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1 Introduction

The aim of this Aleph Note is to describe in a more detailed way the analysis made
to measure the Z into bb partial width R(®) = T;/Thaq using an Hemisphere Dou-
ble Tag method with a Neural Network to identify b-jet, which is part of the draft
“Measurement of the Partial Width of the Z into bb using Event Shape Variables”
circulating in the Collaboration.

Our ‘official’ result will be given for the statistic of 1990 and 1991 since the Heavy
Flavour lepton analysis (which is needed to estimate the b-purity in the high p, lepton
sample) is not yet available for '92 data.

2 Using a Neural Network to tag b quark events

The Neural Network technique is now widely used in many fields of high energy
Physics: to discriminate between quark and gluon jets [1], for the separation of quark
flavours in e*e™ annihilations [2, 3, 4, 5] for the identification of Tau decays [6]. for
the Higgs [7] and top quark [8] search, for charm physics [9], in the charged particle
track reconstruction [10] and also as a first level trigger for futur high energy hadronic.
colliders [11].

In ref. [5], it has been shown that Multi-layered Neural Networks are very well
suited to tag b-quark events at LEP. More precisely, we have shown that multivari-
ate analyses (Neural Network, Linear Discriminant Analysis, ...) can significantly
improve the b-tagging compared to single-variable analyses (for instance the Boosted
Jet Sphericity Product), and that among the different multivariate approaches. the
Neural Network technique which is a non-linear method ! (i.e. the output given by

IThis non-linearity is provided by one or several hidden layers.



the Neural Network is not a linear function of the input variables) maps in a better
way the complexity of the problem (i.e. the fact that there is not a linear separation
in the feature space between the two classes: b and non-b events). This conclusion
remains valid when the classification problem becomes almost linear i.e. when one of
the variables used as input of the Neural Network is very discriminant. This is the
case if we use for instance vertex information from QIPBTAG [12] to tag b-quarks.
But even in this limit, Neural Network can help by rejecting the remaining charm

background (fig. 1).

3 Choice of the Neural Network

We have chosen a feed forward multi-layered Neural Network trained with backprop-
agation of the errors. Other models exist such that the Kohonen and the Hopfield
models [13] but the multi-layered approach is the best suited to solve classification
problems [5].

The number of hidden layers and the number of neurons per layer have been chosen
to optimize the separation between b and non-b events. This led to the following
structure: one input layer with 9 neurons associeted to 9 physics variables, two hid-
den layers with 9 and 6 neurons respectively, and one final layer with 1 neuron giving
the output of the Network normalized between 0. (target value for non-b events) and
1. (target value for b events). Each neuron of a given layer is connected to all the
neurons of the following layer. To each connection is associated a weight W which is
determined during a supervised learning phase. Each neuron ¢ performs a weighted
sum y; of the output values z; from all the neurons j of the previous layer; its output
O; is then computed via the sigmoid function:

O;=g(y)) = with yi =) Wijz; (1)
;

1
1+ eu/T
The coefficient T is usually called “Temperature” and has been fixed to 1. for all the
layers. For more technical details, we refer to the ref. [5].

For the training of the network, we have used 7000 bb, 7000 ¢t and 7000 ui. dd. s3

fully simulated events. They have been obtained by using the standard ALEPH
Monte Carlo program HVFL based on DYMU and JETSET 7.3 [14, 19] to simulate
the reaction ete~ — Z — qg. Afterwards, a detailed detector simulation is performed
and the events are reconstructed in the same way as it is done for data.
The initial weights of the connections were chosen randomly between [-0.01,0.01]. One
event of each class is presented to the Network. We feed forward and backpropagate
the errors. The reactualisation of the weights W is done after one exposure of an
event of each class by minimizing a cost function E according to the formula (3]:

E
AW (k +1) = AW (k) + ng—w
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where k is the number of exposures and

E = L S (6-t)
2 events

§ is the obtained output for a given example and ¢ the target value. The parameter a
has been fixed to 0.5 while n decreases linearly from 0.01 to 0.0001 during the learning
phase. The training is then stopped when the performance of the Network ceases to
improve significantly, i.e., when the function E reaches an asymptotic minimal value.
This corresponds roughly to 2 millions exposures. Furthermore, we have checked that
a change of the relative fractions of bb events from 33% to 50% in the learning set
and the order in which we present each class of events do not bias the result of the
training. So, the learning of the Neural Network is independent of the value of R®
which is in the Monte Carlo.

This training procedure has been tested in a validation step with a sample of about
200,000 fully simulated hadronic Z decays. different from those of the learning sample.
In particular, we have checked that the Network performances (b-purity versus b-
efficiency) are very similar in the two phases.

4 The input variables

4.1 Tagging of b quarks

The large mass of the b quark has several important consequences:

— b quarks lose less energy by gluon bremsstrahlung than light (udsc) quarks.

— The fragmentation of b-quarks is harder.

— The track multiplicity of the two most energetic jets is higher for a bb than for a
light quark events [15].

Thus, the fraction of the beam energy carried by B-hadrons is 70% on average and
only 51% for D-hadrons produced in cZ events, resulting in different topologies for
bb and light quark events. In particular, bb events will appear more spherical in th
detector than light quark events and the particles produced in bb events will have
specific momentum p and transverse momentum p, distributions 2

4.2 Definition of shape variables

Taking advantage of these characteristics a set of 70 purely kinematical variables has
been defined. Two types of variables have been used: variables based on the full
hemisphere 3 shape, and variables based on the properties of the most energetic jet

2The transverse momentum p of a track is defined with respect to its jet axis.
3The two hemispheres of the events are defined w.r.t. the plane perpendicular to the thrust axis
computed by using all the tracks (charged and neutral) of the event.
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of each hemisphere. All the variables and axes (thrust and jet axes) used in this
analysis are defined by using all ‘good’ charged tracks, with neutral electromagnetic
and hadronic clusters. A ‘good’ charged track is one that passes through a cylinder
of 2 cm radius and 20 cm length around the interaction point, has at least four TPC
coordinates, a transverse momentum relative to the beam axis p7¥ > 0.25 GeV. a
polar angle between 18° and 162° and a momentum between 0.2 and 100. GeV.
The last three cuts are also applied to the neutral tracks. Jets are reconstructed
with the scaled-invariant-mass clustering algorithm [16] with the parameter y..; set
to (6. G’eV/E,,,'s)2 where E.,;s is the total energy of each hemisphere as reconstructed
by the energy flow algorithm.

Furthermore, some acceptance cuts have been done to restrict the analysis to the
region of good resolution and acceptance and to ensure a proper definition of the
variables:

— the polar angle of the thrust axis must be in the range 30° < 6, <150°,

— the most energetic jet of each hemisphere must have at least 4 ‘good’ energy flow
tracks to avoid tails in the p, distributions (fig. 2, 3),

— E,;, must exceed 5 GeV for both hemispheres,

— only particles with an angle of less than 70° with the thrust axis are used to build
the input variables.

