ALEPH 90- 162
DATACQ 90-12
March 1990

J.F.Renardy SACLAY

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

@\ ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE
V‘ Laboratoire Européen pour la Physique des Particules \‘

European Laboratory for Particle Physics

The ALEPH-LEP
Communication System

The Aleph LEP Communication System (LEPCOM) is a set of routines which
allows to exchange informations between ALEPH and the LEP machine.

This material was prepared and typeset using VAX DOCUMENT V1.1.

Revision/Update Information: = Documentation version 1.0
Software Version: VAX/VMS Version 5.0 and above

Contents

PREFACE

iv

PARTI OVERVIEW OF THE COMMUNICATIONS
BETWEEN LEP AND THE EXPERIMENTS

CHAPTER1 OVERVIEW OF THE LEP PACKAGE 1-1
1.1 INTRODUCTION 1-1
1.2 THE LEP TABLES 1-1
1.3 IMPLEMENTATION OF THE LEP PACKAGE 1-1
1.3.1 The Table Server 1-1
1.3.2 The Table access primitives 1-1

1.3.2.1 GetTable/PutTable « 1-2

1.3.2.2 InitTable « 1-2

1.4 TECHNICAL DETAILS 1-2
1.4.1 Table definition 1-2
1.4.2 Server definition 1-2
CHAPTER 2 THE ALEPH SPECIFIC LEP COMMUNICATION PACKAGE 2-1
2.1 THE LEP ACCESS LIBRARY 2-1
2.2 THE LST GLOBAL SECTION AND THE SERVER 2-1
2.2.1 The LST Access library 2-2

2.2.2 The LST Server

2-2

Contents

PARTII LEPCOMUSER GUIDE

CHAPTER 3 THE LEP ACCESS LIBRARY 3-1
3.1 TABLE INITIALIZATION 3-1

3.1.1 Table creation 3-1

3.1.2 Table initialization 3-1

3.2 TABLE READ/WRITE 3-1

3.3 OTHER FUNCTIONS 3-1
CHAPTER 4 THE LST ACCESS LIBRARY 4-1
4.1 THE GLOBAL SECTION 41

4.2 MAPPING OF LST 4-1

4.3 GLOBAL TABLE ACCESS 4-2

4.4 LST INITIALIZATION 4-2

4.5 UTILITIES 4-2
CHAPTER 5 THE LST SERVER PROGRAM 51
5.1 DESCRIPTION OF THE SERVER 5-1

5.1.1 The Update routine 5-1

51.2 Timing algorithms 5-1

5.2 STARTING/STOPPING THE SERVER

iv

5-2

Contents

5.3 SELECTION ALGORITHMS 5-2
CHAPTER 6 THE EXAMPLE PROGRAMS 61
6.1 EXAMPLES USING THE BASIC ACCESS 6-1

6.2 EXAMPLES USING THE LEP ACCESS PACKAGE 6-1

6.3 EXAMPLES USING DIRECTLY THE LST 6-1

6.4 EXAMPLES USING THE LST ACCESS PACKAGE 6-2
CHAPTER7 HOW LEPCOM WORKS 7-1
71 THE LEPCOM TABLE STRUCTURES 7-1

711 The LEP Table header 7-1

7.1.2 The LEPCOM Table header 7-1

7.1.3 Time representation 7-1

7.2 THE LST GLOBAL SECTION 7-2

7.2.1 The LST header 7-2

7211 The LST_entry_Init routine » 7-2

7.2.2 The LST_Init routine 7-2

7.2.3 GBL Access Modes 7-3

7.3 UTILITIES 7-3

7.3.1 The LST_Access subroutine 7-3

7.3.2 The LST_Write_Message subroutine 7-4

Contents

CHAPTER 8 HOW LST SERVER WORKS 8-1
8.1 LST SERVER INITIALIZATION 8-1

8.2 LST SERVER UPDATE PASS 8-1

8.2.1 Selection algorithm 8-1

8.3 UPDATE ALGORITHM 81

8.3.1 Timing algorithm 8-2

CHAPTER9 HOW LST CREATE WORKS 9-1
CHAPTER 10 HOW TO MODIFY LEPCOM 10-1
10.1 HOW TO ADD/DELETE A TABLE 101

10.1.1 Modifying the steering routines 10-1

10.1.2 Modifying the specific routines 10-1

10.1.3 Modifying the Descrip.mms file 10-1

10.2 HOW TO CREATE A DIFFERENT LST 10-1

10.3 HOW TO MODIFY LST SERVER 10-2

PARTIV LEPCOMREFERENCE MANUAL

CHAPTER 11 LEP_ACCESS LIBRARY 111
CREATE_ONE_TABLE 1-2
INIT_ONE_TABLE 1-4
READ_ONE_TABLE 11-5
WRITE_ONE_TABLE 11-6
COPY_TABLE 1-7
GET_TABLE_NAME 11-8

GET_TABLE_LENGTH 11-9

Vi

Contents

CHAPTER 12 LST_ACCESS LIBRARY 121
LST_INIT 12-2
LST_UNMAP 124
LST_REMAP 12-5
LST_READ 12-6
LST_WRITE 12-7
LST_ENTRY_INIT 12-8
GET_LST_MAX_TABLES 12-10
GET_LST_TABLE_ADDRESS 12-11
APPENDIX A INSTALLATION AND USE A1
A1 INSTALLATION HINTS A-1
A2 TCP/IP INSTALLATION A-1
A.2.1 Routing rules for TCP/IP A-1
A.2.2 Setting the TCP/IP routing for LEPCOM A-2
A2.2.1 How to use ROUTE and NETSTAT « A-2
A3 FILES USED BY MMS A-2
A3.1 Directory .MGR A-2
A.3.2 Directory .SRC A-2
A.3.2.1 Include files « A-2
A3.22 Programs/Libraries sources in FORTRAN « A-3
A3.23 Examples source * A-3
A3.3 Directory .NODEB A-3
A.3.4 Directory .DEB A-3
A.3.5 Directory .LEPDIR A-3
A4 SOURCE FILES CREATED BY MMS IN DIRECTORY .LEPSRC A-4
A5 OTHER USEFUL FILES A-4
A5.1 Directory .MGR A4
A.6 DOCUMENTATION FILES A4
A6.1 Directory .MGR A4

A7 HOW TO LINK USER PROGRAMS

A-4

vii

Contents

APPENDIX B DEBUGGING GUIDE B-1
B.1 INTRODUCTION B-1
B.2 PROBLEMS WITH THE LST SERVER B-1

B.2.1 Diagnostic procedure B-1
B.2.2 Corection actions B-1
B.3 PROBLEMS WITH TCP/IP B-2
B.3.1 Diagnostic procedure B-2
B.3.1.1 How to use PING » B-2
B.3.2 Corection actions B-2
B.4 PROBLEMS WITH THE LEP SERVER B-3
B.4.1 Diagnhostic procedure B-3

B.4.2 Corection actions B-3

viii

Preface

The Communications between LEP and ALEPH are based on a general
package provided by the LEP support group, supplemented by a set of
routines designed to match the general package to the specificities of
ALEPH. This document describes both the genaral package provided by
LEP and the LEPCOM programs and libraries.

Structure of this Document

This document is divided into four distinct parts:

s A section that gives an overview of the LEP Communications with
Experiments.

e A user guide section describing the components of LEPCOM.
e A section describing in detail how LEPCOM is implemented.

e A reference section that documents all the routine interfaces.

Intended Audience
This manual is intended for all users of the ALEPH-LEP Communication System.

PART| Overview of the Communications between LEP
and the Experiments

This section provides an overview of the Communications between LEP and
the Experiments, as provided by the LEP support group. It also show the
need for an ALEPH specific package to map the general service provided by
the LEP software to the ALEPH environement.

1 Overview of the LEP package

1.1 Introduction

The Experiments need to exchange data with the LEP machine. Following
the CERN usge, the LEP support group has provided a package to allow
this exchange. The relevant features of this package are summarized
below. For more informations, the reader is refered to the detailed
descriptions provided by LEP.

