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ABSTRACT :

Two multivariate analysis methods : alinear discriminant method and a classification

tree have been performed to get classifiers.

These classifiers have been applied to tag b quark events in ALEPH.

Two decays of the b quark have been considered : semi-leptonic decays involving an

electron and purely hadronic decays.

The ratios of number of classified events n(b — €)/n(e) and
n(b — hadrons)/n(events) are computed with Monte-Carlo events and ALEPH events.
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1 — Introduction

1.1

1.2

An important application of artificial intelligence is the pattern recognition
[1],[2]. |

Among the different methods of pattern recognition the statistical multivari-
ate analysis methods had lead to a lot of applications [3]-]6].

Previous works

The methods of pattern recognition have already been used in high energy
physics [7], in particular the multivariate analysis methods have been extensively
used in recent studies with Monte Carlo simulations such as the identification
of top quark events in UA2 and LEP experiments [8], the determination of the
number of jets of an event and the tagging of the quark jet flavour [9],[11]; however
these results have not been yet confronted to the data.

The method of classification tree have been used to identify charged clusters
in ALEPH electromagnetic calorimeter[10].

The common purpose of these works is to classify an event by building a set
of rules called classifier, the discrimination methods described later on are a way
to get such rules.

The discrimination Baye’s rule

The basic purpose of a classification is to get an accurate classifier, that is
to characterize the conditions allowing to determine whether an object is in one
class or an another.

- Considering two classes C; and C, with the probabilities M; = P(C;) and
M; = P(C,) for an object to belong to C;(resp C3), the goal is to get a decision

- rule:sharing the space of the variables in two regions R; and Rz, R; beingfilled -

Wlth the objects of C; and R; with those of C5.

If C(1,2) is the cost in classifying an object of C; in R, and C(2,1) the cost

in classifying an object of C; in Ry, C(1,2) and 0(2 1) are the misclassification
costs

 Let P(1,2) the probability for an object of class 1 to be classified in class 2
and P(2,1) the probability for an object of class 2 to be classified in class 1. The
mean misclassification cost is :
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P(2,1)C(2,1)+ P(1,2)C(1,2) (1)

This cost can be computed by the khowledge of prior probability M; of

C; (z = 1,2) and of the density function f; of C (2 = 1,2) inside the space of the
variables.

The probability of good classification for an object of C; is M; = [, r, fi(z)dz

and the probability of misclassification for the same object is |, R, fl(z) dz. Thus
the mean mlscla.smﬁcatlon cost can be expressed as

M, fl(z)d:c.C(l,2)+M2/R fo(2) de.C (2,1) (2)

R,

A classification process which minimizes this cost is called a bayesian classi-
fication process.

Present work

In the following we present two discriminant methods fulfilling the Baye’s
rule:

-the linear discriminant analysis [3]-[6]
-the method of classification trees [6],[17]

these two methods have been applied here to the tagging of b quark events in
ALEPH.

Performing a pattern recognition method needs a first step called the learning
phase in which one uses some events for which the class they belong to is known.
In the present case these events are Monte Carlo generated events. From this
first step one gets the rules of classification, called classifier, an unknown event
can then be classified according to such rules.

Once that the learning phase has been performed, a validation of the rules
must be done via a large sample of known events, called hereafter the test sample,
to minimize the statistical error. In this work, the test sample is done with a
number of Monte Carlo events much larger than the learning sample.

After applying the classifier to these events several ratios have been com-
puted. In the case of leptonic b quark decay, the ratio given by the number of clas-
sified b events divided by the number of events with an electron : n(b — €)/n(e) ; .

" “in the case of hadronic decay, the ratio n(b — had)/ n(events).

- We seek events classified as b events by processing the ALEPH data with the
same classifier as for the Monte Carlo test sample. The same ratios

n(b — e)/n(e) n(b — hadron)/n(events) are computed and compared to the
Monte Carlo results. -



) 1.4 Qutline of the paper

In the chapter 2 we describe the methods used to select the events of the

Monte Carlo samples and the variables used throughout our study.

