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1 Introduction

Measuring the Z — bb partial width with an accuracy of the order of a few percent is
one of the interesting goals to be pursued at LEP. A lot of effort was spent to analyze
Heavy Flavour production through the semileptonic b and ¢ decays. At the present time, a
statistical precision of 5% on I'(Z — bb) can be achieved. Detailed systematics generated
by our bad knowledge of strong interaction were essentially not studied but should be in
the future and will constitute the main limitation of this approach. In this note, we will
describe another way to access the problem where, from the beginning, statistical error is
negligible and where we are directly in touch to the systematics.

To each Z hadronic event is associated in this study a number which is the answer
of a specific discriminator to which are submitted a given sample of variables computed
for that event. These variables are chosen to have some characterisation capabilities of bb
events. The discriminator can be a Neural Network, a Linear Discriminator, a Canonical
Discriminator, etc.. This can be as usual simply a number like the p; of a lepton. In the
present analysis all discriminators use after a learning phase 5 to 10 variables. This is a
typical problem of Multivariate Analysis.

Anyway, Multivariate Analysis is not commonly used for such a task and more specifi-
cally for a precision measurement. A large amount of time was spent to convince ourselves
that these methods were used reliably. A first attempt is described in Ref. [1] for events
containing a lepton. For the present study, several methods were also used and it was
shown that they give very consistent results. A large number of variables were defined and
used. Some of thern are more related to the global shape of the event; others characterize
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the structure of a b quark jet with respect to the structure of a lighter quark jet. This
large preparation period essentially led us to maintain two independent analysis chains.
One using the Neural Net method working on global variables (the numerical methods
is new and the variables are classic); the other use a Canonical Discriminant method
working on ”jet” variables (the method is more classic but variables are generally more
performant). While different, these two approaches provide important cross checks and
give very similar results which will be described in the forthcoming sections.

Starting with 160,000 hadronic Z events, a statistical accuracy of ~ 0.5 % and no
systematics is expected on T'(Z — bb) for a perfect discriminator working on all events.
With the present analysis, we obtain a statistical error of 2% due for one half to MC. But
clearly the problem is not statistics. Comparing the variables with their expected Monte
Carlo shape indicates small discrepancies for some of these variables. It is also shown
that the fine tune of Monte Carlo parameters from the QCD studies tends to compensate
this effect and a deeper study will be started when sufficient Monte Carlo statistics with
the best tuning will be available. In a first step we used two directions to look at the
systematic effects:

e We know how to treat rigorously our uncertainty on heavy quark fragmentation
with fully reconstructed MC events. This fragmentation is expected to generate
the largest systematic error on the ['(Z — bb). The idea is also that, if we are
sensitive to b fragmentation our data can give a measurement of the ¢, parameter
as usually done with leptonic events. So the study is self-contained and don’t
require any input from other sources. The other important advantage is to provide
a cross-check of the result obtained with leptons. Other uncertainties are more
difficult to treat very reliably but good order of magnitude can be determined.

e The Multivariate Analyses rely on the simulation of Z hadronic decays. Using
this method on leptonic events provides an interesting cross check of the method.
Comparing the b purity of leptonic events with different p, cuts indicates how
the analyses are reliable. Certainly this approach contains several important
potentialities.

2 The Variables

The first objective of these analyses was the tagging of b quark events without using
particle identification in order to provide an alternative method to the usual tagging with
high p, leptons. Two groups (Clermont-Ferrand, Heidelberg) have defined independently
sets of variables which discriminate between b and udsc events and are based on charged
tracks only. Though the definition of the discrimination power of a single variable as well
as the sets of variables have not been identical (one approach favoured global variables,
the other jet variables) the results of the analyses were consistent. Finally a common set
of 27 variables was fixed as the base of the multivariate analyses.

Below the variables are listed and a detailed definition is given where references are
not available. The references are not complete but sufficient for the understanding of
the variables. The shape of the different variables are shown in fig. 1-27 for data and
Monte Carlo events. The small discrepancies between data and Monte Carlo are discussed
subsequently.



2.1 Global variables

® Boosted hemisphere sphericity product (HSPROD). We use 3 = .96 [2].

e Sphericity (SPH), aplanarity (APL), thrust (THR), oblateness (OBL), sum of
P, in event plane (PTIN), sum of P, ont of the event plane (PTOUT) [3].

¢ Fox-Wolfram-Moments 1-5 normalized to the 0* moment (FIV A1 — 5) [4].
e Transverse mass (1" MT), missing transverse momentum (Y PTNU) [5].

e Momentum of leading particle normalized to the sum of the absolute momenta.
(PMAXE).

