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Abstract

We developped neural network learning techniques for the recognition of de-
cays of charged tracks using a feed-forward network with error back-propagation.
Two completely different methods are described in detail and their efficiencies
for several NN architectures are compared with conventional methods. Excellent
results are obtained.

(Submitted to Computer Physics Communications)

1 Introduction

The recognition of particle decays belongs to the large arca of discrimination and clas-
sification tasks in experimental High Encrgy Physics where one has to choose between
different hypotheses. This can be done by applying cuts on the variables with the
highest discrimination power or using special methods like discriminant multivariate
analysis or hierarchical classification. An other approach are neural network (NN)
techniques.

We use a NN learning algorithm with error back-propagation on a feed-forward net-
work for the discrimination between decaying and non-decaying tracks. The behaviour
and performance of this method is studied in detail for the decays 7* — p* +v at three
pion energies (E, = 3, 5 and 10 GeV) inside the ALEPH-TPC at LEP. We have used
data simulated with two different programs giving rather ideal and realistic results,
respectively. This allows a deeper inside into the functioning of the NN techniques.
The results are compared with conventional methods.

In the next chapter we describe the NN learning technique we have used. Then we
present two methods for the recognition of decays. In the first one every track is cut into



two halves and each halfis fitted separately. Kinks show up as significant differcnces in
the parameter sets obtained by these two fits. Since this method can also he applied in
an analytical way by taking the full error matrices into account we are able to compare
the efficiency of the NN algorithm directly with a conventional approach. The second
method uses the big power of NN algorithms in finding correlations in the input data
in a more straight-forward way by comparing the fit residnals of a full track fit.

In chapter 4 we describe the simnulation of the input data, the NN architectures we

have used, and the learning phase. The results are presented in chapter 5 and discussed
in detail.

2 Learning with neural networks

For the discrimination between decaying and non-decaying tracks we use a multi-layer
feed-forward network with error back-propagation [1]. Tn such a net the information
given to the input layer is processed in several layers without feedback until it reaches
the output layer. The answer of the network is compared with the correct (desired)
result and the error is back-propagated from the ontput layer to the preceding lay-
ers. This allows to adjust the connection weights to optimize the response of the net
(learning).

A typical architecture for a layered feed-forward network is shown in fig. 1. The
layers between the input and the output layer arc called hidden layers since one can
regard such a net as a black box with defined inputs and outputs.

The input to neuron iin layer 141 is the weighted sumn of the output of all neurons
in the preceding layer | plus a bias term

L =3 Wit s+ it (1)
J

The sum runs over the neurons j of the preceding layer (1), S} is the state of the neuron
Js TfV,-le the connection weight between neuron i and neuron j, and B!*! the bias input,
to neuron i. This bias input is necessary to map any well behaved function between
the input and the output neurons. In addition a mwaximum of two layers of hidden
neurons is needed for neural network learning.

The state (activation) of the neurons is a function of their inputs

Sp = F(I}) . (2)

fis called activation function and we choose it in the form of the ’logistic function’

()= —

L4l
Therefore the activation of the neurons is limited to the range [0,1].

The neurons in the input layer are activated by the external input and the activation
is propagated forward according to eq. (1) until it reaches the output layer. The
activation of the output neurons is the answer of the net to the external input.

We distinguish 3 phases in the use of such learning algorithms: learning, test, and
application (production).

(3)



2.1 Learning phase

For the learning and testing we have to know the correct answer. In the learning
phase we have to adjust the connection weights. We start with random weights and
we compare the output O; of the net with the correct result D;. The total error in the
output layer
1 .
E = 5 > (0; — D;)? (4)
t

is back-propagated to the preceding layers. In order to obtain the correct output we
have to modify the weights by

or
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(5)
¢ is called learning speed since it controls the speed of the convergence process. From
egs. (1) and (2) follows using the chain rule
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Differentiating eq. (3) gives
P = FUPL - 7). (7)

In a similar way we can expand dE/8S! by summing over all ncurons which receive
input from neuron i in layer 1

oF 5 OE oI*! 5 OFE
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From
OFE OE 9s*'  oE ..,
0]}l_+1 = asjl}l 8I§+' (r)ql!-l f([ ) (9)
follows the recursive formula
OF oF
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which expresses the errors in layer 1 as a function of the following layer 14+1. For the
output layer we get from eq. (4)

0F
c‘)S‘

and we back-propagate these errors to the preceding layers using eq. (10). The weights
are then modified according to eqs. (5) and (6).

