITK)
10 IF (ITKSAM .EQ. ITK) GO TO 90
C ... analysis of the same object, e.g.: search for the object
C in a specific Lorentz frame ITKRST (see >):

39

IF (KCLASS (ITKSAM) .EQ. ITKRST) THEN
ENDIF
ITKSAM = KSAME (ITKSAM)

GO TO 10
90 CONTINUE ..

Remarks: This loop is terminated if it arrives at the original track. KSAME never returns
0. The same particle can be boosted several times into the same Lorentz frame
provided that the boosts are performed with different mass or other hypotheses
(see 9.5.1); if you start with the original track ITK, the most recently boosted
hypothesis is reached first.

7.6.2 Find original copy of a charged track

For copies of charged tracks, the function KCHT returns the original track number in the CHT
section.

KCHT (ITK) If KFCHT < ITK < KLCHT,KCHT (ITK) is equal to ITK. Otherwise
(i.e., ITK is a copy of a track in the CHT section), KCHT (ITK) equals
the corresponding track number in the CHT section. This function can be
used only for charged tracks; for other objects, use KSAME.

7.7 Match reconstructed tracks and MC truth

The relation between reconstructed and MC particles is not necessarily one—to—one. Therefore, a
loop has to be constructed:

ITK1 = ... (any given MC or reconstructed track number)
DO 10 I = 1, KNMTCH(ITK1)
IF (KSMTCH (ITK1,I) .LE. (min. required shared hits)) GO TO 10
ITK2 = KMTCH (ITK1,I)
C e
10 CONTINUE

If ITK1 is a reconstructed track then ITK2 is a matching MC track. If ITK1 is a MC track then
ITK2 is a matching reconstructed track.

KNMTCH (ITK) Number of matching candidates for track ITK.
KMTCH (ITK,I) Track number of Ith matching particle.
KSMTCH (ITK,I) Number of shared hits between MC and reconstructed track.

40

Remarks:

e The match is performed on the basis of shared hits in the TPC and IPC.

e The correspondence between MC and calorimeter objects is stored in the POT banks PEMH
and PHMH. This information will be made available in a future version of ALPHA.

7.8 Track — vertex relationships

IVX = KORIV (ITK) origin vertex of a track
IVX = KENDV (ITK) end vertex of a track
ITK = KVINCP (IVX) particle incoming to vertex IVX

To find the tracks outgoing from a vertex, the following loop must be performed:

IVX = ... (vertex number; defined before)
DO 10 I = 1, KVNDAU (IVX)
ITK = KVDAU (IVX,I)
CALL HFILL (47, QP(ITK))
10 CONTINUE

KVNDAU (IVX) number of outgoing tracks
KVDAU (IVX,I) track number of Ith outgoing track

41

Chapter 8

ALPHA Track and Vertex Attributes

Not all of the attributes listed in this chapter are available when using the Mini-DST. See Appendix
D, as well as the Mini-DST User’s Guide, for a list of variables which are filled from the MINI.

The units used throughout ALPHA are cm, sec, GeV, GeV/c, GeV/c?, kG.

8.1 “Track” attributes.

These quantities are defined for all ALPHA “tracks” (e.g., charged tracks, cal. objects, MC truth,
etc.) “I” always refers to the ALPHA “track” number.

8.1.1 Basic attributes

QP (I) P = momentum of vector I.

QX (I) T momentum component
QY (I) y momentum component
QZ (I) z momentum component

QE (I) Energy

QM (I) Mass (use QMASVO for VO mass; see below)
QCH (I) CHarge

KCH (I) NINT (QCH(I)) (be careful with quarks)

For charged tracks, the pion mass is assumed; the mass can be changed with QVSETM (see 9.2.13).
For angles and more kinematics quantities, see 9.1.

8.1.2 VO Mass

QMASVO (I,’name’) Mass of VO with hypothesis ‘name’

The function QMASVO0(I,)name’) provides the mass for a given VO hypothesis, where ‘name’ is the
name from the ALPHA particle table or the abbreviation listed here:

42

e K0S’ or ‘K0’

e 'Lam0’ or ‘LA’

e ’Lam#0’ or ‘AL’

e 'GAMMA’ or ‘GA’.

This function can be used only for KFVOT < I < KLVOT. See also QIDVO0, Sec. 9.2.3.

8.1.3 Track error covariance matrix

XSIG (I) .TRUE. if covariance matrix available
QSIG (I,N,M) element (N,M) of the covariance matrix N\M = 1,2,3,4 in the order QX,QY,QZ,QE
QSIGEE (1) Error? on energy

QSIGE (I) Error on energy
QSIGPP (I) Error? on momentum
QSIGP (I) Error on momentum

QSIGMM (I) Error? on mass

QSIGM (I) Error on mass The mass error is not defined for particles with mass = 0.

QSIG (I,1,1) is set to —1 if the matrix is not available.

8.1.4 Distance to the beam position:

Available for charged reconstructed tracks.

QDB (I) distance of closest approach to beam axis

QDBS2 (I) error? on QDB

QZB (1) z coordinate of track point where QDB is measured
QZBSs2 (I) error? on QZB

QBC2 (I) x? due to QDB and QZB.

The coordinates of the beam position used for these values are QVXNOM, QVYNOM, and QVZNOM
(see 6.2). The average value of QDB may have a small offset from zero as a result of systematic
tracking errors. The offset QDBOFS (see 6.2), which is typically less than 50 microns, may be
subtracted from QDB(I) in order to yield <QDB> = 0.

For more geometrical track attributes, see sections 8.2.1 and 9.1.

43

8.1.5 Stability code

KSTABC (I) Stability code

The stability code is designed to avoid double counting when making loops over Monte Carlo
particles. The possible values of KSTABC are:

1 Particle does not decay.

2 Neutral particle that decays in the calorimeter volume. Charged particle that decays in
the TPC or calorimeter volume. Here, TPC and calorimeter volumes are full cylinders
(including the beam pipe region).

3 One of the ancestors of this stable particle has interacted with matter. Energy and mo-
mentum are NOT conserved.

0 Decay products of “stable” particles including all garbage in the calorimeter.

-1 Particle decays immediately (resonance etc.).

-2 Particle decays with finite decay length but before reaching the detector volume (see
above).

-3 Particle interacts with matter before reaching the detector volume. The decay products

do not conserve energy and momentum.

A loop over all MC particles with KSTABC > 0 selects the generation of decay particles which
will probably be visible in the detector — energy is never counted twice. The energy sum of these
particles gives the total generated energy only if no particle interacted with matter inside the
detector volume. A loop over MC particles with KSTABC = 1, 2, and —3 is similar, but it always
gives the generated total energy.

8.1.6 Test a particle’s name

XPEQU (I,’part—name’) = .TRUE. if track I is a particle with the name ‘part—name’.

XPEQOR (I,’part—name’) = .TRUE. if track I is a particle with the name ‘part—name’
or if it is the corresponding antiparticle.

XPEQAN (I,’part—name’, JANTI) = .TRUE. if track I is a particle with the name ‘part—name’
and if IANTI = 0. = .TRUE. if track I is the antiparticle cor-
responding to ‘part—name’ and if IANTI is not equal to 0.

The same functions exist for integer particle codes IPC = KPART (’part—name’) instead of the
particle names (see 7.4.3):

XCEQU (I, IPC)
XCEQOR (I, IPC)
XCEQAN (I, IPC, IANTI)

44

8.1.7 Test if particles are based on the same object

XSAME (1,J) = .TRUE. if tracks I and J or one of their daughters, granddaughters, etc.
are based on the same object (see 7.6) or, in other words, belong to the same
family (see 10.2.3). T and J must both be reconstructed tracks or MC particles;
they may, however, belong to different Lorentz frames. XSAME uses the same
bit masks as the lock algorithm. XSAME(IJET,ITK) can be used for testing
whether a track ITK belongs to a given jet (see 10.3). An example how to use
XSAME in reconstructing decay chains is given in 7.4.5, example 2.

8.1.8 Flags, pointers, etc.
Pointers to other tracks and to vertices: see ch. 7.

KTN (I) JULIA / GALEPH track number
KCLASS(I) Track class:
e —1 (= KRECO) for reconstructed tracks
e —2 (= KMONTE) for MC truth
e = (): track attributes = 0

o > (0: Lorentz frame. See 7.4.

KTPCOD (I) track’s Particle Code

CQTPN (I) track’s particle name (12 char.). = ¢ 7 if particle code = 0
KLUNDS (I) LUND status code (MC particles only)
XMC (I) .TRUE. if MC particle

KRDFL (I,LIFLAG) Integer value of user flag IFLAG (IFLAG=1-18). Flag is set to IVAL
with CALL QSTFLI(ILIFLAG,IVAL); see 9.2.14.

QRDFL (I,LIFLAG) Floating—point value of user flag IFLAG (IFLAG=1-18). Flag is set to
VAL with CALL QSTFLR(L,IFLAG,VAL); see 9.2.14.

8.2 “Track” related detector data

These mnemonic symbols give access to information in BOS banks corresponding to an ALPHA
“track”. These symbols return the integer or floating point value 0 if detector data are not avail-
able for a track. The names of these mnemonic symbols follow the same convention as the HAC
parameters.

45

8.2.1 Global geometrical track fit: Bank FRFT

If the FRFO card is present in the ALPHA cards file, the NR=0 version of the FRFT bank (track
parameters determined without vertex detector coordinates) will be used. Otherwise, the NR=2
version of FRFT (TPC + ITC 4+ VDET tracks) will be used.

XFRF (I) .TRUE. if track fit data are available for track I

QFRFIR (I) Inverse radius of curvature in x—y projection Signed positive if track bends
counterclockwise, negative if track bends clockwise

QFRFTL (I) Tangent of dip angle
QFRFPO (1) Phi at closest approach to the z axis
QFRFDO (I) Distance of closest approach to z axis

QFRFZo (I) z coordinate of track point where QFRFDO is measured Note: QDB and QZB
(see 8.1.4) correspond to the closest approach to the beam axis.

QFRFAL (I) Multiple scattering angle between TPC and ITC

QFRFEM (I,N,M) Element N,M of the error covariance matrix N,M = 1,2,3,4,5,6 in the or-
der IR,TL,PH,D0,7Z0,AL. Note that the error matrix is valid at the innermost
point used in the track fit, and therefore does not include multiple scattering in
material before the tracking chambers.

QFRFC2 (I) x? of helix fit
KFRFDF (I) Number of degrees of freedom
KFRFNO (I) Option flag for track fit

8.2.2 Number of coordinates used for the global fit: Bank FRTL

KFRTNV (I) Number of coordinates in Vdet
KFRTNI (I) Number of coordinates in ITC
KFRTNE (I) Number of coordinates in ITC in following spirals
KFRTNT (I) Number of coordinates in TPC
KFRTNR (I) Number of coordinates in TPC in following spirals

8.2.3 Charged—particle identification: Bank FRID

KFRIBP (I) Bit pattern for tracking devices
KFRIDZ (1) Dead zone pattern for tracking devices
KFRIBC (I) Bit pattern for calorimeters
KFRIDC (I) Dead zone pattern for calorimeters

46

QFRIPE (I) Electron probability

QFRIPM (I) Muon probability

QFRIPI (I) Pion probability

QFRIPK (I) Kaon probability

QFRIPP (I) Proton probability

QFRINK (I) No Kink probability

KFRIQF (I) Track Quality Flag from UFITQL
XFRIQF (I) .TRUE. if KFRIQF(I) = 1 or 3

8.2.4 dE/dx data: Bank TEXS

Note: These functions return uncalibrated numbers. In general, dE/dx information should be
accessed with subroutines QDEDX and QDEDXM (see 12.1).

XTEX (I) .TRUE. if dE/dx is available for track I
KNTEX (I) Number of TPC sectors on track I

In the following, N is the loop index of: DO 10 N = 1, KNTEX(I)

KTEXSI (I,N) Sector slot number

QTEXTM (I,N) Truncated Mean of dE/dx measurements
QTEXTL (I,N) Useful Track Length for dE/dx
KTEXNS (I,N) Number of Samples used for dE/dx
QTEXAD (I,N) Average Drift length of samples

8.2.5 Electron identification: Bank EIDT

XEID (I) .TRUE. if electron identification is available for track I
KEIDIF (I) Quality flag

QEIDRI (I,N) R(N) estimator, N =1 ... 7. N = 1: Energy balance; N = 2: compactness; N
= 3,4: long. profile; N = 5: dE/dx; N = 6: Dtheta barycenter; N = 7: Dphi
barycenter.

QEIDEC (I) Corrected energy with electron hypothesis
KEIDIP (I) Particle hypothesis (= 1 if electron)
QEIDEI (I,N) Energy in centered storeys stack N

47

8.2.6 Muon — HCAL association: Bank HMAD

XHMA (I) .TRUE. if HCAL data are available for track I
KHMANTF (I) Number of Fired planes

KHMANE (I) Number of Expected fired planes

KHMANL (I) Number of Fired planes within Last ten planes
KHMAMH (I) Mult Hits: number of clusters in last ten planes
KHMAIG (I) IGeomflag: flag of possible dead zone
QHMAED (I) Energy Deposit in corresponding HCAL storey
QHMACS (I) x?

KHMAND (I) Number of Degrees of freedom

KHMAIE (I) Expected bit map

KHMAIT (I) True bit map

KHMAIF (I) Preliminary identification flag

8.2.7 Muon chamber data: Bank MCAD
XMCA (I) .TRUE. if muon chamber data are available for track I
N = 1,2: Int/Ext chambers
KMCANH (I,N) Number of associated hits
QMCADH (I,N) Minimum distance hit—track
QMCADC (I,N) Cutoff on hit—track distance
QMCAAM (I) Min. angle between extrapolated and measured (in muon ch.) track
QMCAAC (I) cutoff on minimum angle

8.2.8 QMUIDO Muon Identification: Bank MUID

XMUI (I) .TRUE. if QMUIDO information is available for track I
KMUIIF (1) Identification Flag

QMUISR (I) Sum of HCAL residuals

QMUIDM (I) Distance between track and closest muon chamber hit.
KMUIST (I) FRFT track number of shadowing track

48

8.2.9 ECAL objects: Bank PECO

XPEC (I)

QPECER (I)
QPECE1 (I)
QPECE2 (I)
QPECTH (I)
QPECPH (I)
QPECEC (I)
KPECKD (I)
KPECCC (I)
KPECRB (I)
KPECPC (I)

.TRUE. if ECAL data (PECO) are available for track I
Raw energy.

Fraction of energy in stack 1

Fraction of energy in stack 2

Theta

Phi

Energy corrected for geometrical effects

Region code — see ALEPH 88-134

Correction code — see bank description

Relation bits — see bank description

PCOB number of associated cal. object

8.2.10 ECAL objects: Bank PEPT

XPEP (I)

QPEPT1 (I)
QPEPP1 (I)
QPEPTS (I)
QPEPP3 (I)

.TRUE. if ECAL data (PEPT) are available for track I
Theta in stacks 1 and 2

Phi in stacks 1 and 2

Theta in stack 3

Phi in stack 3

8.2.11 HCAL objects: Bank PHCO

XPHC (I)

QPHCER (I)
QPHCTH (I)
QPHCPH (I)
QPHCEC (I)
KPHCKD (I)
KPHCCC (I)
KPHCRB (I)
KPHCPC (I)

.TRUE. if HCAL data (PHCO) are available for track I
Raw energy

Theta

Phi

Energy corrected for geometrical effects

Region code — see ALEPH 88-134

Correction code — see bank description

Relation bits — see bank description

PCOB number of associated cal. object

49

8.2.12 Reconstructed V0s: Bank YVOV

XYVo (I) .TRUE. if V0 data are available for track I
KYVOK1 (I) FRFT track number of positive track from V0
KYVOK2 (I) FRFT track number of negative track from V0
QYVOVX (I) VO x coordinate

QYVOVY (I) V0 y coordinate

QYVOVZ (I) VO z coordinate

QYVo0X1 (I) First constraint on V0 mass (r in ALEPH 88-46)
QYVo0X2 (I) Second constraint on V0 mass (b in ALEPH 88—-46)
QyYvocz2 (I) x? of VO vertex fit

KYVOoIC (1) Fit hypothesis (see YVOV bank description)
QYVODM (I) Minimum distance between helices

QYVos1 (I) Psi angle for + track from VO

QYVoSs2 (I) Psi angle for — track from VO

8.2.13 Photons from GAMPEC: Bank EGPC

XEGP (I) .TRUE. if GAMPEC data are available for track I

QEGPR1 (I) Energy fraction in stack 1

QEGPR2 (I) Energy fraction in stack 2

QEGPF4 (1) Energy fraction in 4 central towers

QEGPDM (I) Distance to the closest track (cm)

KEGPST (I) NST14100«NST2+10000«NST3, NSTi=number of storeys in stack i
KEGPQU(I) QUality flag

e CRCK + 10*DST1 + 100*DST2 + 1000*DST3
e DSTi = 1 if dead storey(s) in stack i
e CRCK = 1 if photon in crack region

KEGPPE (I) Row number of corresponding PECO cluster

50

8.2.14 Energy Flow: Bank EFOL

XEFO (I) .TRUE. if energy flow (EFOL) data are available for track I
KEFOTY (I) Type of energy flow object (see Sec. 11.2)

KEFOLE (I) PECO number of associated ECAL object

KEFOLT (I) FRFT number of associated charged track

KEFOLH (I) PHCO number of associated HCAL object

KEFOLC (I) PCOB number of associated calorimeter object

KEFOLJ (I) EJET number of associated jet

8.2.15 Neutral objects from PCPA: Bank PCQA

XPCQ (1) .TRUE. if PCQA data are available for track I
KPCQNA (I) NAture of neutral object (see Sec. 11.3)

8.3 Vertex attributes

The following attributes are all vertices. The argument (IVX) always refers to vertex IVX.

QVX (IVX) x position

QVY (IVX) vy position

QVZ (IVX) 1z position

KVN (IVX) JULIA/GALEPH vertex number

KVTYPE(IVX) vertex type (as in PYER) = 1 for primary vertex; = 2 for secondary vertex
QVEM (IVX,N,M) element (N,M) of the covariance matrix N;M = 1,2,3 in the order QVX,QVY,QVZ

QVEM (IVX,1,1) is set to —1 if the error matrix is not available.

See Section 7.8 for pointers between ALPHA tracks and vertices.