* In the chapter 3 after a short recall of thé discriminant analysis method we

describe the procedure used to get the classification rule from the learning sample.
We then compare Monte Carlo test sample results with ALEPH data results in
the two cases of b quark decay.

In the chapter 4 we give a short approach of the classification tree methods
applying two programs to the b quark semi-leptonic and purely hadronic decays.

2 — Events and variables

This section is devoted to the origin of the learning sample events, the method

used to identify the electrons in an event, and the variables used throughout the
study.

2.1 Learning sample events and test sample events

The Monte Carlo events were generated in the ALEPH collaboration by
Annecy, Clermont and Marseille. These events have been reconstructed through
JULIA, and can thus be fully compared to the data.

Aset of b quark events, a set of ¢ quark events and a set of mixed u, d, s quark
‘events have been used, assuming for the test sample the following proportions :

b:21,9% ; ¢:17,1% ; uds : 60,9% versus 4g.

2.2 Identification of the events with an electron

- The identification of a leptonic event is made with the standard subroutines
already used in ALEPH [12] to tag the b — e events.

2.3 Variables associated to an event

We have used a set of variables which are computed with the components
(momentum, energy) of the tracks of the event.
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,+.-Variables connected with the shape of the event : sphericity, aplanarity,
_oblatness, thrust [13]. The Fox-Wolfram variables Hz, Hs, Hy and Hs [13] being
also included.

-Three variables alre;dy used to separate the b quark events : the momentum
of the electron, the transverse momentum of the electron [12] in the leptonic b
decay case, and the double sphericity [14].

-Variables connected to the most energetic jet requiring at first that the angle
of the thrust axis of the event must be greater than 25° to get a clean jet. The
charged particles are clustered by the QJMMCL algorithm [13], and the jet with
the greatest energy is considered, extracting then the energy, mass, charge, and
sum of the absolute value of the transverse momenta of the tracks.

The visible energy of an event, the number of charged particles, the missing
PT, and the transverse mass [15] are included too.

The comparison of the distribution of all these variables with a Monte Carlo
test sample and the with ALEPH real events leads to a good agreement, the
Monte-Carlo events can thus be used to get an accurate classifier.

2.4 The input learning sample

Generally speaking the learning sample is done with n events (statiscal ob-
jects) belonging to k known classes C; (i = 1...k) and are associated to p variables;
the population of the class C? is n; with n = Z n;

In this work the p variables have been choosen according to the results given

by previous experiments dealing with jets and heavy flavour studies as explained
above.

3 — Linear discriminant analysis

Writing the events as p-components vectors z3, 3 ... £, with

& = (Ti1, Tig - Tip)

the input is the learning matrix of elements z;;.

" 3.1 The FISHER linear discriminant function [3]

Assuming a normal distribution for Z, we write : £ ~ N, ({i, %),
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£ being-the p-components vector of the the mean values and ¥ the symmetric
vanance matrix.

-~ Considering the simple casg,of 2 classes C; et C,, uj and g are the [ vectors
of these classes, the ¥ matrix is assumed to be the same for C; and C,.

s

The Fisher linear discriminant function [3] maximizes the norm of the vector'
6 = piy — g which gives the distance of the two classes.

In a matrix notation the linear discriminant function L for #j can be written

3]
L) = §[2")(<0)T (1)

Zy will be classified inside the class C; if:

L(zo) > -(#1 @) E (A + )" (2)

and inside the class C, if:

— 1 — — -— — —
L(#) < 5 (i — m)[E "+ p2) T (3)
It can be shown that such a rule of classification is a rule minimizing the
Baye’s risk of misclassification.
This rule of classification can otherwise be differently stated.

