ALEPH 93-171
DATACQ 93-002

M. Cattaneo et al.
2.11.1993

The new slow control system for the ALEPH experiment at LEP!

P. Mato, A. Engelhardt, J. Harvey, G. Mourouvapin, M. Saich, W. Tejessy

CERN, European Organization for Nuclear Research, Geneva, Switzerland

W. Cameron, M. Cattaneo
Department of Physics, Imperial College, London, UK

R. Fantechi, E. Mannelli

Dipartimento di Fisica dell’ Universitd, INFN Sezione di Pisa, e Scuola Normale Superiore, Pisa, Italy

E. Veitch
Department of Physics, University of Edinburgh, Edinburgh, UK

O. Callot

Laboratoire de I’ Accélérateur Linéaire, Université de Pais-Sud, Orsay, France

The ALEPH slow control consists of 7000 channels in G64 distributed over 35 networked mi-
croprocessors which are used to control and monitor the experimental apparatus, such as high
voltage and gas systems To improve performance, the readout has been upgraded from a ROM
based system to use 3U VME processors, running OS9, with a G64/VME interface. A new ob-
ject oriented design for the software has been implemented, where the full description of the sys-
tem is held centrally in a relational database on the host VAX cluster. Control and monitoring is
carried out through a library which accesses the database and handles communications with the
processors over ethernet using a client-server model. The design and implementation of the sys-
tem and initial experience with its use are described.

1 Introduction

The Aleph detector at LEP is composed of a dozen independent sub-detectors, located
in a cavern 140 meters below ground, which are operated remotely from a control room on
the surface. This is achieved by a slow control system which controls and monitors about 30
different types of hardware devices (temperature and pressure sensors, electronics crates,
high voltage systems, etc.) via some 7000 channels distributed around the detector.

The original slow control system of Aleph is described in [1]. The hardware available
in the early 1980’s, when this system was built, placed severe constraints on the
performance of the system. The individual channels were monitored by software which, due
to memory limitations, had to be burned into the EPROM of the G64 MiCroprocessors
connected to several UTI-NET segments around the detector. The UTI-NETSs were
connected to the Ethernet of the Vax cluster in the control room via gateways. A server and
a database on the Vax translated the high level commands issued by the application software
of the sub-detectors into the small set of low level commands understood by the micros, and
routed them to the appropriate micro. Low level replies in the opposite direction were
handled in a similar way by the same server. While this system operated satisfactorily under
stable conditions, the bottlenecks introduced by the gateways and the server task caused

1Paper presented at the International Conference on Accelerator and Large Experimental Physics Control Sys-
tems, Berlin, October 18-22, 1993

unacceptable delays when several simultaneous control actions were required, or when
several alarms were received.

In 1992 it was decided to replace the old G64 processors with 3U VME processors
interfaced to G64 running OS9 and connected directly to the Ethernet of the experiment.
This presented a unique opportunity to re-engineer some of the software layers, in particular
the system software used as building blocks for the control applications. In this paper we
describe the requirements, design and implementation of this new software.

2 Functional Requirements

Given the diversity of equipment and the large number of people from different
groups responsible for its operation, a basic goal was to design a homogeneous system with
a uniform architecture. At the same time, this architecture has to be flexible to satisfy the
real-time requirements of individual subdetectors. These requirements lead naturally to a
client server model where the role of application tasks is to formulate requests to perform
actions on the slow control system and for the system software to execute those requests.
The server functions, control and monitoring, are cpu intensive and can be implemented
using a distributed system of microprocessors. The software should be designed and
implemented in such a way that, using this client server model, the load on the host
computers and networks is minimized.

It is important that the interface between the application (i.e. client) and the system
(i.e. server) should be as simple as possible, which can be achieved if the basic object on
which an operation can be performed has a high level of abstraction. The concept of a slow
control device has therefore been introduced, all slow control actions being operations on
devices. An example of a slow control device is a Fastbus crate. It can be turned on or off
and its state can be monitored such that an alarm is generated if the current state does not
agree with the desired value. Another example is a temperature sensor which can be
monitored to compare the analogue reading with a nominal value. Again an alarm should be
generated if the current value drifts outside acceptable limits. In both these examples the
internal features of the device, i.e. the number and characteristics of the digital and
analogue channels used to implement the functions available, are deliberately hidden from
the application.

Another requirement is that it should be easy to adapt the system software to reflect
changes in the slow control hardware. For example, it is important that the data
representation used to describe system components should be easy to modify as devices are
added to, or removed from, the system. The software structure should also be able to
accommodate new functions, corresponding to operations on new types of devices.

Practical considerations lead to further requirements. It should be possible to recover
from failures, such as power cuts and program crashes. In particular such events should not
result in a flood of alarm messages which can easily cause the system to "hang".

3 System architecture

Due to the decomposition of the Aleph experiment into sub-detectors it seems natural
to decompose also the slow control system into independent control and monitoring
applications in charge of single sub-detectors. Each of these sub-detector control
applications uses the slow control system software which is common to all of them. This

-2

allows us to satisfy the individual requirements for each sub-detector while assuring the
coherency and homogeneity of the system.