51

Chapter 9

Kinematics and Track Operations

In this chapter, the kinematics utility routines available in ALPHA are described. Also, many
routines for creating new tracks and modifying existing tracks are described. First, calculations with
scalar results are summarized. Next, routines with vector results are described (e.g., cross product).
Finally, routines for doing kinematic fits, vertex fits, Lorentz transformations are discussed.

9.1 Scalar quantities

The arguments 1,J,K,L. are ALPHA “track” numbers.

QCT (1)

QPH (I)

QPT (I)
QBETA (I)
QGAMMA (I)

cos (polar angle)

PHi = azimuth (radians)

Transverse momentum (with respect to the beam line)
beta (see 8.1.1 for mass assumption)

gamma

Note: Returned masses are negative if (E? — p?) is negative.

QMSQz2 (LJ)
QM2 (1,J)
QMSQ3 (LJ,K)
QM3 (LJ,K)

(invariant mass)? of particles I and J
invariant mass of particles I and J
(invariant mass)? of particles I, J, and K

invariant mass of particles I, J, and K

QMSQ4 (1,J,K,L) (invariant mass)? of particles I, J, K, and L

QM4 (I1,J,K,L)
QDMSQ (L,J)

QPPAR (L,J)
QPPER (1,J)

invariant mass of particles I, J, K, and L

mass? of the 4—momentum difference p(I) — p(J). In a decay I ——> J + x,
QDMSQ(L,J) gives the mass? of x.

momentum component of particle I parallel to particle J

momentum component of particle I perpendicular to particle J

52

QDOT3 (1,)) scalar product of momentum vectors I and J (3—vectors)
QDOT4 (1,J) scalar product of 4—vectors I and J = QE(I) * QE(J) — QDOT3(1,J)
QCOSA (1,J9) cos (angle between tracks I and J) (lab frame)

QDECA2(1,J) cos (decay angle): In a two—body decay x — I + J, the decay angle is the
angle between particle x and particle I, measured in the rest frame of particle
x (i.e., the angle between the boost direction and particle I).

QDECAN(I,J) extension of QDECA2 for the n—body decay I — J + any. Note the different
meaning of the first argument in QDECA2 and QDECAN.

QMDIFF(1,’part’) mass difference between I and particle table mass of ‘part’.

QMCHI2(1,’part’) x? resulting from mass difference between I and particle table mass of ‘part’.
This function is equivalent to

(QMITK) — QPMASS('part — name'))?/QSIGMM (ITK).

QMCHIF(I) x? of mass-constrained fit (KVFITM or KVFITA - see 9.3). QMCHIF (I)=-1
if track I was not the result of a fit.

QVDIF2(IV1,IV2) distance between vertices IV1 and IV2 in r — ¢ (see 9.4).
QVDIF3(IV1,IV2) distance between vertices IV1 and IV2 in 3 dimensions (see 9.4).
QVCHIF(I) x? of vertex fit (KVFITN or KVFITV — see 9.4).

9.2 Vector quantities

9.2.1 General Remarks

Except where noted below (e.g., mass), the attributes of “tracks” read from the input tape cannot
be changed by the user. To modify attributes of an “input” track, a copy of the track must be
made.

The following example illustrates some features of the routines described in this section.

ISUM = KVNEW (DUMMY)
DO 10 ITK1 = ... , ...
DO 10 ITK2 = ... , ...
CALL QVADD2 (ISUM, ITK1, ITK2)
C ... analysis of the sum of ITK1 and ITK2, for example:
CALL HF2 (4711, QP(ISUM), QM(ISUM),1.)
10 CONTINUE

The function KVNEW (DUMMY) creates a new track (ISUM) in the system area which is

needed as working space for most of the subroutines described here (see 9.2.8). New tracks can
be created whenever necessary, but to avoid exceeding the size of the BOS array, they should not

53

be created inside loops. A warning is issued if an “input” track is used as working space (i.e.if an
“input” track is given as the output track of a routine).

Subroutine QVADD2 (ISUM, ITK1, ITK2) adds the 4—momenta of tracks ITK1 and ITK2 and
stores the resulting composite particle as track ISUM (see 9.2.2). All track—track and track—vertex
relations, flags, etc. are set in QVADD2. For example, all flags for the lock algorithm are set
(see 10.2.3). Thus, with CALL QLOCK (ISUM), you lock ITK1 and ITK2 as well as ISUM. The
mother—daughter relation (see 7.5.1) from ISUM to ITK1 and ITK2 is stored, but NOT the reverse
daughter—mother relation; see KVSAVE in 9.2.9).

In subroutine calls, the result is stored in the track denoted by the first subroutine argument:
for example, CALL QVCOPY (ITO, IFROM) copies track IFROM to track ITO.

Do not mix up tracks from different classes. ITK1 and ITK2 in QVADD2 must belong the
same class (KRECO or KMONTE or a Lorentz frame derived from one of them; see 7.4.1). If you

really want to mix up tracks from different classes, they must first be “saved” in the same class
(see KVSAVC in 9.2.12).

9.2.2 Add 4-momenta of particles

Add two particles

|CALL QVADD2 (ISUM, ITK1, ITK2)

Add the 4—momenta of ITK1 and ITK2 and and store the result in ISUM.

Add three particles

CALL QVADDS3 (ISUM, ITK1, ITK2, ITK3)

Add the 4—momenta of ITK1, ITK2, ITK3 and store the result in ISUM.

Add four particles

CALL QVADD4 (ISUM, ITK1, ITK2, ITK3, ITK4)

Add the 4—momenta of the particles ITKn (n = 1 to 2,3, or 4) and store the result in ISUM.

Add N particles

CALL QVADDN (ISUM, ITK)

54

For adding more than four particles, either use QJADDP (see 10.3) or construct a loop with
QVADDN:

ISUM = KVNEW (DUMMY)
DO 10 ITK = ... , ...
10 CALL QVADDN (ISUM, ITK)

The sum of all track momenta is stored in ISUM.
Before using track ISUM in such loops, its momentum must be set to zero. This is done in

KVNEW. When reusing ISUM for another loop, however, it must be zeroed by CALL QVZERO
(ISUM).

9.2.3 Recalculate 4—Vector of VO

CALL QIDVO (ITK, ‘PI+’, ‘PI-)

Recalculates the 4—vector of a “V0” object ITK (i.e., a reconstructed neutral track pointing to
a V0) by using the 3—vectors of the decay particles and masses denoted by the two particle names
given as function arguments. The attributes of ITK are overwritten by the new 4—vector. The

attributes of the decay particles remain unchanged. For saving a VO mass hypothesis, the function
KVSAVE (9.2.9) or KVFITM (9.3) must be called. For example,

DO 10 ITK=KFVOT,KLVOT
CALL QIDVO (ITK, ’P’, ’PI-’)
IF (QMCHI2 (ITK, ’LAMO’) .LE. 9.)
& ISAVE = KVFITM (ITK, ’LAMO’, IER)
CALL QIDVO (ITK, ’P#’, ’PI+’)
IF (QMCHI2 (ITK, ’LAMO’) .LE. 9.)
& ISAVE = KVFITM (ITK, ’LAM#0’, IER)
10 CONTINUE

9.2.4 Copy a track

CALL QVCOPY (ITO, IFROM)

Copy the track attributes from IFROM to ITO. If one of the tracks is in the user’s track section,
only the basic attributes (see 8.1.1) are copied. Otherwise, all flags, relations, etc. are copied. See
remarks about lock algorithm in sections 10.2.1 and 10.2.3.

QVCOPY should be used only if a specific track ITO has to be overwritten. Another copy
routine which is protected against overwriting tracks is KVSAVE (9.2.9).

35

9.2.5 Cross product

CALL QVCROS (ICROSS, ITK1, ITK2)

Store the cross product of the vectors ITK1 and ITK2 in ICROSS. Space for ICROSS can be
reserved by ICROSS = KVNEW (DUMMY).

Mother — daughter relation: ITK1 and ITK2 are daughters of ICROSS.

9.2.6 Drop tracks

CALL QVDROP (‘part—name’, ICLASS)

Drop all tracks with name ‘part—name’ in the class ICLASS. For example,
CALL QVDROP (’> ’, ICLASS)

will drop tracks with any track in class ICLASS. The main application of this subroutine is to drop
all tracks in a specific Lorentz frame. See the example in section 9.5.3.

If ICLASS = KRECO or ICLASS = KMONTE: Only tracks created in the analysis program
are dropped; tracks coming from the event input file cannot be dropped. No garbage collection
takes place.

9.2.7 Copy track attributes into a Fortran array

(To copy a Fortran array into a track, see section 9.2.13.)

Copy 3—momentum of a track

CALL QVGETS3 (ARR, ITK)

Copy the 3—momentum (px,py,pz) of track ITK into the Fortran array ARR with DIMENSION
ARR(3).

Copy 4—momentum of a track

CALL QVGET4 (ARR, ITK)

Copy the 4—momentum (px,py,pz,E) of track ITK into the Fortran array ARR with DIMEN-
SION ARR(4).

56

Copy covariance matrix of a track

CALL QVGETS (ERRMAT, ITK)

Copy the 4*4 covariance matrix (order: px,py,pz,E) of track ITK into the symmetric Fortran
matrix ERRMAT with DIMENSION ERRMAT (4,4).

9.2.8 Create a new track

INEW = KVNEW (DUMMY)|

Create a new track (see 9.2.1) with momentum = energy = 0. The corresponding space is
allocated dynamically and NOT kept when a new event is read in. INEW is a track without a
particle name. None of the access methods described in Ch. 7 give access to it; the only access to
the track is with the track number INEW. Consequently, it can never be dropped (see 9.2.6). The
new track does NOT belong to a specific class (KRECO / KMONTE / Lorentz frame).

9.2.9 Save a track

ISAVE = KVSAVE (ITK, ‘part—name’)

To save track ITK means to copy it into a new track ISAVE and to assign a particle name to
the track copy. This particle name can be used later for direct access to this particle (see 7.4).
Note that the mass is NOT changed in KVSAVE (see KIDSAV, 9.2.11).

The class (KRECO / KMONTE / Lorentz frame; see 7.4.1) of a saved track is given by its
history (in the example below, the class of JPSI is set equal to that of ITK1 and ITK). A dedicated
routine KVSAVC (see 9.2.12) makes it possible to copy a track into a different or new class.
KVSAVC must be used instead of KVSAVE if the track class cannot be deduced from the track
history (see example in 9.2.12).

If ‘part—name’ is equal to ¢ ’, KVSAVE only performs a copy, and the track copy has no particle
name. In contrast to QVCOPY (see 9.2.4), KVSAVE never overwrites a track.

In a decay chain, the daughter—mother relation is established by KVSAVE. The inverse relation
(mother—daughter) is established in routines like QVADDx.

Example:) — ete:

ISUM = KVNEW (DUMMY)
ITK1 = KPDIR (’E+’, KRECO)
10 IF (ITK1 .NE. 0) THEN
ITK2 = KPDIR (’E-’, KRECO)
20 IF (ITK2 .NE. 0) THEN
C ... all e+ e- combinations:

57

CALL QVADD2 (ISUM, ITK1, ITK2)
C ... cut on invariant mass and save J/psi candidates:
IF (ABS (QM(ISUM) - QPMASS (’JPSI’)) .LT. (your cut))
& ITKPSI = KVSAVE (ISUM, ’JPSI’)
ITK2 = KFOLLO (ITK2)
GO TO 20
ENDIF
ITK1 = KFOLLO (ITK1)
GO TO 10
ENDIF

The daughter—mother relation is established only for the accepted (i.e., saved) ¥s. In subse-

quent loops, the #(s) is (are) directly accessible by their name and can be used, for example, to
analyze ¢’ — 77~ in the same way as) — ete™.

9.2.10 Save a track inside particle/antiparticle loop

ISAVE = KVSAVA (ITK, ‘part—name’, IANTI)

This routine has the same function as KVSAVE, but is intended to be used inside of loops over
particles and antiparticles. If IANTI is 0, the track is saved as ‘part—name’; if IANTI is nonzero,
the track is saved as the corresponding antiparticle.

9.2.11 Save a track and set its mass

ISAVE = KIDSAV (ITK, ‘part—name’)

This function does the same thing as KVSAVE, but also sets the mass of track ISAVE to the
mass of ‘part—name’. As in KVSAVE;, the original track ITK is not changed. For charged tracks,
KIDSAV will save tracks as the appropriate particle or antiparticle depending on their charge. For
example KIDSAV (ITK, ‘K+’) will save positive tracks as K+ and negative tracks as K.

9.2.12 Save a track with class ICLASS

ISAVE = KVSAVC (ITK, ‘part—name’, ICLASS)

Save (see 9.2.9) track ITK in track class ICLASS independent of the track history. Track classes
are described in 7.4.1. If class ICLASS does not yet exist, a new class is created. Note that the
maximum number of new classes is six (see 9.5).

It is possible but not recommended to put a reconstructed track into the class KMONTE (MC
truth) or vice versa. The lock algorithm will not work for these tracks.

58

Example: Create and save a beam particle in track class KRECO.

DIMENSION VEC(4)

VEC(1) = 0. px

VEC(2) = 0. Py

VEC(3) = QELEP * 0.5 beam energy
VEC(4) = VEC(3) energy = momentum

INEW = KVNEW (DUMMY)
CALL QVSET4 (INEW, VEC)
IBEAM = KVSAVC (INEW, ’BEAME+’, KRECO)

KVSAVC has to be used here instead of KVSAVE because the track history of INEW does not
specify the track class. See 9.2.8 and 9.2.13 for explanations of KVNEW and QVSET4.

9.2.13 Modify track parameters

(To copy a track into a Fortran array, see 9.2.7.)
The QVSxxx routines described below modify the specified track attributes but do not change

any flag or pointer. Thus, all track—track relations (KMOTH, KDAU, KSAME, etc.) which have
been established remain valid even if the routines completely overwrite the kinematic quantities.

Scale track momentum

CALL QVSCAL (ITK, FACTOR)

Multiply the momentum of track ITK by the factor FACTOR. The energy of ITK is set ac-
cording to the new momentum and the old mass value. QVSCAL can be called for “input” tracks.

Set mass of a track

CALL QVSETM (ITK, AMASS)

Set the mass of track ITK to AMASS. The new energy of ITK is set according to the new mass
and the old (unchanged) momentum. QVSETM can be called for “input” tracks.

Set 3—momentum of a track

CALL QVSET3 (ITK, ARR)

Copy the Fortran array ARR containing px, py, pz with DIMENSION ARR(3) into the mo-
mentum vector of track ITK. The new track energy is calculated from the new momentum and the
old mass.

59

Set 4—momentum of a track

CALL QVSET4 (ITK, ARR)

Copy the Fortran array ARR containing px, py, pz, E with DIMENSION ARR(4) into the
momentum vector of track ITK. All basic track attributes are recalculated. See example in section

9.2.12.

Set covariance matrix of a track

CALL QVSETS (ITK, ERRMAT)J

Copy the 4*4 Fortran matrix ERRMAT containing the track’s covariance matrix in the order
px,py,pz,E with DIMENSION ERRMAT(4,4) into the covariance matrix of track ITK.

9.2.14 Set User Track Flags

CALL QSTFLR (ITK,IFLAG,VAL) and CALL QSTFLI(ITK,IFLAG,IVAL)

ITK ALPHA “track” number
IFLAG Flag number: 1 — 18
VAL, IVAL Value to be stored in flag IFLAG

Each ALPHA “track” has 18 user flags which may be set to any integer or real value. QSTFLR and
QSTFLI are used to set a flag to a real number or to an integer, respectively. Once these flags are
set, they can be read with the functions KRDFL(ITK,IJFLAG) (integer) and QRDFL(ITK,IFLAG)

(real); see section 8.1.8.

9.2.15 Subtract track momenta

CALL QVSUB (IDIFF, ISUM, ISUB)

Subtract the vector ISUB from ISUM and store the result in IDIFF. Space for IDIFF can be
reserved by IDIFF = KVNEW (DUMMY).

e If QE(ISUM) < QE(ISUB), the result is meaningless.
o If QP(IDIFF) > QE(IDIFF), the result gets a negative mass.

e A warning is issued in either case.

60

9.2.16 Zero track attributes

CALL QVZERO (ITK)

Set all attributes (momentum, etc.) of ITK to 0. Note that KVNEW (see 9.2.8) implies
QVZERO.

9.3 Kinematic fitting

IFIT = KVFITM (ITK, ‘part—name’, IER)

Performs a mass—constrained fit for the decaying particle ITK. This fit readjusts the 4—vector
of ITK by using the constraint E? — p? = mass(’part—name’)? (method: Lagrange multiplier). In
particular, the fit improves the 3—momentum resolution. KVFITM determines the 4—momentum
of the decaying particle only; the 4—vectors of the decay products are not recalculated and re-
main unchanged. Therefore, the momenta of the daughter particles will not add up to the fitted
momentum of the mother exactly.

IFIT = KVFITA (ITK, ‘part—name’, [ER, IANTI)

This function is similar to KVFITM. It is intended to be used inside loops over particles and an-
tiparticles. The particle given by ‘part—name’ is used if IANTI is 0; the corresponding antiparticle
is used if [ANTI is nonzero.

9.4 Vertex fitting with YTOP

The following functions provide an interface to the YTOPOL package in ALEPHLIB.

IFIT = KVFITN (ND, ID, ‘part—name’)

Fit ND tracks stored in ID to a common vertex. IFIT is the number of new track coming into the
vertex; this track is stored with the name ’part-name’ and can be accessed with KPDIR, etc. The
vertex number is the end vertex of track IFIT:

IVX = KENDV(IFIT).
IFIT = -1 if the fit fails.

IFIT = KVFITV (IV,ND, ID, ‘part—name’)

Same as KVFITN except that vertex IV is used as an additional constraint in the fit.

Both functions refit the track parameters of the input tracks and calculate the 4-vector and
error matrix of the new track (IFIT) at the fit vertex. The fit vertex position and error matrix are
stored in the end vertex of IFIT: KENDV(IFIT). There can be any number of input tracks, but if

61

NTR > 10, KVFITx will first vertex tracks 1-10 and then add the following tracks to this vertex.
Input tracks can be either charged tracks, VO0s, or tracks resulting from a previous fit.

