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Abstract

Multivariate analyses are applied to tag Z — bb events at LEP/SLC.
on the specific b-event shape caused by the large b-quark mass. Discriminant analy-
ses, classification trees and neural networks are presented and their performances are
compared. It is shown that the neural network approach, due to its non-linearity,
copes best with the complexity of the problem. As an example for an application of
the developed methods the measurement of I'(Z — bb) is discussed. The usefulness of
methods based on the global event shape is limited by the uncertainties introduced by
the necessity of event simulation. As solution we present a double tag method which
can be applied to many tasks of LEP/SLC heavy flavour physics.
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1 Introduction

One of the main parts of the physics program at LEP is the precise test of the Elec-
troweak Standard Model [1]. In this respect the b-quark sector offers specific aspects
of particular importance through the b-asymmetry and the partial width I'(Z — bb)
measurements. Other important prospects, like the search for Z — yH® — ~bb, can
only be achieved if efficient b-tagging methods are available. 2 millions of Z decays
have been collected by the four LEP experiments in the last two years, and in near
future LEP will be operated in Pretzel-scheme with more than four bunches. This will
significantly increase the amount of data. To achieve these ambitious physics aims it
is mandatory to improve the b-tagging.

Compared to other quark flavours b-quarks have a larger mass and a longer mean
lifetime. While the lifetime information can be summarized essentially by one vari-
able, for instance the distance between the primary and secondary vertex, the mass
information is more diluted in the event. To take advantage of the various sources of
information, multivariate analyses can be used. It must be understood that ultimately
none of the two tags by either mass or lifetime are sufficient when used alone. This is
evident since the D+-mesons have mean lifetimes approximately identical to that of B-
hadrons. This paper stresses the discrimination by the mass difference which requires
specific multivariate treatment. Any additional information relevant for b-tagging, and
especially the lifetime information, can be included in the methods without specific
developments.

First used in an industrial framework [2], multivariate analyses have been used in
the last few years in high energy physics [3, 4]. They can now be considered as an
established tool of heavy quark physics at LEP. Results have been recently published
by the ALEPH collaboration using methods described hereafter [5].

Multivariate analyses can be divided in linear methods, like discriminant analyses,
and non-linear methods, like neural networks. In the paper we describe the most
popular methods and compare their performances with respect to the b-quark tagging.
Moreover as an example of a specific application, the measurement of ['(Z — bb) at

LEP/SLC using these methods will be discussed.

2 Methods

This section describes several methods which are applied to tag ete™ — bb events at
the Z pole. The techniques are based on pattern recognition. Starting from a fixed
number of variables, which have been selected according to the characteristics of the
events to be recognized, a classification tool called classifier, is derived .

The derivation is divided into two steps:

e A so-called supervised learning step, in which the system is "taught” which class
an event belongs to. This step is commonly performed with simulated events.

e A second step called validation, in which one checks whether the system is able
to classify unknown events correctly.



We will discuss linear methods (discriminant analyses, classification trees) and non-
linear methods (neural networks).

Throughout this paper an event k described by p variables is refered to as a vector
with p-components:

é‘k = (ekl s €k25,° 77, ekp)-

2.1 Linear Discriminant Analyses

Discriminant analyses assume a multidimensional normal distribution of the p vari-
ables characterized by mean values fZ=(p1, ..., f4p) and a common covariance matrix &
of the different classes. However one can prove that the classification rules are strong
enough to be applied on non-gaussian variables too.

Linear discriminant analysis methods derive a linear combination of the selected
variables, which provides the best characterization of the difference between the classes.
The linear combination is the classifier.