Taking the MAHALANOBIS distance D,; defined by the relation

= (b — A= — )T (4)

Do; can be understood as a generalized distance of £y to the center of mass

of the class C;.
The rule of classification of 3 into C; is no longer given by the value of
L(zg) but by the value of D%, which means, for two classes, that if:

o1
D}, < D%, (5)
the event z; is thus closer to C; than to C; and will be classified into Cj.

The generalization of this rule to k classes is straight forward. Computing
&; and X for all the classes ¢ = 1,...,k, £o will be in class C; if

1<j<k
J#



3.2 Methodology

The purpose of this work is to tag the b quark events which mear}s;’that we
would like to distinguish b quarks from c'quarks and light quarks events.

The classification rule has been obtained from a learning sample of 500 b

events, 500 c events and 500 uds events, giving an equal weight to the three
classes. :

3.2.1 Selection of the variables

Usually, all the variables are not needed for a well doing discrimination, a
good practice is to check which variables are meaningfull. Several criteria are
used to select the significant ones [5].

In this study the selection of variables has been done with the program
SELDISC from the library MODULAD [16]. The program uses the statistical
parameter F' [3] to select the significant variables. A limited number of variables
(3 to 8) among the 19 original ones has been retained.

3.2.2 Rules of discrimination

In a second step, the selected variables are handled in a program of dis-
crimination. The programm DISC[16] of MODULAD allowing a discrimination
between three classes has been used. '

The classification rule used in DISC is given in terms of the probability of
an event Zy to belong to the class Ct:

Py = N exp(~3D2), S
where N is the normalization factor such that
. ]
Z Poi =1. (8)
=1

The rule (6) to classify the event zj into class Ci can be rewritten with P,; :

P,; = Maz P,; - (9)
7=Lk% v
i |
When performing a classification one gets from DISC the value n;; of events

of genuine class ¢ classified as class j. The purity of the sample classified as class
1 is thus: ‘



ny 7
£
n11 + N21 + Nax
and the efficiency /

P‘U/I']-:

(10)

& (
ni11 ’

Efe = 11
ok 711 + nyz + N3 ' (11)

The program DISC generates the ¥~! matrix and the /; vectors with the
selected variables. The learning sample events are classified into the 3 C; classes. -

In order to classify an unknown event, the outputs of DISC running on the
learning sample are gathered in a file which contains £ ~! and ;.

This output file can be read from any analysis program in a standard way or

can be put in a Bos bank through the ALPHA CARDS allowing the classification
to be processed inside an ALPHA program.

3.2.8 New rule of discrimination

When the overlap of the distributions functions for the different classes is
important, the purity inside a class is low; this purity can however be improved
as explained below.

Selecting a value P., considered as a lower probability limit in the range

03<P. <1 (12)

an event will be classified inside the class C; if the two following conditions are

fullfilled :

Py; = Maz P,; | (13)
ij=1k
i3
and . -
Poi > Pc ' (14)

. The application of (14) can reject some events of class C; but the whole
purity of this class will be increased. '

3.2.4 Monte Carlo test sample and ALEPH data sample

The conditions (13) and (14) give the rule of classification which:have been
looking for, a check of consistency is then performed by classifying events of both
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the decays n(b — e) and b — hadrons for 60 000 events coming from Monte-Carlo
test sample (20000 for each b, ¢, and v d s quark flavours) and from ALEPH
data (10000 events).

3.3 /Results with b — e

This decay has been studied otherwise by using cuts on the momentum of the
electron and on the pr of the electron [12]. Such a method is very well established
and can thus be compared with the present results of the discriminant analysis
which has been done in figure 2 and in figure 8.

The variables selected by SELDISC for the discriminant analysis DISC are
the double sphericity, electron momentum, pr of the electron, sum of the trans-
verse momenta of the jet’s tracks and H,, the second Fox-Wolfram momentum
[13].

We can get an insight into the discrimination by comparing the ratio
n(b — e)/n(e); the results are presented in table 1.