1.2 The LEP Tables

The data to be exchanged between LEP and the Experiments are organized
in Tables. Each Table contains related data (for instance data for a

given equipement, data updated at each SPS cycle, data interesting all
CERN users...). The only rule is that all data in a Table originate either
from LEP or from one Experiment. Thus, each Table has an owner who
maintains data in the Table, the others are only reader of that Table.

All tables definitions are maitained by LEP. Time to time, new tables are
added, data structures of existing tables are modified or old tables are
discarded. When this happens, all software related to the modified Tables
needs update. This update needs synchronization. The usual procedure,
for data from LEP, is to allows an overlap period where both the old and
the new tables are usable.

1.3 Implementation of the LEP package

According to the message passing paradigm of the LEP Control System,
the Table access is based on exchange of data between a Table server in
LEP and a client program in the Experiment’s computer.

1.3.1 The Table Server

The master copy of each Table is held in a LEP machine: the Table Server.
All users of the Tables, both in LEP and in the Experiments, refer to the
Server for Table access. For efficiency reasons, the Server may be split
into several machines, then each table is handled by a specified machine,
but this is transparent to the user, and in the following we consider the
Table Server as a single process.

1.3.2 The Table access primitives

Overview of the LEP package

13.21

GetTable/PutTable
The two basic functions provided to acces Tables are:

e A READ call to get a Table from the Table Server (GetTable)
¢ A WRITE call to put a Table in the Server (PutTable).

These functions have only one argument: the Table to transfer. The Write
call is only allowed for the owner of the Table.

1.3.2.2

InitTable

Before transfering a Table, one need to initialize it. This is done by a
set of routines (one for each Table). The InitTable routine fill the Table
header with the informations needed by the GetTable/PutTable routines
to perform the transfer. The main informations needed are the Table

structure (from the Table name) and the name of the corresponding Server
(from the Handle file).

1.4 Technical details

the Table access is based on remote procedure calls. This system is
based on the UDP facility of TCP/IP. It is implemented with the Network
Compiler developped by the LEP Control Group.

In the following we describe some of the technical details relevant to the
use of the package in ALEPH.

1.4.1 Table definition

The Table definitions are maintained by LEP. For each Table, there is a
master file .TAB. This file contains all the informations needed to define
and access the Table. This file is writen in a data definition language, but
is easy to understand.

From this file the network compiler produces all the files needed to access
the Table. Some of these files are relevant to the Experiments, and are
provided by LEP. The more interesting ones are the Include files describing
the Table in FORTRAN and in C, and the InitTable routine. These files
and the .TAB file are available in the directory a_lep$lsrc.

1.4.2 Server definition

The name of the Server containing a Table is subject to change, for
performance reasons. It has been choosen to use a kind of logical name:
Each Table is compiled with the name of its Server, but this name is not
the name of an actual machine, only a generic Server name. The actual
machine is selected at run time by translating the generic name to the
actual name with the help of an equivalence file: lep$control:handle.equiv
(following the Unix convention). This file is provided by LEP. One has to
be sure that this equivalence file is up to date.

2

2.1

2.2

The ALEPH specific LEP Communication package

The ALEPH Online system uses the paradigm of processes communicating
through shared memory. The LEP Tables must be accessible in a shared
global section.

The shared global section aproach is not flexible: any change to the
definition of the section imply a synchronized relinking of all user
programs. So one needs independance against LEP Tables evolutions.

These two requirements have been met with two sets of routines: The
LEP_Access library and the LST_Access library. These routines cannot
eliminate the requirement of relinking the programs in case of an update
of the Tables, but they can eliminate the need for a compilation, or in the
worst case the need for modifications of the user code.

The LEP Access library

These routines help in writing code insensitive to modifications of the
Tables. These routines are mainly used on the TCP/IP machine and are
not directly used by the LEP data user.

To implement that, an extended Table format was defined, by adding a
LEP_Access header in front of all Tables. This header contains the data
needed by LEP_Access to identify and characterize the tables.

Two routines Create_one_Table and Init_one_Table are used to initialize a
Table. Create_one_Table reseves the Table space and initialize the LEP_
Access header. Init_one_Table calls the relevant IniTable routine.

The GetTable and PutTable routines are already Table insensitive, but
they have been complemented by the routines Read_one_Table and Write_
one_Table to accomodate the extended table format.

A check of the validity of the data in Tables was added to the LEP_Access
routines. For each data item, bounds are defined. Data outside of these
bounds are replaced by the nearest boundary value, and a return code is
issued. A diagnostic is also writen to the log file. The check routines know
that the value -1 is used by LEP software to indicate unknown value.

In addition LEP_Access contains various utility routines like Copy_Table,
Get_Table_length...

The LST Global Section and the Server

The LEP Tables are grouped in a shared Global Section known as LST.
This shared Global Section was implemented by using the GBL library of
D.Botterill and J.Harvey. All users of the LEP data attach to this Global
Section to access the data.

2-1

2.2.1

2.2.2

The ALEPH specific LEP Communication package

A server program (LEPCOM, file LST_Server) running on the TCP/IP
machine (ALOW11) ensures that the data in the LST is coherent with the
Tables in the LEP Server: If a Table is updated in LEP, it will be read into
the LST. If an ALEPH owned Table is updated in the LST, it will be writen
to the LEP Server.

The LST_Server and the users of the LST Global Section uses the services
provided by the LEP_Access library routines to ease the access to the data.

The LST Access library

The LST is composed of two parts:
* A header describing the content of the LST.
e A data part composed of Tables.

The LST_Access library contains three kind of routines:

* Routines for mapping the Global Section. These routines are calling
the corresponding GBL functions. These routines are needed to relieve
the user of the compexity of the general routines, and to ensure a
coherent usage of the LST by the various users.

¢ High level routines for Table access. For the user accessing only one
Table in the LST, these LST_read and LST_write routines are the
easyest way to get access to the data. They are not optimized for
efficiency, but for ease of use (only one call).

¢ Utility routines.

The LST Server

2-2

This program is an infinite loop with two actions: an update routine and a
wait until the next update. The update routine first reads the basic Table
(currently PAGE101). Then if an ALEPH owned Table has been updated
in the LST since the last update, this Table is writen to LEP. If no write is
performed, then another Table is read from LEP. If one of the read Tables
is updated, this Table is put in the LST Global Section. If the read Tables
are already in the LST, the Global Section is not updated.

The validity of the Tables is derived from their timestamps. The frequency
of the updates is automaticaly adjusted to the update frequency of the LEP
Tables.

PART Il LEPCOM user guide

This section contains four parts.

The first deals with LEP_ACCESS, the library used to supplement the
LEP provided software.

The second one describes LST_ACCESS, the library providing access to
the shared global section containing the LEP data.

The third one describes the LST_SERVER program, the program
responsible for maintaining the global section up to date.

The fourth one describes the examples provided with the LEPCOM
package.

3.1

3.1.1

3.1.2

3.2

3.3

The LEP Access library

This chapter describes the functions provided by the LEP_Access library.
These subroutines are intended to be used by programs running on the
TCP/IP machine (ALOW11). They are not of direct interest to the users
of the LEP data, but are included for documentation purposes. All these
routines returns a completion code which has to be checked.

Table initialization

The Table initialization routines are provided to create and initialize a
Table in an array.

Table creation

The Table creation routine structures an array provided by the user into
a Table. The array has to be large enough to contain the Table. The
routine initializes the header of the Table. A Table has to be created by
this routine to be usable by the other routines of LEPCOM. This routine
sets the status of the Table in a state allowing further exchanges with
LEP. If the default status is not the required one, the user has to set/reset
explicitly the corresponding bits.

Table initialization

This routine performs the LEP initialization which is required if the Table
has to be transfered to/from LEP.