The last cut is introduced to reduce the correlations between the two hemispheres
(called ‘Double Tag Correlations’ in the following).

4.3 Selection of Input variables

Although there is a priori no restriction on the number of variables used as input of
the Neural Network, it is obvious that a small number will lead to a more manageable
and less time consuming learning. Starting from the original set of 70 variables, we
have selected nine variables with the help of a F-test taking into account the dis-
crimination power of each variable and its correlation to the others inside the same
hemisphere [17] *. The nine selected variables A(I)F-vatue (I = 1,9) are the following
(for a more detailed description, see ref. [5] and the references given subsequently):
— A(1)geo is the boosted sphericity (Broost = 0.965) of the most energetic jet of the
hemisphere.

— A(2)sso is the product of the sum of the transverse momenta by the sum of the
longitudinal momenta normalized to Pp,,; where Pioar is the sum of the momentum
of all the tracks of the hemisphere.

— A(3)463 is the sum of the squared transverse momentum of the particles in the jet
with respect to the jet axis of the most energetic jet of the hemisphere.

— A(4)4s0 is the longitudinal momentum of the leading particle of the most energetic
jet of the hemisphere.

4The number of input variables is given by the fact that we only consider variables with a F-value
greater than 10% of the F-value associated to the most discriminante variable.



— A(5)272 and A(6)212 are the transverse momentum of the leading and of the second
leading particle of the most energetic jet of the hemisphere with respect to the jet
axis.

— 4(7)2ss 1s the invariant mass of the three most energetic particles of the most en-
ergetic jet [2].

— A(8)279 and A(9)1s6 are the directed sphericities described in [2].

Higher is the F — value, more discriminante is the associated variable. The absolute
value of the F — value is not relevant and simply reflects the number of Monte Carlo
events used to do this F-test (6000 events of each class in this study).

Fig. 4 shows the shape of the nine variables for b and non-b events and fig. 5. the
comparison between data and Monte Carlo. A reasonable agreement is observed be-
tween real and simulated data.

The distribution of the resulting Neural Network output R; computed for each hemi-
sphere 7 (i=1,2) is shown for simulated b, ¢ and uds quarks in fig. 6, while fig. 7 shows
the same distribution for data and Monte Carlo and fig. 8 the distribution of the
product R; X R, for simulated events. The performance of this Neural Network for
the b-tagging is illustrated fig. 9 by the curve b-purity versus b- efficiency obtained by
applying different cuts on the Neural Network output. Typically, a b-purity of 45% if
we cut on one hemisphere Ry(z), and of 65% if we cut on the product R; X R2, can be
obtained for a b-efficiency of 50%. The comparison with the same curves computed
for each variables (fig. 10) shows the interest of the Neural Network technique to
combine as well as possible all the informations contained in the input variables.

It has to be noted that (except for A(1) and (A(2)), these nine variables are not the
nine most discriminant but have been chosen to reduce the correlations between the
two hemispheres since, as we will see in the next section, these correlations cannot
be determined from the data and come from the Monte Carlo simulation. So. this
Network is in fact a compromise between the best possible discrimination power be-
tween bb and light quark events and small correlations between the two hemispheres.
Another set of input variables will be presented as checks in section 10.

5 Event selection

Selection of hadronic events

The event selection in Scanbook is based on the Heavy Flavour Group selection
HE.and.HD.and.HH.and.HM (i.e. events flagged as good for use of ECAL, DEDX,
HCAL and muon chambers). This ensures in particular to have good runs for the
selection and the identification of our high p, leptons. After the CLAS 16 selection,
we obtain 151784 hadronic events for '90 data and 285818 for '91 events. After the
acceptance cuts described in the previous section, we finally select a total of 362,246
qq candidate events, with 125,175 from the 1990 data and 237071 from the 1991 data
set. The main inefficiency of this selection is due to the cut on the polar angle of
the thrust axis at 30° which removes 14% of the hadronic events. The background
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from 717~ in this sample has been estimated using a large sample of Monte Carlo
events (about 300,000 simulated 7¥77) and leads to subtract (376 & 6) events from
the hadronic sample. The error on the number of sutracted events comes from the
Monte Carlo statistic and from the present experimental uncertainty on I';+,-). The
selection efficiency for 777~ events is 3.12% including the CLAS 16 selection and all
the acceptance cuts. Fig. 11 shows the distribution of the Neural Network output
obtained for these 7¥7~ events.

Selection of high p, lepton events

The selection and identification of the lepton candidates (ECAL and dE/dX for

electrons and HCAL and muon chambers for muons) candidates follows the official
procedure of the Heavy flavour lepton working group. We refer to the ref. [19, 20] for
more details.
Only leptons with a momentum greater than 3 GeV are considered. Jets are found
using the sclaed-invariant-mass clustering algorithm. The p, of the lepton is calcu-
lated with respect to its jet axis excluding the lepton. The number of selected lepton
candidates is given table 1 for different cuts on the transverse momentum.

Source pyL > 0. py > 1.00 py > 1.25 pL > 1.50 pL > 1.75
Electrons || 6908 (14587) | 2983 (5881) | 2296 (4518) | 1769 (3431) | 1353 (2599)
Muons 11099 (23680) | 4355 (9125) | 3332 (7003) | 2513 (5357) | 1917 (4044)

Table 1: Number of selected lepton candidates as function of the applied p, cut (in
GeV) for the 1990 data. The numbers in parenthesis correspond to the 1991 data.

6 The Hemisphere Double Tag Method

The measurement of R®) is usually done by an inclusive tagging of the complete events
in which some distributions obtained in the data are compared with the Monte Carlo
predictions (for instance, the p and p, distributions of the leptons produced in the
semileptonic decays of B-hadrons, the output of an event shape discriminator, etc.).
These methods are statistically powerful but rely on the Monte Carlo to predict the
shape of these distributions and therefore suffer from systematic errors arising from
Monte Carlo uncertainties [21]. We present in this ALEPH Note a Double Tag-
ging method which allows to derive the tagging efficiencies for b and light quarks
directly from the data together with the measurement of R® | eliminating any uncer-
tainties due to b-physics like the b-fragmentation, the B-hadron decay modelisation,
Branching ratios, etc. Monte Carlo predictions are only used to determine some small
correction coefficients.