The x?/NDF for the vertex fit may be accessed with the statement function QVCHIF(IVX),
where IVX is the end vertex of IFIT. The number of degress of freedom for the routines are:

NDF = 2 * ND -3 for KVFITN
NDF = 2 * ND for KVFITV

The following statement functions give the distance between two vertices IV1 and IV2.

DIST = QVDIF2(IV1,IV2) distance in r — ¢
DIST = QVDIF3(IV1,IV2) distance in 3 dimensions

Example:

Assume that you have a D° — K7 candidate (ID0) and a lepton (ILEP) from a B-meson decay.
The following code finds the vertex of the B decay.

CALL QVSETM(IPION,QPMASS(’PI+’)) !pion mass
CALL QVSETM(IKAON,QPMASS(’K+’)) 'kaon mass
ITL(1) = IPION
ITL(2) = IKAON

IDO KVFITN(2,ITL,’DOKp’)
IF(IDO.GT.0) THEN

RMDO = QM(IDO) ! vertex refitted DO mass

IVDO = KENDV(IDO) ! DO vertex

CHI2 = QVCHIF(IVDO) ! chi**2 of the DO vertex
C

ITL(1) = ILEP

ITL(2) = IDO

IB = KVFITN(2,ITL,’Blep’) ! fit B vertex

IF(IB.GT.0) THEN
IVB = KENDV(IB)
CHI2 = QVCHIF(IVDO)
DIST = QVDIF3(IVB,IVDO)

B vertex

chi**2 of B vertex
distance between B and DO
vertex

ENDIF
ENDIF

62

9.5 Lorentz transformations

See also QDECAx (decay angle in the rest frame of a decaying particle) in 9.1.

9.5.1 Boost a track and its daughters

IBOOST = KTLOR (ITK, IREST) |

Boost the track ITK into the rest frame of IREST and store the result in IBOOST.

The sample of all tracks boosted into the rest frame of any track IREST constitutes its own
track class which is denoted by the track number IREST, and which can be accessed directly as
described in 7.4. Another way to access boosted tracks is to use KSAME (see 7.6), which makes it
possible to jump from a given track to the same track in other Lorentz frames.

A track can be boosted into its own rest frame. The result is a vector with the initial direction
and a momentum very close to 0.

KTLOR does not boost a track into a given frame twice. It returns, instead, the number of the
already boosted track. This rule is only valid as long as you leave the mass and the particle name
unchanged.

If a composite track is to be boosted, all daughters, granddaughters, etc. (but NOT mothers,
etc!) of the track are boosted at the same time. The mother—daughter and daughter—mother

relationships among the boosted tracks are established. If these relationships are not needed, use
KTLOR1 or QTCLAS described below.

The track to be boosted (ITK) and the track which defines the rest frame (IREST) may belong
to different track classes. No check is done that the boost makes sense. Note, however, an important
restriction: If more than one track is boosted into a frame, all of them must come from the same
class. This restriction prevents putting reconstructed tracks and MC truth into the same track
class; see example in 9.5.3.

A maximum of six Lorentz frames can be used simultaneously. Frames which are not used any

more can be dropped by CALL QVDROP (° ‘, IREST) (see 9.2.6) to reduce the number of frames
in use, and to release the space occupied by the boosted tracks.

9.5.2 Boost a track

IBOOST = KTLOR1 (ITK, IREST)

Same function as KTLOR except that daughters are NOT boosted. A track boosted by KT-
LORI1 has no daughters or mothers, even if these relatives exist in the original frame.

63

9.5.3 Boost all tracks of a given class

CALL QTCLAS (ICLASS, IREST)

Boost the tracks in class ICLASS (= KRECO or KMONTE or a Lorentz frame previously
defined) into the rest frame of track IREST. The track selection follows exactly the same rules as
described for the event topology routines in Chapter 10. In particular, selection options can be
set by the routines QJOPTR or QJOPTM (see 10.1), and locked tracks are not boosted. As in
KTLORI1, daughters are NOT boosted and mother—daughter relations are NOT available.

Example:

IREST = ... this momentum vector defines the rest system.
C boost the reconstructed tracks:
CALL QTCLAS (KRECO, IREST)
C if you want to boost MC particles into the same frame, first make a
C copy of IREST - do not mix up KRECO and KMONTE in the same class:
ICOPY = KVSAVE (IREST, ’COPY’)
CALL QTCLAS (KMONTE, ICOPY)

C later reference to the boosted particles (see >)
ITK = KPDIR (°CHARGED’, IREST)

C use a loop with KFOLLO. The same for MC particles:

ITK = KPDIR (’E+’, ICOPY)

C drop all boosted tracks in frame IREST:
CALL QVDROP (° °’, IREST)

64

Chapter 10

Event Topology Routines

All of the subroutines described in this chapter perform loops over tracks or particles. The argu-
ments and loop algorithms are similar for all of these subroutines, and are described in detail in
Section 10.3. The “tracks” to be considered are selected with the routines QJOPTR (for recon-
structed tracks) and QJOPTM (for Monte Carlo tracks); these routines also specify tracks to be
used by the Lorentz transformation routine QTCLAS (see 9.5.3). In addition, the LOCK routines
described in Section 10.2. can be used to exclude tracks from analysis by the QJxxxx routines
described in this chapter.

10.1 Options for “QJxxxx” routines

10.1.1 Set option for reconstructed objects

CALL QJOPTR (’reco—option’, additional’)

Input arguments:
’reco—option’ One of the following options:

'RE’: “REconstructed” tracks (default; see 7.1)

’CO’: Calorimeter Objects

’CH’: CHarged tracks

’EF’: ENFLW or mask energy flow objects depending on ELFW option; see

Ch. 11.

’EJ’: YCUT=0.003 jets based on objects in EF section; see 11.2.

e 'PC’: PCPA-based energy flow using PCPA neutral objects and selected
charged tracks; see 11.3.

e ’AL’: All objects (charged tracks, cal. objects, ECAL objects, HCAL objects,
V0s, VO daughter tracks, etc.). If not applied skillfully together with LOCK,
many objects will be counted twice.

e 'NO’: NO object. Only objects specified by ’additional’ (see below) will be

taken into account.

’additional’ Particle name of one or several additional particle(s) to be analyzed. If no addi-
tional particles are to be considered, the argument ’ * must be given (e.g., CALL

QJOPTR(’CO’, *)).

65

The following example would cause the QJ routines to consider charged tracks and all particles
called MISS—VECTOR; MISS—VECTOR might be a pseudo—particle created by one of the rou-
tines described later in this chapter.

CALL QJOPTR (’CH’, ’MISS-VECTOR’).

Specifying additional reconstructed particles (QJOPTR) has no impact on MC particles (QJOPTM)
and vice versa.

10.1.2 Set option for MC particles

CALL QJOPTM ("MC-option’, ’additional’)

"MC-option’ One of the following options:

e *VI’: Only particles with a stability codes > 0. VI stands for ‘best chance to
be visible’. (default: see 8.1.5)

e ’EP’: Only particles with stability codes 1, 2, or —3. EP stands for energy-
momentum conservation.

e AL’: All objects. If not applied carefully together with LOCK, many objects
will be counted twice.

e ’'NO’: No object. Only objects specified by ‘additional’ will be taken into
account.

’additional’ Same as for QJOPTR.

10.2 Lock tracks / subsamples of tracks

The “LOCK” routines described here make it possible to exclude tracks from analysis by the
routines (QJxxxx) described in this chapter. This feature can be used both to flag background
tracks and to restrict the analysis to a subsample of all tracks (e.g., to consider only tracks which
contribute to a given jet). In any user routine, you may test the lock status of a given track ITK
with XLOCK(ITK) which is .TRUE. if the track has been locked.

Every track has three independent locks: one simple one (QLTRK) and two more complicated
ones (QLOCK and QLOCK?2) with a broader scope of applications. If desired, several locks can be

used simultaneously. A track is considered “unlocked” if and only if all three locks are open.

Opening and closing locks is done only in user routines; no track is locked unless it is explicitly
locked by the user.

66

10.2.

1 Lock a single “track”

CALL QLTRK (ITK)

ITK ALPHA “track” number

Remarks: In contrast to the other locks described below, QLTRK locks the object ITK
and its direct copies only (including the same object with a different vertex
assignment) —— no other associated objects are affected.

10.2.2 Unlock a single “track”

CALL QLUTRK (ITK)

ITK ALPHA “track” number

Remark: QLUTRK opens only the lock set by QLTRK. If another lock is still closed,
the track remains locked.

10.2.3 Lock a track “family”

CALL QLOCK (ITK)

ITK

ALPHA “track” number

The family of track ITK consists of:

The track ITK itself.

All copies of track ITK which have been made or will be made, including Lorentz boosts of
ITK.

For charged tracks, all associated cal. objects; for cal. objects, all associated charged tracks.

For reconstructed tracks, all tracks based on the same reconstructed object but assigned to
different vertices, used with different mass hypotheses, etc..

Daughters, granddaughters, great—granddaughters, ... ; i.e., all kinship in descending line.

Mothers, grandmothers, great—grandmothers, ... ; i.e., all kinship in directly (!) ascending
line. If you use QLOCK for declaring a reconstructed particle to be background, all its
ancestors (composite particles based on it) are implicitly declared to be background.

Jets and other “pseudo particles” described in 10.3. If you lock a jet, you lock all contributing
particles. If you lock a particle, you lock all jet vectors to which the particle belongs. To lock
all particles not belonging to a jet, user QLREV described below.

Reconstructed tracks and MC truth are treated separately; locking a reconstructed track has no
effect on any MC track and vice versa. Lock does not work if you mix up reconstructed tracks and

MC.

67

10.2.4 Unlock tracks (locked with QLOCK)

CALL QLZER (IREMC)

IREMC = KRECO for reconstructed tracks and KMONTE for MC truth

Note that the lock algorithm works for all Lorentz frames simultaneously, and that the specification
of a particular frame is NOT allowed (in contrast to 7.4.1). Reconstructed objects and Monte Carlo
objects are treated separately. QLZER opens the lock QLOCK for all tracks. Tracks may remain
locked if other locks are still closed. It is not possible to remove the lock QLOCK for a single track.
Using two locks simultaneously (see 10.2.6) should provide all the facilities that are needed.

10.2.5 Reverse the lock state (corresponding to QLOCK)

CALL QLREV (IREMC)

IREMC (see 10.2.4).

e All unlocked tracks will be locked.

e Alllocked tracks will be unlocked provided that there is no other closed lock and, for composite
particles, that there is no locked daughter, granddaughter, ... after the QLREV operation.

Calling QLREV a second time reestablishes the initial lock state. The mnemonic symbol XL-
REV(IREMC) is set to .TRUE. if the lock state is reversed. At the begin of the event processing
and after calling QLZER(IREMC), XLREV(IREMC) is .FALSE..

10.2.6 Second Lock

CALL QLOCK2(ITK)

QLOCK2 works in the same way as QLOCK. If one of these locks is used to flag background
tracks, the other one can be used to select subsamples of the non—background tracks. Also available:
CALL QLZER2 (IREMC), CALL QLREV2 (IREMC), and the logical function XLREV2(IREMC).

10.3 Add momenta of all particles of a given class

CALL QJADDP (SCALAR, ‘vector—name’, ICLASS)

For adding momenta of a few particles, see 9.2.2. (NOTE: All of the QJxxxx routines have
similar arguments. The arguments are explained fully in this explanation of QJADDP.)

68

10.3.1 Input argument

ICLASS Class = KRECO or KMONTE or a Lorentz frame identifier (see 7.4.1). If ICLASS
is KRECO, note that initially all charged particles have the pion mass and all
neutral objects have mass = 0. This can be modified by CALL QVSETM (see
9.2.13). If ICLASS refers to a Lorentz frame, particles not boosted into the frame
are ignored without notification. The routine QTCLAS (see 9.5.3) performs a
Lorentz transformation of all tracks belonging to a class. If a particle has been
boosted several times into the same frame, the most recently boosted hypothesis
will be used (see remarks in 7.4.5).

10.3.2 Results

A scalar result is stored in the first subroutine argument. In QJADDP, the scalar result is the
3—momentum sum of all particles. An output vector is specified by its name, which is the second
subroutine argument ‘vector—name’. If you are interested in the scalar result only and not in the
output vector, specify a blank space ‘ ’. QJADDP has exactly one output vector: the sum of all
4—momenta. The following example shows how to use this vector.

CALL QJADDP (PSUM, ’ADD-ALL’, KRECO, ...)
ISUM = KPDIR (’ADD-ALL’, KRECO)
CALL HF2 (4711, QP(ISUM), QM(ISUM), 1.)

Other routines may output several vectors; a loop using KFOLLO (see 7.4.2) must be constructed
to access all of them.

Locking an output vector locks all particles contributing to it (see 10.2.3). You can test whether
a track ITK contributes to an output vector ISUM by using the logical symbol XSAME (ITK,
ISUM) (Sec. 8.1.7).

The output vectors of “QJ” routines are called “pseudo—particles”. In some routines described
below, these pseudo—particles represent an axis rather than a 3— or 4—vector; the momentum
value may or may not be meaningful. For consistency, an energy assuming mass = 0 is calculated
in these cases.

In addition, pseudo—particles are treated differently than “real” particles:

e A warning is issued if the same name is used for a pseudo—particle and a “real” particle.

e Existing pseudo—particles are dropped automatically if the same name and the same class is
used in another call to a “QJ” routine. Thus, in

CALL QJADDP (PSUM, ’ADD-ALL’, KRECO, ...)
CALL QJADDP (PSUM, ’ADD-ALL’, KRECO, ...)
CALL QJADDP (PSUM, ’ADD-ALL’, KMONTE, ...)

the output vector of the first call is not available after the second call. Thus, output vectors
from different calls are never mixed up. Since the third call refers to a different class, the
vector from the second call is not dropped. Note that you are free to invent new names in
every new call to a “QJ” or any other routine.

69

10.4 Momentum tensor eigenvalues and eigenvectors

CALL QJEIG (EIGVAL, ‘eigenvector’, ICLASS)

See also QJSPHE in 10.6 for sphericity value and axis.

Input argument:

ICLASS described in 10.3.
Results:
EIGVAL eigenvalues in descending order with DIMENSION EIGVAL(3).

e Sphericity = 1.5 * (1. — EIGVAL(1))
e Aplanarity = 1.5 * EIGVAL(3)
e Planarity = EIGVAL(3) / EIGVAL(2)

’eigenvector’ Three eigenvectors:

e IMAJOR = KPDIR (’eigenvector’, ICLASS)
e ISEMI = KFOLLO (IMAJOR)
e IMINOR = KFOLLO (ISEMI)

10.5 Linearized momentum tensor eigenvalues and eigenvectors

CALL QJTENS (EIGVAL, ‘eigenvector’, ICLASS)

Same as QJEIG except that a different normalization is used. The momentum tensor for this
calculation is defined as

1 PjiPri
Mjr = 5 Z e (10.1)

jk=1,2,3 (10.2)

Input arguments and results are as described for QJEIG.

10.6 Sphericity

CALL QJSPHE (SPHERI, ‘spheri—axis’, ICLASS)

Calculates sphericity value and sphericity axis. See also QJEIG in 10.4 for eigenvalues and
eigenvectors of the momentum tensor.

70

Input argument:

ICLASS described in 10.3.
Results:

SPHERI Sphericity value

’spheri—axis’ Sphericity axis.

Error conditions:

Zero or one track SPHERI value 0.; output vector = 0.,0.,0.,0.
Two tracks SPHERI = 0.; output vector = track vector with largest p.

10.7 Thrust

CALL QJTHRU (THRUST, ‘thrust—axis’, ICLASS) |

Input argument:

ICLASS described in 10.3.
Results:
THRUST Thrust value.

*thrust—axis’ Thrust axis.
Error conditions:

No track THRUST value 0.; output vector = 0.,0.,0.,0.

One track thrust value = 1; output vector = track vector.

10.8 Fox—Wolfram Moments

CALL QJFOXW(FOXWOL, ICLASS)

Input argument:

ICLASS described in 10.3.
Result:
FOXWOL Fox—Wolfram moments HO — H4; DIMENSION FOXWOL(5).

71

10.9 Divide event into two hemispheres

CALL QJHEMI (’same—s’, ‘opp—s’, ICLASS, IVEC, COSCUT)

Input arguments:

ICLASS described in 10.3.
IVEC Track number of vector which defines the “hemi”spheres.
COSCUT The cosine of the opening angle of a cone around IVEC. Tracks inside this cone

belong to the same side, and all other ones belong to the opposite side. The
word “hemisphere” is correct if COSCUT = 0.

Results:
’same-—s’ The 4—momentum sum of tracks on the same side as IVEC.
’opp—s’ The 4—momentum sum of tracks on the side opposite to IVEC.

The two output vectors can be used to assign tracks to one of the the two hemispheres with
the lock algorithm (10.2.3).

In the following example, the event is divided into two hemispheres according to the thrust axis.
Then, each hemisphere is boosted separately into the rest frame of all contributing tracks.

DIMENSION IVECT(2)
C---Thrust axis
CALL QJTHRU (THRU, ’THRUST’, KRECO)
ITHRU = KPDIR (’THRUST’, KRECO)
C---Two hemispheres:
CALL QJHEMI (’SAME’, ’0OPP0O’, KRECO, ITHRU, 0.)
IVECT(1) = KPDIR (’SAME’, KRECO)
IVECT(2) = KPDIR (’0PPO’, KRECO)
C---Lock all tracks in the ’oppo’ hemisphere:
CALL QLOCK (IVECT(2))
C---Loop over both hemispheres:
DO 10 IHEMI =1, 2
C---Transform all selected tracks into the rest frame of IVECT(IHEMI):
CALL QTCLAS (KRECO, IVECT(IHEMI))
C---Now, do the analysis. For example:
C---Plot the thrust in the boosted frame.
CALL QJTHRU (THRUB, ’ ’, IVECT(IHEMI))
CALL QHF1 (4711, THRUB, 1.)
C--~-QLREV: locked tracks -> unlocked tracks and vice versa.
C---This selects tracks in the hemisphere ’OPPO’ for next loop.
CALL QLREV (KRECO)
10 CONTINUE

72

Note that in the above example, two of the maximum six Lorentz frames are in use. They can be
dropped by the statement CALL QVDROP (’ ¢, IVECT(IHEMI)) inside the loop (see 9.2.6).