Table read/write

These routines performs the actual tranfer of Tables between the program
and the LEP Server. They also performs a check of the validity of the data
being transfered. On a read, the data are checked after the read, invalid
data are corrected, a diagnostic is writen to the log file and a warning
return code is issued. On a write, the data are checked before the write,
invalid data are corrected, a diagnostic is writen to the log file, an error
return code is issued and the write is aborted.

Other functions

The LEP_Acess library contains three more utility subroutines:

¢ Copy_Table
This routine is used internaly by the LST_Access library to transfer
Tables between the LST and local Tables. It can be used when a Table
copy is needed. It checks that the source and destination Tables are
instances of the same Table.

3-1

The LEP Access library

* Get_Table_Name
This inquiry routine returns the name of the Table. This is useful if
the Table is obtained indirectly.

* Get_Table_Length
This inquiry routine returns the length of the Table. This is the only
way to obtain the length of a Table. It is specialy useful when one
create several Tables in an array.

3-2

4

4.1

4.2

The LST Access library

This chapter describes the functions provided by the LST_Access library.
All these routines returns a completion code which has to be checked.

The Global Section

The LST Global Section contains all the LEP data relevant to ALEPH.
All programs refering to the LEP data should connect to the LST

Global Section for data access. The data in the LST Global Section are
maintained by the LEP Server, described in the next chapter. One can use
the routines in the next sections to ease access to the LST Global Section.
The file a_lep$dir:lstlib.opt is provided to help in linking programs using
the LST Global Section. The LST Global Section is described by the
include file: a_lep$inc:lst_gbl.inc

The services provided by the LST_Access library are:
¢ Mapping of the LST Global Section.

e Global access to the Tables in the LST.

e LST Initialization.

¢ Utilities.

Mapping of LST

In order to access a Global Section, one must map to that section. The
GBL package provides routines to map and unmap to any Global Section
following the ALEPH rules. To avoid the complexities of the calling
sequences of these routines, these routines have been supplemented by
similar routines taking into account the specificities of the LST Global
Section. Three routines are provided:

e LST_ Init

This is the basic routine for mapping the LST Global Section. This
routine can be called several time to modify the access mode to the

LST.

e LST Unmap
This routine will remove the connection to the LST. This may be
usefull to remove load on the cluster.

e LST Remap
This routine is a way to change the access mode to the LST. This is
intended to be faster than the LST_Init call.

4-1

4.3

4.4

4.5

The LST Access library

Global Table access

The Global Access routines are provided to minimize the programming
effort in accessing the LST Global Section. The read or write of one Table
in the LST is done via a single call to the access routine. The two Global
Access routines are:

LST Read
This routine retrieves a Table from the LST and passes it to the user
program.

LST_Write
This routine copy the Table provided as argument to the LST.

LST Initialization

All the routines in the LST Access library assume that he LST Global
Section exists before being accessed. A stand-alone utility program (LST_
Create.exe) is used to (re)create the LST Global Section. This program can
only be run when no other user of the LST Global Section is active. This
program will erase all data present in the LST.

Utilities

4-2

LST Access
This routine, auxiliary of LST_Read/Write, maps to the LST and
search a named Table in it.

LST Entry_Init
This routine is used by LST_Create to initialize a Table in the LST
Global Section.

Get_LST_Max_Tables
This inquiry routine returns the number of Tables present in the LST
Global Section.

Get_LST_Table_address

This inquiry routine returns the address of one Table present in the
LST Global Section. The Table is identified by its rank in the LST
Header, not by its name. Its name can be extracted subsequently by a
call to Get_Table_Name.

5 The LST Server program

The LST Global Section is maintained by a server program (LST_
Server.exe) running on the TCP/IP machine (ALOW11) under the name
LEPCOM_0. The Server try to ensure the identity of the Tables in the
LST Global Section and in the LEP Server. The validity of the Tables is
derived from their timestamps. If a Table is updated in LEP, it will be
read into the LST Global Section. If an ALEPH owned Table is updated in
the LST, it will be writen to the LEP Server.

5.1 Description of the Server

The LEPCOM program is an infinite loop with two actions: an update
routine and a wait until the next update. This imply a delay between the
update of a Table and its transfer to its destination. This delay is a few
seconds in average, but can reach minutes in heavy load conditions.

5.1.1 The Update routine

The update routine first reads the basic Table. Then if an ALEPH owned
Table has been updated in the LST since the last update, this Table is
writen to LEP. If no write is performed, then another Table is read from
LEP. If one of the read Tables is updated, this Table is put in the LST
Global Section. If the read Tables are already in the LST, the Global
Section is not updated.

In the previous paragraph, the tables in the LST have been divided in "the
basic Table" and the others. The basic Table is currently PAGE101. It is
the Table that LEP updates the most frequently. PAGE101 is updated at
each SPS cycle (14s) in principle.

This algorithm implies that in case of hevy updating of the LST, a write
will be performed on each update cycle and the updating of the other
tables will be preempted.

5.1.2 Timing algorithms

The frequency of the updates is automaticaly adjusted to the update
frequency of the basic LEP Table: The read frequency increases slowly,
and is decreased when a read found an unmodified basic Table.

The other Tables are read in a round robbing fashion: at each cycle one
read the next Table. If there are no write to the LST, the other Tables are
thus read at the frequency of the basic Table divided by the number (-1) of
Tables in the LST.

In case of read errors on the basic Table, the read frequency is
progressively decreased from one read every 60 seconds to one read every
700 seconds. This is to avoid a rapid filling of the error log.

5-1

The LST Server program

5.2 Starting/Stopping the Server

The LEPCOM server is controlled from the DAQ Server. There is no menu
associated with the Server itself. All parameters controlling the operation
of the LEPCOM Server are in the LST Header and can be modified by any
program attaching to the LST.

5.3 Selection algorithms

5-2

For the time being, the other Tables in the LST are read sequentialy, in
their order in the LST header. Any Table can be bypassed for the read if
its read bit is reset.

When the LST is updated, the name of the process responsible of the
update is used to define which Table has to be send to LEP. The current
choice is to write the Table ALEPH1 for each update of the LST.

6 The Example Programs

This chapter describes the examples in the distributed files. The examples
are described in groups according to the layer of LEPCOM used.

The details for the compilation and the linking of the examples can be
found by looking at the DESCRIP.MMS file.

6.1 Examples using the basic access
The basic access is the access provided by the LEP package.

¢ The first example is the one found in the LEP documentation:
READPAGE. It has been modified to take into account the evolution of
the LEP software since that documentation. This example reads table
PAGE101 and prints the comment lines.

¢ The second example is the LEPWRT (program file WRITE_ALEPH]1)
used in 1989 to send the ALEPH background data to the LEP machine.
This program tries to read the a_lep$dat:lep_alephl.dat file. If this file
exists, it tries to send it to the LEP machine. If succesfull it deletes
the file. Then, in any case, it waits for a few seconds before trying
again.

6.2 Examples using the LEP ACCESS package

The LEP ACCESS provides a data driven interface and allows to write
applications independently of the tables used.

¢ The display program reads (and sometime writes) tables. It uses an
UPI interface to the user. The tables used are simply defined in a data
statement (the declaration of the CHAR array table_name). To add or
remove tables, one has only to modify the data statement.

The examples in the two previous clases use the TCP/IP communication

with LEP, and thus can only be executed on one machine (currently
ALOW11).

6.3 Examples using directly the LST

The LST is a Global Section maintained by the LEPCOM server. Any
program can map to the LST and access its data. The program needs to
know the structure of the LST (i.e. to include the file a_lep$inc:Ist_gbl.inc).

¢ The program lst_print_times is using the data from the LST, to print
the update time of all tables in the LST.

* The program Ist_write_alephl is a template for a program updating
the table ALEPH1 in direct mapping.

6-1

6.4

The Example Programs

Examples using the LST ACCESS package

The LST ACCESS provides a data driven interface and allows to
write applications independently of the tables used. It also allows the
application to be insensitive to the evolution of the LST global section.