This analysis proceeds in three steps:
— We split the ¢g events in two hemispheres a.ccordmg to the plane perpendicular to
the thrust axis.
— We calculate the nine variables for each hemisphere and derive a Neural Network
output R; (¢ = 1,2) which will be used in the following to tag the hemisphere.
— For a given cut on R; and on the p, of the leptons, we define three classes of
events: a class where only one hemisphere is used as a tag (‘single tagged events’) °.
a class where both hemispheres are required to satisfy the cut (‘double tagged event’)
and a class of events tagged by a high p, lepton on one side and by a cut on the
discriminator on the other side (‘single tagged high p, leptons’) ®. From these three
samples, we can define the following system of three equations:

l,VST/2-/Vhad.:fb€b +(1 - fb)eudsc
NDT/Nhady =fb€§(1 + CbDT) (1 - fb) udsc(l + Cudsc Edj;c) (2)
Nzigt./Nlept =fles(1 + C5T)+(1 — fF)ewdsc(1 + Cotye + cids.)

— f, is the fraction of Z — bb events in the hadronic sample. In order to derive the
value of R(® from the measurement of f3, it is necessary to take into account for the
difference of acceptance between bb events and all hadronic events. This correction
is obtained from the Monte Carlo and is 0.987 £ 0.001, where the error is due to the
limited Monte Carlo statistics. This is mainly due to the requirement of at least four
energy flow tracks in the most energetic jet of each hemisphere (see fig. 3).

— NST, NPT and Nle . are the number of ‘single tagged events’, ‘double tagged
events’ and ‘single ta.gged high p, leptons’, respectively. Npoa. and Ny, , the number
of hadronic events and high p, leptons used for this analysis (for 90 and 91 data,
Npoa. = 362 246 and Niepe. = 17,149 for a py cut at 1.25 GeV).

- 5T, CST ., CPT, ODL | DT and c;y,. are correction factors which are introduced
to take into account possible correlations between the two hemispheres (C DT and
CST coefficients) and the fact that the ¢ quark is heavier than the uds quarks (c bT
and 5T coefficients). These correction factors will be described in details in section
8.

— € and €,4,c are the tagging efficiencies for b and light quarks.

— fF is the b-fraction in the high p, lepton sample.

Then, by solving this system of three equations, it is possible to extract from the data
R® and the cut efficiencies €, and €ygsc for bb and light quark events, provided the
hemisphere b-purity fZ in the high p, lepton sample is determined by the multi-lepton
fit and the correction coefficients are estimated from Monte Carlo.

5If the two hemispheres of an event pass the cut, the event is double counted.
S[n fact, an event contributes in this third sample according to its number of high p leptons.



7 Determination of f/

Knowledge of the bb purity f£ in the lepton sample is crucial for the hemisphere
double tag method. This purity is determined from a global analysis of single and
multi-leptons hadronic events and is defined by the relation:

N
L _ b
fb - Nb+Nc+1Vuds (3)

where:

Ny = RO x[2x foBR(b—1)+2x% fy—cet BR(b = ¢ = 1) + fo—others] X N3)
N. = RO x[2x fetBR(c = 1) + fecothers) X Nz (5)
Nugs = RU) x fois x Nz (6)

f, is the probability that the p, of a lepton coming from the process ¢ is greater than
the applied p, cut.

The details of this study can be found in [19] and a publication is in preparation on
this subject; so only a brief description is given here.

This analysis takes advantage of the redundancy of the data to measure simultane-
ously the partial width of the Z into c¢, the b and c-fragmentation, the semileptonic
branching ratios of b and c-hadrons and another determination of the partial width
of the Z into bb.

Two samples of events are considered: events with at least one lepton with p > 3
GeV (single lepton events) and events with at least two leptons with p > 3 GeV
(multi-lepton events). The first sample is analysed in the (p,pL) plane and the second
one in the (Peross, 7" plane with peross = p1p7, + p1p), and pT™ = Min(p', pl).
— The single lepton sample receives three main contributions:

BR(b — 1) x R® (7)
BR(b— ¢ — 1) x R®) (3)
BR(c — 1) x R® (9)

— The multi-lepton sample can be splitted in two samples: same side dileptons, if
the angle between the direction of the two leptons is less than 90°, and opposite side
dileptons otherwise.

x The main contribution for the same side dilepton events is

BR(b— 1) x BR(b— ¢ — 1) x R®). (10)

» The opposite side dilepton events are dominated by the following contributions:
[BR(b— 1))* x R® (11)
BR(b— 1) x BR(b—¢— 1) x R® (12)

[BR(c — )] x R, (13)
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To summarize, opposite side dileptons measure BR(b — [), same side opposite charge
dileptons measure BR(b — ¢ — 1), the single lepton sample allows to extract R®)
and R) and the three samples determine the fragmentation parameters. With the
present statistic, we are not able to fit simultaneously the branching ratios BR(c — [)
and BR(b — ¢ — 1), therefore we have fixed BR(c — [) to its measured value at low
energy: BR(c — 1) = 0.098 £ 0.005.

To determine fF, a 6 parameter fit (R® RO <« Xy >, < X, >, BR(b — () and
BR(b — ¢ — 1)) of single and dilepton events is performed in the full (p.pL) and
(Peross» PT'™) planes (i.e. no cut on p1) and the result is extrapolated in the restricted
region p, > 1.25 GeV/c. Table 2 gives the purities obtained for the '90 and 91 data
separately. The value obtained for 1991 is slightly lower than for 1990 mainly because

of a higher conversion rate due to the addition of the vertex detector.

1990 | 1991 | 199041991
7L (%) || 88.49 | 88.19 88.29

Table 2: b-purity in the high p, lepton sample for '90 and '91 data.

Table 3 shows the various contributions to the total error on ff. The statistical

Source variation Afy (%)

Fit statistics o(fy) +lo +0.50

b decay model Altarelli/ISGW +0.25

c decay model Altarelli/JETSET | +0.19
for ¢ — | (£0.50)

¢ decay model Altarelli/JETSET | +0.35
for b—c— 1 (£lo)

elec. Id. efficiency +3% +0.02

muon Id. efficiency +3% +0.03

4 conv. +10% +0.14

e — misid. +10% +0.07

p — decay +10% +0.21

punch-through +20% +0.13

Total syst. +0.55

Total stat. + syst. +0.74

Table 3: Contributions to the error on the b purity? f£ in the global fit of single and
dilepton hadronic events.

error o( fF) on fE was estimated in the following way: we first do the 6 parameter
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fit; from this fit, we obtain the values z; £ o; for each parameter z; (: = 1.6). and
the correlation matrix p;; (7,7 = 1,6). Then, we deduce:

8

J

The uncertainty coming from the b-decay modelisation has been estimated by using
the Altarelli et al. [22] and the ISGW [23] models to describe the shape of the lepton
energy distribution in the b-hadron rest frame for b — [ transitions, the two models
being optimized on the ARGUS and CLEO data. Then, the purity is computed for
each model and we take as error one half of the difference between the two results.
A similar method is used to derive the error due to the c-decay modelisation in ¢ — |
transitions. In this case we compare the result obtained for ff by using the standard
JETSET modelisation and the Altarelli et al. predictions optimized on the DELCO
data (fig. 12).