The ratio n(b — e)/n(e) versus the probability limit P. for the case of the
leptonic decay is given on figure 1 and the purity of a selected sample of b events

versus the efficiency n(b — e)/n(events) is given in figure 2; the errors are sta-
tistical.

We note, for n(b — €)/n(e), a good agreement between the Monte Carlo and
the data showing that the purity versus efficiency evolution computed on the test
sample can be applied to the data.

3.4 Results with b — hadron

In such purely hadronic events the light quark background is important due

to the fact that 76% of the light quarks have no electronic decay comparing with
only 60% for the b quarks.

Up to now any method is known allowing to separate, in an inclusive way,
the purely hadronic decays of b quark.

The selection has been made in two way. The discriminant variables are
taken at first with no extra cut, then to unprove the punty, a double-sphenc1ty
- lower than 0.13 has been reqmred - :
The variables selected by the program SELDISC in the ﬁrst case are : dou-
ble sphericity, number of charged particles and the transverse momentum of the
tracks inside the jet. The selected variables, in the second case, are : double
sphericity, Hs and the energy of the jet.

Table 2 shows the ratio n(b — had)/n(events) computed from the Monte
Carlo test sample and from the datas when no cut is applied to the double-
sphericity. -
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Figure 3 give the values n(b — had)/n(events) versus P. computed with-
Monte Carlo events and with ALEPH data; the figure 4 give the punty of the
test sample versus the efficiency.

The purity obtained with no double sphericity cut is rather low : 50% com-
pared to the value of 60% with cut. This last value is yet lower than in the case
of the semi-leptonic b decay due to the background of light quarks.

A better separation will be providéd by the use of the mini vertex detector

" in ALEPH, removing most of the light quark background.

4 — Classification tree [18]

4.1

A different method of classification is the construction of binary trees. Such
trees provide a hierarchical type of representation of the data space that can be

readily used as a basis for the classification by following the appropriate branches
of the tree.

Method of binary tree

Let X a set of objects to be classified, the so-called binary tree structured
classifier is constructed by repeated split of X into two descendant subsets be-
ginning with X itself. Such a process is pictured in figure 5.

The sets X; and X3 are disjoint, with X = X,U X3, similarly X4 and Xj
are disjoint with X; = X,U X5, and XgU X7 = X3. Those subsets which are not
split, Xg, X9, X10, X11, X12, X14, X5 are called terminal subsets (rectangular
boxes).

These terminal subsets provide a partition of X, a class label is associated
to each terminal subset. There may be two or more terminal subsets with the
same class label.

To explain how this split is made at each node let us consider at first the
one dimensional case. Let fi(z) and f,(z) the two continuous density function
associated with two classes of objects.

Fi(z):_/()‘ifi(z)dm (=12 (15)

is the associated distribution.

It can be shown[18] that the value z* of z which minimize the Kolmogorov-
Smirnoff distance

: D(z*) = IFIL) _ Fya)|  (16)

minimize also the mean cost of misclassification, according to the Baye’s rule.
\
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4.2

4.3

Sphttmg the space in two subsets according to the comparison of z to z*
(z < z*; z > z*) gives two subsets purer than the parent. '

In the more complex case of p variables associated with one obJect
P Kolmogorov-Smirnoff distances are computed at each node

D(z}) = Maz.;|F1(z;) — Fx(z;)] (17)

and a cut is made on the greater of z;.

Programs

Two programs can be used to build such trees : DNP [16] (Discrimination
Non Paramétrique) and CART [19] (Classification and Regression Tree).

The difference between DNP and CART is that DNP minimizes the cost at
each node while CART minimizes the global cost and give a pruned tree for which
this global cost is minimum.

The final result is that the DNP tree is larger than the CART one but the
tree provided by DNP can be handled more easily in the sense of purity versus
efficacity evolution.

The tree is used as a classifier. If an event belonging to an unknown class
is dropped into a tree and ends up in a terminal node labelled as class j, it is
classified as a class j event.

Results with DNP

Binary trees have been built for the two cases b — e and b — hadrons.