¢ The first example, print_Ist_aleph1, shows the usage of the Ist_read
routine. This program don’t needs update when the definition of the
LST is changed.

e The LST display program displays, with an UPI interface the content
of the LST. BEWARE, it accesses the LST in protected read mode
and forbids updates of the LST This program maps directly the
data in the LST to UPI parameter pages. It uses the LST Access
services to avoid the need to use to the LST include file.

e The Ist_rw_display is similar, but it allows the update of the Tables.
This program uses a local set of tables connected to UPI parameter
pages, and uses the LST Access services to copy between the LST and
the local tables.

PART Il LEPCOM internals

This section provides a detailed explanation of how LEPCOM works. Users
who are only interested in the programming interface should refer directly to
Section IV.

This section contains the following chapters:

» How LEPCOM works: a description of the data structures used, and of
the Clusterwide Shared Global Section mechanisms.

« How LST Server works: a description of the server’s routines.
- How LST Create works: a description of the LST initialization program.
« How to modify LEPCOM: a guide to LEPCOM maintenance and upgrades.

7 How LEPCOM works

This chapter first describes the structures used in LEP_access and LST_
accesss libraries and in the LST. It then describes the rules for using
shared sections, the algorithms used in the LST_server and a few utilities
routines.

7.1 The LEPCOM Table structures

The LEP_access library uses Tables. These Tables have a structure defined
by the concatenation of the LEP header and of the LEPCOM header.

7.1.1 The LEP Table header

The LEP Table header is defined by the include file a_lep$src:lep_
header.inc. It contains:

¢ An index, i.e. a pointer to a static description structure. This
description is used to interpret the various fields of the table (machine
dependent representation of the data). This description contains also
the handle to the LEP Server.

* A version number.

¢ Two times (in UNIX format): the time of the last update of the Table
and the time of the read into the user computer.

7.1.2 The LEPCOM Table header

The LEPCOM Table header is defined by the include file a_lep$src:table_
header.inc. It contains check words, the name and size of the Table, and
readable versions of the times in the LEP header.

7.1.3 Time representation

The LEP header contains time in UNIX format: one 32 bits integer
containing the number of seconds since january 1st 1970. This time

is GMT: it is the same at any time on all UNIX machines (The
correspondance between the UNIX time and the local time is dependent on
the location of the computer).

The LEPCOM header contains time in two formats: The DEC format, i.e.
a character string (*18) DD_MMM_YYYY:HH:MM:SS.CC, and an ALEPH
format, i.e. two integers, one date (10000*year + 100*mo +day) and one
time (10000*h + 100*m +s)

7-1

How LEPCOM works

7.2 The LST Global Section

The LST Global Section is described by the include file: a_lep$inc:lst_
gblinc. It defines a structure LEPS, in the common /Ist_gbls/. The Global
Section comprises this common between two guard pages, see the opt
file (a_lep$dir:1stlib.opt) for a description of the Global Section The LEPS
structure contains a header, followed by the various tables, page aligned
(the alignement is to provide guard space between tables).

7.2.1 The LST header

The LST header is described by the include file a_lep$inc:lst_header.inc. It
contains a first check word, the length (in words) of the LST structure, the
number of tables in the LST, the name of the Global Section CLST_GBL),
an array of pointers to the Tables in the LST and a last check word. These
check words are supplemented by the check words of the GBL package,
they insure that the LST is up to date with the software version of the
GBL and the LEP package.

7.2.1.1

The LST_entry_lInit routine

This routine is provided as a tool to initialize the LST header. This routine
is used only in the LST_create program. The aim of this routine was to
pack in a single call all the actions needed to set-up a Table in the LST.
The Tables in the LST are referenced by pointers in an array (in the
header). The index to an entry is the main parameter of the LST_entry_
init routine. The other parameters are the LST itself, the Table name and
the start and end pointers to the Table.

This routine performs the following actions:

e Check the validity of its arguments and of the LST.

o Initialize the specified Table by a call to create_one_table.
¢ Set-up the Table pointer in the LST header.

7.2.2 The LST Init routine

7-2

This routine initializes the LST Global Section in the requested mode, i.e.
it performs the create and map global section VMS call. In fact it calls the

GBL package written by J.Harvey and D.Botterill. There are several entry
points in this routine:

e LST _init To initialize the LST. This call assumes that the section file
exists.

e LST init_s To initialize the LST for the Server (i.e. with the AST
enabled).

e LST init_0 To initialize the LST for LST_create (i.e. the creation of
the section file is allowed).

e LST_remap To change the access mode to the LST.

How LEPCOM works

e LST unmap To unmap the LST.

In any case, the routine is merely a call to the corresponding entry in the
GBL package, with the LST parameters, plus some checks: there are two
check words in the LST, and they are checked by the LST_init routines.

There is also a blocking AST with LST init (server_blocking_ast). This
AST is called each time a task update the LST Global Section (except the
LST server itself). In this AST, one find the name of the writing task,
and place it in a special common /lst_writer/. This allows LST_Server

to know when the LST has been writen and by whom, and to take the
corresponding actions.

7.2.3 GBL Access Modes

The LST Global Section must be accesed in one of the following four
modes, depending on the action that is desired. These modes are defined
by the GBL package.

Access Mode Description

GBL_READ Read mode grants read access to the LST and allows its
sharing with other users. This mode is generally used to
read data from the LST in an unprotected fashion, since
other users could modify the data as it was being read.

GBL_READONLY Read mode grants read only access to the LST and allows
its sharing with other users. This mode is generally used
to read data from the LST in an unprotected fashion, since
other users could modify the data as it was being read.

It is not allowed to switch mode from readonly to write.

GBL_PROT_READ Protected read mode grants read access to the LST
and allows its sharing with other readers. No writers are
allowed access to the LST.

GBL_WRITE Write mode grants write access to the LST and allows
its sharing with concurrent read-mode readers. No other
writers are allowed access to the LST.

The access modes described above are a sub-set of those defined by the
VMS lock manager.

7.3 Utilities
7.3.1 The LST_Access subroutine

This routine is the common part of LST_read and LST write. It contains
the call to LST_init, followed by a loop on the LST entries to find the
requested Table.

7-3

7.3.2

How LEPCOM works

The LST_Write_Message subroutine

7-4

All the messages produced by LEPCOM are routed through a message
dispatcher: LST_write_message. This allows for an easy customization of
the message output. Users of LEPCOM libraries should provide their own
version, based on any of the three routines provided in a_lep$srec.

The LST_write_message is designed to call err_log_message, upi_write_
message or any other logging system. It requests two arguments: a
severity and a message. The severities used in all LEPCOM routines

are choosen in the list: 'DEBQ’, ’INFQO’, ’INFD’, ’ERRO’. 'DEBQ’ is used
for debuging output and should not be printed in normal operations.
’INFQ’ is for similar messages. 'INFD’ is used for significant informational
messages, i.e. completion of an initialization, success of an update...
’ERRO’ is a true error. Fatal errors cannot be catched and are not
transmited to LST_write_message.

The LST_server uses its own version, in the Ist_server.for file. The
examples use two versions of this routine: the first one using upi_write_
message (file LST_write_message) and one using straight prints (file LST_
wr_mess_noupi). These two versions contains dummy routines for
err_log_message and upi_write_message.

8 How LST Server works

8.1 LST Server initialization

The LST Server initialization starts with initializations of the scheduler
and of the LST Global Section, including a search of the number of Tables
in the LST.

Then the Server builds copies of the LST Tables in local storage. These
copies will be used for the actual transfers to and from LEP, that is why
these copies are initialized.

The last part of initialization is the set-up of the lists to be used by a
future version of the selection algorithm.

8.2 LST Server update pass
At each cycle, the Server performs:
¢ A read of STANDARDO Table.

e If LST has been writen
A write of ALEPH1.
ELSE
A read of the next Table (see selection algorithm).

