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Abstract

The flow of data through the ALEPH readout system is
effected under the control of a special protocol between the
various readout stages. The software library used to imple-
ment this protocol has been re-engineered using the Finite
State Machine modelling technique. The state of each sys-
tem component can be observed at any given time and
this has greatly simplified the detection of, and recovery
from, protocol errors. The model and its implementation
are described together with their integration with the ap-
plications which are used by the operator to control data
taking. Operational experience gained with this protocol
implementation during the whole 1992 running period will
also be given to show the advantages of this design.

I. INTRODUCTION

The structure of the ALEPH detector and the Fastbus
system are described elsewhere [1]. Basically, the exper-
iment is subdivided in several detector components, each
one having its own readout system. In the first stage of
the readout system special controllers are used for each
detector component, each controller being adapted to the
particular processing needs of their detector. In the second
stage data from all the controllers belonging to a particular
detector are assembled and in the third stage data from all
the detectors are combined to form a full event. Thus the
structure of the readout system is “tree-like” [2].

The ALEPH Data Acquisition (DAQ) system uses a
data transfer protocol between processing elements in the
event-building stages of the readout, in order to ensure that
the data are collected and assembled correctly [3]. A spe-
cial readout library was written in order to ensure that this
protocol was obeyed.

In this paper we describe the functional specifications
of this data transfer protocol and its implementation us-
ing the Fastbus standard. We then explain our experience
with the original implementation of the readout library and
the motivation for re-engineering it using a Finite State
Machine model. This new version is described and our
experience using it during one year of datataking is pre-
sented.
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II. THE DATA TRANSFER PROTOCOL

The readout function has been separated into inde-
pendent tasks running asynchronously in order to de-
randomize the flow of events (see Fig. 1). The receiver
task is responsible for reading portions of an event from the
previous stage and putting this data into an event buffer.
As soon as the read operation has finished and the event is
declared in the buffer, the receiver is ready to receive the
next one. The sender task is activated each time an event
is declared in the buffer. It is responsible for releasing the
space occupied by the event as soon as it has been trans-
ferred to the next stage in the readout. Thus, providing
there is always sufficient space in the buffer to accommo-
date at least one event, the two activities of reading in the
data and sending it onwards to the next stage can proceed
asynchronously.

The data transfer protocol from one stage to the next is
as follows:

e The receiver allocates buffer space and waits for a
readout request.

e The sender asserts a request when it has data avail-
able.

o The receiver responds to requests until all its sources
have been read.

e Finally, the sender releases its buffer and gets ready
for the next event.

The implementation of the protocol uses features of the
Fastbus standard, namely the Service Request mechanism
and the associated Control and Status Registers. A special
Service Request Handler implemented in software guaran-
tees the correct distribution and handling of the various
readout requests from the different sources.

The readout library ensures that the protocol is strictly
obeyed and detects any violations that occur during event
collection.
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Figure 1: Architecture of the software components implementing
the event building protocol.

III. MOTIVATION FOR A NEW IMPLEMENTATION OF
THE PROTOCOL

Experience during the first two years of running showed
that there were some problems with the original imple-

.mentation of this library. During execution of the protocol

it was not possible to receive any other external stimulus
such as a control message. In the case of protocol errors
this could lead to the task becoming blocked and recovery
was possible only by killing and restarting it. Hence no
controlled error recovery was possible.”

In addition, on protocol errors it was very difficult to
trace what had happened since the state of all components
was not clearly defined. In particular, it was difficult to
see whether the problem was caused by the failure of a
hardware component or whether it was due to a logical
flaw in the implementation of the protocol itself. For this
reason we wanted to have the possibility of freezing data
collection upon detection of protocol violations to facilitate
the diagnosis of errors.

IV. DESCRIPTION OF THE IMPLEMENTATION

During the last year, a new implementation of the read-
out protocol was developed. This uses the Finite State
Machine (FSM) modelling technique [4] to describe the
state of each task during execution of the protocol.

Some of the benefits we expect to obtain from using this
approach are as follows:

- o It offers a good representation of the dynamic aspects
of the protocol.

o It is very well adapted for systems that exhibit an
asynchronous behaviour. '

e Coordination between processes can also be modelled.
o It allows the model to be changed very easily.

e It produces more easy-to-maintain source code.

In order to implement FSM models, a general-purpose
library has been written. This library has been used in
both the receiver and the sender. The FSM diagram for
the receiver is shown in Fig. 2, and that for the sender in
Fig. 3.

There are three types of stimuli that can cause a tran-
sition to be invoked. The first is an internal detection of
change of state e.g. when an event is assembled or when an
error occurs in the case of the receiver. The second type re-
sults from inter-processor interrupts which implement the
protocol itself. Finally, there are external control messages
coming from the ALEPH Run Control task which allow the
operator to control datataking.

In order to handle these asynchronous inputs it has been
essential that all inputs are treated in a uniform way, i.e. in
a single queue. This allows us, for example, to treat control
messages during the event building phase and therefore
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Figure 2: FSM diagram for the receiver in the ALEPH readout
protocol.
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Figure 3: FSM diagram for the sender in the ALEPH readout
protocol.

gives the possibility of aborting the readout of the current
event.

Apart from re-engineering the readout library, a better
error recovery needed two more additions to our system.
The first was to build a monitoring. tool, which can be
run at every readout node, displaying the FSM states and
several useful counters for both the receiver and sender of
this readout element. This has proved to be very useful
while debugging the new software and also in cases where
we found a readout protocol problem.

Secondly, we changed the FSM model of the ALEPH

" run controller in order to implement a feature that allows

the complete data pipeline to first be “frozen” in order to
analyse the state of the complete system and then to be
emptied. This permitted the system to be set into a well-
defined state from which recovery could be guaranteed.

V. EXPERIENCE DURING RUNNING

The new library was used during the 1992 running pe-
riod and a significant improvement in the error diagnosis
and recovery procedure has been observed. In particular,
the recovery procedure has been found to take approxi-
mately 10 seconds and thus has speeded-up considerably.

In addition, once this had been demonstrated to work
reliably, the procedure was included in the ALEPH Ex-
pert System rule base such that errors could be treated
automatically, i.e. without intervention from the operator.

The ability to identify the state of all tasks executing
the protocol greatly facilitated monitoring and debugging
during the commissioning phase. We believe that this
approach of implementing complex protocols using state
models has significant advantages which have been demon-
strated in a realistic example, through practical experience
and over an extensive period.

Errors coming from flaws in the implementation of the
protocol in the various readout processors in the ALEPH
system were gradually identified and eradicated. By the
end of the commissioning period, the datataking efficiency
was approximately 98 %, which is higher than that of the
previous years. The remaining inefficiencies are mainly due
to hardware failures and general software problems.
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