2.2 Jet variables

In the following:
PGT = sum of the absolute value of the track momenta
EGT = sum of the energies of the tracks
P+ = momentum transverse to jet axis
m = momentum longitudinal to jet axis
For the jet finding the Jade Algorithm QJMMCL is used with Y., = (6.0/ EGT)?.
e Sum of the momenta of the leading particle of each jet normalized to PGT
(PMAXJ).
o Sum of the jet masses (SMJETS).

e The total transverse momentum of a jet F’,jet is defined as the sum of the p,
(absolute value) of each particle in the jet. As variables we use the sum over the
jets and the maximum of P/* normalized to PGT (PT.JETS, PTMAXJ).

e Same as above but p; instead of p, (PLJETS, PLMAXJ).
e Same as above but p,p, instead of p, and normalized to PGT? (PTLJET, PTLMJE).

¢ Energy, mass, sum of the squared transverse momenta of particles in the jet and
charge of the most energetic jet (EJET, MJET, SPT, QJET) [1].

Another variable with a high discrimination power is the number of charged tracks
of an event (NGT). NGT was up to now only used in the Neural Net analysis but will
not be used anymore in the future to avoid systematic effects due to not expected track
losses. Moreover, some of our systematic checks rely on events not processed with Galeph
but only with Kingal and NGT is not easy to handle on generator level.

3 The Neural Net Analysis

We use a Feed Forward Multi Layer Perceptron (M LP) with Back Propagation of the
errors. Let us consider a 2 layers perceptron. In fig. 28 we have 3 neurons for input
and 2 neurons for output. We introduce the inputs £ in the neural net. We assume the
existence of the weights Wji between the input and the output. The outputs O are
computed following the feed forward formulas:

g(z)=(1+e™)7" 5 hf =3 Wa&k ; Of =g(hf)
k
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We know the class yt of the input, we are waiting for the S¥ values for the input. This
value is different from O¥. We use this difference to compute a correction to the weights
W;; by back propagation of the error. The general cost is given by the formula:

1
E = 5 D (SE - 0F)?
i,

if we choose:

I
Taw i

the E value decreases during the learning phase. Then:

AW;; =n) 8¢g(ht)
B

A[Vj,’ =

For the output layer:
! L
8 = g/ (W)(SY - OF)

If we have introduced hidden layers:
8¢ = g'(h¥) ) Wi;bt

where 6! is the value for the preceding layer. The actualization of the weights is generally
done by the formula

AW;(t+1) = aAW;(t) + 1) 6 g(hY)
73

The parameter « is of the order of 0.5 and the 5 parameter is about [0.01 — 0.5].

3.1 The learning

The initialization of the weights is done by small random numbers. We present an event
to the MLP, we feed forward, we back propagate the error and compute AW;;. We
reactualize the W;; value when we have presented one event of each class.

The learning set of events is composed of 10000 events of each class. We present the
learning set several times to get a convergence of the learning. The E value lakes then a
limit value.

In our case we have 3 classes of Monte-Carlo events: b, ¢, uds. The data set for
the learning is composed of 10,000 b events, 10,000 ¢ events, 10,000 uds fully simulated
events. This data set was presented randomly 150 times for the learning. The parameters
of the actualization are @ = 0.5 and 7 = 0.1. The selection of variables has given 9:
HSPROD, APL, FWM3, FWM4, FWM5, YMT, MJET, SPT and NGT. We have
chosen the M LP with:

¢ 9 input neurons in the 1** layer

¢ 12 hidden neurons in the 2"¢ layer
¢ 9 hidden neurons in the 3"? layer
e 3 output neurons in the 4 layer

The output neuron 1 is affected to the b class. We expect an output 1 for the b events
and 0 for the other events. The output neuron 2 is affected to the ¢ class and the output
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neuron 3 is affected to the uds class. When the learning is finished, we can get the average
value of the output for the events of the same class as the output class and for the different
ones. We get the following values (Table 1). We see in this table that the behaviour of
the ¢ and uds are almost the same.

3.2 Test of the Neural Net on Monte Carlo events

Using another sample of Monte Carlo events, we look at the output of the Neural Net
working on these events. Fig. 29 shows the output of the Net in the b class for b events
and non-b events. To get a sample of increasing purity in b events, we can do a cut on
the output value of the b filter. We have defined for each cut the values:

number of true b events above the cut

Purity = -
y number of classified b events above the cut

number of true b events above the cut

Efficiency = —
number of original b events

Fig. 30 gives the curve purity versus efficiency for the Neural Net analysis.