4.3.1b— e

The learning sample contains events belonging to the 3 classes, the propor-
tions beeing those of real events which decay with an electron.

‘The contents of the learning sample is

2706 quark b events
1224 quark c events
2072 quark uds events

This sample is the input of the DNP program, the output is a tree given in
figure 5. The two branches with the best purity for the b quark sample have been
kept only, these two branches are pictured in figure 6. Each final node is reached
by a set of successive cuts giving the classificatien rule.
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These rules applied to the Monte Carlo test sample and to the ALEPH data
sample are checked by the comparison of the ratio n(b — e) /n(e) in both cases
as for the linear discriminant method. The results are given in table 3.

With the branch 1, the agreement between the Monte Carlo and the data is
good : we can get a high purity sample of events classified as b events. f

With the branch 2, the agreement between the different results is poor : the
number of events classxﬁed in every segment is small and the statistical error more
important.

4.3.2 b — hadrons

The learning sample is made of purely hadronic events.
The proportion between the different classes

626 b quark events
546 ¢ quark events
2157 uds quark events

corresponding to the natural proportion.

As for the b — e case two branches of the output tree have been kept (Fig. 7).

Branch 1 allows the classification of b quark events with a maximum purity
of 65%, in branch 2 one can extract the light quarks events with a purity of 84%.

4.4 Results with CART

Due to the automatic pruning of branches in the CART program to get a
minimal global cost, the tree is very small.

The tree with the classification rule is given in table 4.

On the same table we give the results of a computation of n(b — e)/n(e)
with a Monte Carlo test sample and an ALEPH data sample.

The agreement is good.

5 — Conclusion

In this work we were aiming to the construction of a method to cla,smfy
precise types of events in ALEPH. - :

Two methods have been used : linear discrimination and segmentation both
giving classification rules for b quark events in ALEPH. ‘
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The results are compared in figure 8 where the plot purity versus efficiency
is given for different methods. It is worth noting that a high purity classified
sample can be found with discriminant analysis methods.

When considering the parameters connected only to the discrimination a
good agreement has been found between the test Monte Carlo sample and the
ALEPH data sample for both the ratios n(b — e)/n(e) and
n(b — had)/n(events).

Stating a first conclusion it must be pointed out that a good discrimination
of such ALEPH event needs :

— a good Monte Carlo for the learning sample. Actually our variables are very
well described by the Monte Carlo apart from a slight disagreement in electron

identification.

— an accurate set of variables to describe the type of events. A large number

of variables must be reduced with appropriate algorithms before performing the
classification rules.

For the present study the performances are comparable with those of the
electron pr cut. On the other hand, for the purely hadronic decay for which

there is up to now any known method, the pattern recognition provide a good
way to get b quark sample.

Some ameliorations are possible:

- a better electron identification can be done by reconstructed data and a
new version of the Monte Carlo generated events.

— the new variable connected with the number of vertices will play the main
role for lowering the light quarks background.

The same method can be applied to other problems like the discrimination
of a quark jet from a gluon jet.
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TABLES

Table 1 Monte Carlo results and experimental results for the case b — e.

Table 2 Monte Carlo results and experimental results for the case b — hadrons
(without cut).

Table 3 Monte Carlo results, experimental results, DNP results for two branches
of a DNP tree, in the b — e case.

Table 4 Monte Carlo results, experimental results, CART results, in the b — e case.
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FIGURES

Caseb — e - Ratio n(b — e)/n(e) versus P..

Case b — e - Purity versus efficiency.

Case b — hadrons - Ratio n(b — hadrons(/n(events) versus P..

Case b — hadrons - Purity versus efficiency : with double sphericity cut
and with no cut.

Example of binary tree.

Case b — e - Two branches of a DNP tree.

Case b — hadrons - Two branches of a DNP tree.