2.1.1 Fishers’ Linear Discriminant Analysis (FLDA)

Considering two arbitrary classes C;, C; with mean values f;, ; and assuming the ¥
matrix to be the same for both classes, the learning step consists in computing ¥, i;
and g;. Classifying an event then means to compare the value of Fishers’ discriminant
function L [6] for each event €}

L(&x) = (i — i;)[Z71(&)"
with )
5 (Hi = ENEY(E + )T
The linear discriminant function maximizes the norm of the vector

gi — fLj, which gives the distance of the two classes, and €; will be classified inside the

class C; if

L(&k) > = (i — £;) (57 + ;)"

DN | =

and inside the class C; if:
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One can show that such a rule of classification minimizes Baye’s risk of misclassification

(7]
2.1.2 Canonical Discriminant Analysis (CDA)

CDA derives the linear combination of the p selected variables that has the highest pos-
sible multiple correlation with the ¢ event classes. Though FLDA and CDA combine
the variables linearly they are based on different methods of statistical mathematics.
CDA is equivalent to canonical correlation analysis [8]. A rigorous derivation of CDA



can be found elsewhere [9]. The partial differentiations involved are complicated, be-
cause two sets of weights have to be fitted simultaneously. Here we will only describe
how the coeflicients of the linear discrimination model are derived.

Describing event k by €, and a dummy vector variable ﬁk, which defines the class
the event belongs to, then the conditions

Uk = C- €Ef
‘Uk:d-hk

1.0
RC = (_ Z ukvk> 'mar
n k=1

where n is the total number of events, define the linear coeflicients ¢;, ¢z, ..., ¢, of the
canonical discrimination model.

R, is called ”first canonical correlation”. The first canonical correlation is at least
as high as the multiple correlation between the ¢ classes and one of the p variables,
and can be high even if all multiple correlations are small. In other words the linear
combination defined by the coefficients ¢;,c¢y,...,c, can show significant differences
between the classes even if none of the variables within the model does.

2.2 Classification Trees (CT)

During the learning phase of the CT approach the set £ of events é,(k =1, ..., n) is
split by repetitive cuts on a single variable resulting in successive subsets &, &,, -
beginning with £ itself (fig. 1). These sequential cuts lead to an architecture called
classification tree. Such a tree provides a hierarchical type of representation of the
data space which can be used as base for the classifier by following the appropriate
branches, i.e., by applying the successive cuts to an arbitrary event. The subsets of
events £ and &3 are disjoint, with £ = &, U &3, similarly &; and &5 are disjoint with
Ey=E4 U &, and & = & U &7. The subsets which are not split are called terminal
subsets (rectangular boxes). These terminal subsets provide a partition of £, a class
label is associated to each terminal subset. There may be two or more terminal subsets
with the same class label.

To explain how the split is made at each node, let us consider two classes C; and
C;. If fi;(t) are the two associated continuous density functions, the distribution

F(z) = /0 fis(t)dt
i1s used to define the Kolmorov-Smirnoff distance
D(z) = |Fi(z) — Fi(=)|.

Let us consider an arbitrary variable z;(=1,..;). Let zj be the value of z; which
minimizes the Kolmogorov-Smirnoff distance. Two subsets, purer in one class than
the parent set, can be obtained by comparing z; to zj for each event. This minimizes
the mean cost of misclassification according to Baye’s rule [10].



For the p variables associated with each event, p Kolmogorov-Smirnoff distances are
computed at each node, and we take

D(:D;) = Ma:l:rllF,'(ch) — F]'(:D()l.

The classification of real events is then straightforward. One event belonging to an
unknown class is processed through the tree and its classification depends on the label
of the terminal node it ends up.

2.3 Neural Networks (NN)

In the methods described above the derived classifier was a linear function of the
variables. Such techniques fail in separating classes which are not linearly separable.
A way to solve non-linear problems is the use of neural network methods. Neural
networks are data processing architectures constructed from a large number of highly
interconnected formal neuron units (fig. 2). Two of them, the "multilayered percep-
tron” and the ”learning vector quantization”, are described subsequently.

2.3.1 General Description of a Multi Layered Perceptron (MLP)

The first modelization of a formal neuron has been proposed by McCulloch and Pitts
in [11]. Using the basic features of a biological neuron, they proposed a modelization
in which each unit computes its output by performing a sum over all its input features,
weighted by some coefficients W;;, called the ”synaptic strength”. The corresponding
output y; of an arbitrary neuron is obtained by a state transition function acting on
the weighted sum of its inputs ;. Examples for transitions function are:

step function: f(z) = —1forz < zo,f(z) =1forz > zo
sigmoid function: f(z) = a (e —1)/(ek= +1)
stochastic function: fz) =1/(1 +e=/T).