¢ An update of LST, if needed (see update algorithm).
e A computation of the sleep delay (see timing algorithm).

8.2.1 Selection algorithm

The Table selection algorithm has been described previously. Currently
it is a simple round robin, implemented with a static counter. The entry
is search_next_table, in subroutine init_search_lists. This structure can
be easily extended to support Table reading with priorities: the most
important Tables being read more often.

8.3 Update algorithm

The Logical Function Check_if_Updated, compares Time stamps in the
local Table with thoses of the LST Table. It returns an OK for update, if
the local Table is more recent than the LST one.

But before, tests are made on the time stamps of the local Table: The basic
asumption is that the time stamps in the LST are valid (if time stamps
in the LST are corrupted, one may need to destroy and recreate the LST).
Then, the time stamps in the local Table (just read from LEP) cannot be
earlier than the ones in the LST, and cannot be later than now.

8-1

8.3.1

How LST Server works

Timing algorithm

8-2

The compute_delay function determines the sleep time of the Server until
the next update cycle. This sleep time is bounded between 5 and 200
seconds (except in case of permanent read failures where the uper bound
can be increased to 500 seconds). The sleep time is computed in order

to execute the next read "mean_delay" seconds after the last update of
STANDARDO.

The value for "mean_delay" is slowly updated to converge towards
"average_delay". "average_delay" is computed at each cycle as the
estimation of the update frequency for STANDARDO. "average_delay"
is computed from the difference in the creation time stamps of two
consecutive Tables.

9

How LST Create works

This program is intended to initialize the LST Global Section. It uses
the special entry LST_init_0 allowing the creation of the section file. If
one wants to redefine the LST, the section file must not exist when this
program is called.

Once the LST is mapped, LST_Create will built the LST header and the
Table headers with calls to Ist_entry_init. To do that it uses the LST_GBL
include fille. But the number and name of Tables to be created is hard
coded in the calls to Ist_entry_init. This is why LST_Create has to be
edited in case of a modification of the LST Global Section. The LST Global
Section is set to 0 during the initialization.

At the end, LST_Create will exit, this forces the writting of the new data
to the section file.

9-1

1 0 How to modify LEPCOM

The LEP Tables will evolve, this imply relinking of many programs,
but also from time to time the need for modifications of the program

sources. The various modifications can be clasified according to the level of
modification needed.

10.1 How to add/delete a Table

This is the simplest intervention. The basic idea is to modify the steering
routines to add/remove the table name, and to provide/remove the routines
specific to the Table. The MMS file has to be modified also.

10.1.1 Modifying the steering routines

All the steering routines are very short and have the same structure. The
modification is straightforward. The steering routines are:

¢ Create_one_Table in file Init_one_Table.for

¢ Init_one_Table in file Init_one_Table.for

¢ Check_one_Table in file Check_one_Table.for

¢ Display_one_Table in file Display_one_Table.for

10.1.2 Modifying the specific routines

For the specific routines, a new one must be created for each Table and

each routine. One can use the rouines for he oher Tables as a guide. The
specific routines are:

¢ Check_xxxx in file Check_one_Table.for
® Cre_upi_pp_xxxx in file Display_one_Table.for

10.1.3 Modifying the Descrip.mms file

The description file contains two lines for each Table: The compilation

of the corresponding InitTable routine. The insertion of the result of the
compilation in the LEP_Access library.

10.2 How to Create a different LST

If one have to modify the LST Global Section, either to add/remove a Table
or because of a Table modification, one have to follow the sequence:

e Stop all processes using the LST.
¢ Delete the section file a_lep$dat:lst_gbl.gbl.

10-1

How to modify LEPCOM

Modify the LST_GBL include file.

Modify the LST_Create program.

Update the programs referencing the new Table.
Run MMS.

Run LST_Create.

Remark that in the current LST there is some free space after each Table.
This free space is provided to avoid an LST reconstruction in case of a
small increase in Table length.

10.3 How to modify LST Server

The modifications to the Server should be limited to the timing and
selection algorithms, or it is a major revision of the full LEPCOM system.

PART IV LEPCOM Reference Manual

This section describes the programming interface to the LEPCOM routines. It
uses the same format as the VMS System Services Reference Manual.

11 LEP_ACCESS library

11-1

LEP_ACCESS

CREATE_ONE_TABLE

CREATE_ONE_TABLE—Initialize one table

The Create one Table routine initializes an array with the requested table
structure.

FORMAT

CREATE_ONE_TABLE table, name, free_size

RETURNS

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS

table

VMS Usage: identifier

type: longword (unsigned)
access: read only

mechanism: by reference

Table identifier. The Table argument is the Table to be initialized. It is
the begining of a free area.

name

VMS Usage: char_string
type: character string
access: read only

mechanism: by descriptor
Table name. The Name argument is the name of the table to be
constructed.

free_size

VMS Usage: longword

type: longword (unsigned)
access: read only
mechanism: by reference

Table size. The free size argument is the length (in bytes) of the free area
where the Table is to be created.

DESCRIPTION

11-2

The array Table, of length free_size bytes, is initialized with the Table
structure corresponding to the Table Name. This is possible if The Table
Name is a known name, and the free_size is larger (or equal) to the actual
Table size. The actual Table size is not returned by Create one Table, but
can be obtained easily by a call to Get Table Length.

LEP_ACCESS
CREATE_ONE_TABLE

RETURN LEP$_NOERR N ! ful conditi
ormal sucessful condition
VALUES - :
LEP$_UNKNOWNTABLE The requested table is unknown
LEP$_NOSPACE Not enough Free space to create the Table

11-3

LEP_ACCESS
INIT_ONE_TABLE

INIT_ONE_TABLE—Prepare one table for LEP

communication

The Init one Table routine calls the relevant initialization routine (INITxxx)
provided by LEP.

FORMAT

INIT_ONE_TABLE table

RETURNS

VMS Usage: cond_value
type: longword integer
access: write only
mechanism: by value

ARGUMENTS

table

VMS Usage: identifier

type: longword (unsigned)
access: read only

mechanism: by reference
Table identifier. The Table argument is the Table to be initialized.

DESCRIPTION

The Table must be properly formated before calling the Init one Table
routine, i.e. by a call to Create one Table. Trying to initialize a badly
formated table results in condition LEP$_BADTABLESTRUC being
returned.

The Table must be enabled for LEP communication (this is the default
of Crerate one Table). Otherwise one get the LEP$_NOTENABLED
condition.

The Table should be known by the LEP ACCESS package. For instance a
Table created by a new version may produce the LEP$_TABLEUNKNOWN
condition when trying to initialize it with an old version of Init one Table.

The logical name LEP$CONTROL must be properly defined (see the LEP
routine description), otherwise one get the LEP$_NOEQUIV condition.

RETURN
VALUES

114

LEP$_NOERR Normal sucessful condition

LEP$ BADTABLESTRUC The argument is not a valid Table
LEP$_TABLEUNKNOWN The argument is an unknown (but valid) table
LEP$_NOTENABLED The Table is not authorized to access LEP
LEP$_NOEQUIV The Table cannot be located inside LEP

LEP_ACCESS
READ_ONE_TABLE

READ ONE_TABLE—Read one table from LEP

The Read one Table routine calls the FgetTable routine to retrieve Table data
from the network.

FORMAT

READ ONE_TABLE table

RETURNS

VMS Usage: cond_value
type: longword integer
access: write only
mechanism: by value

ARGUMENTS

table

VMS Usage: identifier

type: longword (unsigned)
access: read only

mechanism: by reference
Table identifier. The Table argument is the Table to be read.

DESCRIPTION

The Table must be properly formated and initalized before calling the
Read one Table routine. Trying to read a badly formated table results in
condition LEP$_BADTABLESTRUC being returned. Trying to read a not
initialized table results in condition LEP$_NOTINIT being returned.

The FgetTable routine may fail and return the LEP$_IMPORTFAIL
condition.