3.3 Measurement of I'(bb)

Then the Neural Net is run on data events. The comparison of the output in the b
class is compared to the Monte carlo distribution assuming the Standard Model for quark
flavour fractions. A fairly good agreement is obtained except for a small discrepancy
for small values of the output. The comparison of data and Monte Carlo is done with
generated parameters for fragmentation, ¢, = 6 x 10™® and ¢, = 20 x 10~%. This is
certainly not the optimum and we looked at the variation of the y? of the data to Monte
Carlo fit by introducting e influence by a weighting method. We determined the best ¢,
value corresponding to the minimal x? by fitting the higher part of the neural output
distribution (output > 0.5). This leads to:

This value is in good agreement with other determination from leptons. The reason why
we determine ¢, in this enriched b region is that our result is unsensitive to the charm
fragmentation. For this e, value and error the bb partial width is:

Iy = (22.2+0.4(stat.) £ 0.8(b— frag.)) %

In the statistical error one half is due to the data statistics the remaining part being
from the limited MC statistics. The charm fragmentation also influences the partial bb
width. A conservative error due to charm fragmentation uncertainty is +.5%. Then we
see that the systematic error is strongly dominant in this analysis. Certainly the error
due to inacurrate heavy-quark fragmentation is the dominant part of this error. Anyway
the Monte Carlo simulation of the hadronic Z events by Parton-Shower models is not
perfect even if it seems to be the best present approach to describe the reality. That is
the reason which pushed us to compare our measurement of the bb fraction in a leptonic
sample to that of the standard lepton analysis with different lepton p and p, cuts. This
will be presented in a forthcoming section and shows the good reliability of the present
determination.



4 The Canonical Discriminant Analysis

Canonical discriminant analysis (CD) is related to principal component analysis and
canonical correlation and not to the usual linear discriminant analysis first introduced by
Fisher in 1936 [6]. C'D has to the best of our knowledge not yet been used in High Energy
Physics and was discussed for the first time in [2].

4.1 The selection of the input variables

Given the variables defined in Section 2 Stepwise Selection (StS) [7] is used to define
the variables to be used in the discrimination model. The discriminatory power of a
single variable or a model is defined by a F-statistic based on Wilks’ A [8]. StS begins
with no variables in the model. At each step the model is examined. If the variable in
the model that contributes least to the discriminatory power of the model fails to meet
the criterion to stay (defined by a certain significance level of the F-test), then that
variable is removed. Otherwise, the variable not in the model that contributes most to
the discriminatory power of the model is entered. When all variables in the model meet
the criterion to stay and none of the other variables meets the criterion to enter, the StS
process stops.

In this analysis a sample of 10,000 uds, 10,000 ¢ and 10,000 b fully simulated Monte
Carlo events was used to define the input variables for the discrimination model. StS
selected the variables: HSPROD, FWM1, FWM3, FWM4, SMJETS, PTJETS,
PTMAXJ, PLJETS, EJET and SPT. The number of ten variables in the model
was forced by choosing the appropiate significance level. A model with ten variables is
easy to handle and higher dimensional models do not improve the discriminatory power
significantly. The F-values for all variables are given in (Table 2).

4.2 The discriminator

CD derives a linear combination of the variables in the discrimination model that has the
highest possible multiple correlation with the groups (uds, ¢, b). This maximal multiple
correlation is called the first canonical correlation. The coefficients of the linear combi-
nation are the canonical coef ficients or canonical weights. The variable defined by the
linear combination is the discriminator.

The first canonical correlation is at least as large as the multiple correlation between
the groups and any of the original variables. If the original variables have high within-
group correlation, the first canonical correlation can be large even if all the multiple
correlations are small. In other words, the discriminator can show substantial differences
among the classes, even if none of the original variables do. Canonical discriminant
analysis is equivalent to canonical correlation analysis between the quantitative variables
and a set of dummy variables coded from the class variable.

Again a sample of 10,000 uds, 10,000 ¢ and 10,000 b fully simulated Monte Carlo events
was used to find the discriminator that was afterwards standardized to range from [0-1].

Approximately 150,000 fully simulated Monte Carlo events have been used to test
the discriminator. Fig. 31 shows the shape of the discriminator for data and Monte
Carlo events. A significant statistical seperation between b quark and udsc quark events



is observed while the difference between ¢ quark and uds quark events is marginal. Fig.
32 shows purity versus efficiency for CD defined like in section 3.2.

4.3 Measurement of I'(bb)

Fitting the discriminator shapes for b and udsc events obtained from a large sample
of Monte Carlo events to the 1990 data sample a measurement of the Z — bb partial
width with a small statistical error is possible. To study the influence of heavy quark
fragmentation a weighting method similar to the one applied in the D* analysis is used.
Taking in account current results from the D* and prompt lepton analyses the following
values for €, and €, are reasonable:

e = 633 %

€. = 412 %

For this values and errors the bb partial width is:
Iy = (20.9+0.34(stat.) *'55(c, bfrag.)) %

The statistical error includes the uncertainties due to the limited Monte Carlo statistics.

In future the influence of €, and €. will be studied in the same way as described in section
3.3.