10.10 Missing energy, mass, momentum

CALL QJMISS (PMISS, "miss—vector’, ICLASS, ITOTAL)

Input arguments:

ICLASS described in 10.3.
ITOTAL = 0: Missing energy, etc. is calculated with respect to the total energy
vector (0.,0.,0.,QELEP). > 0: Calculation is done with respect to vector
ITOTAL.
Results:
PMISS Missing momentum.
’miss—vector vector containing missing momentum, mass, and energy.

Error conditions:

e Total energy > LEP energy QELEP.
e Missing momentum > missing energy.

e In both cases, the output vector contains energy = PMISS and mass = 0.

10.11 Jet Finding

10.11.1 Scaled Invariant Mass Squared Algorithm

CALL QIMMCL (NJETS, ‘name’, ICLASS, YCUT, EVIS)

A loop runs over all pairs of tracks and finds the pair which has the smallest invariant mass M.
If (M/EVIS)? < YCUT, these 2 tracks are merged (i.e., 4—momenta added).

The loop is then rerun over the new list of tracks which has lost 2 particles and gained the
merged pair. When no remaining pair has a low enough mass, the track list contains a set of
merged tracks called jets.

The mass M of 2 tracks is defined as M? = 2E, F5(1 — cos;,).

73

Input arguments:

ICLASS described in 10.3.

YCUT Cut on the scaled invariant mass of 2 tracks. Pairs of tracks are merged if their
scaled invariant mass is smaller than YCUT.

EVIS The visible energy of the event. If EVIS equals 0 , the visible energy is computed
as the sum of the input particle energies.

Results:

NJETS is the number of “jets” .

’name’ Vectors containing 4—momenta of the jets.
EXAMPLE:

DIMENSION LISTEJ(300)
CHARACTER*13 CNAM
C---Select option: charged tracks
CALL QJOPTR(’CH’,’ ?)
C---calculate visible energy from input tracks:
EVISRE = 0.
YCUT = 0.02
CALL QJMMCL(NJT,’MMCLUS_RE_vis’,KRECO,YCUT,EVISRE)
CNAM = ’MMCLUS_RE_vis’
WRITE(KUPRNT,*)’ # of jets reconstructed ’, CNAM, ’:’, NJT
IF(NJT.GT.O0) THEN
C--- get ALPHA number for first jet found:
JJ = KPDIR(CNAM,KRECO)
20 IF(JJ .NE. O) THEN
C--- get the list of tracks merged into this jet:
LL=0
DO 211 L = KFCHT, KLCHT
C--- check if this track belongs to this jet:
IF(.NOT.XSAME(JJ,L)) GOTO 211
LL=1LL + 1
LISTEJ(LL) = L
211 CONTINUE
WRITE(KUPRNT,*) ’Jet # °, J
WRITE(KUPRNT,*) QX(JJ),QY(JJ),QZ(JJ),QE(II)
WRITE(KUPRNT,*) ’List of tracks merged into this jet:’
WRITE(KUPRNT,*) (LISTEJ(L),L=1,LL)
C--- get ALPHA number for next jet found:
JJ = KFOLLO(JJ)
GOTO 20
ENDIF
ENDIF

74

10.11.2 Scaled Minimum Distance Algorithm

CALL QJMDCL (NJETS, ‘name’, ICLASS, ALPHA, DELTA, ETA, EVIS)

A loop runs over all pairs of tracks and finds the pair which has the smallest invariant mass M.
If (M/EVIS®)? < \/2(1 — cos24), these 2 tracks are merged (i.e., 4—momenta added). The loop is
then rerun over the new list of tracks which has lost 2 particles and gained the merged pair. When
no remaining pair has a low enough mass, the track list contains a set of merged tracks. If these
tracks have energies bigger than 2nFEwvis, they are called jets. The mass M of 2 tracks is defined as
M2 = Q(ElE'_))a(l - COSOlg).

Input arguments:

ICLASS described in 10.3.

ALPHA Weight of track energies and Evis, in the calculation of the scaled mass. Pairs of
tracks are merged if their scaled mass is smaller than /2(1 — cos 26).

DELTA Half opening angle cut in degrees.

ETA Cut on jet energies (fraction of 2Evis); only jets with energies > 2nFEvis are kept.

EVIS The visible energy of the event; if EVIS equals 0 , the visible energy is computed

as the sum of the input particle energies.

Results:
NJETS is the number of “jets”.
‘name’ Vectors containing 4—momenta of the jets.

10.11.3 JETSET algorithm LUCLUS from LUND

CALL QJLUCL (NJETS, ‘name’, ICLASS, MINCLU, DMAX1, DMAX2 MULSYM, TGEN, DMIN)

Input arguments:

ICLASS described in 10.3.

MINCLU Minimum number of clusters to be reconstructed. (if <0, work space momenta are
used as a start) (usually=1)

DMAX1 Max. distance to form starting clusters (usually=0.25GeV)
DMAX2 Max. distance to join 2 clusters (usually=2.5 GeV)

MULSYM e = 1 for symmetric distance criterion (usual)

e = 2 for multicity distance criterion

75

Results:

NJETS

TGEN
DMIN

’name’

is the number of “jets”

e = —1 if not enough particles
e = —2 if not enough working space (KTBOMX)

Generalized thrust
Minimum distance between 2 jets

e = (0 when only 1 jet
e = —1,—-2as for NJET

Vectors containing 4—momenta of the jets.

10.11.4 PTCLUS: Jet-finding algorithm

CALL QJPTCL (NJETS, name’,JCLASS,NJTLIM,YJTLIM,EVIS)

The PTCLUS jet-finding algorithm is described in ALEPH 89 — 150.

Input arguments:

ICLASS
NJLITM

YJLITM

EVIS

Results:

NJETS
TGEN

‘name’

described in 10.3.

maximum number of jets to search for; if NJLITM=0, the algorithm finds the
number of jets using YJTLIM.

maximum allowed distance between two clusters (in M? / EVIS?); 0.02 is a typical
value.

visible energy. If EVIS=0, the visible energy is calculated.

is the number of “jets”. (—1 if algorithm fails)
Generalized thrust

Vectors containing 4—momenta of the jets.

76

Chapter 11

Energy Flow

Three energy flow packages are currently in use in ALEPH: the mask algorithm of Minard and
Pepe-Altarelli, the PCPA—based energy flow of Bonissent, and the ENFLW package of Janot. In
this chapter, the ALPHA interfaces for these algorithms are described. Although all three packages
are available in ALPHA, it is likely that only the ENFLW package will be supported in the future.
Therefore, users are advised to use ENFLW energy flow.

11.1 ENFLW Energy Flow

To use the ENFLW energy flow analysis, the EFLW card must be given in the ALPHA card file.!
If the EFLW card is present, the EFT section of ALPHA will be filled with selected charged tracks
and neutral ECAL and HCAL clusters. These objects can be accessed with DO loops (KFEFT,
KLEFT, KNEFT - see 7.1.1) or with the particle name ‘EFLW’ using the functions KPDIR and
KFOLLO (described in 7.4). The charged tracks that appear in the EFT section are copies of
standard ALPHA charged tracks from the CHT section. Therefore, if a charged track in the
CHT section is locked (using QLTRK or QLOCK), the corresponding track in the EFT section
will be locked also (and vice versa). All statement functions providing information about charged
tracks can be used directly with charged tracks in the EFT section — it is not necessary to find
the corresponding track in the CHT section first, as was required with the UPHY version of the
ENFLW package.

The following statement functions may be used to access additional information on EFLW
objects:

XEFO (I) .TRUE. if energy flow (EFOL) data are available for “track” I
KEFOTY (I) Type of energy flow object:

e 0 = Track

e 1 = Electron

e 2 = Muon

e 3 = Track from V0
e 4 = Electromagnetic

! As stated in Appendix C, additional libraries must be linked to use ENFLW with the DST. ALPHARUN wusers
will be asked whether they want to use ENFLW or QMUIDO with DSTs when they run the exec — the proper libraries
will then be linked automatically.

e 5 = ECAL hadron/residual
e 6 = HCAL element
e 7 = LCAL element

KEFOLE (I) PECO number of associated ECAL object
KEFOLT (I) FRFT number of associated charged track
KEFOLH (I) PHCO number of associated HCAL object
KEFOLC (I) PCOB number of associated calorimeter object
KEFOLJ (I) EJET number of associated jet

To use the event topology routines described in Chapter 10 with these energy-flow objects, use
option ’EF’ with subroutine QJOPTR (see 10.1):

CALL QJOPTR(’EF’,’ ?)
Example:

The following code calculates the total energy energy of an event and finds the thrust using
energy flow objects.

E=0.
DO 10 I = KFEFT, KLEFT
E=E + QE(I)
10 CONTINUE
C--—- Find thrust
CALL QJOPTR(’EF’, *>)
CALL QJTHRU(THRU, °THRU’, KRECO)

Jets based on energy flow objects using QJMMCL with YCUT = 0.003 (see Sec. 10.11.1) are
stored in the EJET bank. If the EFLJ card is used instead of the EFLW card, the EFT section -
will be filled as described above, and these jets will be stored in the JET section. The jets may be
accessed with DO loops (KFJET, KLJET, KNJET) or with the particle name "EJET’ using the
functions KPDIR and KFOLLO. The energy flow objects making up these jets can be found with
XSAME as described in Sec. 8.1.7. To save time, these jets may be used as input for jet-finding
with a higher YCUT (see 10.11.1) by calling QJOPTR with the option EJ:

CALL QJOPTR(’EJ’,?’).

XSAME may be used to find the original energy flow objects (in the EFT section) making up the
final jets.

11.2 Mask Energy Flow

The mask energy flow is not available on the MiniDST, and may eventually be dropped from the
DST. Therefore, users are advised to use the ENFLW energy flow described above.

78

The use of this algorithm is identical to that of the ENFLW algorithm except that the EFLW
card must be used with option 2:

EFLW 2
(Similarly, the card EFLJ 2 must be used instead of EFLJ.)

If EFLW 2 is present, the EFT section will be filled with the results of the mask energy flow.
In this case, all of the statement functions described above, as well as the event topology routines,
will apply to the results of the mask energy flow.

Energy-flow properties (eg., total energy) calculated from the mask—based energy flow analysis
done in JULIA are stored in the DHEA bank and are available in ALPHA as fortran variables (see
6.3.6).

11.3 PCPA-based Energy Flow

The PCPA-based energy flow uses neutral objects derived from the PCPA bank in addition to
selected charged tracks. The logical function XFRIQF(ITK) may be used to test whether a track
has been included for the PCPA energy-flow analysis. The PCPA neutral objects are stored in
the NET section by default. (Filling of the NEOB section may be disabled by including the card
NOPC in the ALPHA card file.) These objects can be accessed with DO loops (KFNET, KLNET,
KNNET - see 7.1.1) or with the particle name ‘NEOB’ using the functions KPDIR and KFOLLO
(described in 7.4).

To use the event topology routines described in Chapter 10 with PCPA-based energy flow (i.e.,
selected charged tracks plus PCPA neutral objects), use option PC” with subroutine QJOPTR
(see 10.1):

CALL QJOPTR(’PC’,’ ?).
To use only NEOB objects:
CALL QJOPTR(’NO’,’NEOB’).

The following statement functions may be used to access additional information on NEOB
objects:

XPCQ (I) .TRUE. if PCQA data are available for “track” I
KPCQNA (I) NAture of neutral object (see Sec. 11.3)

1 Isolated gamma

2 Gamma from multi-gamma neutral cluster

e 3 Gamma from identified #°

4 Gamma from electron bremstrhalung

e 5 Gamma from electromagnetic charged cluster

79

e 10 Unresolved gamma-gamma

e 12 Residual electromagnetic energy from neutral cluster
e 13 Residual electromagnetic energy from charged cluster
e 17 Neutral hadron

e 18 Residual hadronic energy from neutral cal object

e 19 Residual hadronic energy from charged cal object with no HCAL com-
ponent

e 20 Residual hadronic energy from charged cal object with HCAL compo-
nent

e 21 contribution from an ECAL cluster for which EBNEUT was in error
e 22 contribution from an LCAL object

Example:

The following code calculates the total energy energy of an event and finds the sphericity using
PCPA-based energy flow.

C--- First add up neutral energy
E = 0.
DO 10 I = KFNET, KLNET
E=E+QE(I)
10 CONTINUE
C-—-- Add energies of selected tracks

DO 20 I = KFCHT, KLCHT
IF(XFRIQF(I)) E = E + QE(I)

20 CONTINUE

C--- Find sphericity
CALL QJOPTR(’PC’, *)
CALL QJSPHE(SPHE, ’SPHE’, KRECO)

80

Chapter 12

Other ALPHA Physics Routines

12.1 dE/dx Analysis

12.1.1 Calculate dE/dx for Track ITK

CALL QDEDX(ITK,NHYP,RMASS,Q,RI,NS, TL,RIEXP,SIGMA IER)

This routine is an ALPHA interface to the ALEPHLIB routine TIDHYP. Note that the user
must check the return code IER before trying to use any of the output arguments — not all charged
tracks have dE/dx information!

Input arguments:

ITK ALPHA track number of a charged reconstructed track.

NHYP Number of hypotheses the user wishes to try. If NHYP=1, then RMASS, Q,
RIEXP, and SIGMA may be scalar variables.

RMASS(nhyp) Array of masses, one for each hypothesis.
Q(nhyp) Array of charges, one for each hypothesis.

Output arguments:

RI The measured truncated mean ionization, normalized such that RI=1 corre-
sponds to minimum ionizing.

NS Number of useful wire samples on the track.
TL Useful length of the track (cm).

RIEXP(nhyp) Expected ionization for each mass hypothesis, normalized such that RI-
EXP=1 corresponds to minimum ionizing.

SIGMA (nhyp) One standard deviation resolution error for each hypothesis. This is the ex-
pected dE/dx resolution, given NS, TL, RIEXP, and the momentum resolu-
tion. Note that one can calculate a x* with 1 d.o.f. as: x? =((RI-RIEXP)/SIGMA)

IER Error return code=0: successful return.

81

=1: cannot find the track, or ITK is not a charged KRECO track.
=2: cannot find the measured dE/dx information (bank TEXS).
: input KRECO charged track has no dE/dx information.

=4: cannot find the necessary database calibration banks, TC1X, TC2X,
and/or TC3X.

=5: cannot find RUNH or EVEH bank
e =6: there is no valid dE/dx calibration for this run

e o o o
Il
w

12.1.2 Modified QDEDX for Monte Carlo

CALL QDEDXM(ITK,NHYP,RMASS,Q,RI,NS,TL,RIEXP,SIGMA IER)

This routine serves the same purpose as QDEDX, but treats Monte Carlo differently. QDEDX
takes the dE/dx from the detailed simulation program TPCSIM. QDEDXM, however, only takes the
number of samples and the track length from TPCSIM, from which a prediction for the resolution
is obtained. The measured momentum and the Monte Carlo true mass then are used to predict
the mean dE/dx, which is smeared by a gaussian random number to give the simulated dE/dx.!
The advantage of this approach is that it is easy to adjust the parameterization to give agreement
with data, whereas to do so with TPCSIM is nontrivial and would require regeneration of the
Monte Carlo data set. The disadvantage is that the non—gaussian tails (which are small and arise
primarily on the high side, due to unresolved track overlap) are not simulated. An option does exist
to try to get the best of both worlds: by calling QMTAIL one can set a parameter to tell QDEDXM
to retain the tail simulated by TPCSIM beyond a specified number of standard deviations. The
distribution below that number of standard deviations then is obtained from the gaussian random
number generator. Clearly this solution is not perfect, since the distributions generally will not
match at the chosen cut value.

The arguments to this routine are identical to those of QDEDX. When QDEDXM is used on
Monte Carlo events, error code 6 means that no Monte Carlo truth information is available. Note
that if QDEDXM is used with real data, it is identical to QDEDX.

CALL QMTAIL(CUT)

QMTAIL is an entry point in QDEDXM which can be used to set the cut value, in standard
deviations, beyond which the dE/dx non—gaussian tail produced by TPCSIM is retained. By
default, CUT is set to 999.

12.1.3 Check TPC High Voltage for dE/dx

LOGICAL FUNCTION TCHKHV(KRUN,KEVT,IFLG)

The function TCHKHYV, from the ALEPHLIB, is used to check the TPC high voltage before
using the dE/dx information from the TPC. It checks the data base bank TDBS to find whether

'If this routine is called more than once for the same Monte Carlo event, the results will be different because a
different random number will be used.

82

any sectors were being intentionally operated at reduced voltage during the run in question. If so,
then only the normal TPC HV bit is checked. Otherwise, the “dE/dx” HV bit is checked.

Input arguments:

KRUN ALEPH run number.
KEVT ALEPH event number.

Output arguments:

IFLG What kind of test was made?

e =0: test was made on dE/dx HV bit.
e =1: test was made on TPC tracking HV bit.
e =2: no test was made (banks not found). TCHKHV=.FALSE.

TCHKHV = .TRUE. if HV is on; .FALSE. otherwise.

12.1.4 Check Existence of dE/dx Calibration for Run

LOGICAL FUNCTION TCHKEX(KRUN)

TCHKEX returns .TRUE. if a valid dE/dx calibration exists run KRUN. If a valid calibration
does not exist (because it has not yet been done or because the run was bad), then TCHKEX
returns .FALSE. This routine resides in the ALEPHLIB.

12.2 Photon conversions

CALL QPAIRF (I1,12,DXY,DZ0,DZ2,DTH,RMA,ZMA , XMA ,NC1,DIN1,NC2,DIN2,P,IER)

This routine is an ALPHA interface to the ALEPHLIB routine PAIRFD. Electrons from photon
conversion initially will have parallel trajectories. This algorithm finds the point on each helix
where the tracks are parallel in the X—Y plane and pass closest together; this point is called the

materialization point. Note that photon conversions are also found in JULIA, and are available as
VO0s (see Sections 7.1 and 8.1.2).

Input arguments:

I1 ALPHA track number of a charged track.
I2 ALPHA track number of a another charged track.

83

Output arguments:

DXY distance(cm) in the xy plane between the two tracks at the closest approach
to the materialization point.

DZo Distance(cm) in z between the two tracks at the origin.

DZ2 The z separation of the tracks at the closest approach to the materialization
point.

DTH the theta difference of the two tracks.

RMA the rho value at the materialization point.

ZMA the z value at the materialization point.