Once the Table data are obtained, they are checked for validity. If this
check fail, invalid data are replaced by boundary values and the LEP$_
DATAINV condition is returned.

RETURN
VALUES

LEP$_NOERR Normal sucessful condition

LEP$_BADTABLESTRUC The argument is not a valid Table

LEP$_NOTINIT The argument is not an initialized Table

LEP$_IMPORTFAIL Network error in reading Table

LEP$_DATAINV The Table contains invalid data, which have been
corrected

LEP$_xxx Many other conditions can be signaled by the Network

package, but they are not currently documented

11-5

LEP_ACCESS

WRITE_ONE_TABLE

WRITE_ONE_TABLE—Write one table to LEP

The Write one Table routine calls the FputTable routine to send Table data
over the network.

FORMAT

WRITE_ONE_TABLE table

RETURNS

VMS Usage: cond_value
type: longword integer
access: write only
mechanism: by value

ARGUMENTS

table

VMS Usage: identifier

type: longword (unsigned)
access: read only

mechanism: by reference
Table identifier. The Table argument is the Table to be written.

DESCRIPTION

The Table must be properly formated and initalized before calling the
Write one Table routine. Trying to write a badly formated table results in
condition LEP$_BADTABLESTRUC being returned. Trying to write a not
initialized table results in condition LEP$_NOTINIT being returned.

Before sending the Table data, they are checked for validity. If this check
fail, invalid data are replaced by boundary values, the LEP$_INVDATA
condition is returned and the write operation is aborted. As invalid data
have been corrected, a retry will succeed.

The FputTable routine may fail and return the LEP$_EXPORTFAIL
condition.

RETURN
VALUES

11-6

LEP$_NOERR Normal sucessful condition

LEP$_BADTABLESTRUC The argument is not a valid Table

LEP$_NOTINIT The argument is not an initialized Table

LEP$_EXPORTFAIL Network error in writting Table

LEP$_INVDATA The Table contains invalid data, which have been
corrected

LEP$_xxx Many other conditions can be signaled by the Network

package, but they are not currently documented

LEP_ACCESS
COPY_TABLE

COPY_TABLE—Copy data from one Table to

another one

FORMAT

COPY_TABLE mode, source, destination

RETURNS

VMS Usage: cond_value
type: longword integer
access: write only
mechanism: by value

ARGUMENTS

mode

VMS Usage: char_string

type: character string

access: read only

mechanism: by descriptor

Copy mode. The Mode argument is a code describing the copy operation
to perform. It can be either "NOHEADER" if only the data part has to be
copied, or "HEADER" if the headers have to be copied.

source

VMS Usage: identifier

type: longword (unsigned)

access: read only

mechanism: by reference

Source identifier. The source argument is the Table containing the data to
copy.

destination

VMS Usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Destination identifier. The destination argument is the Table to be
written.

RETURN
VALUES

LEP$_NOERR Normal sucessful condition

LEP$_INVCALL The arguments for copy are invalid. i.e. bad table
structure, different names, different lengths or
unsuported mode

1-7

LEP_ACCESS
GET_TABLE_NAME

GET_TABLE_NAME—Inquiry routine returning the
name of the Table

FORMAT GET_TABLE_NAME table, name
RETURNS VMS Usage: cond_value

type: longword integer

access: write only

mechanism: by value

ARGUMENTS table
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Table identifier. The table argument is the Table whose name is inquired.

name

VMS Usage: char_string
type: character string
access: write only

mechanism: by descriptor
Table name. The Name argument is the string which receives the name of

the Table.
|
RETURN LEP$_NOERR N | ful diti
VALUES _ ormal sucessful condition

LEP$_BADTABLESTRUC The argument is not a valid Table

11-8

LEP_ACCESS
GET_TABLE_LENGTH

GET _TABLE_LENGTH—Inquiry routine returning the
length of the Table

FORMAT GET _TABLE_LENGTH table, length
[e e e e
RETURNS VMS Usage: cond_value

type: longword integer

access: write only

mechanism: by value

ARGUMENTS table
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Table identifier. The table argument is the Table whose name is inquired.

length

VMS Usage: longword

type: longword integer
access: write only

mechanism: by reference
Table length. The Lengthargument is the longword which receives the size
in bytes of the Table.

RETURN }
VALUES LEP$_NOERR Normal sucessful condition

LEP$_BADTABLESTRUC The argument is not a valid Table

11-9

192 LST_ACCESSlibrary

12-1

LST_ACCESS
LST_INIT

LST INIT—lInitialize the LST Global Section

The routine LST Init maps the LST Global Section into the caller’s space and
allows access to it in the requested mode.

FORMAT

LST_INIT /st addr, access_mode

RETURNS

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS

Ist_addr

VMS Usage: address

type: longword (unsigned)
access: write only
mechanism: by reference

LST address. The Lst_addr argument is the address where the LST Global
Section has been mapped.)

access _mode

VMS Usage: longword

type: longword(unsigned)
access: read only
mechanism: by reference

Lock mode that is requested for the LST Global Section. The supported
access_mode are defined in a_gbl$src:create_global.inc

DESCRIPTION

12-2

This is the initialization routine for accessing the LST Global Section.
This call checks the existence and validity of the LST Global Section. It
also checks if the area for the Global Section is correct, this should be
ensured by the link commands contained in the a_lep$dir:lstlib.opt file. If
the LST Global Section is valid, then it is maped to the user’s workspace,
and can be accessed. The LST Global Section is shared clusterwide by
using the GBL package. So, the user should follow the rules for accessing
these Global Sections:

¢ The user may want to write to the Global Section, then he must get
the Global Section with an gblacc_write access, this access should be
maintained for as short time as possible.

e The user may want to read and never write to the Global Section, then
he must get the Global Section with an gblacc_readonly access.

¢ The user may want to read the Global Section, then he must get the
Global Section with an gblacc_read access.

LST_ACCESS
LST_INIT

¢ The user may want to read the Global Section without being
interrupted by writers (in order to get an unconditionaly correct
view of the Global Section), then he must get the Global Section with
an gblacc_prot_read access, this access should be maintained for as
short time as possible.

This initialization routine can be called several times, but it is faster to
call it only once at the begining, and then to use the LST_UNMAP and
LST_REMAP routines to change the access mode.

RETURN N

VALUE s LEP$ NOERR Normal sucessful concfmon.
LEP$_BADLSTADDR The LST area has an invalid address
GBL$_ALIGNERROR The LST area has an invalid address
GBL$_CHK1FAIL The LST Global Section is invalid
GBL$_CHK2FAIL The LST Global Section is invalid
LEP$_BADLSTSTRUC The LST Global Section is invalid
GBL$xxx Other system errors for LOCKs and Global Sections

12-3

LST ACCESS
LST_UNMAP

LST UNMAP—Unmap the LST Global Section

This routine unmaps the LST Global Section from the caller’s space, i.e.
make the section non accessible.

FORMAT

LST UNMAP /st addr

RETURNS

VMS Usage: cond_value

type: longword (unsighed)
access: write only
mechanism: by value

ARGUMENTS

Ist_addr

VMS Usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

LST address. The Lst_addr argument is the address where the LST Global
Section has been mapped.)

RETURN
VALUES

124

Same as LST INIT

LST_ACCESS
LST_REMAP

LST REMAP—Remap the LST Global Section

The LST Remap routine redefines the access mode to the LST Global
Section. It can be used either to change the access mode of the currently
mapped section, or to remap the section after an unmap. It is equivalent, but
faster than a new call to LST Init.

FORMAT LST REMAP /st addr, access_mode
L/}
RETURNS VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

ARGUMENTS Ist_addr
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

LST address. The Lst_addr argument is the address where the LST Global
Section has been mapped.)

access_mode

VMS Usage: longword

type: longword(unsigned)
access: read only
mechanism: by reference

Lock mode that is requested for the LST Global Section. The supported
access_mode are defined in a_gbl$src:create_global.inc

RETURN
VALUES Same as LST INIT

LST_ACCESS
LST_READ

LST _READ—Get one Table from the LST Global
Section

LST Read retrieves a Table from the LST Global Section and passes it to the
user routine provided.