Since we can treat the input bias B/*" like a weight 17/ multiplied by the activa-
tion Sl = 1 we proceed in the update of the bias terms in fhe same way as above by
seftmg S’ =1.

This procedure is repeated for all input scts. If the learning sample is not sufficiently
large, which is usually the case, then we have to loop over it until we reach optimal
performance on the test sample.

=0; — D; (11)



2.2 Test phase

After the weights have been adjusted in the learning step we have to check the reaction
of the network if we confront it with input sets which it did not learn. In this phase
we present a huge new input sample to the net and clieck its performance using the
weights learned before.

2.3 Application phase

After the test has shown a satisfactory performance of the NN algorithm we can use it
in a ’real’ environment where we do not know the correct result. The NN runs in the
same way as in the test phase.

3 Kink search algorithms

An important task in pattern recognition is to find ont whether a well reconstructed
track has a small kink due to a decay. We have to distinguish between random effects
coming from statistical fluctnations in the coordinate measurements and from multiple
scattering and the systematic cffects caused by the decay of a track.

3.1 Conventional methods

A standard method to eliminate kinked tracks is to cut on the impact parameter
obtained from a track fit. Although this method works well for bigger kinks it has no
power for tiny kinks where the systematic effects from the decay are not significantly
bigger than the statistical fluctuations.

Another way is the normal x? test where we attribnte no kink to the tracks with a
x? value of a normal fit below a certain cut and a kink otherwise. This method has the
disadvantage that the kink hypothesis is rather weakly defined and already one badly
measured coordinate can lead to a large x? value and thns mimic a decay. Since this
test is based on the residuals of a track fit we denote it by x2., (in distinction from
other x? tests).

A much better method to find small kinks is to cut the track into two halves and
to compare the fit parameters of both halves. The x? value for the hypothesis that the
two parameter sets P} and I are the same within the crrors is given by

Xpar = (PL = P2)T(Cy + o)™ (P = D) (12)

C, and C; being the two covariance matrices. From this x? value with 5 degrees of
freedom we obtain directly the probability of the non-kink hypothesis. Kinks show up
as a peek at low probabilities, usually between 0 and 0.01.

This method has been studied in detail for the ALEPH-TPC [2] and is implemented
in the ALEPH reconstruction program JULIA.



3.2 Neural network with track parameters

Since learning NNs are very powerful in finding correlations between the inputs we
shall use them for the comparison of the track paramecters of the two halves directly
and without the full error matrix calculations. We just provide as input the difference
of each helix parameter between the fit of the first and the second half of a track and
normalize these differences by 3 times their errors. Hence a 3 sigma deviation leads to
an input value of +1.

3.3 Neural network with fit residuals

We also can try to treat the kink problem in a more direct way by using the fit residuals
as input of a NN. This has the disadvantage that we need a bigger network but it gives
us a better understanding of the behaviour of NN algorithmns in our application and
it allows to evaluate the performance of the analytical parameter comparison method
in an independent way. Analougously to the parameter test described above we divide
the residuals by three times the error on the coordinate measurement.

This method can be applied on reduced NNs since we can average triplets of fit
residuals to give one input to the NN. The fact that the residuals in the X-Y plane and
in the R-Z plane are only very weakly correlated allows the use of not-fully connected

NNs.

4 Performance test of the algorithms

4.1 Track simulation and selection

For our study we have used simulated data of the ALEPH-TPC. The Time Projection
Chamber of the ALEPH experiment at the LED collider at CERN is a cylindrical drift
chamber providing three-dimensional track coordinates at 21 radial layers [3]. Since
the TPC is inside an axial magnetic field the trajectory of a charged particle is.a
helix. Its projection onto the X-Y plane is an arc of a circle and onto the R-Z plane
(R =+vX?+Y?) almost a straight line.

For the decay samples we have choosen the decays 7% — p* + v with 7 energies of
3, 5 and 10 GeV which cover the two most interesting cnergy regions. We need for the
learning also a sample of non-decaying tracks. We have taken primary muons with the
same energies.

At 3 GeV the maximal decay angle of about 13 mrad is already so big that we
find kinks with high efficiency (about 80% ). Here we can test the performance near
saturation and the influence of multiple scattering. At 10 GeV we can ignore multiple
scattering but the maximal decay angle is much smaller (about 4 mrad). This means
that the systematic shifts of the coordinates due to the decay are comparable with the
statistical fluctuations in the measurement of the coordinates. Thus the kink finding
efficiency is only about 40% at 10 GeV. We consider thercfore this energy as the real
test of the performance of the algorithms.