XMA The invariant mass of the tracks at the materialization point assuming they

are both electrons.

NC1,2 Number of coordinates with radius less than RMA for track 1,2. 0 if no
coordinate information is available or if there are no such coordinates.

DIN1,2 Radial distance between the coordinate closest to the origin and RMA for
track 1,2; variable is 0. if no coordinate information is available or if there
are no such coordinates.

P(3) Summed momentum of the two tracks at the materialization point in the
order X,y,z.
IER = 0 if calculation is successful; 1 otherwise.

12.3 Muon Identification: QMUIDO

CALL QMUIDO(ITK,IRUN,IBE,IBT,IM1,IM2, NEXP,NFIR,N10,N03,
XMULT,RAPP,ANG,ISHAD,SUDNT,IDF,IMCF,IER)

This routine is an ALPHA interface to the ALEPHLIB routine AMUID.? This routine simply
collects useful information from the banks HMAD, MCAD, and MUID. For users who only look at
the identification flag IDF, this routine is redundant since the flag is now stored in the bank MUID
and can be accessed with the statement function KMUIxx (see section xx). Users are encouraged
to make use of the access via statement functions. This routine can be used to look in more detail
at the muon identification or to provide backwards compatibility with the QMUIDO version 7.0
(UPHY) calling sequence. ~

Input argument:

ITK ALPHA track number of a charged reconstructed track.

2 As described in Appendix C, additional libraries must be linked to use QMUIDO (and the MUID bank) with
pre-1992 DSTs.

84

Output arguments:

IRUN
IBE
IBT
IM1
M2
NEXP
NFIR
N1o0
No3
XMULT
RAPP

ANG

ISHAD

SUDNT
IDF

IMCF

No longer filled (needed for backwards compatability)
Bitmap of the planes EXPECTED to have fired in the HCAL
Bitmap of the planes which have fired in the HCAL

Number of associated muon chamber hits in the inner layer

Number of associated muon chamber hits in the outer layer

Number of planes expected to have fired in the HCAL
Number of planes fired in the HCAL

Number of planes fired in the last ten expected HCAL planes

Number of planes fired in the last three expected HCAL planes

Excess hit multiplicity in the last ten planes on the HCAL

Distance between track extrapolation and closest muon chamber hit in stan-
dard deviations (the distribution is only approximately normal)

Angle between track extrapolation and closest muon chamber hits in stan-
dard deviations (the distribution is only approximately normal). Only avail-
able for tracks with at least one muon chamber hit in each layer

Shadowing flag = 0 if track is not shadowed; otherwise it is the JULIA track
number of the shadowing track.

Sum of HCAL hit to track residuals in the last 10 planes.

Official muon identification flag.

= 1 if muon flagged only by HCAL
= 2 if muon flagged only by MUON

= 3 if muon flagged by both HCAL and MUON 3 is the .AND. of 1 and
2

= 10 is one hit in each layer of MUON chambers but failing tight match-
ing criteria

= 11 is good HCAL pattern

= 12 is one and only one MUON hit

= 13 is good HCAL + one and only one muon

= 14 is good HCAL + one hit in each layer

= 15 is one hit in each layer of MUON chambers passing tight matching
criteria

= 0 not a muon

= -1 to -15 as above but lost shadowing contest

Monte Carlo true source of this track

= 0 ambiguous or data

85

e = 1 primary b

e = 2 secondary c

e = 3 primary c

e = 4 b to tau

e = 5 other muon

e = 6 non decaying hadron or electron

e = 7 decay hadron

IER No longer filled (needed for backwards compatability)

12.4 Utility Routines for VDET Analysis

12.4.1 Number of VDET hits per layer for track ITK

CALL QVDHIT(ITK,IVHIT) |

Input argument:
ITK ALPHA track number of a reconstructed charged track.
Output argument:

IVHIT o IVHIT(1
IVHIT(2
IVHIT(3
IVHIT (4

Number of VDET hits in » — ¢ on inner layer
Number of VDET hits in » — ¢ on outer layer
Number of VDET hits in z on inner layer
Number of VDET hits in z on outer layer

12.4.2 VDET HYV status

LOGICAL FUNCTION XVDEOK(dummy)

The function XVDEOK? returns .TRUE. if the VDET HV is on for the current event and
FALSE. otherwise. XVDEOK uses the HV bits and also calls KVGOOD (see below).

If you want to use tracks with high quality VDET data, first, check that the HV is on and
second, check that the tracks in which you are interested have VDET hits (see QVDHIT above).

8Until ALPHA 115 is released, XVDEOK must be declared LOGICAL by the user.

86

12.4.3 VDET Readout Status

INTEGER FUNCTION KVGOOD (dummy)

During several periods in 1991 and 1992, there were problems with the VDET readout which
caused VDET information to be read out when the HV was off. The VDET hits read out during
these periods are just noise and can distort tracks fitted with the VDET. The function KVGOOD
identifies whether the current event is in one of the bad periods, and if so, whether or not the HV
was on.

KVGOOD readout and HV status:

e = 0: no readout problems, HV is either ON or OFF.
e = +1: readout problems, HV is ON.
e = —1: readout problems, HV is OFF.

87

Chapter 13

ALPHA Utility Routines: Printing, Writing Events,
Timing, etc.

13.1 Program termination

CALL QMTERM (’any message’)

Can be called from anywhere.
Calls QUTERM, QUTHIS, QWMESS.
Input argument:

’any message’ character string, The message will be printed and should contain the reason
for the program termination.

13.2 Write the current event on the output file

|CALL QWRITE |

The file name is specified on the FILO card (see 4.1.3). This routine can be called from user
routines; it is called automatically from QMEVNT if the COPY option (4.1.5) is selected. If
QWRITE is called more than once for the same event, the event will be written only once.

13.3 Set classification word written to event directory

CALL QWCLAS (IBIT)

Input argument:

IBIT Turn on bit IBIT in classification word. IBIT =1 — 30.

88

QWCLAS has to be called once for each bit which is to be set; i.e., if three bits are to be set,
QCLASW has to be called three times. Note that a call to QWCLAS simply turns on a single bit
while leaving other bits unchanged. The intial classification word is the one read from the input
file; therefore, the classification word must be zeroed before storing your own values:

CALL QWCLAS(0).

If QWCLAS is not called, the classification word will be set equal to that on the input file.

13.4 Timing

13.4.1 Print job time consumption

|CALL QWTIME |

Called automatically from QMTERM.

13.4.2 Measure time consumption of part of program

CALL QTIMED(INUM)

This subroutine measures the time between two subsequent calls to QTIMED. Time statistics
can be kept for up to 9 different subroutine calls (INUM = 1 — 9). The time consumption summary
is printed automatically during job termination. The summary includes the number of calls and
the total time / call. The first CALL QTIMED sets the start time. The time consumption for
QTIMED itself (0.25 msec on CERNVM) is not subtracted in the time summary. (The CERNLIB
routines TIMED/TIMAD should not be used with QTIMED.)

Example:

CALL QTIMED(1)
CODE A

CALL QTIMED(2)
CODE B

CALL QTIMED(3)

Results:

QTIMED Ncalls total_time time/call Y
1 499 35 0.07 92.2
2 500 1 0.002 2.6
3 500 2 0.004 5.2

In this example, time 2 gives the time consumption of ‘CODE A’, time 3 gives the time consumption
of ‘CODE B’, and time 1 gives the time consumption between CALL QTIMED(3) and CALL
QTIMED(1).

89

13.5 Print routines
The routines described in this section are used to print information about events or to print mes-
sages. Some of the routines have the subroutine argument ’option’.

’option’ is composed of one or several characters. Each character has a special meaning:

H? print a header line. Without this option, you will get a sequence of numbers without
any description. With this option, an extra line containing the mnemonic symbols for
the numbers given underneath is printed.

0’ print an empty line and the header line.
1’ start at a new page and print the header line.
v ¢ blank space = no option

More options can be given for specific subroutines.

13.5.1 Print a message

CALL QWMESS (’any message’)

Input argument:

’any message’ (character string or character variable) If the 1st character of ‘any message’
is ‘0’ or ‘1, it is taken as carriage control character (’0’: empty line; ‘1’: new
page). If it is not ‘0’ nor ‘1, it is taken as part of the message.

13.5.2 Print a message plus run, event number

CALL QWMESE ('any message’) |

13.5.3 Print full event summary (many pages)

|CALL QWEVNT |

Calls QWHEAD, QWSEC, QWTREE

90

13.5.4 Print event header (one line)

CALL QWHEAD (’option’, ‘any text’)

Input arguments:

’option’ one of ‘H’, ‘0’, or ‘1’ (see 13.5)
’any text’ message; may be blank space: ¢’
Output see printer output of QWHEAD called with option ‘H’. Here, as in many other print

routines, it’s a matter of taste which data are important enough to be printed, and
comments are welcome. For better readability, the output should always fit onto
one printer line.

13.5.5 Print full event header (many lines)

CALL QWHFUL (’option’, ‘any text’)l

Subroutine arguments are the same as for QWHEAD.

13.5.6 Print information for “track”

CALL QWITK (ITK, ‘option’)]

Input arguments:

ITK ALPHA track number.
’option’ one of ‘H’, ‘0°, or ‘1’ (see 13.5). ‘L’: Do not print locked tracks.
Output see printer output when called with option ‘H’.

Meaning of column “det. data”:

general track fit data are available
dE/dx data are available

HCAL data are available

muon chamber data are available

Ecal data are available

IR

Hcal data are available
rightmost characters:
object is associated to one or several charged tracks

object is associated to one or several Ecal objects

oo Q

object is associated to one or several Hcal objects

91

13.5.7 Print information for vertex

CALL QWIVX (IVX, ‘option’)

Input arguments:
ALPHA vertex number.
one of ‘H’, ‘0’, or ‘1’ (see 13.5)

IVX

’option’

Output

see printer output when called with option ‘H’.

13.5.8 Print summary for categories of tracks or vertices

CALL QWSEC (ISEC, ‘option’)

Calls QWITK, QWIVX

Input arguments:

section number = section in QVEC and QVRT:

ISEC

’option’

KSOVT
KSCHT
KSIST
KSAST
KSVvoT
KSDCT
KSEFT
KSNET
KSGAT
KSJET
KSMCT
KSREV
KSMCV

Overlap objects

Charged tracks

Isolated = neutral cal objects

Cal objects associated to charged tracks
Neutral tracks pointing to reconstructed vertices
Tracks outgoing from reconstructed vertices
Energy flow objects

Neutral objects from PCPA

Photons from GAMPEC

Jets from energy flow objects

MC particles

Reconstructed vertices

MC vertices.

one of ‘0’, or ‘1’ (see 13.5). ’L’: Do not print locked tracks.

13.5.9 Print decay tree of track ITK.

CALL QWTREE (ITK, ‘option’)

Input arguments:

ITK

’option’

Output:

Track / particle number. to the output)
one of ‘H’, ‘0’, or ‘1’ (see 13.5)
Similar to CALL QWITK.

92

Chapter 14

Modifying ALPHA banks

ALPHA subroutines provide protection against inadvertently overwriting data read from the input
file. In this section, we describe how to modify the internal ALPHA banks (QVEC and QVRT)
intentionally. For “standard” operations (creating new tracks, vector operations, Lorentz transfor-
mations, etc.), ALPHA utility routines are available (see ch. 9). The tools described here can be
used when standard utilities do not exist.

14.1 User track / vertex sections

The subroutines QSUSTR or QSUSVX may be used to reserve certain track / vertex numbers
for your own exclusive usage; they will never be modified by any ALPHA utility routine unless
explicitly required. These routines may be called from the user initialization routine QUINIT.

14.1.1 Reserve user space for tracks

CALL QSUSTR (NUSTR)

Note that ALPHA does not clear (zero) this user space after each event.

Input argument

NUSTR number of user tracks in bank QVEC

e The track numbers reserved are 1 ... NUSTR.
e The first track number used in any ALPHA routine will be NUSTR+1.

User track space is allocated only if this routine is called.

93

14.1.2 Reserve user space for vertices

CALL QSUSVX (NUSVX)

Same as QSUSTR (14.1.1) : Replace “track” by “vertex” and “QVEC” by “QVRT”.

Utility routines can be called with user tracks as arguments. For these tracks, only the basic
attributes (columns 1 to 7) are modified : QX,QY,QZ,QE,QP,QM,QCH. All other columns are left
unchanged (and NOT set to 0!).

14.2 Modifying track / vertex attributes

All internal ALPHA banks are standard tabular BOS banks and can be modified like other banks.
For the banks QVEC and QVRT, an additional possibility is foreseen: these banks are passed as
arguments to subroutine QUEVNT and can be used as ordinary 2—dimensional arrays.

SUBROUTINE QUEVNT (QT,KT,QV,KV)
DIMENSION QT(XKCQVEC,1), KT(KCQVEC,1), QV(KCQVRT,1), KV(KCQVRT,1)

QT(JQVEQP,ITK) = 1.
CALL ABC (QT,KT,QV,KV)
END

SUBROUTINE ABC (QT,KT,QV,KV)

Remarks : QT and KT (tracks) refer to the same array (integer / real*4) and actually
to the address of the bank QVEC plus a 2—word offset for the bank header
(LMHLEN). QV and KV are defined similarly for bank QVRT (vertices).

Dimension : Use the mnemonic symbols KCQVEC and KCQVRT (Fortran parameters
defined in QCDE) for the number of columns. The number of rows can be
set to any positive number.

QT(JQVEQP,ITK) : Row number = ALPHA track number. column number = attribute. For
all attributes, parameters are available in QCDE. The parameter names
follow the usual convention (see App. B). “J” 4 3 char. of the bank name
+ 2 char. attribute description.

94

Chapter 15

Particle Table

15.1 Description

The particle table contains the following particle attributes: nominal mass, charge, life time, width,
and particle — antipart. relation.

In every ALPHA job, an internal particle table is built which combines data from the following
sources:

e Data cards described below.

o The “standard” ALEPH particle table stored on the data base. This table contains all
standard model particles (three generations) which can be produced at LEP energies, plus
some exotic particles.

e The “MC” particle table stored in the run record of MC event files. This table contains the
standard table, and if necessary, extra particles specific to the MC generator.

If particle attribute values from different sources do not agree, they are taken from data cards
with highest and from the MC table with lowest priority. The standard printout produced at job
termination indicates where the values come from.

New particles can be defined with the PNEW card (see below), or by using their names in
ALPHA subroutine calls. If particles are created in subroutine calls, a warning message is printed.

15.2 Particle name, particle code

Particles can be specified either by their name (example: ‘GAMMA ’) or by their integer particle
code.

General rule: Only the particle name is relevant. The integer code may change from one job to
another; if you wish to use the integer code, it must be initialized in each job by
calling the function (see 7.4.3):integer = KPART (’part—name’).

95

15.3 How to spell particle names

On data cards, every particle name (1 ... 12 characters) has to be terminated by exactly one blank
space.

Example
PMOD °’PI+ PI- ’ 0.14 ! is correct !
PMOD ’PI+ PI-’ 0.14 ! SERIOUS MISTAKE !

In the Fortran program, this extra blank space can be omitted or typed.

Lower case characters are translated into upper case characters. It would be wise, nevertheless,
to use UPPER case characters only.

15.4 Data cards for particle table

15.4.1 PMOD: Modify particle attributes

Format PMOD ‘part—name antipart—name ’ mass charge life—time width

Parameters:

’part—name antipart—name’ see 4.12.1. The attributes of a particle and its antiparticle are
modified at the same time. If a particle is its own anti— particle, the same
name has to be given twice.

mass charge life—time width: Real numbers (with decimal point). The charge of the antipar-
ticle is set to —charge. If less than four numbers are given, the remaining
particle attributes are not changed. '

Example:
PMOD ’GAMMA GAMMA ’ 0.001

sets the photon mass to 1 MeV; the other particle attributes (charge, lifetime, width) are not
changed.

Mistake:
PMOD °PI+ PIO ° .14

because pi+ and pi0 are NOT antiparticles of each other. Once a particle—antiparticle relation
is established (for example on the standard table), it can never be changed.

If the particle names given on this card are not yet established in the table then

96

e new table entries are created;
e a warning is issued;

e the program execution continues.

15.4.2 PNEW: New particles

Format PNEW ‘part—name antipart—name ’ mass charge life—time width

PNEW has the same function as the PMOD card (15.4.1) and has the same parameters, except

e PNEW causes a warning if the particles are already known;

e PMOD causes a warning if the particles are unknown;

program execution continues in either case.

15.4.3 PTRA: Modify particle names in the MC particle table

The PTRA card assigns an arbitrary particle name to a specific MC integer code. It has to be
used, for example, if different MC data sets with contradictory particle tables are read in one job.

The standard procedure to denote the nature of MC generated particles:
e Start with the integer code given for each generated particle.

e Get the corresponding particle name from the MC particle table.

e This name is relevant inside the ALPHA program.

Format PTRA ‘part—name antipart—name’ iMCcode iMCanticode

Parameters:

’part—name antipart—name’ see 15.4.1. the names for the particle and its antiparticle which
have to be used inside the ALPHA program.

iMCcode: integer particle code used in the MC generator (WITHOUT decimal point
and NOT included inside the apostrophes.)

iMCanticode: integer particle code used by the MC generator for the corresponding an-
tiparticle.

The routine QCPTRA is equivalent to the PTRA card and can be called from QUNEWR whenever
a new MC particle table is read in.

97

15.5 Access to particle properties

Inside an ALPHA job, particle properties can be obtained by specifying the particle either by name
(symbols starting with the characters “QP” or “KP”) or by the integer code (“QC” or “KC”). The
particle code has to be set by calling the function ICODE = KPART (’part—name’) at least
once per job. For more details, see 7.4.3.

KPART (’part—name’) Integer particle code for ‘part—name’

CQPART (intg—code) Particle name (12 characters; trailing characters filled with
blank spaces)

KPANTI (’part—name’, IANTI) If IANTI = 0: integer code for ‘part—name’ If IANTT un-
equal to 0: integer code for the antiparticle of ‘part—name’

KCANTI (intg—code, IANTI) ...

QPMASS (’part—name’) nominal mass
QCMASS (intg—code)

QPCHAR (’part—name’) charge
QCCHAR (intg—code)

QPLIFE (’part—name’) life time
QCLIFE (intg—code)

QPWIDT (’part—name’) width

QCWIDT (intg—code)

To check the particle names of ALPHA “tracks”, see sections 8.1.6 and 8.1.8.