Then:

vi = f(3_oWiz))

The most commonly used neural networks architecture for solving non-linear problems
1s the multi layered feed forward networks trained by back-propagation of the errors.
Usually a sigmoid function is used to transform the inputs into the output. One
or several hidden layers provide non-linearity. The network output is obtained by
applying to the input layer the pattern (event) vector €. The outputs of every neuron
layer are propagated forward through the network and the output of the network 1s
provided by the last layer neuron output.

The weights W;; are first determined by supervised learning, in which well classified
patterns are presented in turn to the network. The network output vy is then compared
to the expected one dj for each pattern €x. An error function

Ey = (di — yx)’*



is minimized by updating the weights at each presentation. This is done by using the
"gradient descent method” with an error back-propagation algorithm [12]:

new old
W5™ = Wi + AW,

AW,*]* = —

When a limited sample of training patterns is available the set is repeatedly presented
to the network. When an unlimited sample is available the training procedure will use
a new pattern at each training step.

In the validation step the network performance, now with steady weights, is checked
with a different sample of patterns.

2.4 Learning Vector Quantization (LVQ)

A network using the LVQ algorithm [13] is a nearest-neighbour classifier. In a MLP
neural network there is only one output for a class. When the classes overlap in
parameter space the separation of the events is complicated. The aim of the LVQ
neural network is to improve the separation by increasing the number of outputs
related to each class.

An output layer neuron : computes the distance between an arbitrary input € and

a weight vector W; = (Wi, Wia, ..., W;,) (fig. 3). The output S; of this neuron 1 is:
Si = |lé& - Wil*.

We call C the nearest neuron of €. During the learning phase the modification of the
weights W, is done according to:

o if class (WC) = class (€)

W, (t+1) = Wa(t) + a(t) (6 — Wa(t))
o if class (W) # class (&)

Wt +1) = Wi(t) — alt) (6 — We(t))

o for the other vectors

Wt +1) = W(t)

where a(t) is a tuning parameter.

The network output gives the closest vector W. of each validation event, and thus
the class this event belongs to.



3 Selection of Input Variables

Although there is no restriction on the number of variables that are used for the
classifier it is obvious that a small number will lead to a more manageable and less
time consuming learning. Various methods exist to qualify the usefulness of a single
variable with respect to its discriminating power and its correlation to other variables.
We have used two methods to find appropriate subsets of variables as a basis for the
multivariate methods:

e the F-test

e the stepwise selection.

3.1 The F-test

We consider a set £ of n events €; divided into g¢ classes, and described by p variables.

From the e;; values 1 = 1,...,n, j = 1,...,p we define for an arbitrary variable j
gr(7) the barycenter of the whole event sample, and g,(7) the barycenter of events
belonging to the arbitrary class C; with n, events

) 1 & )
gr(3) =- Ze.-]» i=1.,p

a(j) =— Z €i; L=1,..,q.

1EC£

It is useful to introduce the "within” vector W describing the dispersion within a class

ZZ (eie — (1))

=1 XEC[

and the "between” vector B describing the distance of a class to the overall barycenter
g7(4)

- & S (o) - or )

Large values of B(j) and small values of W(j) characterize well separated and compact
classes. Therefore the discriminating power of a variable j is summmarized in the F-test
[14]
Fj) =" 1-gq B(J')
g—1 W(j)
We start with the variable having the highest F-test value. Before adding a new

variable we check its correlation with the variables previously selected and we ignore
highly correlated variables.