To estimate the uncertainty due to the c-decay modelisation in b — ¢ — [ decays, we
factorize this transition in (b — ¢) X (¢ — [). The error due to ¢ — [ is estimated
as previoulsy while for b — ¢, we compare the predictions of the standard JETSET
modelisation with the Altarelli et al. model optimized on the CLEO data for the
B — D°X and B — D*X transitions. In fact, the two effects are opposite and
would tend to cancel each other since in the ¢ — [ case, the JETSET prediction leads
to a softer distribution than the Altarelli et al. model, while for the b — c energy
spectrum, the JETSET model gives a harder spectrum. However, we have added
linearly the two effects to have a conservative estimate of this error on fF.

Finally, the purity of the lepton sample for p; > 1.25 GeV is:

FE = 0.8829 £ 0.0050(stat.) £ 0.0055(syst.).

—~
—
(@1

~—

Note that the contribution to o(fE£)(stat.) of the parameter R®) is £0.21%, the
main contribution being due to the charm. This induces a 19% correlation between
the T',z/Thas values obtained in the global lepton analysis and in this event shape
analysis.

8 Determination of the correction coefficients

The determination of the 6 correction coefficients and the confidence that we can
have on their values is really the key point of this analysis since they are not up to
now measured from the data and therefore can introduce some bias due to the Monte

Carlo.

— CPT and CPE, are correction factors which take into account possible corre-
lations between the two hemispheres due to kinematic constraints (conservation of
momentum for instance) and hard gluon radiation by the primary quarks. They are
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defined by the following relation:
= ——2— with ¢ = b, udsc. (161

where ¢P7T is the probability that both hemispheres of an event satisfy the cut on the
event shape discriminator (ePT = NPT /Nhed for qg events).

These two coeficients are determined by using more than one million fully recon-
structed hadronic Monte Carlo events 7. Note that the value for the coefficient Cfdf,-
is in fact the average of the values obtained for c¢ and uds events independently. We
find CPT = 0.026 + 0.004 and C2Z = 0.036 £ 0.002 leading to C77, = 0.033 £0.002:
the error is due to the Monte Carlo statistics.

— CPT and CST  are correction factors which take into account possible correla-
tions between the two hemispheres due to the presence of an energetic lepton with
missing energy carried out by the neutrino produced in the semileptonic decay of D
and B-hadrons. They are defined by the following relation:

lepton

cST = —-—6-—6— with i = b, udsc. (17)
where €/Pt" is the probability to tag the hemisphere opposite to the high p, lepton
(elepton = NST, /NP for qq events).
These two coefficients are expected to be very small especially in the case of uds events
for which there is no neutrino produced with the lepton. They have been determined
in the same way as CPT and CPZ, by using our large sample of fully reconstructed
hadronic Monte Carlo events.

DT and ST, are two correction coefficients introduced to account for the

fact that, due to the mass of the ¢ quark, cC events are less well separated from bb
events than uds events (fig. 6). This results in a higher tagging efficiency of charm
events for a given cut on the Discriminator output. For instance, for a cut at 0.3
on the Neural Network output, Monte Carlo predictions give: e, = 0.4309 + 0.0009
and €,4, = 0.3670 £ 0.0005 leading to €45 = 0.3811 + 0.0004, again the errors are
due to the Monte Carlo statistics. So, these two correction coefficients depend on the
fractions f, and fZ of ¢z events in the non-b hadronic and leptonic samples respectively
and are given by the following equations:

DT _ (1 - fC)fC(ec - 6ur:i.s)2

— C

Clight = 2 (13)
uasc
L
st (FE = fo)ec = €uas)
Clight = — Zudsz . (19)

TThe determination of these correction coefficients has been done by using: 1,050,000 fully sim-
ulated ¢q events (210,000 with the 90 geometry and GAL252 + JUL261 and 850,000 with the 91
geometry mainly with GAL242 + JUL258) and about 350,000 bb (46,000 with the 90 geometry and
GAL252.7 + JUL261.5, 90,000 with the 91 geometry and 210,000 with the '92 geometry). Note
that this number of bb corresponds to more than 1,5 million additional Z — qq events.
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The charm fractions f. and fL are determined by the multi-lepton fit. We get:
f. =0.21 £0.02 and fF = 0.57 £ 0.07. The error on f. is obtained from the errors
(stat. + syst.) on R® and RO in the multi-lepton fit. To obtain the error on fZ.
we express this quantity as function of f% and of the c¢ purity PL in the high p,
lepton sample: fL = P5/(1 — fE) with PL =0.0667. P% is mainly proportional to
the product BR(c — ) x R®) which is measured with an accuracy of 3% [19]. We
assign an error of 10% on PL to have a conservative estimate of the error on fE.
For a given cut on the Neural Network output, €. and €,qs are then estimated by
Monte Carlo and the two coefficients c31,. and cDf, derived.

The values obtained for the 6 correction coefficients are given in table 4 for a cut at
0.3 on the Neural Network output. and for p; > 1.25 GeV.

parameter || Monte Carlo estimate
crt 0.001 £ 0.001
o —0.001 £ 0.001
chr 0.033 4 0.002
cbr 0.005 £ 0.002
CcsT. —0.001 £0.016
ST 0.060 £ 0.015

Table 4: Correction coefficients from Monte Carlo estimate for a cut on the event
shape discriminator at 0.3 and on the py of the lepton at 1.25 GeV. The errors are
only statistical.

Fig. 13 and 14 shows the values of the correction coefficients as function of several
cuts applied on the Neural Network output. The two coefficients associated to bb
events are stable and always compatible with zero within the errors while the light
quark coefficients increase with the applied cut. This is mainly due to the fact that
the difference between ¢ and uds hemispheres becomes more important when we cut
in the tails of the event shape discriminator. The systematics on these correction
factors will be discussed in section 10.