98

Appendix A

Program Structure

QMAIN
|
+---— QMINIT
I I
| +-- QUIBOS
| +-- QUIHIS
| +-- QMALPH
| |
| +-- QUINIT
I
+=>-+--- QMREAD
I |
o +~-- ABRSEL
I |
| | +-...-> QUNEWR
I I
I +-- QMTERM
[
| +--- QMEVNT
I |
| +-- QFILL
I I
+-<=+ +-- QUEVNT

called from anywhere :

QMTERM

I
+-- QUTERM

I
+-- QUTHIS

I
STOP

main program

PROGRAM INITIALIZATION

init BOS

init histogram package

initialize ALPHA

user initialization <=---
READ EVENTS

open input files; read next record
called for every new run

terminate job if eof or time limit or .
PROCESS ONE EVENT

fill ALPHA variables

user event analysis <==-

PROGRAM TERMINATION
user termination ===
output histograms

Fortran STOP

Arrows (<---) indicate the important user routines.

99

Appendix B

Bank description

All banks described here must not be written to an output file.

TRACKS

1 number of words / track
2 maximum allowed number of tracks

Basic attributes

1 QX
2 QY
3 Qz
4 QE
5 QM
6 QP
7 CH
Flags
8 TN
9 SC
10 KS
11 CL
12 PA
13 QD
14 NP
15 SP
i6 0OV
17 EV
18 ND
19 DL
20 NO

I I R

H H H H H H HH H H

H

PX

PY

PZ
Energy
Mass
momentum
CHarge

JULIA / GALEPH Track Number

stability code

LUND status code

track Class

ALEPH particle code

offset for corresponding row in QDET (NOT the row number !)

pointer to Next Particle / same particle code / same class
Same Particle, different hypothesis or Lorentz frame
Origin Vertex no

End Vertex no

Number of Decay particles
offset of 1st daughter in particle List QLIN
Number of mother particles

100

21 OL I offset of 1st mother in particle List QLIN
22 NM I Number of Matches
23 ML I Match list = row offset in banks QMTL and QMTS

24 BM I Bit masks
34 LK I QLITK flag

35 DB F Distance of closest approach to beam axis (if track pointing
to the main vertex) or to the corresponding secondary vertex.

36 ZB F Z coordinate of point where DB is measured.

37 SD F Error**2 on DB

38 SZ F Error*x2 on DZ

39 CB F Chi**2 corresponding do DB and DZ.

Error Matrix
40-49 EM F triangular covariance matrix

50 CF F chi**2 from last kinematical fit
51 EW F weight from energy flow analysis

52-69 US User space

R * .

| QDET | DETECTOR INFORMATION
N *

1 number of words / track
2 maximum allowed number of tracks

1 AF I offset for corresponding row in bank FRFT (NOT row number !)
2 AL I offset for corresponding row in bank FRTL

3 NT I number of segments in bank TEXS

4 AT I offset for corresponding rows in bank TEXS (MAX : 5)

8 LT I 1last allowed AT address

9 AE I offset for corresponding row in bank EIDT

10 AH I offset for corresponding row in bank HMAD
11 AM I offset for corresponding row in bank MCAD
12 CF I calorimeter flag (<0 : ass, > O : isol, abs=1 : ECAL; =2 : HCAL)
13 EC I offset for corresponding row in bank PECO
14 HC I offset for corresponding row in bank PHCO
16 ET I offset for corresponding row in bank PEPT
16 FI I offset for corresponding row in bank FRID

101

17 NF I number of associated charged tracks

18 FL I offset of 1st ass. ch. track in list QLIN
19 NE I number of associated ECAL objects

20 EL I offset of 1st ass. ECAL object in list QLIN
21 NH I number of associated HCAL objects

22 HL I offset of 1st ass. HCAL object in list QLIN
23 LH I overlap - associated

24 EF I offset for corresponding row in bank EFOL
25 PC I offset for corresponding row in bank PCQA
26 EG I offset for corresponding row in bank EGPC
27 MU I offset for corresponding row in bank MUID
e *

| QVRT | VERTICES

S *

1 number of words / vertex
2 maximum allowed number of vertices

1 VX F XPosition

2 VY F YPosition

3 VZ F ZPosition

4 VN I JULIA /GALEPH Vertex number

5 TY B vertex TYpe

6 IP I track number of Incoming Particle

7 ND I Number of Decay particles

8 DL I offset for decay particle list

9 AY I offset for corresponding row in YVOV
10 AF I offset for corresponding row in FVER
11-16 EM F triangular error matrix

17 CF F chi**2 for vertex fit -- filled by KVFITN, KVFITV
18-25 ET F track-vertex error matrix

26-30 User space

T *

| QFPA | FIRST PARTICLE (FOR DIRECT ACCESS)
s *

1 number of track classes = 8
2 maximum number of rows

1 XX I ALPHA track number

102

| QLIN | ONE - TO MANY PARTICLE RELATIONS
*—mmm * (e.g. : daughter -> mother)

1 number of words / row = 1
2 maximum allowed number of relations

1 XX I ALPHA track number

| QMTL | MATCH LIST

1 number of columns = 1
2 maximum allowed number of track matches

1 XX I ALPHA Track number

| QMTS | NUMBER OF SHARED HITS IN MATCH LIST

1 number of columns = 1
2 maximum allowed number of track matches

1 XX I Number of shared hits

| QPAR | INTERNAL PARTICLE TABLE

1 number of words / particle = 10
2 maximum allowed number of particles

The attributes are exactly the same as in the PART bank.

| QPBT | PARTICLE FLAGS FOR BOOKKEEPING
e * (Parallel to QPAR bank)

1 number of columns = 1
2 maximum allowed number of particles

103

1 xx I ©bit flag
bit 1 : used in function KPC
bit 2 : particle attributes set by a data card
bit 3 : particle attributes set by MC table
bit 4 : pseudo-particle
bit 5 : particle defined on a PTRA card

| QPLI | POINTERS FROM QPAR TO QFPA
1 number of columns = 1
2 maximum allowed number of particles

1 xx I pointer

QTRA | MC PARTICLE TRANSLATION TABLE
1 number of columns = 1
2 maximum allowed number of particles in MC table

1 xx I internal particle code

104

Appendix C

Where to find ALPHA at CERN

C.1 ALPHA on CERNVM

The files needed to run ALPHA on the IBM are on the PHY disk. Type: GIME PHY or add a
line: ’EXEC GIME PHY’ in your PROFILE EXEC to get the PHY minidisk at login time.
They are (vsn=three digit ALPHA version number):

Fortran files

ALPHAvsn FORTRAN K Fortran code of all ALPHA subroutines and functions
ALCORvsn FORTRAN K Fortran code of corrections to current ALPHA version

QUUSER FORTRAN K Fortran code of the routines QUINIT,QUEVNT ,QUTERM (model
routines which have to be filled)

QCDE INC K
QMACRO INC K Include files QCDE, QMACRO (see 3.1.2)

HISTORIAN files

ALPHAvsn OLDLIB K Historian library
ALPHAvsn CORR K Correction file

QUUSER INPUT K Historian input for the routines QUINIT,QUEVNT,QUTERM (model
routines which have to be filled)

Input to the link step

ALCORvsn TEXT K Correction file

ALPHAvsn TXTLIB K ALPHA library; Other required libraries: ALEPHLIB, BOS77,
MINI, CERNLIB

To use ENFLW or QMUIDO on DST ALENFLW TEXT must be linked, and the EN-
FLWwvsn and JULIA libraries must be loaded

ALPHA card file (sample)

ALPHA CARDS K

ALPHARUN command file (see Ch. 2)

ALPHARUN EXEC K options stored in LASTING GLOBALV A
ALPHA documentation

ALGUIDE TEX K LATEX source for this document
ALPHAvsn NEWS K Description of changes in new ALPHA versions

105

C.2 ALPHA on VXCERN, ALWS

The files needed to run ALPHA on the VAX are in the PHY: directory (ALEPHSGENERAL:[PHY]).
They are (vsn = three digit ALPHA version number):

e Fortran files

PHY:ALPHAvsn.FOR Fortran code of all ALPHA subroutines and functions
PHY:ALCORvsn.FOR Fortran code of corrections to current ALPHA version

PHY:QUUSER.FOR Fortran code of the routines QUINIT,QUEVNT,QUTERM (model
routines which have to be filled)

PHYINC:QCDE.INC
PHYINC:QMACRO.INC Include filess QCDE, QMACRO (see 3.1.2)

o HISTORIAN files

PHY:ALPHAvsn.HLB Historian library
PHY:ALPHAvsn.CORR Correction file

PHY:QUUSER.INPUT Historian input for the routines QUINIT,QUEVNT,QUTERM
(model routines which have to be filled)

e Input to the link step

PHY:ALCORvsn.OBJ Correction file
PHY:ALPHAvsn.OLB ALPHA library

PHY:ALPHAvsn D.OLB with /DEBUG option; Other required link libraries: ALE-
PHLIB, BOS77, MINI, CERNLIB

To use ENFLW or QMUIDO on DST PHY:ALENFLW.OBJ must be linked, and the
ENFLWvsn and JULIA libraries must be searched

e ALPHA card file (sample)

PHY:ALPHA.CARDS
e ALPHARUN command file (see Ch. 2)

PHY:ALPHARUN.COM options stored in ALFPARAM.OPTB (by default)
e ALPHA news

ALEPH$GENERAL:[PHY.DOCJALGUIDE.TEX LATEX source for this document
PHY:ALPHAvsn.NEWS Description of changes in new ALPHA versions

ALPHARUN facilitates the use of a set of VAX debugger command files which simplify ALPHA
program debugging.

Examples

EXAMINE IW(512:515) Standard VAX debug command; to be used for all Fortran variables
and arrays.

106

EVALUATE LMHLEN LMHLEN is a parameter and NOT a variable; use EVA instead of
EXA.

QP(ITK) Debugger commands are defined for almost all mnemonic symbols
which have one or more arguments (see Ch. 6). In this context,
“QP” is a debugger command which has to be followed by the same
argument(s) (given as numbers or variable names) as the mnemonic
symbol QP in Fortran.

C.3 ALPHA on the CRAY

The files needed to run ALPHA on the CRAY are stored on the CRAYXU 401 disk on CERNVM;

many files are also kept in the SKEEP area on the CRAY. They are (vsn=three digit ALPHA
version number):

e Fortran files

ALPHAvsn CRAYFOR Fortran code of all ALPHA subroutines and functions
ALCORvsn CRAYFOR Fortran code of corrections to current ALPHA version

QUUSER CRAYFOR Fortran code of the routines QUINIT,QUEVNT,QUTERM (model
routines which have to be filled)

e Input to the link step

ALCORvsn CRAYFOR Corrections are fetched from CERNVM and recompiled for each
job

ALPHAvsn CRLIB or $SKEEP /alphal14.lib ALPHA library Other required link li-
braries: ALEPHLIB, BOS77, MINI, CERNLIB

To use ENFLW or QMUIDO on DST $KEEP/alenflw.obj must be linked, and the EN-
FLWvsn and JULIA libraries must be searched

e ALPHA card file (sample)
ALPHA CARDS

e CRALPHA command file to submit jobs to CRAY from CERNVM (see Ch. 2)
CRALPHA EXEC G (on IBM) options stored in LASTING GLOBALV A

C.4 ALPHA on DECstations, SHIFT

The following files are needed to run ALPHA on UNIX machines other than the CRAY. All files
refer to the current ALPHA version.

e Fortran files

/aleph/phy/srcalpha/*.f Fortran code of all ALPHA subroutines and functions

107

/aleph/phy /alcor.f Fortran code of corrections to current ALPHA version
/aleph/phy/qcde.inc
/aleph/phy/qmacro.inc Include files QCDE, QMACRO (see 3.1.2)

e Input to the link step

/aleph/phy/alcor.o Correction file

/aleph/lib/libalpha.a ALPHA library Other required link libraries: ALEPHLIB, BOS77,
MINI, CERNLIB

To use ENFLW or QMUIDO on DST /aleph/phy/alenflw.o must be linked, and the
ENFLWyvsn and JULIA libraries must be searched

e ALPHA card file (sample)
/aleph/phy/alpha.cards
e ALPHA command file (see Ch. 2)

alpharun command file on DECstations and SHIFT
SFALPHA EXEC K (on IBM) submits jobs from CERNVM to SHIFT

108

Appendix D

Using the Mini-DST with ALPHA

In this appendix, a brief introduction to the use of the Mini-DST with ALPHA is given. For more
details, consult the current ALEPH Mini-DST User’s Guide (version 8.0 or later).

D.1 Doing analysis with the Mini

The Mini-DST file(s) to be read (data or event directory) should be declared with a standard FILI
card. ALPHA will convert the Mini-DST banks to POT banks, and the ALPHA variables will be
filled. The logical XMINI will be set to .TRUE..

Since the Mini-DST contains many of the basic quantities from the POT/DST, most of the
ALPHA quantities are available from the Mini-DST, and most of the ALPHA code will work.
Below is a list of quantities which are NOT available on the Mini-DST — there may be others.

e XTCN: all

e FRFT: KFRFNO.

e FRTL: KFRTNE, KFRTNR.

e FRID: KFRIBC, KFRIBC, KFRIPE, KFRIPM, KFRIPI, KFRIPK, KFRIPP, KFRINK.
e EIDT: QEIDEC, QEIDRI(I,N=14,5).

e PECO: QPECEC, KPECKD, KPEPPC.

e PEPT: all.

e PHCO: QPHCER, KPHCKD, KPHCCC, KPHCRB, KPHCPC.
e YVOV: KYVOIC.

¢ EGPC: QEGPR1, QEGPR2, QEGPF4, QEGPDM, KEGPST.
e EFOL: KEFOLC.

e Vertex: QVEM.

The energy flow stored on the new Mini-DST corresponds to the ENFLW algorithm; until the end
of 1992, PCPA will be available also.!

!See Section 11.1 for information on using ENFLW. When using the Mini-DST, it is not necessary to link the
JULIA and ENFLW libraries.

109

All of ALPHA’s event topology routines work with the Mini-DST. Also, the routines described
in Ch. 12 may be used. In particular, QMUIDO, QDEDXM, QPAIRF, QVDHIT, and XVDEOK
will work.

D.2 Differences between POT/DST and Mini-DST

In addition to the absence of some information, other differences may be observed when using the
Mini. The Mini-DST has limited precision, so some quantities will have slightly different values
from those found when reading the POT or DST. Non-trivial differences are:

FRFT/0 is generally not available on the Mini-DST.
For ITC tracks, the z, error is limited to 25cm, which increases QBC2 substantially.

If the total number of vertices is greater than 30, only the main vertices and the best V°
vertices (ordered by chi-squared) up to a total of 30 will be available when reading the Mini-
DST.

Further, the V° quantities available are the result of swimming the tracks, and if greater
precision is required, a refit must be performed. Infrequently, problems arise when the charge
of fitted track (FRFT/2) is different from that of the original track used (FRFT/0), and
hence the two VO tracks appear to have the same charge.

The chi-squared and NDF for the helix fit for charged tracks may not be the same as those
found for the DST, but the chi-squared per NDF should be correct within the foreseen pre-
cision.

The values of R2 and R3 are truncated in the range [-10.23,4-10.23], but where there are
indications of problems, the values are set to +1000.

For the GAMPEK photons, only the presence of dead stories is recorded, not information for
each storey. Hence DST1,2,3 of the variable KEGPQU are all 0 or all 1.

D.3 Writing a Mini-DST

To write your own Mini-DST file from a DST (or POT), you must do the following:

A e

Read POT or DST (preferable), declared with a standard FILI card.

Declare an output file which will contain your Mini-DST with a FILO card.

Invoke integer compression with COMP ‘INTE’.

ALPHA must be informed that you wish to create a Mini-DST with the MINI card.

You should call QWRITE whenever you wish to output an event - according to your selection
criteria. Alternatively, you can use a COPY? card, and select events with CLAS and SEVT.

2In this case, it is not possible to store the QMUIDO and ENFLW information on your Mini-DST.

110

6. If you wish to have access to ENFLW and QMUIDO information, you must ensure that the
appropriate code and cards are supplied. You need an EFLJ card, and should link to JULIA,
ENFLW, and ALENFLW (see footnote on p. 77 and Appendix C).

When you have written a small sample of events, it is worth checking that these are readable
before creating many events.

To make your own Mini-DST from the standard ALEPH Mini-DST, you should refer to the
ALEPH Mini-DST User’s Guide.

