ALEPH 89-11
DATACQ 89-2
30th JANUARY 1989

A.Aimar University of Torino
J.Harvey RAL/CERN-EF
M.Lubich University of Innsbruck
G.Waltermann MPI/Munich

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

@\ ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE
d Laboratoire Européen pour la Physique des Particules \‘

European Laboratory for Particle Physics

G PH-User Guide

Version 1.1

Abstract

Hierarchical Graphics Package

» Structuring and storing Graphical Data on a Database

» Retrieving Data from the Database

« Drawing and Pick facilities

GPH is a software-package to simplify an hierachical structure of graphical
data, storing the data on a 'graphical database’, retrieve easily the information
to be manipulated (rotated, shifted, scaled) and draw on the screen. A 'Pick’

facility is provided. Usage and the problems with various Graphics Systems
are hidden away from the GPH user.

Contents

CHAPTER 1 INTRODUCTION 1-1
1.1 WHAT IS GPH? 1-1

1.2 BASIC IDEAS 1-1
CHAPTER 2 USER GUIDE 2-1
2.1 STRUCTURE OF GRAPHICAL DATABASE 2-1

2.2 PROGRAMMING WITH GPH 2-3

2.2.1 BUILDING OF A GRAPHICAL DATABASE 2-3

222 RETRIEVING DATA FROM DATABASE 2-4

223 DRAWING ROUTINES 2-5

224 INTERACTION WITH THE DISPLAY 2-6

2.3 IMPLEMENTATION DETAILS 2-7

24 INSTALLATION AND USE 2-8
APPENDIX A EXAMPLES A-1
A1 HOW TO BUILD A DATABASE A-1

A2 HOW TO RETRIEVE GRAPHICAL INFORMATION A-3

A3 HOW TO DRAW AND PICK A4

1

1.1

1.2

Introduction

The ’Basic Ideas’ to the *Structure’ of GPH originally came from John
Harvey. Executed into a completely working, usable package on top of
GKS by Alberto Aimar - who also did the great job of really typing most of
the code in its basic form.

It's up to you now to work with the manual, on your application and
possibly find all these little bugs still crawling around within the
package...... (Thanks!).

New ideas, approvements and complaints are wellcome! Please send mail
to ALIW00::WALTERMANN.

WHAT IS GPH?

GPH - an ’Hierarchical Graphics Package’ consists of two basic elements:

a) GRAPHICAL DATABASE (DB):

where descriptions of any kind of object are kept in terms of graphics
primitives (like polylines, polymarkers, text etc..) commonly used by
standard graphics packages (like GKS, UIS etc..) and following an
hierarchical structure to be non-redundant and very modular to construct
any kind of complicated setup.

b) SUBROUTINE LIBRARY :

consisting of routines to:

¢ build the graphical database

e retrieve data from the graphical database
e draw to the screen

¢ define or modify graphical aspects

¢ interact with the display (pick)

Please see the chapter 2 and the’GPH REFERENCE MANUAL for all the
details about its usage.

BASIC IDEAS

GPH has been created to enable you to draw even complex graphics
without knowing anything about basic graphic-packages like GKS or
UIS. The most important you really have to think about is to divide
your graphics into several small basic structures called 7CONs’. Once
these Icons are defined you can start to ’play’ with them by using

Introduction

transformations like scaling, rotation, shifting and duplicating and
continue constructing like children use their LEGO’.

This scheme describes in principle almost all graphics one is able to
produce by the relation of its parts. The central part called ‘GraphOBJ’ is
any kind of drawing composed by one or more Primitives. The parameters
of these primitives are separately stored in the primitive-coordinate tables
(Text, Polyline, Polymarker, Circle, Fillarea). They are separated because
different primitives have different formats of coordinates. These primitives
describe the technical part of a graphical object.

The scheme allows you then to built a more sophisticated structure
based on these graphical objects. First you specify some primitives
with corresponding coordinates and declare that graphical object as an
ICON. The Icons are the basic parts of drawing graphics in GPH. (The
construction of these Icons is the one and only time the user has to
think about the x,y,z-coordinates of its primitives!) An Icon can be e.g. a
TPC-sector, a box or similiar.

Once having defined a set of Icons the user can go one step further : he
can now define an ObjectType. An ObjectType is in principle similiar to an
Icon but has usually more complexity. It is constructed out of predefined
Icons which have gone through a first level transformation’ (rotation, shift
and scale) and are then called Components of the ObjectType.

So in fact an ObjectType represents the basic structure of any final Objects
of the same family (e.g. one TPC-endplate) and is built out of several (or
only one) Components related to exactly one basic Icon each, represented
in its first transformation. The ObjectType also usually has to carry all the
information of this special type of object in the sense of graphical aspects
like linestyle, colour etc.

The user is now able to build out of his several ObjectTypes - by using
the same kind of transformations mentioned above - Objects in different
instantiations , which are therefore composed of the same components like
its mother ObjectType but gone through the ’second level transformations’ .