9 Results

Once the b-purity in the high p. lepton sample and the 6 correction coefficients have
been estimated for a given cut on the Neural Network ouput and on the py of the
leptons, the system of three equations can be solved and the values of f;, € and
€.4sc derived. The best cut on the event shape, i.e. the cut which corresponds to the
smallest statistical error on f; is a cut at 0.3 (cf. table 5). To select the high p. lepton
sample, we have chosen a cut at 1.25 GeV since this value gives the best overall error
on fy (a lower cut gives a smallest statistical error but this gain is canceled by the

12

o~



increase of the systematic error of f£, while a harder p, cut leads to a too important
statistical error) (table 6).
Table 7 shows the effect of the various correction factors on f;. Note that the single

Cut on R fo (%) e (%) €udse (T0)
0.21 24.90 £0.72 | 88.72 £ 0.29 | 56.29 £ 0.36
0.22 24.54 £ 0.67 | 87.56 £ 0.30 | 54.02 £ 0.34
0.23 24.29+£0.65 | 86.36 £0.31 | 51.76 £ 0.32
0.24 24.00 £0.61 | 85.05 £0.32 | 49.59 £ 0.31
0.25 23.91 £0.59 | 83.80 £0.33 | 47.45 £ 0.30
0.26 23.54 £0.58 | 82.41 £ 0.34 | 45.49 £ 0.28
0.27 23.58 £0.57 | 80.89 £0.35 | 43.46 £ 0.27
0.28 23.27 +£0.56 | 79.50 £ 0.35 | 41.63 £ 0.26
0.29 22.98 +0.56 | 77.94 £0.36 | 39.90 £ 0.25
0.30 23.10 £ 0.55 | 76.32 £0.37 | 38.05 £ 0.24
0.31 22.93 +0.55 | 74.67 £ 0.37 | 36.39 £ 0.23
0.32 22.75 4+ 0.55 | 73.06 £ 0.38 | 34.78 £ 0.23
0.33 22.82 +£0.56 | 71.21 £0.38 | 33.17 £ 0.22
0.34 23.10 £0.57 | 69.28 £ 0.39 | 31.15 £ 0.22
0.35 23.12 £0.58 | 67.40 & 0.40 | 30.00 £ 0.22
0.36 23.16 £0.59 | 65.58 £ 0.40 | 28.49 £0.21
0.37 23.06 £0.60 | 63.65 +0.40 | 27.19 £0.21
0.38 22.89 +0.61 | 61.87 £0.41 | 25.88 £ 0.21
0.39 23.10 £ 0.62 | 59.88 £ 0.40 | 24.47 £ 0.20

Table 5: Optimisation of the cut on the Neural Network output R for a given p,
cut at 1.25 GeV. The values of f, are given for ’90+'91 data; they are not corrected
by the acceptance factor (x0.987) and by the 7¥7 subtraction (—0.06%) but the
6 correction factors are estimated for each cut and taken into account to solve the
system. Note that all the points are correlated.

tag coefficient (C5T) for light quark events is big but its effect on f, is small because
it is multiplied in the third equation of the system by (1 — fE) = 0.1171, while the
effect of the double tag coefficient (C2Z,) is quite large.

Table 8 gives the results obtained for I'y5/Theq after correcting f, by the acceptance
factor, for different years of data taking. The background from Z — 777 is also
subtracted and changes the T';/Th.q value by -0. 06%. This table shows that the
measured value of [';;/Theq is very stable with the year of data taking and that the
shape of the Neural Network output (and so the efficiencies) is not affected (fig. 13).
The stability of T'yz/T'saq for several cuts on the Neural Network output with p, > 1.25
GeV, and for several p, cuts with a Neural Network cut at 0.3 is shown figure 16.
The corresponding measured efficiencies €, and €uqsc are displayed fig. 17. Again, the
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results are very stable in a wide range of b-efficiency values and of p, cuts showing
that the determination of [';z/Ts.q is independent of the cuts within the errors.

10 Checks and study of the systematics

Test of the method using Monte Carlo events

We have checked on 850,000 ¢g Monte Carlo events treated as if they were real
data, that the Double Tag method is able to find the correct fraction of bb events,
and that the extracted efficiencies obtained by solving the system of three equations
are compatible with the true efficiencies. The results are summarized in table 9 and
in fig. 18 and show that indeed the method works well on simulated events.

Influence of the Monte Carlo tuning

Although this method does not rely too heavily on the Monte Carlo tuning, we
have to take care that the efficiencies €, and €,4sc measured for a given cut on the
Neural Network output are not very different between data and Monte Carlo. This is
because some correction factors depend on these efficiencies. So, if they do not agree
between data and Monte Carlo, the correction factors estimated by Monte Carlo for
the data could be wrong. This problem can only occur for light quark events since in
the b case, the two coefficients CPT and C;7 are quite stable whatever the efficiency
¢5. Figures 19 and 20 show the comparison between real and simulated data for the
measured efficiencies (see also table 10). The observed agreement is very good for
light quark events giving confidence that we really take the correct coefficients from
Monte Carlo. In the b case, the agreement is not at the same level but, because of
the stability of CPT and C;7, this problem is not so crucial.

Another problem coming from the Monte Carlo could be the use of different ver-
sions to estimate an average value of the correction factors (210,000 ¢g with the "90
geometry and 850,000 with the '91 geometry). First, we have checked that the twor
Monte Carlo samples give very similar Neural Network outputs (fig. 21) and that the
correction coefficients are compatible within the errors leading to compatible values

for f, (see tables 11 and 12, and figures 22 and 23).

Influence of the Neural Network tuning

Mainly two types of checks have been done. We have verified that the measurement
of f, was not affected by:
— the choice of the learning parameters 7 and « and the structure of the Neural
Network (number of hidden layers, number of nodes per hidden layer),
— the choice of the input variables.
This study was done by repeating the complete analysis with four Neural Networks:
— Option (1): version used to produced our ‘official’ result. This is a priori the
best compromise between small correlations between the two hemispheres and good
discrimination power between bb and light quark events.
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— Option (2): same as (1) but with different values of 7 and « during the learning:
a = 0.9 and n = 0.01.

— Option (3): same as (1) but we have changed the input variables to get the smallest
possible correction coefficients even at the expense of a worse discrimination power.
— Option (4): Neural Network with 20 input variables and two hidden layers with
respectively 20 and 10 nodes. This option corresponds to the package QNNBTAG
which is installed in the UPHY area.

The results obtained with the four options are summarized in table 13 and in fig. 24.
They show that the determination of I'y5/T'raq is not affected by a possible systematic
due to the choice of the Neural Network, and that the result is stable in a wide range
of values of the correction coefficients CPT and CZ2F. giving confidence that these

udsc udsc
parameters are well predicted by the simulation.

Looking at the Neural Network output

The main effect of the Double Tag correlations (correlations between the two
hemispheres of an event) is to change the hemisphere shape output. This effect is
shown fig. 25 and 26 for b and udsc simulated events. Higher are these correlations,
more important is the distortion of the distributions. So, it can be interesting to com-
pare more precisely the Neural Network outputs between real and simulated events
in order to have a qualitative estimate of these correlations.