Though the error from inaccurate heavy-quark-fragmentation is expected to be the
dominant systematic error more effort must be spend to understand the influence of light
quark fragmentation and strong interaction. The small discrepancies between data and
Monte Carlo present in the event shape variables seem to have their origin in a not
well tuned Monte Carlo generator. Unfortunately at present only a small number of
Monte Carlo events with the best tuning is available. Fig. 33 compares the THRU ST
distribution of ¢ events for the old tuning , up to now used for this analysis, and a new,
but not yet perfect, tuning.

5 Analysis of a leptonic sample with the Multivari-
ate Analyses

The objective of this work is to measure the purity of the leptonic sample extracted
from hadronic Z decays and to compare it with the expected value from standard lepton
analysis. This has to be considered as a check of the Multivariate Analyses.

The study was performed using the full ¢¢ statistics (158,566 events). Leptons were
selected in the common Heavy Flavour way. The events were processed through the
Neural Network with the same learning as that used for the full g sample. The fraction
of bb events was fitted and results are summarized in Table 3. The Neural Net result is
given for the same values of fragmentation parameters than in the Monte-Carlo generation
(es =6 x 1073; ¢, = 40 x 1073).

The same check has been done using the Canonical Discriminator. They are sum-
marized in Table 4. This study was extended in a non trivial direction. This consists
is analyzing with the Neural Net a sample of events selected by a p, cut on the lepton.
Tables 5 and 6 summarize the results for two different cuts on the lepton momentum 3
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Gev/cand 5 GeV/c, respectively. The comparison of Monte Carlo and data purities does
not indicate any clear deviation. It seems that the simulation gives a good description of
real events. Then at the level of the present statistics and systematics, the lepton sample
cannot help to improve the Multivariate Analysis approaches.

6 Conclusion

We have studied b quark production and fragmentation using two independent Multivari-
ate Analysis methods based on global and jet variables.

From the Neural Net analysis we obtain:
[y, = (22.240.4(stat.) = 0.8(b— frag.) £ 0.5(c — frag.)) %
and from the Canonical Discriminant analysis:
Ty, = (20.9+0.34(stat.) *';5(c—, b~ frag.)) %.
These results are preliminary because the estimation of the systematic errors is not yet
complete.

The errors from inaccurate heavy-quark-fragmentation quoted above are expected to
be the dominant systematic errors but the influence of light quark fragmentation and
strong interaction has to be understood. Moreover, because this analysis is sensitive to
the tuning of the used Monte Carlo generator, it has to proven that no artificial bias is
introduced by assuming it the tuning algorithm the Standard Model value 21.7% for T,.
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b class | c class | uds class
output b events | 0.449
output non b 0.263

output c events 0.358

output non ¢ 0.318
output uds events 0.381
output non uds 0.323

Table 1: Neural net output for events in the various classes

variable F-value
HSPROD | 1772.7
SPH 25.0
APL 125.4
THRUST 1.0
OBL 8.8
PTIN 20.9

PTOUT 287.2
FWM1 222.5

FWM?2 4.2
FWM3 218.6
FWM4 57.6

FWM5 306.3
PMAXE 536.1
YMT 287.7
YPTNU 2.6
PMAXJ 738.8
SMJETS 434.9
PTJETS 586.9
PTMAXJ 221.1
PLJETS 48.32
PLMAXJ 90.3
PTLJET | 256.5
PTLMJE 116.7

EJET 435
MJET 335.1

SPT 783.3
QJET 12.8

Table 2: F-values for the various variables
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Lepton Nb. | M.C. Predic. | Neural Net | T'(bb)
>0 57.8+0.7 58.3+£1.2 | 22.7+0.5
1 55.0£0.7 55.2+1.3 | 22.5+0.5
2 81.7+2.9 85.24+2.8 | 22.74+0.9

Table 3: Leptonic events through the neural Net

Lepton Nb. | Nign: /N, (M.C.) | Can. Dis. Fit
1 .82 0.814+0.02
2 .25 0.224+0.03

Table 4: Leptonic events through the Canonical Discriminator

pecut | M.C. | Neural Net Fit
0. 57.8+0.6 58.4+1.2
0.3 |64.840.7 64.8+1.4
0.6 |79.4+1.0 81.2+2.0
0.9 |89.5+1.5 92.0+2.4
1.2 | 94.2+2.1 95.7+2.6
1.5 | 95.843.2 93.6+2.7

Table 5: Analysis of the Leptonic sample (p > 3 Gel'/c)

p: cut M.C. Neural Net Fit
0. 61.8+0.8 63.0£1.4
0.3 | 67.7+0.9 67.7£1.6
0.6 | 80.84+1.2 81.6+2.1
0.9 |90.7x1.7 94.0+2.5
1.2 | 95.0+£2.3 97.6+2.5
1.5 |96.4+3.3 95.4+2.6

Table 6: Analysis of the Leptonic sample (p > 5 GeV'/c)
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