Such single track events were simulated with the standard Aleph Monte Carlo
program GALEPH and the pions where forced to decay well inside the TPC (at least
15 cm away from the edges of the TPC, which insures that each of the two tracks has at
least 3 coordinates). The direction (polar angle) of the tracks was choosen such that the
tracks crossed the whole TPC in radial direction. In order to study the dependence of
the results on the details of the simulation we have nsed two different simulation levels.
A fast simulation (FSIM) which gives rather ideal coordinates and errors (running
GALEPH without the option TPCSIM) and a detailed simulation (DSIM) which leads
to realistic x* distributions (running GALEPH with the option TPCSIM).

The simnlated data were reconstructed with the Aleph reconstruction program

JULIA.

4.2 Network architectures
4.2.1 Parameter method

We want to train neural nets by providing the difference of cach of the 5 helix parame-
ters normalized by the error as input and by requicring the output 0 for non-decaying
tracks and 1 for decaying tracks. This means that we need neural networks with 5 in-
put and 1 output neuron and we have to find the best configuration of hidden neurons.
We have found good performance with 1 hidden layer containing 5 and 10 neurons, re-
spectively. These architectures are summarized in the first part of table 1 (the residual
input is explained in the next subsection).

l input I no. of neurons per layer | comments ]
parameters 5—-5-1
5—-10—-1
residuals 14-7-1 averaged residuals
14 -14-1 averaged residuals
42 -6 -1 layer 1 and 2 ’half’ connected
TABLE 1

Principle NN architectures used in this study.

The connection between the layers is complete. Each neuron is connected to all
neurons in the following layer (see fig. 1). The cfficiencies of the two layouts at =
energies of 3, 5 and 10 GeV are given in table 2a for FSIM data and in table 2b for
DSIM data.



| layout ” 3 GeV ] 5 Gel” | 10 GeV”
5—-5—-1 79.7 69.8 54.6
5—10—-1 77.1 68.0 53.6
14-7-1 80.7 67.3 52.5
14 —14—-1 | 81.1 67.4 52.8
42 -6—-1 80.3 68.9 55.4

TABLE 2a
Dependence of the kink finding efficiencies [%] on the NN architecture for FSIM data.

l layout ” 3 GeV [ 5 Gel” ] 10 Gel” ]

5—5-—-1 78.9 67.0 53.5
5—10—-1 79.1 67.2 53.6
14-7-1 79.9 65.5 51.5
14-14-1 80.5 65.7 53.9
42 -6-1 80.3 67.7 54.5

TABLE 2b
Dependence of the kink finding efficiencies [%] on the NN architecture for DSIM data.

Since the differences between both NNs are very small we have decided to use
the simpler network for a more detailed study. We denote this 5-5-1 network in the
following by N,,..

4.2.2 Residual method

Since the number of residuals is usually much higher than the number of parameters we
are confronted here with two problems: a much bigger learning effort and memorization
instead of learning. If the number of different training input sets is not sufficently bigger
than the number of connections between the ncurons then the NN does not really learn
the basic features of the problem but it rather memorizes the training sample. This
means that the NN becomes able to react well to the training data but it can not
generalize. Generalization is the property of a trained NN to behave well for data
which it did not learn.

In order to keep the CPU time consumption for the simulation of the input data and
the learning phase reasonable we try to cut down the size of the NN without loosing
efficiency. One way to do that is input reduction. Since we are looking for systematic
effects we can average several residuals to give one NN input value. We have found the
best performance by averaging 3 residuals. Since we have 21 residuals per track in the
two plans we reduce the number of inputs from 42 to 14. We studied extensively NNs
with 7 and 14 hidden neurons in one layer.

Another method is to use the full input but to tailor the NN. The fact that the X-Y
and the R-Z residuals are only very weakly correlated allows us to treat the X-Y and



the R-Z information separately in the hidden layer. By this we mean that we split the
hidden layer into two halves. The neurons in the first half are connected with all X-Y
residuals without any connection with R-Z residuals. The second halfis fully connected
with the R-Z inputs but not with X-Y inputs. The output neuron is connected with
all hidden neurons and combines thercfore the infornation from the two planes. This
layout is shown in fig. 2.