FORMAT LST READ name, user_routine
RETURNS VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

ARGUMENTS st
VMS Usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
LST identifier. The Lst argument is the LST Global Section.

user_routine
VMS Usage: procedure

type: procedure entry mask
access: call
mechanism:

The user routine is called by LST READ with one argument: the requested
Table from the LST.

DESCRIPTION This routine is used to read a table from the LST Global Section. This
routine contains a call to LST_INIT, so it is not necessary to use any other
routine to read a Table from the Global Section. The table is accessed in
protected read, so the user routine should returns as fast as possible. The
argument of the user routine is the actual table in the Global Section. The
user is responsible for not modifying the data in the Global Section (the
table is not write protected by a covention of the GBL package).

RETURN

Same as LST INIT, plus
VALUES P o
LEP$_UNKNOWNTABLE The requested table is not in the LST

LEP$_BADTABLESTRUC The requested Table is not valid

12-6

LST_ACCESS
LST_WRITE

LST WRITE—Copy a Table to the LST Global

Section

LST Write copies the data, in the Table received, to the corresponding Table
in the LST Global Section.

FORMAT

LST WRITE table

RETURNS

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS

table

VMS Usage: identifier

type: longword (unsigned)
access: read only

mechanism: by reference

Table identifier. The Table argument is the Table to be copied to the LST
Global Section.

DESCRIPTION

This routine is used to write a table to the LST Global Section. This
routine contains a call to LST_INIT, so it is not necessary to use any other
routine to write a Table to the Global Section. The table provided is copied
to the Global Section after a validity check of the data. Invalid data aborts
the write. Only the data part of the table is copied to the LST Global
Section, it is impossible with this routine to corrupt the Global Section.

RETURN
VALUES

Same as LST INIT, plus

LEP$_UNKNOWNTABLE The requested table is not in the LST

LEP$_BADTABLESTRUC The requested Table is not valid

LEP$_INVDATA The Table contains invalid data, which have been
corrected, but the copy was aborted

LEP$_INVCALL The arguments for copy are invalid. Should never
occurs

LST_ACCESS
LST_ENTRY_INIT

LST_ENTRY_INIT—Initialize one table in the LST

Global Section

This routine is used by the program LST Create to initialize the tables in the
LST Global Section.

FORMAT

LST ENTRY_INIT Ist, index, name, table, table_end

RETURNS

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS

12-8

Ist

VMS Usage: identifier

type: longword (unsigned)
access: read only

mechanism: by reference
LST identifier. The Lst argument is the LST Global Section to be
initialized.

index

VMS Usage: longword

type: longword integer
access: read only

mechanism: by reference
The index is the relative table position of the table in the LST Global
Section.

name

VMS Usage: char_string
type: character string
access: read only

mechanism: by descriptor

Table name. The Name argument is the string which contains the name of
the Table to initialize.

table

VMS Usage: identifier

type: longword (unsigned)
access: read only

mechanism: by reference
Table identifier. The Table argument is the Table to be initialized. The
Table should be contained entirely into the LST Global Section.

LST ACCESS
LST_ENTRY_INIT

table_end

VMS Usage: identifier

type: longword (unsigned)

access: read only

mechanism: by reference

The Table_end argument is a byte at the end of the free area where the
Table is to be created. A convenient value for this argument is the end of

the LST Global Section.

12-9

LST _ACCESS

GET_LST_MAX_TABLES

GET _LST_MAX TABLES—Inquire routine returning

the number of Tables in
the LST Global Section

FORMAT

GET _LST MAX_TABLES Ist, max_tables

RETURNS

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS

Ist

VMS Usage: identifier

type: longword (unsigned)
access: read only

mechanism: by reference
LST identifier. The Lst argument is the LST Global Section whose content
is inquired

max_tables

VMS Usage: longword

type: longword integer
access: write only
mechanism: by reference

The max_tables argument is the longword which receives the total number
of Tables in the LST Global Section.

RETURN
VALUES

12-10

LEP$_NOERR Normal sucessful condition
LEP$ _BADLSTSTRUC The LST Global Section is invalid

LST_ACCESS
GET_LST_TABLE_ADDRESS

GET_LST TABLE_ADDRESS—Inquire routine

returning the address
of one Table in the
LST Global Section

This routine converts an index for a Table in the LST Global Section, to the
address of the Table, to be used in the calls to the LEP Access routines.

FORMAT

GET _LST TABLE_ADDRESS /st index,
table_address

RETURNS

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS

Ist

VMS Usage: identifier

type: longword (unsigned)
access: read only

mechanism: by reference
LST identifier. The Lst argument is the LST Global Section whose content
is inquired

index

VMS Usage: longword

type: longword integer
access: read only

mechanism: by reference

The index is the relative table position of the table in the LST Global
Section.

table _addr

VMS Usage: address

type: longword (unsigned)
access: write only
mechanism: by reference

Table address. The table_addr argument is the address of the Table in the
LST Global Section.

12-11

LST_ACCESS
GET_LST_TABLE_ADDRESS

| ——

RETURN LEP$_NOERR N I ful conditi
ormal sucessful condition
VALUES - o
LEP$_BADLSTSTRUC The LST Global Section is invalid
LEP$_INVCALL The index argument is invalid

12-12

A

A.1

A.2

A.21

Installation and Use

Installation hints

To install one needs only to copy some directories, and then to run MMS.
The recomended directory structure is:

..mgr] Installation files
o ..source] Source files
..nodeb] .OBJ,.OLB and .EXE (nodebug)

..deb] same with debug option

.lepsrc] Source files copied from LEP
.Jepdir] .OBJ and .OLB from LEP

“ A

The main files to copy are in the [.mgr] and [.source] directories. One
has also to copy the .OPT files from [...nodeb] and [...deb]. The fetch...
command files copy the needed files from the LEP reference directories in
VXCERN. Beware of unanounced modifications in LEP files.

The MMS uses logical names for the directories. These logical names can
be set-up with the login command file.

The lepcom.com file drives the execution of the lepcom server. The lepcom
server is started by the DAQ server.

TCP/IP Installation

This paragraph applies to the Wollongong software and the
network status as on June 1990.

The installation of the TCP/WIN software is described in the Wollongong
documentation. We are concerned here with the specific tuning needed by
the LEPCOM package. To understand the requested operations, one need
to know the routing rules of TCP/IP.

Routing rules for TCP/IP

TCP/IP network is composed of many Domains, each containing many
Hosts. From one Host, one can reach directly all the other Hosts of the
same Domain, but one need explicit routes for reaching Hosts on other
domains. The explicit route may be either for one specific Host or for a full
domain.

At CERN, the TCP/IP network is composed of many Domains:

e 128.141.x.x The Ethernet domain, comprising all the large TCP/IP
machines on the main CERN Eternet.

¢ 128.142.x.x The main LEP domain, on the Token-ring.

A.2.2

A3
A.3.1

A.3.2

Installation and Use

e 192.16.155.x The Apollo domain.

* etc...

The management of the CERN TCP/IP network provides routes between
the various CERN Domains, but these routes are not enabled on ALOW11,
except the LEP-ETHER gateway to the LEP network. The management
of the LEP TCP/IP network requests that the LEPCOM trafic transit
through a private gateway, located at point 4 and named LSVXAL-GW.

It also requests that we use explicit routing to explicit Hosts for security
reasons.