3.2 Stepwise Selection (StS)

StS [15] is a method to reduce the dimensionality of multivariate analyses, which takes

into account both the discriminating power of each single variable and the correlations

between the variables. As a basis for STS we have used Wilks’ A-statistic [16].
Defining the between and within class vectors as described above, Wilks’ A-statistic

reads
NS
Oy sy TR

In order to study the influence of one more variable it is useful to define the so called
"partial A-statistic”

A(L,2,..,p,p+ 1)
A(7)
It has been shown [17], that the corresponding F-statistic is given by

A(7+1) =

n—g-p 1-A(+1)

F = -
g—1 A7 +1)

That F-statistic is used to test the significance of the change from A(7) to A(5+1),
which is a test of the improvement in the discriminating power by introducing another
variable.

At each step of the StS procedure it is examined whether the variable in the model
which contributes least to the discriminating power meets the criterion to stay. If the
variable fails then it is removed. Otherwise the variable not yet in the model that
contributes most to the discriminating power is entered. Both the criterion to stay
and the criterion to enter are based on significance levels of the F-test deduced from
the above defined F-statistic. By varying the significance levels one can control the
number of variables in the model.

StS begins with no variable in the model. Therefore the variable with the highest
discrimination power is entered first. The process stops when all variables in the model
meet the criterion to stay and none outside the model meets the criterion to enter.
The variables remaining in the model build the base of the multivariate analyses.

4 Tagging of b-Quark Events at LEP/SLC using
Multivariate Analyses

Starting from a large set of variables which characterize the different event topologies
of bb and light quark events (c¢, s3, dd, uit) the various methods define a subset of
variables by using the above described selection methods. Afterwards a classifier is
derived by using multivariate analyses. This classifier is used to tag b-quark events.

4.1 Event Simulation

For the learning and validation step we have used about 600,000 ete™ — Z — qgq
Monte Carlo events produced with the ALEPH Monte Carlo program HVFL. The
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simulation is based on DYMU (18] and JETSET 7.3 [19] including the fine tuning
of the parton shower parameters [20] and a special decay package which takes into
account the current knowledge on beauty and charm physics. Detector effects have
been introduced by using the standard ALEPH detector simulation program [21].

The four-momenta of the particles seen inside the detector are reconstructed by
an "energy flow” algorithm, developed within ALEPH [22]. The algorithm combines
information from the track chambers and the calorimeters. The reconstructed four-
momenta are used to derive the various variables and to find the jets in the event
using the JADE scaled-invariant-mass clustering algorithm [23] The parameter Y, is
set to (Mjet/Em)z. Eyis i1s the total reconstructed energy. For M., 6 GeV/c* was
chosen, to gain the best jet axis resolution [24].

4.2 Physics variables

The larger mass of the b-quark with respect to other quark flavours has three major
consequences: b-quarks loose less energy by gluon bremsstrahlung than light quarks,
their fragmentation is harder and their decay products are more energetic. Thus the
fraction of the beam energy carried by B-hadrons is 70% on average and only 51%
for D-hadrons produced in cZ events [25], resulting in different topologies for bb and
light quark events. In particular bb events will appear more spherical than light quark
events and the particles produced in bb events will have on average higher momenta
and transverse momenta with respect to their jet axis.

Taking advantage of these characteristics we have defined a set of 70 purely kine-
matic variables. Two different types have been used: variables based on the full event
shape, like sphericity and aplanarity, and variables based on the properties of the jets
in the event, like the invariant mass of the most energetic jet. Details on the definition
of the different variables have been given elsewhere [5].

4.3 Learning Step and Validation

Because the procedure is similar for all methods we will give details for MLP only.
The structure of the MLP used for this analysis is the following: one input layer
with 9 neurons, two hidden layers with 9 and 6 neurons, respectively, and one final
layer with 1 output neuron. The parameter « is set to 0.5, while 7 can vary between
0.001 and 0.03 during the learning phase. The number of hidden layers, the number
of neurons per layer and the values for a and 7 have been optimized with respect to
the best gainable separation between b- and non-b-events. The selection of the nine
variables A(I)r_vae (I = 1,...,9), listed subsequently, used as inputs for the first
layer was done with the F'-test method described above.
e A(1)ggg is the boosted hemisphere sphericity product with Bpoese = 0.96 *.
o A(2)ges is the sum of the products of the transverse momenta and the longitudinal
momenta with respect to the jet axis normalized to P2, where P,y is the sum of
the momentum of all the tracks in the event.