Curves purity versus efficiency. Comparison of the different methods.



b—e

Discriminant analysis

Monte Carlo Data
Fe n(b — e) n(b — e)
Purity % (RT _W
0.44 75.1 £3.7 0.305 4+ 0.012 0.278 + 0.012
0.50 77.9+4.1 0.250 + 0.013 0.217 £ 0.013
0.72 83.9+7.2 0.088 + 0.004 b.084 + 0.004

Table 1




b — hadrons

Discriminant analysis

Monte Carlo Dbata
EVENTS b c uds mean value %
generated | 17194 17937 36521 9846
without e | 59.8% 68.9% 76.3% 71.44+0.51% | 73.68+0.87%
Monte Carlo Data
Pc v
n(b — had) . n(b — had)
n(events) % Purity % - n(events)
0.50 10.05 + 0.20 _4154+1.5 9.85 +0.32
0.60 6.4 +0.16 44.3 + 2.0 6.11 +£0.25
0.70 3.8+0.12 46.9 + 2.7 3.68+0.19
0.80 1.84+0.08 50.0 + 4.1 1.81 40.14

Table 2




b—e

/

D.N.P. with 2 branches

Data[12]

Monte Carlo
SEGMENTS | Purity % 11_(%_(3)_(3_) ?(—:IES—Q
Branch 1
Node 3 65.7+2.9 0.4079 £+ 0.0181 | 0.4325 £ 0.0353
Node 7 78.5+4.4 0.2253 +0.0115 | 0.2066 + 0.0266
Node 15 85.8+5.6 0.1449 £+ 0.0084 | 0.1510 + 0.0177
Node 31 89.8 +6.9 0.0988 £ 0.0054 | 0.0931 &+ 0.0126
Branch 2
Node 2 31.7+1.4 0.5930 £ 0.0238 O.56_85 + 0..0429
Node 5 47.3 £2.8 0.2797 4 0.0141 | 0.2516 £ 0.0241
Node 11 53.44+3.7 -0.1985 + 0.0110 | 0.1788 + 0.0197
Node 23 58.4+4.8 0.1298 4 0.0081 | 0.1039 + 0.0140
Node 46 64.9+6.9 0.0745 :!: 0.0055_ ,¢.0632 :j:_O;OlO?
Node 92- 66.3 :i: 9.1 0.0436 £ 0.0041

0.0300 -+ 0.0063

Table 3




b—e

[3

CART
b 541
c 245 ‘
=0. Q77X¥DSPH
uds 414 +0. 213%PTJE
-0.273
/ \
U>0 U<0
/ \
b 415 b 126
c 92 c 153
uds 127 uds 287
Purity : 65.4%
Monte Carlo . Data | CART
Purity % b —e) =€) | puty s "¢
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Table 2

Table 3

Table 4

TABLES e

Monte Carlo results and experimental results for the case b — e.

Monte Carlo results and experimental results for the case b — hadrons
(without cut).

Monte Carlo results, experimental results, DNP results for two branches
of a DNP tree, in the b — e case.

Monte Carlo results, experimental results, CART results, in the b — e case.
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These rules applied to the Monte Carlo test sample and to the ALEPH data
sample are checked by the comparison of the ratio n(b — e)/n(e) in both cases
as for the linear discriminant method. The results are given in table 3.

With the branch 1, the agreement bet'ween the Monte Carlo and the data is
good : we can get a high purity sample of events classified as b events. 'l

With the branch 2, the agreement between the different results is poor : the

number of events classified in every segment is small and the statistical error more
important.

4.8.2 b > hadrons

The learning sample is made of purely hadronic events.
The proportion between the different classes

626 b quark events
546 ¢ quark events
2157 uds quark events

corresponding to the natural proportion.

As for the b — e case two branches of the output tree have been kept (Fig. 7).

Branch 1 allows the classification of b quark events with a maximum purity
of 65%, in branch 2 one can extract the light quarks events with a purity of 84%.

4.4 Results with CART

Due to the automatic pruning of branches in the CART program to get a
minimal global cost, the tree is very small.