Since we have 21 inputs for cach plane and 1 ontput neuron we can describe such
layouts in the following way

21 21

|
\ /
1

where n denotes the number of hidden neurons in cach half. We have tested layouts
with n = 21, 7, 3, and 2. The first three networks give the same results whereas the
efficiency becomes rather poor for n=2. We thercfore have chosen n=3 and write its
layout in the form 42-6-1. In order to check the performance of these 'reduced’ nets we
studied the fully connected NN architectures 42-21-1 and 42-42-1. Since their results
are slightly worse we do not consider them any longer.

The performance of the NNs is summarized in table 2a and 2b. Since the best
results are obtained with the "half’ connected 42-6-1 layout we shall concentrate on
it and call it N,., in distinction from N,,,, our favoured network for the parameter
method.

4.2.3 Networks with 2 hidden layers

We also have studied NNs with two hidden layers. For the parameter method we
obtained with the layouts 5-5-5-1 and 5-10-10-1 the same results as with 5-5-1. For the
residual approach we tested the fully connected configuration 42-42-21-1 which showed
about the same efficiency as the 42-21-1 and 42-42-1 layouts. From this we conclude
that we do not gain by using two hidden layers and we shall concentrate on the most
promissing NNs with one hidden layer.

4.3 Learning phase

For the learning we have used about 40000 tracks for cach cnergy and presented them
to the networks many times (between 50 and 150 times depending on the size of the
network) in random order. This randomness avoids cycling effects (the networks learns
to adjust to the order of the input events) and makes the convergence faster. Since the
generation of tracks is rather time consuming (more than 2 sec per DSIM track on an
IBM 3090) we have to loop over the input tracks and we can not afford to provide for
each learning step a new input. In order to decrease the number of spurious kinks (non-
decaying tracks which get a kink assigned) we have used 2 times more non-decaying



tracks than decaying tracks. The learning speed € was set to 1 at the heginning and
decreased to 0.1 towards the end of the iterations.

The learning takes roughly between 10 and 20 minnutes (in IBM-3090 units) depend-
ing on the NN layout and is therefore considerably faster than the track generation.

5 Results

For the discrimination between the two hypotheses kink and non-kink we have choosen
for each network architecture the cut in the output distribution such that the percent-
age of spurious kinks is constant. This cut was sct to 1% for FSIM tracks and to 5%
for DSIM tracks since the number of non-decaying tracks with bad fits is much bigger
for DSIM data.

The efficiency of the neural networks can directly be compared to the results of the
analytical parameter comparison method.

In order to test the algorithms under optimal conditions we select for the following
tests only tracks without missing coordinates (i.e. tracks with 21 coordinates recon-
structed by JULIA). The effect of relaxing this condition will be discussed in subsection
5.5.

5.1 Results for mixed charges

We tested the best NN layouts for the parameter (N,,,) and the residual method (Nyes)
with learning samples and test samples containing 50% positive and 50% negative
charged tracks. The results are summarized in table 3a and 3b which contain also the
efficiencies of the conventional tests x2_, and X2, (sce section 3.1).

| Ex [[3GeV [5GeV [10Gel ]
X || 735 ] 57.8 [ 380
X | 798 | 68.0 | 50.2
Ny | 752 | 685 | 501
Npor | 79.0 | 69.1 | 51.6

TABLE 3a
Kink finding efficiencies [%] for FSIM data.



| Br [[3GeV ][5 Gel [10GeV ]
X2, || 531 | 358 [ 143
Xl || 76.0 | 620 | 402
N || 793 | 653 | 481
Ny, || 783 | 65.9 | 47.0

TABLE 3b
Kink finding cfficiencies [%)] for DSIM data.

It is evident that the second test is much more efficent and we shall use it to evaluate
the performance of the NN methods.

The efficiencies of both NN approaches are rather similar except for the case of FSIM
data at 3 GeV. The poorer performance of the residual method can be attributed to
multiple scattering effects which disturbe the rather ideal (FSIM data) residuals more
than the parameters which are obtained by a fit over about 10 coordinates.

Furthermore the NN efficiencies are comparable with the x2,, method for FSIM
data, but substantially better for DSIM data. This can easily be understood in the
following way: for ideally simulated data the crrors on the coordinates are determined
correctly which leads to correct errors on the fit parameters. The analytical X?)ar method
gives therefore optimal results and the NN algorithms can not do better (except from
Npar at 10 GeV, which is discussed below). We can consider the agreement between
Nypor and x2,, as proof for the good functioning of the NN algorithm. This means
that the NN has ’learned’ correctly the correlations between the two parameter sets of
the track fits. For DSIM data the analytical method suffers much more from wrong
coordinate errors than the NN approach which is apparently able to adapt to systematic
effects.