111

Appendix E

Standard particle table

101
106
111
116
121
126
131
136
141
146
151
156
161
166
171
176
181

gamma
mu-

K+

KOs
Sig-
Lam#0
Xi#+

D_
Lamc+
Tritium
GeantAbino
KO
numu#
alo
chicl
rho+
K*#0
Ds*+
chibO
etat
uquark
tquark
bquark#
B+

Bc-
B*#0

TO

Ts-

T*0
Ts*-
Delta++
Delta#0
Sig*0
Xi*#0
Sigc+
Xic#-
XiOc+

12
17
22
27
32
37
42
47
52
57
62
67
72
77
82
87
92
97
102
107
112
117
122
127
132
137
142
147
152
157
162
167
172
177
182

e+
pio

K_

eta
Xio
Sig#-
Omeit+
DO

W+
Alpha
GeantPhino
KO#
nutau
£0_975
chic2
rho-
D*0
Ds*-
chibil
chitO
dquark
uquark#
tquark#
BO

Bc+
Bs*0
T#0

TcO
T*#0
Tc*0
Delta#--
Delta-
Sig*#0
Xi%-
Sigc#-
XicO
XiOc#-

e-
pi+

n

LamO
Xi-
Sig#0
tau+
D#0

w_
Geantino
Lamc#-
nue
nutau#
a0_980
Jpsi
K*+
D*#0
rho0
chib2
chitl
squark
dquark#
Theta
B#0

Bx-
Bs*i#0
T+

Tc#0
Tx+
Tc*#0
Delta+
Delta#+
Sig*-
Xix#+
Sigc0
Xic#0
Xi0cO

112

14
19
24
29
34
39
44
49
54
59
64
69
74
79
84
89
94
99
104
109
114
119
124
129
134
139
144
149
154
159
164
169
174
179
184

nu
pi-

P

Sig+
Ome-
Sig#+
tau-
Ds+

Z0
GeantMino
Higgs
nue#
al+
etapr
psipr
Kx*-

Dx*+
omega0
Upsilon
chit2
cquark
squark#
Thetapr
BsO

Bx+
Be*-

T_

Tb+

T*-
Tb*+
Delta#-
Sig*+
Sig*i+
Sigc++
Sigc#0
OmecO
XiOc#0

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185

mu+

KOl

p#

Sig0

n#

Xi#0

D+

Ds-
Deuteron
GeantBino
etab
numu
al-
chicO
etac
K*0

D*-

Phi
Ups2s
gluon
bquark
cquark#
B_
Bs#0
B*0
Bc*x+
Ts+

Tb-
Ts*+
Tb*-
Deltal
Sigx#-
Xix*0
Sigc#--
Xic+
Omec#0
Sigc*++

186
191
196
201
206
211
216
221
226
231
236
241
246
251
256
261
266
271
276
281
286
291
296
301
306
311
316
321
326
331
336
341
346
351
356
361
366

Sigc*#--
Xic*+
Omec*#0
Omecc+
Xiccx*#-
Sigb+
Sigb#+
Omeb-
Xibc#0
XibbO
Omebbi#+
Sigt+
Xit#-
Xitc++
Ometc#-
Xiobo
XiObc#-
Lamt+
Xiot#0
OmeOtc+
Sigb*#0
Xib*-
Xibc*i#-
Omebcc*+
Sigt*i#-
Xit*0
Xitc*i#--
Ometcc*++
Xitb*#0
Ometbb*0
Xitb#0
OmetbbO
Xi0tb#0
Xibb*0
Omebb*#+
beame+
CALobj

187
192
197
202
207
212
217
222
227
232
237
242
247
252
257
262
267
272
277
282
287
292
297
302
307
312
317
322
327
332
337
342
347
352
357
362
367

Sigc*+
Xic*#-
Xicc++
Omecc#-
Omecc*+
Sigb#-
Xibo
Omeb#+
OmebcO
Xibb#0
OmebbcO
Sigt#-
XitO
Xitc#--
Ometcc++
XiOb#0
XiObcO
Lamt#-
XiOtcO++
OmeOtc#-
Sigb*-
Xib*#+
Xibc*0
Omebcc*#-
Sigt*0
Xit*#0
Xit*+
Ometcc*#--
Ometb*0
Ometbb*#0
OmetbO
Ometbb#0
OmeOtbO
Xibb*#0
Omebbc*0
beame-

188
193
198
203
208
213
218
223
228
233
238
243
248
253
258
263
268
273
278
283
288
293
298
303
308
313
318
323
328
333
338
343
348
353
358
363

last_st_par

Sigc*i#-
Xic*0
Xicc#--
Xicc*++
Omecc*#-
Sigb0
Xib#0
Xibc+
Omebc#0
Xibb-
Omebbc#0
Sigt0
Xit#0
Xitc+
Ometcci#--
XiOb-
XiObc#0
Xiot+
XiOtcO#--
Sigb*+
Sigb*#+
Omeb*-
Xibc*#0
Sigt*++
Sigt*#0
Omet*0
Xit*#-
Xitb*+
Ometb*#0
Xitb+
Ometb#0
XiOtb+
OmeOtb#0
Xibbx*-
Omebbc*#0
Charged

113

189
194
199
204
209
214
219
224
229
234
239
244
249
254
259
264
269
274
279
284
289
294
299
304
309
314
319
324
329
334
339
344
349
354
359
364

Sigc*0
Xic*#0
Xicc+
Xiccx*#—-
Omeccc++
Sigb#0
Xib-
Xibci#-
Omebcc+
Xibb#+
Sigt++
Sigt#0
OmetO
Xitc#-
LambO
XiOb#+
OmeObcO
Xiot#-
XiOtc+
Sigb*i#-
Xib*0
Omeb*it+
Omebc*0
Sigt*#--
Xit*+
Omet*#0
Ometc*+
Xitb*x#-
Ometbc*+
Xitb#-
Ometbc+
XiOtb#-
OmeOtbc+
Xibb*#+
Omebbb-
Ecal

190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365

Sigc*#0
Omec*0
Xicc#-
Xiccx+
Omeccc#--
Sigb-
Xib#+
XibcO
Omebcci#-
Omebb-
Sigt#--
Xit+
Omet#0
Ometc+
Lamb#0
XiObc+
OmeObc#0
Xioto
XiOtci-
Sigb*0
Xib*#0
Xibc*+
Omebc*#0
Sigt*+
Xit*#-
Xitckx++
Ometc*#-
Xitb*0
Ometbc*#-
Xitbo
Ometbc#-
Xiotbo
OmeOtbc#-
Omebbx*-
Omebbbi#+
Hcal

Index

[c]Constant = Fortran parameter

[f]Fortran function

[s]Fortran subroutine

[sf]Fortran statement function

[v]Fortran variable/array stored in a COMMON block

add vectors: 9.2.2 on p. 54 and 10.3 on p. 68
ALEPH file types 4.1.1 on p. 8
ALLR parameter on FILO data card: 4.1.3 on p. 11
ALPHA initialization in QMALPH called from QMINIT: 3.2 on p. 5
ALPHARUN command file:Ch. 2 on p. 2 and App. C on p. 105
angle
azimuth, polar angle: 9.1 on p. 52
decay angle: 9.1 on p. 52
antiparticle
access to antiparticles: 7.4.4 on p. 36
definition on data cards: 4.12.1 on p. 18

batch job see ALPHARUN: 2 on p. 2

beam position see QVXNOM, etc.: 6.2 on p. 25, 8.1.4 on p. 43, and 6.3.7 on p. 28
bending radius of a reconstructed charged track: 8.2.1 on p. 46

beta see QBETA: 9.1 on p. 52

BMACRO standard BOS statement functions: 3.1.2 on p. 3

book histograms: 5.1 on p. 20

boost Lorentz: 9.5 on p. 63

BOM beam position from BOMs: 6.3.7 on p. 28

BOS initialization in QUIBOS: 3.5.50n p. 7

c [c] speed of light: 6.1 on p. 25
calorimeter objects 7.1 on p. 31 and 7.3 on p. 34
CARDS file type: 4.1.1 on p. 8
charge
of an individual particle: 8.1.1 on p. 42
on particle table: 15.5 on p. 98
charged tracks 7.1 on p. 31 and 7.3 on p. 34
CLAS Data card for use with event directories: 4.1.4 on p. 12
class
reading class. word for EDIRs: 6.3.2 on p. 26
setting class. word for EDIRs: 13.3 on p. 88
“track” class: 7.4.1 on p. 35 and 8.1.8 on p. 45

COPY data card: 4.1.5 on p. 13

114

copy
track vectors into other track vectors: 9.2.4 on p. 55 and 9.2.9 on p. 57

track vectors into Fortran arrays: 9.2.7 on p. 56
Fortran arrays into track vectors: 9.2.13 on p. 59
CQDATE [v] date at start of job: 6.5.6 on p. 30
CQFOUT [v] name of output file: 6.5.6 on p. 30
CQPART [f] particle name for a given integer code: 15.5 on p. 98
CQTPN [f] track’s particle name: 8.1.8 on p. 45
CQTIME [v] time at start of job: 6.5.6 on p. 30
CQVERS [v] ALPHA version: 6.5.6 on p. 30
CRAY App. Con p. 105
create new track: 9.2.8 on p. 57
cross product QVCROS: 9.2.5 on p. 56

DATF file type — direct access files: 4.1.1 on p. 8
data
base — opened in QMINIT: 3.2 on p. 5
cards — description 4 on p. 8
set name —conventions 4.1.1 on p. 8; examples 4.1.2 on p. 9
daughter particles 7.5.1 on p. 38 and 7.8 on p. 41
DEBU data card: 4.5 on p. 15
debug
special VAX debugger features: 2 on p. 2
level — see KDEBUG: 6.5.2 on p. 29
decay angle 9.1 on p. 52
dE/dx 12.1 on p. 81, 8.2.4 on p. 47
DHEA bank: 6.3.6 on p. 28
dot product 9.1 on p. 52
drop tracks 9.2.6 on p. 56
DST unpacking 4.3 on p. 14
DO see QDB

e constant: 6.1 on p. 25
ECAL
objects 7.1 on p. 31 and 7.3 on p. 34
wire energy — see QEECWI: 6.4 on p. 29
EDIR event directory: 4.1.4 on p. 12
EFLW energy flow data card: 11.2 on p. 78
EFOL see energy flow
EGPC see GAMPEC
ENDQ BOS data card: 4 on p. 8
energy
beam energy, see QELEP: 6.2 on p. 25
for ALPHA tracks, see QE: 8.1.1 on p. 42
missing energy: 10.10 on p. 73
energy flow Ch. 11 on p. 77
ENFLW energy flow: 11.1 on p. 77
EPIO file type: machine-independent input / output: 4.1.1 on p. 8
EVEH bank: 6.3.1 on p. 26

115

event
directories: 4.1.4 on p. 12
input — see FILI data card: 4.1.2 on p. 9
output— see FILO data card 4.1.3 on p. 11 and routine QWRITE: 13.2 on p. 88
processing — see QUEVNT: 3.3 on p. 5

FIEL Data card to set magnetic field: 4.8 on p. 16

file types = ALEPH file types: 4.1.1 on p. 8

FILI data card - input data set(s): 4.1.2 0on p. 9

FILO data card — output data set: 4.1.3 on p. 11

flags user: 8.1.8 on p. 45, 9.2.14 on p. 60

Fox-Wolfram moments: 10.8 on p. 71

frame access to Lorentz frames: 7.4.1 on p. 35

FRFO data card - ignore vertex det. in track fit: 4.9 on p. 17

gamma see QGAMMA: 9.1 on p. 52
gamma conversions see QPAIRF: 12.2 on p. 83
GAMPEC photons: 7.1.1 on p. 32 and 8.2.13 on p. 50

h constant 6.1 on p. 25
HAC parameters bank offset: 3.1.3 on p. 5
hbar constant: 6.1 on p. 25
HBOOK 5.1 on p. 20
initialization — QUIHIS: 3.5.3 on p. 7
termination -QUTHIS: 3.5.4 on p. 7
HCAL objects 7.1 on p. 31 and 7.3 on p. 34
hemispheres see QJHEMI: 10.9 on p. 72
High Voltage 6.3.4 on p. 27
HIS histogram file type 5.2.1 on p. 23
HIST histogram file data card: 5.2.1 on p. 23
histograms Ch. 5 on p. 20
histogram output see 5.2.1 on p. 23 and 5.2.2 on p. 24
Historian Ch. 2 on p. 2
HTIT data card: general histogram title 4.7.2 on p. 16

IBM App. C on p. 105

Implicit None 3.1.40n p. 5

INCLUDE Fortran statement: 3.1.2 on p. 3
initialization see QMINIT and QUINIT: 3.2 on p. 5
invariant mass 9.1 on p. 52

IRUN data card: ignore runs 4.1.2 on p. 10

jets 10.11 on p. 73

KBFLAG [sf] track flag bits

KBMASK [sf] track mask bits

KCANTI [sf] particle —> antiparticle: 15.5 on p. 98
KCDIR [sf] direct access to particles: 7.4.2 on p. 35
KCDIRA [sf] direct access to (anti)particles: 7.4.4 on p. 36
KCHGD [sf] list of associated charged tracks: 7.3 on p. 34

116

KCLASS [sf] class KRECO,KMONTE,Lorentz fr.: 8.1.8 on p. 45
KCLASW [v] event directory class. word: 6.3.2 on p. 26

KCH ([sf] track’s charge: 8.1.1 on p. 42

KCHT [f] original copy of a charged track: 7.6.2 on p. 40

KDAU [sf] access to daughter particles: 7.5.1 on p. 38
KDEBUG |[v] debug level: 6.5.2 on p. 29

KDHExx [v] event header bank DHEA: 6.3.6 on p. 28
KECAL [sf] list of associated ECAL objects: 7.3 on p. 34
KEIDxx [sf] bank EIDT: 8.2.5 on p. 47

KENDYV [sf] track’s end vertex: 7.8 on p. 41

KEVExx [v] event header bank EVEH: 6.3.1 on p. 26
KEVH bank: 6.3.3 on p. 27

KEVT [v] current event number: 6.3.1 on p. 26

KEXP [v] experiment number: 6.3.1 on p. 26

KFAST [v] first cal object associated to a charged track: 7.1 on p. 31
KFCHT [v] first charged track: 7.1 on p. 31

KFCOT [v] first cal object: 7.1 on p. 31

KFDCT [v] first decay track: 7.1 on p. 31

KFIST [v] first isolated cal object: 7.1 on p. 31

KFJET [v] first reconstructed jet: 7.1 on p. 31

KFMCT [v] first MC particle: 7.1 on p. 31

KFOLLO [sf] following track: 7.4.2 on p. 35

KFOVT [v] first overlap object: 7.1 on p. 31

KRDFL [sf] read user flag: 8.1.8 on p. 45

KFRET [v] first reconstructed track: 7.1 on p. 31
KFRFxx [sf] bank FRFT = track fit: 8.2.1 on p. 46
KFRIxx [sf] bank FRID: 8.2.3 on p. 46

KFRTxx [sf] bank FRTL: 8.2.2 on p. 46

KFVOT [v] first particle pointing to V0: 7.1 on p. 31
KHCAL [sf] list of associated HCAL objects: 7.3 on p. 34
KHMAxx [sf] bank HMAD = HCAL—-muon association: 8.2.6 on p. 48
Kinematic fitting 9.3 on p. 61

KKEVxx [v] bank KEVH 6.3.3 on p. 27

KLAST [v] last cal object associated to a charged track: 7.1 on p. 31
KLCHT [v] last charged track: 7.1 on p. 31

KLCOT [v] last cal object: 7.1 on p. 31

KLDCT [v] last decay track: 7.1 on p. 31

KLIST [v] last isolated cal object: 7.1 on p. 31

KLJET [v] last reconstructed jet: 7.1 on p. 31

KLMCT [v] last MC particle: 7.1 on p. 31

KLOVT [v] last overlap object: 7.1 on p. 31

KLRET [v] last reconstructed track: 7.1 on p. 31
KLUNDS [sf] Lund status code: 8.1.8 on p. 45

KLVOT [v] last particle pointing to V0: 7.1 on p. 31
KMCAxx [sf] bank MCAD = muon chambers: 8.2.7 on p. 48
KMOTH [sf] access to mother particle: 7.5.2 on p. 39
KMTCH [sf] match MC — reco. tracks: 7.7 on p. 40

117

KNAST [v] number of cal objects assoc. to a charged track: 7.1 on p. 31
KNCHGD [sf] number of associated charged tracks: 7.3 on p. 34
KNCHT [v] number of charged tracks: 7.1 on p. 31

KNCOT [v] number of cal objects: 7.1 on p. 31

KNDAU [sf] number of daughters: 7.5.1 on p. 38

KNDCT [v] number of decay tracks: 7.1 on p. 31

KNECAL [sf] number of associated ECAL objects: 7.3 on p. 34
KNEFIL [v] number of events on current input file: 6.5.1 on p. 29
KNEOUT [v] number of events on output file: 6.5.1 on p. 29

KNEVT [v] number of events read in up to now: 6.5.1 on p. 29
KNHCAL [sf] number of associated HCAL objects: 7.3 on p. 34
KNIST [v] number of isolated cal objects: 7.1 on p. 31

KNJET [v] number of reconstructed jets: 7.1 on p. 31

KNMCT [v] number of MC particles: 7.1 on p. 31

KNMOTH (sf] number of mother particles: 7.5.2 on p. 39

KNMTCH [sf] number of matching particles: 7.7 on p. 40

KNOVT [v] number of overlap objects: 7.1 on p. 31

KNREIN [v] number of records read from current input file: 6.5.1 on p. 29
KNRET [v] number of reconstructed tracks: 7.1 on p. 31

KNTEX [sf] number of TPC sectors for dE/dx: 8.2.4 on p. 47

KNVOT [v] number of particle pointing to V0s: 7.1 on p. 31

KORIV [sf] vertex at origin of track: 7.8 on p. 41

KPART [f] integer code from particle name: 15.5 on p. 98 and 7.4.3 on p. 36
KPDIR [f] direct access to particles: 7.4.2 on p. 35

KPDIRA [f] direct access to (anti)particles: 7.4.4 on p. 36

KPECxx [sf] bank PECO: 8.2.9 on p. 49

KPEPxx [sf] bank PEPT: 8.2.10 on p. 49

KPHCxx [sf] bank PHCO: 8.2.11 on p. 49

KRUN [v] run number: 6.3.1 on p. 26

KSAME [sf] access to same objects: 7.6 on p. 39

KSMTCH [sf] number of shared hits in match: 7.7 on p. 40

KSTABC [sf] stability code: 8.1.5 on p. 44

KSTATU [v] job status (init / event proc. / term): 6.5.2 on p. 29
KTEXxx [sf] dE/dx bank TEXS: 8.2.4 on p. 47

KTLOR [f] Lorentz transformation: 9.5.1 on p. 63

KTLOR1 [f] Lorentz transformation: 9.5.2 on p. 63

KTN [sf] Julia/Galeph track number: 8.1.8 on p. 45

KTPCOD (sf] track’s particle code: 8.1.8 on p. 45

KUCARD [v] log. unit for the card file: 6.5.4 on p. 29

KUCRD2 [v] 2nd log. unit for card files: 6.5.4 on p. 29

KUCONS [v] log.unit for the data base: 6.5.4 on p. 29

KUINPU [v] log. unit for event input: 6.5.4 on p. 29

KUOUTP [v] log. unit for event output: 6.5.4 on p. 29

KUPRNT [v] log. unit for the line printer output: 6.5.4 on p. 29 and 6.5.4 on p. 29
KUPTER [v] log. unit for the terminal: 6.5.4 on p. 29 and 6.5.4 on p. 29
KVBFLG [sf] vertex bit flags

KVDAU [sf] access to tracks from a vertex: 7.8 on p. 41

KVFITM [f] kinematic fitting: 9.3 on p. 61

118

KVGOOD |[f] VDET readout: 12.4.3 on p. 87
KVINCP [sf] incoming particle to a vertex: 7.8 on p. 41
KVN [sf] Julia/Galeph vertex number: 8.3 on p. 51
KVNDAU [sf] number of outgoing tracks: 7.8 on p. 41
KVNEW [f] create new track vector: 9.2.8 on p. 57
KVSAVE [f] save track: 9.2.9 on p. 57

KVSAVC [f] save track in specific class: 9.2.12 on p. 58
KYV0xx [sf] bank YVOV: 8.2.12 on p. 50

lifetime on particle table: see QCLIFE / QPLIFE: 15.5 on p. 98

line printer see KUPRNT

lock 10.2 on p. 66

logical units 6.5.4 on p. 29

loops over tracks (= vectors) and vertices: 7 on p. 31

Lorentz transformations: 9.5 on p. 63; see also decay angle: 9.1 on p. 52
LUCLUS jet finding algorithm: 10.11.3 on p. 75

main program see QMAIN
mass
of an individual particle: 8.1.1 on p. 42
invariant mass of a system of particles: 9.1 on p. 52
missing mass: 10.10 on p. 73
nominal mass in the particle table: 15.5 on p. 98
match reconstructed tracks and MC particles: 7.7 on p. 40
Mini-DST App. D on p. 109
MINI
card: 4.1.3on p. 11 and App. D on p. 109
flag for Mini-DST input: 6.5.3 on p. 29
missing mass, energy, momentum: 10.10 on p. 73
momentum of a particle see QP 8.1.1 on p. 42 / missing momentum 10.10 on p. 73
Monte Carlo
flag for an event: 6.5.3 on p. 29
loops over MC particles: 7.1 on p. 31 and 7.4 on p. 35
particle code: 15.1 on p. 95
particle table: 15.1 on p. 95
mother particle 7.5.2 on p. 39
MUID access to MUID (QMUIDO) information: 8.2.8 on p. 48

NATIVE file type: machine—dependent input/output 4.1.1 on p. 8
NATIVE parameter on FILI / FILO data cards (q.v.)