The tree with the classification rule is given in table 4.

On the same table we give the results of a computation of n(b — e)/n(e)
with a Monte Carlo test sample and an ALEPH data sample.

The agreement is good.

5 — Conclusion

In this work we were aiming to the construction of a method to cla.issif_y
precise types of events in ALEPH. i

Two methods have been used : linear discrimination and segmentation both
giving classification rules for b quark events in ALEPH.

13



Figure 3 give the values n(b — had)/n(events) versus P. computed with
Monte Carlo events and with ALEPH data; the figure 4 give the punty of the
test sample versus the efficiency.

The purity obtained with no double sphericity cut is rather low : 50% com-
pared to the value of 60% with cut. This last value is yet lower thar in the case
of the semi-leptonic b decay due to the background of light quarks.

A better separation will be provided by the use of the mini vertex detector

" in ALEPH, removing most of the light quark background.

4 — Classification tree [18]

4.1

A different method of classification is the construction of binary trees. Such
trees provide a hierarchical type of representation of the data space that can be

readily used as a basis for the classification by following the appropriate branches
of the tree.

Method of binary tree

Let X a set of objects to be classified, the so-called binary tree structured
classifier is constructed by repeated split of X into two descendant subsets be-
ginning with X itself. Such a process is pictured in figure 5.

The sets X; and X; are disjoint, with X = X,U X3, similarly X4 and X5
are disjoint with X2 = X4U X5, and X¢U X7 = X3. Those subsets which are not
Split, Xs, Xg, Xlo, Xn, X12, X14, X15 are called terminal subsets (recta,ngula.r
boxes).

These terminal subsets provide a partition of X, a class label is associated
to each terminal subset. There may be two or more terminal subsets with the
same class label.

~ To explain how this split is made at each node let us consider at first the
one dimensional case. Let f;(z) and f;(z) the two continuous density function
associated with two classes of objects.

A= [ M@ =1y

is the associated distribution.

It can be shown[18] that the value z* of z which minimize the Kolmogorov-
Smirnoff distance

- D(‘B')=|F1L)—F2(z)| e

minimize also the mean cost of misclassification, according to the Baye’s rule.

11



nyy
n11 + n21 + N3
and the efficiency ' ' -

Pur; =

(10)
et (11)

The program DISC generates the ¥~ matrix and the g; vectors with the
selected variables. The learning sample events are classified into the 3 C; classes.

FE =
1 ny1 + ny2 + N33

In order to classify an unknown event, the outputs of DISC running on the
learning sample are gathered in a file which contains £~! and ;.

This output file can be read from any analysis program in a standard way or

can be put in a Bos bank through the ALPHA CARDS allowing the classification
to be processed inside an ALPHA program. ]

3.2.8 New rule of discrimination

When the overlap of the distributions functions for the different classes is
important, the purity inside a class is low; this purity can however be improved
as explained below.

Selecting a value P., considered as a lower probability limit in the range

03<P.<1 (12)

an event will be classified inside the class C; if the two following conditions are .

fullfilled :

P,; = Maz P,; (13)
ij=1,k
i#
and ‘ -
P> P, | (14)

" ‘The application of (14) can reject some events of class C; but the whole ~
purity of this class will be increased.

3.2.4 Monte Carlo test sample and ALEPH data sample

The conditions (13) and (14) give the rule of classification which have been
looking for, a check of consistency is then performed by classifying events of both

9



f being-the p-components vector of the the mean values and ¥ the symmetric
variance matrix.

" Considering the simple case,'t‘;f 2 classes C et C,, i1 and g are the ji vectors
~_of these classes, the ¥ matrix is assumed to be the same for C; and C.

The Fisher linear discriminant function [3] maximizes the norm of the vector
é = iy — p> which gives the distance of the two classes.