A nice example for the power of NN methods to find correlations in the input data
is the above mentioned difference between N, (51.6%) and x2,,(50.2%) for FSIM at 10
GeV in table 3a. Although the difference does not scem to be significant we looked into
this case in more detail. A comparison of the connection weights of the network shows
that the NN has learned to ignore 2 helix paramcters almost completely. These two
parameters are the dip angle and Z; (the Z coordinate of the helix at the point of closest
approach to the origin) which are determined by the coordinates in the R-Z plane with
a negligible contribution from the X-Y planc. The resolution of the ALEPH-TPC in
R-Z is almost an order of magnitude worse than in X-Y and for 10 GeV tracks not
sufficent to detect any systematic effect in this planc. The NN has therefore learned
correctly to ignore these two parameters. In the analytical method we add to the
contribution from the three relevant parameters some sort of random noise from the
two others which diminishes the discrimination power of this method. Using only the
three discriminant parameters in the xfm test improves its performance by about 2% (in
good agreement with N,,,). No difference was found for DSIM data which shows that
the ’weak’ parameters provide some protection against badly measured coordinates.
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5.2 Results with charge dependence

We want to check now whether the charge of the tracks (i.e. the direction of the
bending in the X-Y plane due to the magnetic ficld) has some detectable systematic
effects. The ability to find small kinks depends for example strongly on the direction
of the decay in the X-Y plane since the secondary track (the sz in our case) has less
energy and bends therefore more in the magnetic ficld. If the 7 decays in the X-Y
plane towards the origin then we have two additive effects which shift the coordinates
of the generated p1 compared to the extrapolation of the 7 into the same direction: the
change of the direction (decay angle) and the change of the curvature. If the 7 decays
into the opposite direction then both effects interfere and it becomes much harder to
detect the decay.

In order to study such effects quantitively we learn with tracks of one charge and
we test with tracks of the opposite charge by changing the sign of the parameter inputs
and the X-Y residual inputs. The results are summarized in table 4a and 4b.

| Br [[3GeV [5GeV |10 GeV
X2, || 79.8 | 680 [ 50.2
N, | 80.3 | 689 | 554
Npor || 79.7 | 69.8 | 54.6

TABLE 4a
Kink finding efficiencies [%)] with charge dependence for FSIM data.

| Bx [[3GeV [5GeV |10 Gel |
X2, || 76.0 62.0 40.2
N,e, | 803 67.7 54.5
N, || 78.9 67.0 53.5

TABLE 4b
Kink finding efficiencies [%] with charge dependence for DSIM data.

Comparing with table 3a and 3b we see that the cffect is rather big. The performance
of the NN methods for the hard test case (DSIM data at 10 GeV) is excellent. 54.5%
and 53.5% efficiency of the NN residual and parameter test, respectively, compared to
40.2% of the conventional x2, method.

5.3 Dependence on simulation details

One big problem frequently encountered in learning methods is the strong dependence
of their performance on features in the input data which are not relevant for the
problem. To study the robustness of our NN algorithms against such perturbations we
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apply the following cross tests: we learn with FSIM data and test with DSIM data and
the other way round, taking in both cases the charge of the tracks into account. The
results are listed in table 5a and 5b.

| Er [[3GeV [5Gel” [ 10 Gel ]
X2 || 79.8 68.0 50.2

Neo || 749 | 697 | 544
Ny | 779 | 671 | 541

TABLE 5a
Kink finding efficiencies [%] with charge dependence for FSIM data after learning on
DSIM data.

| B, [3GeV [5GeV [10GeV

o | 760 | 620 | 402
N, | 80.8 | 663 | 541
N, | 788 | 663 | 51.6

TABLE 5b
Kink finding efficiencies [%] with charge dependence for DSIM data after learning on
FSIM data.

We observe a very small dependence on the quality of the input data since the difference
between the two simulation programs is rather big. This gives us good confidence that
one can apply such techniques with high efficiency to rcal data after training on well
simulated data.

5.4 Energy dependence

Finally we want to show the dependence of the learning on the energy. Since our
samples cover two extremes, rather easily detectable decays with perturbations from
multiple scattering at 3 GeV and tiny but clean decays at 10 GeV, we can not expect
to find one single set of connection weights which performs well for both energies.
Nevertheless we check this dependence directly by applying the weights learned at
each of the 3 energies to test data for the two other energies. The results are presented
in table 6a and 6b.