“This value optimizes the b-separation [26].



o Defining the total transverse jet momentum as the sum of the momentum compo-

nents of the particles in the jet perpendicular to the jet axis, then A(3)733 is the sum
_of the total transverse momenta of the jets of the event normalized to Piyq.

e A(4)343 is the momentum of the leading particle of the event normalized to P,,q.

e A(5)98 is the invariant mass of the three most energetic particles of the most ener-

getic jet.

o A(6)26s, A(7)166, A(8)249, A(9)219 are directed sphericities [4].

The MLP learning step has been performed with 9000 b5, 9000 c¢ and 9000 u@ +
dd + s5 fully simulated Monte Carlo events. The initial weights are chosen randomly
between [-0.01,0.01]. One event of each class is processed through the network. We
feed forward and back-propagate the error. The reactualisation of the weights is done
after one exposure of an event of each class by minimizing the cost function E.

The learning procedure is stopped when the performance of the network ceases
to improve significantly, i.e., when the function E reaches asymptotically a minimal
value. This corresponds roughly to 2 millions exposures (about 60 minutes of CPU
time on IBM 3090). We have checked that a change of the relative fractions of bb
from 33% to 50% in the learning event sample and the order in which we present the
different event classes does not bias the result of the learning.

The discrimination power of the various methods between b-quark and light quark
events was studied with our sample of 600.000 Monte Carlo events, excluding those
events that have been used in the learning step. For each ¢g event the classifier
output has been computed. The shape of the corresponding outputs are shown in
fig. 4 for CDA and MLP. The different shape for b- and light quark events illustrates
the ability of the multivariate approach to discriminate the different event classes
effectively. Applying cuts on the classifier output provides b-enriched event samples.
Fig. 5 compares the b-purity of the remaining sample as function of the efficiency of
the applied cut, that can be reached with the various multivariate methods, together
with the one reachable with the hemisphere boosted sphericity product only. MLP
gives the best overall discrimination.

4.4 Application to the Measurement of I'(Z — bb)

As an example for an experimental application of multivariate analyses, we discuss in
this section the measurement of the partial width of the Z into bb at LEP/SLC.

4.4.1 The Single Tag Method

The shapes of the classifier output for b- and light quark events are parametrized by
using a large sample of fully simulated events. These functions f, and fiign are then
normalized and the classifier output of the data fy, is fitted according to the formula

faata = Nofo + (Nz — Np) frighe

where N7 is the number of hadronic events in our sample and N, is the free parameter
of the fit. From the fitted value we get

R, — [(Z—-bb) Ny
" I(Z — hadrons) Nz
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Such an analysis was already presented by the ALEPH collaboration [5] by using CDA
and MLP.

The gainable statistical error of R, obtained from 400,000 Z — ¢g events is very
small

ARb/Rb >~ 1%

if we neglect the statistical uncertainty due to the limited number of simulated events.
Comparing this value with the "theoretical” error of 0.43%, that would be obtained
with an ideal separation between b- and light quark events, one proves the high dis-
crimination power of the developed multivariate analyses.

However since the shape of the discriminator output for - and light quark events
is parametrized with simulated events this method is model sensitive. For instance
the simulation of hadronization depends on phenomenological models which give rise
to systematic uncertainties.

Several checks have been done to test the validity of the methods. In particular we
have verified that the fine tuning of QCD Monte Carlo parameters is not sensitive to
large variations of Ry, and therefore does not bias our analysis [25, 27]. Furthermore
the shape of the classifier output for bb events has been checked by using real Z — ¢g
events containing leptons.

Typically we obtain an overall relative systematic error of about 5% with this single
tag method, which is a serious limitation.