Setting the TCP/IP routing for LEPCOM

This must be done on ALOW11.
One has to define the correct route to the LEP Server:

ROUTE add eslpcr e-lsvxal-gw 1
For debugging purposes, it may also be usefull to define routes to some test computers on the
token-ring:

ROUTE add lsvxal-gw e-lsvxal-gw 1
ROUTE add dilsr4 e-lsvxal-gw 1

One should not forget to put the same commands in the file cluster$manager:startup_tcpip.com.
Then, one should check the result with the command:

NETSTAT -r

A221 How to use ROUTE and NETSTAT
One needs privileges to use ROUTE. To use ROUTE and NETSTAT
one needs to define the symbols:

route "syssysdevice: [tecpwin.netdist.etc] route route"
netstat : "Ssys$Ssysdevice: [tepwin.netdist.user]netstat netstat"

Then one has just to type "ROUTE command” or "NETSTAT -option".

Files used by MMS
Directory .MGR

¢ DESCRIPMMS MMS file to create LEPCOM.

Directory .SRC
A.3.2.1 Include files
¢ LEP_HEADER LEP software Table header
¢ TABLE_HEADER LEP_access header
¢ TABLE_HEADS Table_header + LEP_header
¢ LST HEADER Header of LST Global Section
¢ LST _GBL The LST Global Section

Installation and Use

¢ LST SERVER Communications inside Server

A3.2.2 Programs/Libraries sources in FORTRAN
¢ CONVERT_ERRORS Program to create error handling sources.
e LST CREATE LST_GBL creation.
e LST_SERVER
¢ READ_ONE_TABLE LEP Access library, independent of Tables.
¢ INIT_ONE_TABLE LEP Access library, Table dispatchers.
¢ CHECK_ONE_TABLE LEP Access library, Table verification.
e DISPLAY ONE_TABLE LEP Access library, Table UPI display.
e LST_INIT LST Access library, dependent of LST_GBL.
e LST ACCESS LST Access library, independent of LST_GBL.

¢ LST WRITE_MESSAGE Lst_Write_Message with
UPI_Write_Message.

¢ LST WR_MESS_NOUPI Lst_Write_Message with PRINT statements.

A.3.2.3 Examples source
e READPAGE.C
¢ DISPLAY.FOR
e WRITE_ALEPH1
¢ LST_PRINT_TIMES
e LST_DISPLAY.FOR
e LST_RW_DISPLAY.FOR
e LST WRITE_ALEPH1.FOR
¢ LST PRINT_ALEPH1.FOR

A.3.3 Directory .NODEB

¢ LSTLIB.OPT OPT file for LST and LEP_access libaries.

A.3.4 Directory .DEB

¢ LSTLIB.OPT OPT file for LST and LEP_access libaries.

A.3.5 Directory.LEPDIR

e LEPLIB.OPT OPT file for LEP software.

A-3

A4

A.5
A.5.1

A.6
A.6.1

A7

Installation and Use

Source files created by MMS in Directory .LEPSRC

e CONVERT_LEP_CODES.FOR Translate LEP errors to VMS codes.
¢ LEP_ERRORS.INC Errors definition Include file

Other useful files
Directory .MGR

-« FETCH_LEP_FILES.COM Command file to copy LEP software.
o A _LEP$xxx.FETCH Fetch files for LEP software.
e CREATE_FULLLIBNET.COM File used to make part of LEP software.
¢ LOGIN.COM Definition of Logical names.
* LEPCOM.COM Command file for LST Server.

Documentation files
Directory .MGR

¢ LONGWRITEUPTXT LEP documentation.
e LEPCOM.SDML LEPCOM documentation.

How to Link User Programs
See the examples in the .MMS file.

A4

B Debugging guide

B.1 Introduction

As far as the LEP communications failures are concerned, the system can
be decomposed in three pieces:

¢ The LST server running on ALOW11,
e TCP/IP

¢ The LEP server running on PCs in the LEP control room.

Eaxch of these can be the origin of a loss of LEP communication. In order
to reestablish the communications, one has to locate the defective part and
to repair it.

In the following, we will review the three pieces in turn. For each piece
there is a diagnostic part, explaining the tools and the procedures to follow
in order to determine if that part is operational or defective, and an action
part describing the possible corrective actions.

It is strongly recomended to perform the diagnostics in the order
presented.

B.2 Problems with the LST Server

B.2.1 Diagnostic procedure

The LST Server has to maintain the data in the LST Global Section
identical to the data in the LEP Tables. If the LST is not properly

updated, while the LEP informations can be correctly obtained, then
the LST Server has failed.

On ALOW11 one can display the LEP Tables with two very similar
programs:

* a_lep$dir:display reading the LEP Tables through TCP/IP
* a_lep$dir:lst_display reading the tables from the LST

These two programs should produce the same results. If the LST is badly
out of date, then LEPCOM_0 is not running correctly.

B.2.2 Corection actions

The first test is to see if LEPCOM_0 is running by looking at the log file:
a_s$log:lepcom_0.log. If it is correctly running, one can try to kill and
restart it but this will not work in general (it is restarted automatically
every 7 hours). If everything is apparently working, but the LST is not
updated, one can suspect a mild overwrite of the LST Global Section.

B-1

Debugging guide

Action to be taken in case of an LST Global Section overwrite.

If a careless program overwrites the control words of the LST Global
Section, this section may become unusable. In that case all the programs
using LST cannot run. The only way out of this situation is to delete the
corresponding global section file a_lep$dat:lst_gbl.gbl and to recreate it by
calling the program LST_Create.

B.3 Problems with TCP/IP

B.3.1 Diagnostic procedure

ALOW11 is unable to communicate over TCP/IP with the PC in the LEP
control room. Both from the LST Server and the display.exe program
produce error messages like: "LEP-E-IMPORTFAIL, Import service has
failed" or "unknown LEP error code status = 1".

This diagnostic has to be confirmed and precised with the TCP/IP tool
PING. This tool is sending a probe message to the target, the target
recognises the probe message and returns it to the sender. If the TCP/IP
link is working between the sender and the target, one get the average
trip time, if not the PING program waits for an answer. After one minute
of wait, one can be sure that the link is broken.

To probe the status of TCP/IP, one has to ping various computers on

the road from ALEPH to the LEP control room. Currently the road is:
Ethernet from ALEPH cluster to the ALEPH-LEP gateway (LSVXAL-GW),
and then token ring to ESLPCR. It is suggested to PING the following
machines in that order: VXCRNA, CERNVM, AL1WO00 to check
comunication with machines on the Ethernet. Then the gatway itself
E-LSVXAL-GW (eternet side) and LSVXAL-GW (token ring side). Then a
machine on the local token ring SVLSR4 (ALEPH alarm computer), and
last the communication PC ESLPCR.

B.3.1.1

How to use PING
One needs privilege SYSPRV to use PING. To use PING one needs to
define the symbol:

ping :== "syssysdevice: [tcpwin.netdist.etc]lping ping"

Then one has just to type "PING nodename”. One has to exit PING with ctrl-Y.

B.3.2 Corection actions

B-2

If no host on the ethernet can be accessed (VXCRNA, CERNVM,
AL1WO00...) then TCP/IP is not working on ALOW11. This machine has to
be rebooted.

If the machines on the ethernet are accessible, but E-LSVXAL-GW
or LSVXAL-GW don’t respond, then the gateway is off and should be
restarted. Ask the LEP operator to restart it.

If LSVXAL-GW is accessible there are two cases: if SVLSR4 don’t respond,
there is a problem on the token ring, If only ESLPCR does not respond,
this machine should be rebooted. In any case, asks the LEP operator to fix
the problem.

Debugging guide

B.4 Problems with the LEP Server

B.4.1 Diagnostic procedure

If the LST_server and TCP/IP are working, but LEP data are not correct,
there are three possibilities:

¢ Pagel on the TV screen is also wrong.

e Pagel is correct, but the other LEP experiments have also a
comunication problem (i.e. all magnetic fields are ***¥),

* Only ALEPH has a comunication problem.

B.4.2 Corection actions

In any case, one has to rely on the LEP operators to diagnose and correct
the problem. The first case is the simpler: the program in the PC is dead.
The second case is related, but it is more subtle and the operator has
curently no mean to check the comunications. The third case should never
occurs (except if we miss an upgrade of the comunication software).

B-3

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