Fig. 7 shows that the disagreement between data and Monte Carlo on the hemisphere
shape output is more pronounced when a cut is applied on the opposite hemisphere.
In other words, the effect of a cut on the opposite hemisphere is more important for
data than for Monte Carlo (see fig. 27 and 28). This effect can be due to the fact
that the Double Tag correlations are bigger in the data (and therefore underestimated
in the system of three equations). But this can be also produced by a disagreement
between data and Monte Carlo on the hemisphere shape of bb event (since a cut on
one hemisphere enriches in bb events). This problem is confirmed if we repeat this
analysis on a very pure bb sample selected with QIPBTAG (|probevt| > 3.5 x 1073
which gives a b-purity of 90%) (fig. 29) and make difficult any conclusion on the CPT
coeflicient.

In order to study C2T | we have selected events both in data and in Monte Carlo by
requiring |probevt| < 1.0 x 1072, The light quark purity s, according to QIPBTAG.
96% and 92% after cutting at 0.3 on one hemisphere (fig. 30). Fig. 31 shows the
distortion of the hemisphere shapes for data and Monte Carlo. The same effect as in
qq events (i.e. the fact that the distortion, and therefore the Double Tag correlation.
is bigger in the data) is observed.

In conclusion, a determination of the coefficient CPT from the data will be crucial
to reduce the systematics of this method and to get a high precision measurement
of T,5/Thag. The high statistic collected by ALEPH in 1992 and the use of vertex

informations could allow in principe to do that [24].

Systematic errors on ['y;/Thad
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The main systematic errors on ['y;/I'seq arise from the uncertainties in the purity
of the high p, lepton tag, f£ and in the correction factors C3% ., CPT, CPI and CJ7.
The error in fL is dominated by the statistics of the fit and by the ¢- and b-hadron
decay modelisations as described in section 7.

For the correction coefficients CPT and CS7T, the systematic error contributions are
estimated by varying these parameters within their statistical errors in the Monte
Carlo. For the two coefficients c2L_ and ¢37 , the systematic errors are estimated
by varying the charm fractions f. and fZ by +£10% according to the results obtained
in section 8 and by changing the charm fragmentation parameter e.(Peter.) of the
Peterson et al. function from 0.040 to 0.065 [9]. Note that changes in charm fragmen-
tation and fractions produce anticorrelated and nearly cancelling changes in I'y;/Traq-
Therefore the systematic contributions for these corrections are dealt with in a cor-
related fashion.

For the b correction factors CPT and C;'T, we have changed the bottom fragmentation
parameter e;( Peter.) from 0.002 to 0.008. This study is not done at the generator
level by with the full Monte Carlo events by weighting the Neural Network output. It
should be noted that the most rigourous way to do that would be to directly weight
the nine input variables and recompute the Neural Network output. But what has
been done is certainly more conservative since it assumes that a change of €,(Peter.)
affects all the variables in the same direction. Fig. 32 shows the influence of the b-
fragmentation on the hemisphere Neural Network output for simulated bb events and
table 14, the values of CPT and CJ7T for different values of €;( Peter.) (see also fig. 33).
By considering the two extreme values of e;(Peter.), we obtain a very conservative
error on ['y5/Thea of £0.06%.

Another systematic can affect the CJT parameter. As it has been previously noticed.
the coefficient is essentially estimated by comparing the shape of the Neural Network
output in an hadronic event (first equation) with the shape of the hemisphere oppo-
site to the high p, lepton (third equation). But in the lepton sample, we do not only
consider events with one high p, lepton but also events with two or more leptons
and these events enter in the third equation of the system according to their lepton
multiplicity. Then, sometimes the hemisphere opposite to a high p. lepton contains
also a lepton. Fig. 34 shows a comparison of the shape of the Neural Network output
for the hadronic events and in the lepton sample for the hemisphere containing the
lepton. The presence of an energetic lepton with missing energy carried out by the
neutrino produced a clear distortion of the hemisphere shape. In orfer to define more
precisely the origin of C$7, it is instructive to look at the shape of the Neural Net-
work output in the lepton sample for events containing only one lepton with p greater
than 3 GeV and for dilepton events. These distributions are given fig. 35 and 36
and show that the factor CJ7T is due to two opposite effects: for single lepton event,
the presence of missing energy in the hemisphere opposite to the one used for the
Neural Network output induces a small positive correlation (fig 35), while in the case
of dilepton events the correlation is mainly induced by the presence of missing energy
in the hemisphere used for the Neural Network output and is negative (fig. 36). The
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result of this study are listed in table 15.

So, the CJT coefficient can be badly estimated by Monte Carlo if the ratio of dilep-
ton and single lepton events is in disagreement between data and Monte Carlo. This
ratio is in fact directly proportional to the semileptonic branching ratios of b-hadrons
(mainly BR(b — ) + BR(b — ¢ — [)). To estimate a possible systematic effect on
C57T, we have changed these branching ratios by +10% in the simulation and compute
the new values of CST. This effect can induce a systematic error of £0.03% on T
leading to a £0.03% systematic error on I'y;/I'sad-

The contributions from the difference sources of systematic error are listed in

table 16.

11 Conclusion and future of the method

We have measured the bb partial width of the Z by using an hemisphere Double Tag
method with a Neural Network to preferentially select the bb final state. Using the
450,000 hadronic events collected by ALEPH in 1990 and 1991, we obtain:

Ty;/Thaa = 0.2274 + 0.0054(stat.) £ 0.0038( fF) % 0.0026(others) (20)

This result is 1.3c above the highest Standard Model prediction of 0.218.

Assuming two millions of hadronic Z events at the end of 1993, the statistical error
will almost reach the 1% accuracy level (in fact £0.26). The dominant systematic
error comes from the uncertainty on the b-purity in the high p, lepton sample. This
error is dominated by the fit statistic and by the b- and c-decay modelitation: Aff =
0.0050(stat.) +0.0047(model) +0.0029(back.). We can therefore expect to divide this
error by two for the end of 1993 (i.e. £0.19% on I'y5/Thaa)-

In conclusion, this method can ultimately provide a measurement of I';; /T hag with an
accuracy of (1.5-2)%, dominated by the systematic errors arising from the correction
coefficients. To go beyond this (1.5-2)% accuracy, it will be necessary to measure at
least one of these correction factors from the data in order to decrease the systematic
error and/or to introduce some vertex informations as input of the Neural Network.
Indeed, a combinaison of event shape and vertex variables is certainly the best solution
to reject in the most efficient way the remaining background.
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pi cut (GeV) fs (%) & (%) €udse (%)
0.75 23.19 +0.46 | 76.26 £0.32 | 38.02 £ 0.22
1.00 23.23 +£0.51 | 76.23 £0.34 | 38.01 £0.23
1.25 23.10 £ 0.55 | 76.32 £ 0.37 | 38.05 £0.24
1.50 23.73 £0.62 | 75.85 +£0.41 | 37.88 £ 0.25
1.75 22.79 4+ 0.65 | 76.57 £ 0.46 | 38.13 £ 0.26

Table 6: Optimisation of the py cut for a given cut on the Neural Network output at
0.3. Same remarks as for the previous table.