12



method | Flet Elearn
3 Gel” | 5 Gel” | 10 GelV
N,., 3 GeV 80.3 73.4 71.3
NJMr 79.7 79.6 74.8
N.., 5 GeV 70.2 68.9 68.8
Npar 67.2 69.8 68.1
N,., 10 GeV 45.6 93.5 55.4
Noar 46.5 51.9 54.6
TABLE 6a

Energy dependence of the kink finding efficiencics [%] with charge dependence for FSIM
data (learning (E""") and testing (E!**) at diffcrent encrgies).

method | FE'e Elearn
3GeV |5 Gel” [ 10 GeV’
N, ., 3 GeV 80.3 75.6 75.8
N, 89 | 77.9 | 762
N.., 5 GeV 67.7 67.7 68.6
Npar 64.5 67.0 67.8
N, ., 10 GeV 46.2 50.2 54.5
N 434 | 494 | 535
TABLE 6b

Energy dependence of the kink finding efficiencies [%] with charge dependence for DSIM
data (learning (E%*™") and testing (E'**) at different encrgies).

The diagonal terms are taken from table 4a and 4b, respectively, and serve as reference
for the optimal value at each energy. Since the encrgy dependence is rather smooth we
can devide the whole energy spectrum into a small number of energy regions for which
we have to learn the weights separately.

5.5 Missing coordinates

As we have seen so far both NN techniques work almost cqually well for completely
measured tracks. In real events we have to cope with the fact that often not all track
coordinates can be measured because of dead regions in the detector, overlapping
tracks, etc. Since these problems are very detector dependent we did not study them
in detail. Nevertheless we can make some rather general remarks.

At first glance the NN parameter method seems to be better suited to handle
such tracks since it does not directly depend on the number of coordinates. But this
technique suffers apparently from the fact that the correlation between the parameters
can not be learned sufficiently well. The NN algorithm is therefore slightly less efficient
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than the analytical method if we do not specially learn different configurations of
missing coordinates which might be a rather long task.

Although the NN layout for the residual method depends on the number of mea-
sured track coordinates we found a very statisfactory behaviour of this technique with-
out additional learning. We train the network as before on completely measured tracks
and we set in the test the activation of the input neurons which correspond to missing
coordinates to 0. The improvement of the efficiency of this method compared to the
conventional one is about the same as described above. The results are sumnmarized in
table 7a and 7b.

| Br [|3GeV [5Gel" [10 GeV]
X2, | 780 | 655 [ 46.4
N, | 783 | 669 | 525
Ny || 75.9 | 65.1 50.0

TABLE 7a
Kink finding efficiencies [%] with charge dependence for FSIM data with missing coor-
dinates.

| B [3GeV [5GeV [10GeV |
X2, || 734 ] 582 [ 36.1
N | 768 | 634 | 499
N || 744 | 626 | 472

TABLE 7b
Kink finding efficiencies [%] with charge dependence for DSIM data with missing co-
ordinates.

5.6 Execution time

Because of the rather small size of the NN layouts the time needed to calculate the

answer (output) of the network is small (less than 0.1 msec on an IBM 3090) compared

to a helix fit (about 0.6 msec). The analytical parameter comparison method, which

demands two additional fits and one matrix inversion, is therefore about 20 times slower

than the NN residual method if one assumes to get the residuals as by-product of the

normal track fit. The NN parameter approach is like the analytical method limited by
the time needed to fit both track halves.
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6 Conclusion

We have studied extensively several possibilitics to use neural network techniques for
the recognition of decays of charged tracks. We have found excellent performance and
robustness for two different methods using as input track fit parameters and residuals,
respectively. Since the residual approach is faster and easier to handle for tracks with
missing coordinates we prefer it over the other.

The NN residual method is more efficient and about 20 times faster than a conven-
tional kink-search algorithm based on the comparison of the track parameters obtained
from two half-track fits. In the case of 7* — pf + v with E, = 10GeV 54.5% of the
decays are detected with this NN technique compared to 40.2% with the conventional
method.

Since these NN layouts have a rather small number of neurons and connections no
special hardware is needed for an efficient implementation.
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Fig. 1: Schematic view of a normal layered feed-forw

ard network with one hidden
layer (the neurons are represented by circles and the cor

inections by lines).

Fig. 2: Schematic view of the half-connected feed-forw

ard network used for the resid-
ual method (the neurons are represented by circles and

the connections by lines).
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