In a matrix notation the linea.xf discriminant function L for £j can be written
3 | }
L(%) = 8[57")(0)T (1)

Zo will be classified inside the class C if:

L&) > 2 (i - )55 + 3)T @

and inside the class C, if:

— 1 - — -— - —_
L(%) < 5 (A — @)[Z7)(A + #3)7 (3)
It can be shown that such a rule of classification is a rule minimizing the
Baye’s risk of misclassification.
This rule of classification can otherwise be differently stated.
Taking the MAHALANOBIS distance D,; defined by the relation

D3 = (6 — )= — )T (4)
D,; can be understood as a generalized distance of Zp to the center of mass
of the class C;. ,
The rule of classification of zp into C; is no longer given by the value of
L(%p) but by the value of D?;, which means, for two classes, that if:

ot)
D;, < D}, (5)

the event Zj is thus closer to Cy than to C; and will be classified into Cfj.

The generalization of this rule to k classes is straight forward. Computing
i and X for all the classes ¢t = 1,...,k, Zp will be in class C; if

D?; = min D2, (6)
1<j<k
j#i



_ 1.4 Qutline of the paper

In the chapter 2 we describe the methods used to select the events of the

Monte Carlo samples and the variables used throughout our study.

 In the chapter 3 after a short recall of thé discriminant analysis method we

describe the procedure used to get the classification rule from the learning sample.
We then compare Monte Carlo test sample results with ALEPH data results in
the two cases of b quark decay.

In the chapter 4 we give a short approach of the classification tree methods
applying two programs to the b quark semi-leptonic and purely hadronic decays.

2 — Events and variables

This section is devoted to the origin of the learning sample events, the method

used to identify the electrons in an event, and the variables used throughout the
study.

2.1 Learning sample events and test sample events

The Monte Carlo events were generated in the ALEPH collaboration by
Annecy, Clermont and Marseille. These events have been reconstructed through
JULIA, and can thus be fully compared to the data.

A set of b quark events, a set of ¢ quark events and a set of mixed u, d, s quark
events have been used, assuming for the test sample the following proportions :

b:21,9% ; ¢:17,1% ; uds : 60,9% versus qg.

2.2 Identification of the events with an electron

- The identification of a leptonic event is made with the standard subroutines
already used in ALEPH [12] to tag the b — e events.

2.3 ;Y_gﬁables associated to an event

We have used a set of variables which are computed with the components
(momentum, energy) of the tracks of the event.

5



S

1 — Introduction

1.1

1.2

i
'

~ An important application of artificial intelligence is the pattern recognition
[1},2]. |
Among the different methods of pattern recognition the statistical multivari-
ate analysis methods had lead to a lot of applications [3]-[6].

Previous works

The methods of pattern recognition have already been used in high energy
physics [7], in particular the multivariate analysis methods have been extensively
used in recent studies with Monte Carlo simulations such as the identification
of top quark events in UA2 and LEP experiments (8], the determination of the
number of jets of an event and the tagging of the quark jet flavour [9],[11]; however
these results have not been yet confronted to the data.

The method of classification tree have been used to identify charged clusters
in ALEPH electromagnetic calorimeter[10].

The common purpose of these works is to classify an event by building a set
of rules called classifier, the discrimination methods described later on are a way
to get such rules.

The discrimination Baye’s rule

The basic purpose of a classification is to get an accurate classifier, that is
to characterize the conditions allowing to determine whether an object is in one
class or an another. :

- Considering two classes C; and C; with the probabilities M, = P(C,) and
M; = P(C;) for an object to belong to C,(resp C;), the goal is to get a decision

- rule:sharing the space of the variables in two regions R; and R;, R; being filled -

‘with the ob jects of C; and Ry with those of C;.

- IfC(1,2) is the cost in classifying an object of C; in R, and C(2,1) the cost
in classifying an object of C; in R;, C(1,2) and C(2,1) are the misclassification
costs. _

‘Let P(1,2) the probability for an object of class 1 to be classified in class 2

and P(2,1) the probability for an object of class 2 to be classified in class 1. The
mean misclassification cost is :
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