Slow Control DAQ Data Stream

Database

| G64 | rcsﬂ | G64J
[I [| I

(EXPERIMENT EQUIPMENT (~7000 channels))

Figl: Overall view of the ALEPH slow control system

Figure 1 shows an overview of the task architecture for the slow control system. We
can see how each sub-detector control/monitoring application makes use of the common
services such as a global database, an error reporting and logging system, a slow control
system software to perform control and monitoring actions on the physical devices. Also we
must provide control applications which are one level above in the control hierarchy to
allow the operation of the experiment as a whole. A typical example of this is the
centralized high voltage control.

Object Oriented programming (O-O) techniques have been used to design the slow
control system software. This is because it is very natural to think of the slow control
devices introduced in section 2 as Objects. In this way, we can easily hide the internal
details of the device from the user application. To perform an action on a device, the control
application needs first to create a device object using the identifying name and then to call
the member function which forwards the request to a server which performs the desired
action. When the device is created, it gets its parameters i.e. addresses, number of channels,
channel descriptions, etc. from a relational database.

The slow control database contains the complete description of all the devices in the
experiment. It is not a truly O-O database, but it has the O-O feature of allowing the
definition of new types of devices as they are needed. The system software does not need to
be changed when a new type of device is added into the system. The description of a device
type is done by defining the static data structures which are needed to fully describe the

device, the dynamic data structures which are used when interacting with it, and the actions
which are allowed for each device of this type.

The client-server model has been fully exploited in the design (Figure 2). The user
control application is at one end of the client-server chain and the channel 1/O library is at
the other end. The only contact point between the user application and the system software
is the "device" class and also, if necessary, the "list of devices" class. This list class has been
introduced to improve performance when identical actions have to be performed on many
devices at once. The command server object is in charge of executing device action requests
in a synchronous way. A possible device request is the command to start monitoring a given
device. This is translated to an insertion of the device information into a shared local
database, which is then used by the monitor and alarm handler to perform the monitoring
function.

SC data base

User
Application

Fig 2: Client-server diagram showing the main objects (circles) together with the synchro-
nous (solid arrows) and asynchronous (dashed) messages exchanged between them

An effort has been made to encapsulate the device type specific commands into a
single place in the system, i.e. a set of device drivers called the device library. These drivers
are simple subroutines calling a number of channel I/O routines. The device library is the
only piece of code which needs to be upgraded if new device types are introduced into the
system.

4 Implementation of the system software

The command server, monitor, and alarm handler objects have been implemented as
separate programs running in the microprocessors (VM20 from PEP modular Computers)

under the OS9 operating system and written in C. The three programs are clients of the
device library, which has been implemented as a multi-user library, thus allowing
concurrent access to the hardware. The OS9 operating system supports the TCP/IP transport
protocol which is used to implement the communication between the clients and the servers.
Features of OS9 like time sharing with priority, resource locking, shared memory are used
extensively.

The VAX/VMS operating system is used on the on-line computers. The few VMS
dependencies in the system software have been encapsulated into objects. For example, the
implementation of the database uses a VMS cluster-wide global section, but a different
implementation can be easily produced without changing the design at all and only affecting
a single module. The system software of the VAX is written using the C++ language.
However a FORTRAN and C interface has been provided to allow sub-detector applications
to be written in any of the three languages.

A specialized database editor has been developed to enter all the information needed
to describe the slow control system: crates, devices, device types, etc., as well as the
operational parameters such as warning and alarm limits, desired states, etc. The editor can
generate the include file containing the definition of the data structures and parameters for
each device type. This include file is then used at one end by the user applications and at the
other end by the device drivers on the microprocessors.

The manpower required for the design and the implementation of the new slow control
system software has been about 18 man-months.

5 Conclusions

During the design of the software system, formalized review sessions were regularly
held among the system designers and applications programmers to ensure that the
requirements which were very well known due to experience with the previous system were
met. This has led to a substantial reduction in the time required to adapt existing
applications and new ones into the overall control system. By limiting the number of
controllable objects to a single hierarchical layer of named devices and by providing a
user-friendly database editor to incorporate all parameters pertaining to each device, the
writing of application tasks has become much simpler than in the former version, making
the code easy to read and therefore enhancing maintenance.

The changeover in several steps, while leaving elements of the old system in place,
and several months of operational experience have shown the new system to be fast, flexible
and reliable. A performance of ~100 transactions/sec. can be obtained when using a single
server. This performance is substantially increased when using the concurrent access
possibilities to many servers at the same time. For example, the read-out of some 500
parameters from 12 G64 crates of a sub-detector can be done in less than a second. During
the operational period, new device types have been added without perturbing the running
system, and general reliability has been strongly improved.

6 References

1. T. Charity, et al. "The ALEPH slow control system", Proc. Computing in High Energy
Physics 1990 Santa Fe

	
	
	
	
	