NEVT data card: select NEVT events: 4.1.2 on p. 10

new track KVNEW: 9.2.8 on p. 57

nominal mass on particle table: 15.5 on p. 98

NOOV parameter on FILO / HIST data cards (q.v.)

NOPEHE no hostogram printing: 5.2.2 on p. 24

NORU parameter on FILO data card: 4.1.3 on p. 11

NOxx ALPHA process cards: 4.2 on p. 14

Ntuples Ch. 5 on p. 20

119

output
events — see FILO card: 4.1.3 on p. 11 and routine QWRITE: 13.2 on p. 88
histograms — see HIST data card: 5.2.1 on p. 23

parameters HAC parameters: 3.1.3 on p. 5
particle
analysis of particle systems: 7.4.5 on p. 37
—antiparticle relation: 7.4.4 on p. 36
attributes: 15.5 on p. 98
code: 7.4.3 on p. 36 and 15.2 on p. 95
direct access to specific particles: 7.4 on p. 35
invariant mass of particle systems: 9.1 on p. 52
table
data cards: 15.4 on p. 96
MC table: 15.1 on p. 95 and 15.4 on p. 96
standard table 15.4 on p. 96
PAW interactive analysis of histograms and Ntuples: 5.2.1 on p. 23
PCPA neutral objects from PCPA: 7.1.1 on p. 32 and 11.3 on p. 79
photon conversions see QPAIRF: 12.2 on p. 83
photons from GAMPEC: 7.1.1 on p. 32 and 8.2.13 on p. 50
pi constant: 6.5.6 on p. 30
Planck constant: 6.5.6 on p. 30
PMOD data card: modify particle table 15.4.1 on p. 96
PNEW data card: new entry into particle table 15.4.2 on p. 97
PTRA data card: modify MC particle code translation: 15.4.3 on p. 97
POT unpacking: 4.3 on p. 14
process ALPHA process cards: 4.2 on p. 14
PTCLUS jet finding algorithm: 18.11.4 on p. 76

QBETA [sf] beta of a particle: 9.1 on p. 52

QBOOKN ([s] book Ntuples: 5.1.3 on p. 21

QBOOKR [s] book Ntuples with run and event number: 5.1.4 on p. 22
QBOOK1 [s] book 1—dimensional histograms: 5.1.1 on p. 20
QBOOK?2 [s] book 2—dimensional histograms: 5.1.2 on p. 21
QCDE macro: all parameters, commons etc.: 3.1.2 on p. 3
QCDESH short subset of QCDE

QCFxxx macros containing statement functions

QCH [sf] track’s charge: 8.1.1 on p. 42

QCOSA [sf] cos (angle between two tracks): 9.1 on p. 52
QCT [sf] cos (theta): 9.1 on p. 52

QDATA [s] (quasi) block data

QDB [sf] distance to beam axis: 8.1.4 on p. 43

QDBS2 [sf] error? on QDBS2: 8.1.4 on p. 43

QDECAN [f] decay angle: 9.1 on p. 52

QDECA2 [f] decay angle: 9.1 on p. 52

QDEDX [s] dE/dx analysis: 12.1 on p. 81

QDEDXM [s] dE/dx analysis: 12.1.2 on p. 82

QDHExx [v] header bank DHEA: 6.3.6 on p. 28

QDMSQ [sf] mass difference %: 9.1 on p. 52

120

QDOT3 [sf] dot product (3—vector): 9.1 on p. 52

QDOT4 [sf] dot product (4—vector): 9.1 on p. 52

QE [sf] energy: 8.1.1 on p. 42

QEECWI [v] ECAL wire energy: 6.4 on p. 29

QEIDxx [sf] bank EIDT = electron identification: 8.2.5 on p. 47.
QELEP [v] LEP energy: 6.3.1 on p. 26

QFRFxx [sf] bank FRFT = track fit: 8.2.1 on p. 46

QFRIxx [sf] bank FRID: 8.2.3 on p. 46

QFRTxx [sf] bank FRTL = appendix to FRFT: 8.2.2 on p. 46
QGAMMA [sf] particle’s gamma: 9.1 on p. 52

QHFN [s] fill Ntuple: 5.1.6 on p. 22

QHFNR [s] fill Ntuple with run and event number: 5.1.6 on p. 22
QHFR [s] fill Ntuple with run and event number: 5.1.5 on p. 22
QHMAxx [sf] bank HMAD = HCAL—muon association: 8.2.6 on p. 48
QIDVO [s]Recalculate VO 4—vector: 9.2.3 on p. 55

QJADDP [s]add 4—vectors: 10.3 on p. 68

QJEIG [s)eigenvalues of mom. tensor: 10.4 on p. 70

QJFOXW [s]Fox—Wolfram moments: 10.8 on p. 71

QJHEMI ([s]divide the event into two hemispheres: 10.9 on p. 72
QJMISS [s|missing energy, mass, and momentum: 10.10 on p. 73
QJMDCL [s]jet finding — scaled minimum distance algorithm: 10.11.2 on p. 75
QJMMCL [s]jet finding — scaled invariant mass sq. algorithm: 10.11.1 on p. 73
QJLUCL [s]jet finding — LUCLUS: 10.11.3 on p. 75

QJOPTM ([s]select MC particles for QJxxxx routines: 10.1.2 on p. 66
QJOPTR |[s]select reconstructed objects for QJxxxx routines: 10.1.1 on p. 65
QJPTCL [s]jet finding — PTCLUS: 10.11.4 on p. 76

QJSPHE [s]sphericity: 10.6 on p. 70

QJTENS [s]linearized momentum tensor: 10.5 on p. 70

QJTHRU ([s]thrust value / axis: 10.7 on p. 71

QKEVxx [v] bank KEVH: 6.3.3 on p. 27

QLTRK [s] lock individual track: 10.2.1 on p. 67

QLOCK [s] lock track family: 10.2.3 on p. 67

QLOCK?2 [s] lock track family: 10.2.6 on p. 68

QLREV [s] reverse lock: 10.2.5 on p. 68

QLREV2 [s] reverse lock: 10.2.6 on p. 68

QLUTRK |[s] unlock individual track: 10.2.2 on p. 67

QLZER ([s] zero lock: 10.2.4 on p. 68

QLZER2 [s] zero lock: 10.2.6 on p. 68

QM [sf] particle’s mass: 8.1.1 on p. 42

QMACRO macro: statement functions: 3.1.2 on p. 3

QMAIN ALPHA main program: App. A on p. 99

QMASVO [f]V0 mass: 8.1.2 on p. 42; see also QIDVO.

QMCAxx [sf] bank MCAD = muon chambers: 8.2.7 on p. 48
QMCHI2 [f] x? from mass difference: 9.1 on p. 52

QMDIFF [f] mass difference: 9.1 on p. 52

QMFLD [v] ALEPH magnetic field: 6.3.1 on p. 26

QMINIT [s] system initialization: 3.2 on p. 5

QMUIDO [s] muon identification: 12.3 on p. 84 and 8.2.8 on p. 48

121

QMSQ2,QMSQ3,QMSQ4 [sf] invariant mass?: 9.1 on p. 52
QMTERM (s] system termination: 3.4 on p. 6 and 13.1 on p. 88
QM2,QM3,QM4 [sf] invariant mass: 9.1 on p. 52

QNTEX [sf] number of sectors for dE/dx: 8.2.4 on p. 47

QP [sf] momentum: 8.1.1 on p. 42

QPAIRF [s] photon conversions: 12.2 on p. 83

QPCHAR [f] particle table charge: 15.5 on p. 9¢

QPECxx [sf] bank PECQO: 8.2.3 on p. 49

QPEPxx [sf] bank PEPT: 8.2.10 on p. 49

QPHCxx [sf] bank PHCO: 8.2.11 on p. 49

QPH [sf] track’s azimuth: 9.1 on p. 52

QPLIFE [f] particle table life time: 15.5 or. p. 98

QPMASS [f] particle table mass: 15.5 on p. 98

QPPAR [sf] momentum paralle]l to a vector: 9.1 on p. 52
QPPER [sf] momentum perpendicular to a vector: $.1 on p. 52
QPT [sf] transverse momentum: 9.1 on p. 52

QPWIDT [f] particle table width: 15.5 on p. 98

QQC [c] speed of light: 6.5.6 on p. 30

QQE [c] e: 6.5.6 on p. 30

QQH [c] hbar: 6.5.6 on p. 30

QQHC [c] hbar * ¢ 6.5.6 on p. 30

QQIRP |[c] factor between inv. bending radius and momentum: €.3.6 on p. 30
QQPI [c] 7: 6.5.6 on p. 30

QQPIH [c] 7 / 2: 6.5.6 on p. 30

QQRADP [c] 360 / #: 6.5.6 on p. 30

QQ2PI [c] 2 7: 6.5.6 on p. 30

QRDFL [sf] read user flag: 8.1.8 on p. 45

QSIGxx [sf] track’s error matrix: 8.1.3 on p. 43

QSTFLI [s] set user flag (integer): 9.2.14 on p. 60

QSTFLR [s] set user flag (real): 9.2.14 on p. 60

QSUSTR [s] allocate user’s track space 14.1.1 on p. Y3
QSUSVX [s] allocate user’s vertex space 14.1.2 on p. 94
QTCLAS [s] Lorentz transformation: 9.5.3 on p. 64

QTEXxx [sf] bank TEXS = dE/dx: 8.2.4 on p. 47

QTIME [v] as given on the TIME data card: 6.5.5 on p. 30
QTIMEL [v] remaining job time: 6.5.5 on p. 30

QUEVNT [s] event processing user routine: 3.3 on p. 5
QUIBOS [s] initialize BOS: 3.5.50n p. 7

QUIHIS [s] initialize histograms: 3.5.3 on p. 7

QUINIT [s] user initialization routine: 3.2 on p. 5
QUNEWR [s] user routine: called for every new run: 3.5.1 on p. 6
QUSREC ([s] special records: 3.5.2 on p. 7

QUTERM [s] user termination routine: 3.4 on p. 6

QUTHIS ([s] terminate histograms: 3.5.4 on p. 7

QVADD2, QVADD3, QVADD4, QVADDN [s] add track vectors: 9.2.2 on p. 54
QVCOPY [s] copy track vectors: 9.2.4 on p. 55

QVCROS [s] cross product: 9.2.5 on p. 56

QVDHIT [s] VDET hits: 12.4.1 on p. 86

122

QVDROP [s] drop tracks: 9.2.6 on p. 56

QVEM ([sf] vertex error matrix: 8.3 on p. 51

QVGETS [s] copy error matrix into Fortran array: 9.2.7 on p. 56
QVGET3,QVGET4 [s] copy track vector into Fortran array: 9.2.7 on p. 56
QVSCAL [s] scale track momentum: 9.2.13 on p. 59

QVSETM [s] set mass of a track: 9.2.13 on p. 59

QVSETS [s] copy Fortran array into error matrix: 9.2.13 on p. 59
QVSET3,QVSET4 [s] copy Fortran array into track vector: 9.2.13 on p. 59
QVSUB [s] subtract track vectors: 9.2.15 on p. 60
QVX,QVY,QVZ [sf] vertex position: 8.3 on p. 51

QVZERO ([s] zero track vector: 9.2.16 on p. 61

QWCLAS [s] set classification word for EDIRs: 13.3 on p. 88
QWEVNT [s] print whole event: 13.5.3 on p. 90

QWHEAD [s] print event header: 13.5.4 on p. 91

QWHFUL [s] print full event header: 13.5.5 on p. 91

QWITK [s] print individual track(s): 13.5.6 on p. 91

QWIVX [s] print individual vertices: 13.5.7 on p. 92

QWMESS [s] message routine: 13.5.1 on p. 90

QWMESE [s] message routine: 13.5.2 on p. 90

QWRITE [s] event output routine: 13.2 on p. 88

QWSEC [s] print section of tracks/vertices: 13.5.8 on p. 92
QWTIME [s] print time consumption: 13.4.1 on p. 89
QWTREE [s] print decay chain tree: 13.5.9 on p. 92

QX [sf] x—momentum: 8.1.1 on p. 42

QY [sf] y—momentum: 8.1.1 on p. 42

QZ [sf] z—momentum: 8.1.1 on p. 42

QZB [sf] z—distance to interaction point: 8.1.4 on p. 43

QZBS2 [sf] error? on QZB: 8.1.4 on p. 43

QY VO0xx [sf] bank YVOV: 8.2.12 on p. 50

READ data card; read cards from several card files: 4.4 on p. 15
run

change: 3.5.1 on p. 6

information: 6.2 on p. 25

selection: 4.1.2 on p. 10

same
objects in diff. Lorentz frames, with diff. hypotheses: 7.6 on p. 39
two particles based on the same object — see XSAME: 8.1.7 on p. 45

save tracks KVSAVE; KVSAVC: 9.2.12 on p. 58 and 9.2.9 on p. 57

scale momentum QVSCAL: 9.2.13 on p. 59

SCANBOOK creating FILI cards: 4.1.2 on p. 9

selection see run/event selection: 4.1.2 on p. 10

SELR parameter on FILO data card 4.1.3 on p. 11

set mass QVSETM: 9.2.13 on p. 59

SEVT data card: select events 4.1.2 on p. 10

slow control read s.c. records: 3.5.2 on p. 7

speed of light constant: 6.5.6 on p. 30

sphericity 10.6 on p. 70, 10.4 on p. 70

123

SRUN data card: select runs 4.1.2 on p. 10

start ALPHA interactively or in batch: Ch. 2 on p. 2
STOP Fortran statement: forbidden: 3.4 on p. 6

submit a job Ch. 2 on p. 2

subtract track vectors: 9.2.15 on p. 60

SYNT data card: indicates a syntax check run 4.13 on p. 19

tapes 4.1.2 on p. 9
terminal output see KUPTER
thrust 10.7 on p. 71
TIME data card: time to terminate the job properly 4.6 cn p. 15
time remaining job time: see QTIMEL 6.5.5 on ». 30
timing time consumption: 13.4 on p. 89
title general title for HBOOK histograms: 5.2.3 on p. 24
topology routines: Ch. 10 on p. 65
track
class: 7.4.1 on p. 35
track number: Ch. 7 on p. 31
trigger information 6.3.5 on p. 27

UNIX App. C on p. 105

unpack POT/DST unpacking: 4.3 on p. 14
UNPK data card: control POT/DST unpacking
UPDA parameter on HIST data card 5.2.1 on p. 23
unit log. input / output units: 6.5.4 on p. 29

units ALEPH phys. unit system: 6 on p. 25

user routines Ch. 3 on p. 3

user track / vertex sections 9.2.8 on p. 57

VDET
utility routines: 12.4 on p. 86
tracks not using VDET: 4.9 on p. 17

vector synonym for “track” or “particle”
class: 7.4.1 on p. 35 and 8.1.8 on p. 45
number — see track or vertex number
operations: 9.2 on p. 53

vertex number Ch. 7 on p. 31

V0 mass 8.1.2 on p. 42 and 9.2.3 on p. 55

VAX App. C on p. 105

width see particle table: 15.5 on p. 98

write
events — see FILO data card: 4.1.3 on p. 11 and QWRITE: 13.2 on p. 88
on line printer, terminal: Ch. 2 on p. 2

XCEQAN, XCEQOR, XCEQU [sf] check particle name: 8.1.6 on p. 44
XEID [sf] does EIDT exist ? 8.2.5 on p. 47

XFRF [sf] do FRFT and FRTL exist 7 8.2.1 on p. 46

XHMA [sf] does HMAD exist 7 8.2.6 on p. 48

124

W

XHVTRG [v] detector HV and trigger status: 6.3.4 on p. 27
XLOCK [sf] track locked? 10.2 on p. 66

XLUMOK see XHVTRG: 6.3.4 on p. 27

XMC [sf] MC particle? 8.1.8 on p. 45

XMCA [sf] does MCAD exist? 8.2.7 on p. 48

XMCEV [v] MC event? 6.5.3 on p. 29

XMINTI [v] event input MINI? 6.5.3 on p. 29
XPEQAN,XPEQOR,XPEQU [f] test particle name: 8.1.6 on p. 44
XSAME ([sf] tracks based on the same object? 8.1.7 on p. 45
XTEX [sf] does TEXS exist? 8.2.4 on p. 47
XVITC,XVTPC, etc. [v] detector HV status: 6.3.4 on p. 27
XVDEOK [f] VDET HV: 12.4.2 on p. 86

YCUT see QIQMMCL

zero track vectors: 9.2.16 on p. 61
Z0 see QZB

125

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