4.4.2 The Double Tag Method

We have developed another method which is less Monte Carlo dependent. This study
has been done with MLP. The events are split into two hemispheres according to the
plane perpendicular to the thrust axis and the network is "fed” with observables A(I)
from each hemisphere. The structure of the network used for this study is the same as
defined previously, but the 9 variables are computed for each hemisphere separately.
For a given cut on the MLP output, we define 3 classes of events: those where only
one hemisphere is used as a tag (”single tagged events”), those where both hemispheres
are required to satisfy the cut ("double tagged events”) and events tagged by a high
p. lepton on one side and by a cut on the MLP output on the other side (”single
tagged high p, leptons”). This allows to extract from data R, and the cut efficiencies
€; and €ygne for bb and light quark events udsc, provided the bb purity P in the

high p; lepton sample is given by the simulation !, by solving the following system of
equations:

el =Ryey +(1 — Ry)erigne
quT :Rbfzg(l -+ C£T)+(1 - Rb)elzight(l + Cllt)g'{lt) (1)
Efcgton:Pbgebg +(l - be,)elight(l + Ci'sg;’lt)

qsg, e?@T and efegton are the selection efficiencies for the single tagged events, the double

tagged events and the single tagged high p, leptons, respectively.
C ,?QTM is a correction coeflicient introduced to account for the fact that the cc events
are worse separated from bb events than the uds-events (fig. 6). Since the ¢ fraction

€

'Note that P, can be in principle extracted from the data by using a global analysis of events
with prompt leptons.
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in the light quark sample udsc is not the same for single tagged events and for single
tagged high p, leptons, the cut efficiencies for udsc-events will be different in the two
samples. In fact in the single tagged events sample we have 17% c¢ events and 61%
uds events while in the single tagged high p; leptons sample we have 7.7% c¢ events
and 5.1% uds events for a p, cut at 0.8 GeV.

CET and C{2}.¢ are correction factors which take into account possible correlations
between the two hemispheres.

The coefficients Cji 2., Cs T C,,ght and the bb purity of the leptonic sample have to
be estlmated by Monte Carlo We obtain Cj3l, = (14. £4.)%, C2T = (0.15 £ 0.28)%,

Clognt = (2.951+0.62)% and Py = (87.2+0.4)%, where the errors are due to our limited

Monte Carlo statistics. Systematic errors on C}}},, have been studied by varying
the normalization and the shape of the classifier output of the cc contribution. A
variation of +£15% of the cc partial width gives an error of £0.4% on Cj%,. Varying
for c¢ the ¢ quark fragmentation parameter € from 0.020 to 0.060 [28) results in
a +1.2% error on C,‘?QTM. Adding all these errors in quadrature, we finally obtain
Cibe = (14. £ 4.(stat.) + 1.3(syst.))%. A similar analysis gives a typical systematic
error on Py of the order of 1%.

To illustrate the usefulness of the method, we have applied the analysis to a sample
of 400,000 simulated Z — ¢q events treated as if they were real data’. With a cut at
0.4 on the MLP output and 0.8 GeV/c on the p, of the lepton, we obtain:

Ry = 0.212 £ 0.008,.q¢. = 0.005,,,;. .

The fraction of bb events in the sample was 0.22.

The systematic error on R, stems from the uncertainties in Pz and in the correlation
coeflicients previously discussed. The different contributions are given in tab. 1.

The double tag method reduces the systematic error on R, by a factor 3 compared
to the single tag method, at the expense of a worse statistical error due to the limited
number of high p, leptons. Note that the understanding of all the possible sources of
correlations is not an easy task and will rely on the simulation.

However this double tag method appears to be the best one in view of a high
precision measurement of R, since it is less systematically limited than the single
tag method. Furthermore the double tag method can be applied to any problem in
which one needs to select a sample of events without introducing a priori any bias
in the analysis of this sample. For instance the sample of events can be selected by
applying a MLP cut on one hemisphere and then can be analysed by using the opposite
hemisphere. This principle has been applied by the ALEPH collaboration to the study
of D~ production in Z — cc [28].