Correction factor || value | Af, (%)
opT 0.001 | - 0.09
cT -0.001 | - 0.10
CPT + BT 0.038 | -2.59
C3T. + el 0.059 | + 0.38

Table 7: Effect of the correction factors in the solution of the system of three equa-
tions; Af, = f, — fo where f2 (f;) is the solution of the system without (with) these
correction factors taken into account.

Period be (%) Fbg/rhad (%) € (%) €udsc (%)
1990 88.49 | 22.74 £0.93 | 77.06 £ 0.63 | 38.31 £ 0.41
1991 88.19 | 22.74 £0.67 | 75.98 £0.47 | 37.93 £ 0.30

1990+1991 || 88.29 | 22.74 +£0.54 | 76.32 £0.37 | 38.05 £ 0.24

20

Table 8: Determination of [y;/The and of the two efficiencies for different years.
Note that all the results are obtained by using the same values for the correction
coefficients.




Cut on R fs (%) s (%) er (%) €ndse (70) €udse ()
measured true measured true
0.20 2917 £ 0.52 | 89.59 +0.18 | 89.59 £0.03 | 58.42 £0.25 | 58.46 £ 0.04
0.25 2905+ 0.38 | 83.01 £0.22 | 82.89 £ 0.04 | 47.73 £0.19 | 47.76 £ 0.04
0.30 9912 +0.36 | 75.21 £0.24 | 75.06 £ 0.04 | 38.07 £0.15 | 38.12 = 0.04
0.35 9932 +0.37 | 66.40 +£0.26 | 66.32 £0.05 | 29.95 £0.14 | 30.11 = 0.04
0.40 2942 +0.61 | 57.19 +£0.26 | 57.04 £0.05 | 23.27 £0.12 | 23.42 = 0.03
0.45 9919 + 0.45 | 47.69 +0.26 | 47.24 £0.05 | 17.69 £0.12 | 17.77 = 0.03
0.50 2941 +£0.52 | 37.48 £0.25 | 37.40 £0.05 | 12.73 £0.11 | 12.33 £ 0.03

Table 9: Test of the Double Tag method on 850,000 simulated hadronic events. The
measured values of f, take into account the 6 correction coefficients but they are not
corrected by the accceptance factor. The true b-fraction in this Monte Carlo sample
(without acceptance correction) is 22.17%.

Cut on R e (%) e (%) €udse (70) €udsc ()|
M.C. data M.C. data ‘
0.20 8950 £ 0.18 | 80.88 £ 0.28 | 53.42 £0.25 | 33.94 = 0.33 |
0.25 83.01 +0.22 | 83.80 £0.33 | 47.73 £0.19 | 47.45 = 0.29 |
0.30 75.21 £ 0.24 | 76.32 + 0.37 | 38.07 £0.15 | 38.05 £ 0.24
0.35 66.40 + 0.26 | 67.40 £ 0.39 | 29.95 £0.14 | 30.00 = 0.21
0.40 57.19 £0.26 | 57.99 £ 0.41 | 23.27 £0.12 | 23.25 £ 0.20
0.45 47.69 +£0.26 | 48.13 £0.41 | 17.69 £0.12 | 17.56 £ 0.19
0.50 37.48 +£0.25 | 37.77 £0.39 | 12.73 £0.11 | 12.52 £ 0.18
Table 10: Comparison between real and simulated data for the b and light quark

efficiencies obtained as solutions of the system of three equations for different cuts on
the Neural Network output.



Cuton R || e true (%) cPt (%) ct (%)
0.25 83.06 £ 0.14 0.31 £0.37 —0.04 £ 0.54
82,81 £0.05] | [-0.02£0.13] | [-0.18£0.19]
0.30 75.23 £0.15 0.66 £ 0.44 —0.55 £ 0.69
74.99£0.05) | [0.06£0.15] | [-0.21%0.23]
0.35 66.58 = 0.17 0.57 £0.49 —-1.24 £0.85
66.2¢ +0.06) | (012+0.17] | [0.20£0.29)
0.40 57.38 £0.18 0.67 £0.55 —-2.10 £ 1.26
(56.93 £0.07) | [0.28 +0.19] [0.15+£0.35] |
Cut on R || €usse true (%) | COF. + coise (%) CT + coise (%)
0.25 47.55 +£0.10 2.91 +£0.36 2.47 £ 3.52
49.62 £ 0.05] | [2.89 % 0.18] [5.88 % 1.68]
0.30 37.93 +£0.09 4.02 £0.47 1.06 £ 4.36
(38.16 £0.05] | [3.77 % 0.23] (6.86 = 2.07]
0.35 29.99 +0.09 3.73 £ 0.63 0.87 £5.20
(30.13£0.04] | [4.23%0.37] [6.03 + 2.50]
0.40 23.38 £0.08 2.90 £0.88 6.30 + 6.29
23.43+£004] | [3.90%0.44] (7.68+£3.55] |

Table 11: Comparison between 90 and '91 Monte Carlo for the true efficiencies and
the correction factors. The numbers in brackets are for events simulated with the 91
geometry.

Period Tos/Thad (%) e (%) €udse (T0)
1990 | 21.79 £0.88 £0.80 | 77.49 £ 0.64 | 38.80 £0.40
1991 |l 23.13 £0.68 £0.37 | 76.06 £ 0.45 | 37.80 £0.29

Table 12: Results obtained for 90 and '91 data with the correction factors estimated
by Monte Carlo with the 90 and '91 geometries respectively. The first error on
T,;/Thaa is the statistical error due to the number of real data events and the second
one is the error induced by the statistical uncertainty on the correction factors.

SV
[S)



N .Net. option || Ly/Traa (%) | COZ. (%) | Coise (%)
D 3274054 | 38 5.9
(2) 2283 056 | 3.8 5.9
(3) 22.72 £0.60 -0.14 0.25
(4) 2288 +0.56 | 8.4 73

Table 13: Results obtained on I'y5/T g for different choices of Neural Network. The
b-correction factors are not given since they are always compatible with zero for all
the options.

e(Peter) | C1 (%) cyt (%)
0.008 0.023 £0.31 | —0.52 £ 0.50
0.006 0.077 £0.30 | —0.43 £ 0.47
0.0048 0.109 £0.30 | —0.54 £ 0.48
0.004 0.202 £ 0.30 | —0.63 £ 0.50
0.002 0.157 £0.36 | —0.33 £ 0.65

Table 14: Effect of the b-fragmentation on CPT and C{T. Note that we have only used
one half of the bb Monte Carlo events to estimated this effect and that the simulated
events used in ALEPH have been generated with es(Peter.) = 0.006. Furthermore.
the value 0.0048 corresponds to the result obtain by the Heavy Flavour group.