5 Conclusion

Analysis of the shape of Z — ¢g events allows to extract the Z — bb fraction by using
the information originally contained in the quark mass. This was first done by using

!This statistic corresponds roughly to the number of Z events collected by each LEP experiment
at the end of 1991.
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only the product of boosted sphericities [29] . The b-quark mass information is diluted
in the event and the flavour tagging can be improved by using a larger set of sensitive
variables. This needs more sophisticated methods to analyse the events, all of them
relying on multivariate analysis. A large spectrum of such methods has been discussed
in this paper: Fishers’ linear and canonical discriminant analysis, classification trees
and 2 categories of neural networks. The improvement provided by the multivariate
approach with respect to the single-variable analysis is very significant. While the
performances are very similar to the one of lepton tagging at low efficiency, the methods
allow to tag 50% of the bb events with a signal to noise ratio of 1. The comparison
of the different approaches indicates that non-linear methods map in a better way
the complexity of the events. The neural network techniques seem to provide the
asymptotic limit for b event-tagging at LEP, when only the quark mass information
1s used.

The tagging techniques have been used to study the ['(Z — 4b)/T(Z — qg) mea-
surement, which is an ambitious and complex problem related to electroweak b-physics
at LEP/SLC. They allow to reduce the present statistical limitations of the analysis
based on semileptonic decays of B-hadrons [26]. Results have already been presented
by the ALEPH collaboration [5] by applying these methods on the global shape of
events. The conceptual problem of the global method is the use of Monte Carlo sim-
ulation to get the shape of bb and non-bb events. This limits the quality of the result
due to large systematic errors arising from modelization, which were evaluated to be
about 5%. Unfortunately the large systematic error makes the result insensitive to
electroweak effects which require a relative error of the order of 1%.

For this reason we have developed a different method for which the Monte Carlo
simulation is mainly used for the learning step of the neural network; the tagging
efficiencies for bb and light quark events are extracted directly from data by double
hemisphere tagging. A systematic error at the level of 2.5 % is conservatively obtained.
This kind of method could be made more efficient in the near future by adding the b
lifetime information in the multivariate analyses. Then the systematics on I'(Z — bb)
measurement could be decreased below 1%. This would be done at the expense of
a smaller angular acceptance. This limitation is crucial for the b- and c-asymmetry
measurements for which the b-tagging approach presented in this paper could be more
performant. More generally this method can be used to tag events in one hemisphere

and analyse physics in the opposite hemisphere. This has already been done by the
ALEPH collaboration to study charm physics.
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Appendix

The following table gives the main software packages used to perform the multivariate
analyses, the address of the authors and the used functions.

Department of Theoretical Physics
Lund University
S- LUND

Packages Address Functions
SAS SAS Circle Canonical discriminant analysis
CARY N.C. 27512-800 (USA) General statistics
Stepwise selection
BMDP University of California Selection of variables
Los Angeles CA (USA) Discriminant analysis
MODULAD | Club MODULAD SELDISC: selection of variables
INRIA DISC: Fishers’ linear discriminant
Rocquencourt analysis
F-78153 Le Chesnay Cedex MLP: multi layer perceptron
DNP: classification tree
JETNET 2 || Dr. Rogualdsson, Prof. C. Peterson

General neural network packages
(preprint LUTP 91-18)
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[Source l Effect on R, J

Py +0.0040
DT +0.0016
bb —0.0015
cDT +0.0018
light ~0.0019
CS% +0.0017
light -0.0014

Table 1: Contributions to the systematic error on R,.
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Figure Captions

Figure 1: Scheme of CT.

Figure 2: Scheme of MLP Neural Network.

Figure 3: Scheme of LVQ Neural Network.

Figure 4: CDA (2) and MLP (b) classifier ouputs for b- and light quark events.
Figure 5: The b-purity of the remaining sample as function of the efliciency of the
applied cut for the various multivariate methods, together with the one reachable

with hemisphere boosted sphericity product only.

Figure 6: Shape of the "one-hemisphere-MLP” classifier output for ¢- and uds-quark
events.
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