Cut on R 0.25 0.30 0.35 0.40
> 1 lepton(s) || —=0.32 £0.23 | —0.36 £ 0.29 —0.18+0.36 | —0.10 = 0.44
1 lepton —0.48+0.27 | —0.55+0.3¢ | —0.44 £0.42 | —0.51 £ 0.52
> 2 leptons 5.91 £ 0.63 7.50 £ 0.84 103+ 1.1 13.5£1.3

Table 13: Comparison of CZT (in %) estimated by Monte Carlo for bb events with
one. at leat one and more than one high p. leptons.



Source Effect on [y5/Thaa (%)

fE +0.38
cet +0.10
cbr +0.13
cyT 40.10
c3T +0.10
charm fragmentation +0.08
fe +0.00
fL +0.05
bottom fragmentation +0.06
b-semileptonic BR +0.03
backgrounds +0.01
geometrical affects +0.07
acceptance +0.02

Total +0.46 B

Table 16: Contributions to the systematic error on v/ T had-
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Figure 1: The b-purity of the remaining sample as function of the b-efficiency of the
applied cut on the variable PROBHEMI of gipbtag (triangles) and on the output of
a Neural Network including PROBHEMI as one of its input variables (squares).

Figure 2: Track multiplicity (charged and neutral) of the most energetic jet of each
hemisphere: comparison between light quark events (solid histogram) and bb events
(dotted histogram).

Figure 3: Track multiplicity (charged and neutral) of the most energetic jet of each
hemisphere: comparison between data (black points) and Monte Carlo (histogram).

Figure 4: Distribution of the nine variables A(I) used as input of the Neural Network,
for b-quark (dotted line) and light quark events (solid line). The two contributions
are normalized to the same area.

Figure 5: Distribution of the nine variables A(I) used as input of the Neural Network.
for data (black points) and simulated events (histogram).

Figure 6: Shape of the Neural Network output Rj(z) computed on one hemisphere
for different flavour Monte Carlo events: uds hemispheres (solid line), ¢ hemispheres
(dotted line) and b hemispheres (dashed line).

Figure 7: Neural Network output Rj(z) of one hemisphere for data (crosses) and
hadronic Monte Carlo events (solid histogram), a) without and b) with a cut at 0.3
on the output of the opposite hemisphere.

Figure 8: Distribution of the product Ry x R for simulated events (same notations
as for fig. 6).

Figure 9: b-purity of the remaining sample as function of the b-efficiency of the applied
cut on the hemisphere Neural Network output (squares) and on the product Ry x R,
(triangles).

Figure 10: b-purity of the remaining sample as function of the b-efficiency of the
applied cut on each of the nine input variables A(I). Note that none of these purities
never exceeds 50% while this quantity can reach 70% in the case of the Neural Network
output.

Figure 11: Distribution of the Neural Network output for 77~ events (solid his-
togram) and for ¢g events (dotted histogram). The two contributions are normalized
to the same area.

Figure 12: Lepton energy spectum in the c-hadron rest frame for ¢ — [ transitions:
comparison between the Monte Carlo predictions (dotted histogram) and the data
from DELCO: a) JETSET prediction, b) model of Altarelli et al.
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Figure 13: Values of the correction coefficients 1 + CPT and 1 4+ CPT as function of
the cut applied on the hemispshere Neural Network output.

Figure 14: Values of the correction coefficients 1 + CPF + ¢PF and 1+ C3L +c51

udsc udsc
as function of the cut applied on the hemispshere Neural Network output.

Figure 15: Comparison of the Neural Network output between '90 (stars), 91
(squares) and '92 (triangles) data.

Figure 16: Mesaured values of T'y5/Thaq in "90+91: a) for different cuts on the Neural
Network output with p; > 1.25 GeV, b) for different p, cuts and a cut on the Neural
Network output at 0.3.

Figure 17: Mesaured values of € and €uq4sc obtained by solving the system of three
equations for 904’91 data for different cuts on the Neural Network output.

Figure 18: Mesaured values of f; obtained on 850,000 ¢ simulated events treated as
if they were real data, for different cuts on the Neural Network output.

Figure 19: Ratio of the b-efficiencies obtained with real and simulated data as function
of the b-efficiency measured in the real data.

Figure 20: Ratio of the light quark efficiencies obtained with real and simulated data
as function of €,45c measured in the real data.

Figure 21: Neural Network output of one hemisphere for Monte Carlo events simu-
lated with the '90 geometry (histogram) and the '91 geometry (squares): a) without.
b) with a cut at 0.3 on the output of the opposite hemisphere.

Figure 22: Comparison of the correction factors 1 + CPT and 1 + C;7 for b quarks
estimated with ’90 and ’91 simulated events as function of the cut applied on the
Neural Network output.

Figure 23: Same as figure 22 for light quark events.

Figure 24: Measured values of ['y5/Thaq as function of the cut applied on the Neural
Network output for different choices of Neural Networks.



Figure 25: Effect of the Double Tag correlations on the shape of the hemisphere
output; comparison of the Neural Network output for bb simulated events without
(solid histogram) and with (black points) a cut at 0.3 on the opposite hemisphere.

Figure 26: Same as figure 25 for light quark events.

Figure 27: Comparison of the Neural Network output of ¢¢ events with (solid his-
togram) and without (black points) a cut at 0.3 on the opposite hemisphere: a) for
simulated events, b) for data.

Figure 28: Ratio of the bin contents of the Neural Network output obtained with and
without a cut on the opposite hemisphere: comparison data (dotted crosses) Monte
Carlo (solid crosses).

Figure 29: Comparison data (black points) Monte Carlo (histogram) for a b-enriched
sample obtained with gipbtag: a) without and b) with a cut at 0.3 on the opposite
hemisphere.

Figure 30: Same as figure 29 for light quark events.
Figure 31: Same as figure 28 for the udsc-enriched sample.

Figure 32: Neural Network output on simulated bb events for e;(Peter.) = 0.006
(histogram) and e;(Peter.) = 0.004 (crosses).

Figure 33: Depfandence with €,( Peter.) of the correction factors 1 + CET and 1 + C;‘T
for simulated bb events as function of the cut applied on the Neural Network output.

Figure 34: Comparison of the Neural Network output for hadronic events (solid his-
togram) and for the hemisphere containing a high p; lepton (dotted histogram).

Figure 35: Comparison of the Neural Network output for hadronic events (solid his-
togram) and for the hemisphere opposite to the high p, lepton for single lepton events
(black points).

Figure 36: Comparison of the Neural Network output for hadronic events (solid his-
togram) and for dilepton events (black points).
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