Maybe a diagram is easier to read:

Layout of Graphics Database

(TD)
Object- | qq | Compo-

nents

Icons

(T2)

R « Object
Objects omponents|

Primitives

(T1 = first level transformation
T2 =second level transformation)

Polyline

Fill Area

Text

Yy VYUV ¥

Circle

F
¢

Introduction

The scheme also shows that there are more data related with a single
graphical object : MarkerAspect, LineAspect, FAreaAspect, TextAspect and
Colour. These tables define for each graphical object the different aspects;
so it is possible to draw e.g. a 'broken’ TPC-sector in a different colour or

linestyle..

? USER GUIDE

2.1 STRUCTURE OF GRAPHICAL DATABASE

Everybody working with ’graphics’ wants to read and learn by looking at
a drawing - so rather than words a layout to explain the structure of the
database:

STRUCTURE OF DATABASE

Object Type

Defining the basic parts of the DB - the TCONs’ - is the only time you have
to think about x,y,z-coordinates and graphics primitives. Then you scratch
your head about the ‘first level transformation’ (rotation,scaling,shifting)
and the beauty of the ’aspects’ (colour, linestyle etc.) of these Icons and
call them 'COMPONENTS’. From these you can construct your 'OBJECT-
TYPES’, the major parts of the DB.

Just in case you are familiar with the ALEPH-DETECTOR an example
using ’real world terminology’ could help to understand a bit better:

2-1

USER GUIDE

EXAMPLE TPC
™ -ObjectType
sect1| |secr2 |sacr.3| ISECT.7| |SECT.18I -Component
LS -Icons

FillArea -Primitives

Right?
And since it’s quite a job to think about this structure and set up the
database it is the most logical that you:

- Build it only ONCE !
- Use it MANY TIMES !

2-2

USER GUIDE

2.2 PROGRAMMING WITH GPH

2.2.1 BUILDING OF A GRAPHICAL DATABASE

The following shows the basic sequence of routines needed to build a
DB. You should just take care of mapping to a global section holding
then the database (please see the related example app. A.1 and routine
descriptions).

C....initialize the package
GPH_INIT()

C....map to the global section to be created
GPH_CREATE_GLOBAL(file_name,section_name)

C....define first icon built out of polyline and fillarea
GPH_OPEN_ICONC(Icon_Namel’,ICON_ID1)
—GPH_INSERT_POLYLINE(N,X,Y,Z)
—GPH_INSERT_FILLAREA(N,X,Y,Z)

—ete.

GPH_CLOSE_ICON()

C....define second icon built out of circle
GPH_OPEN_ICONC(Icon_Name2’,ICON_ID2)
—GPH_INSERT_POLYLINE(N,X,Y,Z)
—GPH_INSERT_CIRCLE(XC,YC,ZC,RAD,ANG1,ANG2)
—etc.

GPH_CLOSE_ICON()

C....construct first ObjectType out of iconl and icon2

C....using the same transformations (T(1))
GPH_OPEN_OBJTYPE(ObyType_Namel’,OBJTYPE_ID1)
—GPH_CREATE_COMPONENT({ICON_ID1,T(1),CompName’,COMP_ID1)
—GPH_CREATE_COMPONENT(ICON_ID2,T(1),CompName’,COMP_ID2)
—ete.

GPH_CLOSE_OBJTYPE()

C....construct second ObjectType out of icon1 using different
C....transformations
GPH_OPEN_OBJTYPE(ObyType_Name2',0BJTYPE_ID2)
—GPH_CREATE_COMPONENT(ICON_ID1,T(2),CompName’,COMP_ID3)
—GPH_CREATE_COMPONENT(ICON_ID1,T(3),CompName’,COMP_ID4)
—etc.

GPH_CLOSE_OBJTYPE()

etc...

2-3

USER GUIDE

C....close properly the package...
GPH_CLOSE()

(PS. - T(x) = transformation: shift, rotate, scale)

2.2.2 RETRIEVING DATA FROM DATABASE

Once the DB exists you should map to the global section file and you can
retrieve information on graphics primitives to go on working (the only
thing you should remember from creating the DB are the names you gave
to icons and ObjectTypes !)

C....initialize the package...
GPH_INIT()

C....map to the global section holding the DataBase
GPH_MAP_GLOBAL(file_name,section_name)

C....define the data by an internal IDentifier
GPH_GET_ICONID(Icon_Name2’,JICON_ID)
GPH_GET_OBJTYPEID(CObjType_Namel’,OBJTYPE_ID)

C....retrieve the information on the primitives
GPH_GETPRIM_ICON(ICON_ID,NPRIM,NPT,X,Y,Z)
GPH_GETPRIM_OBJTYPE(OBJTYPE_ID,NPRIM,NPT,X,Y,Z)

etc..

Where 'nprim’ is the number of primitives, 'npt’ the number of points per
primitive and ’x,y,z’ the arrays with all coordinates.

For people interested on drawing the ALEPH-DETECTOR (or parts of
it) a 'Graphical Database’ describing the detector elements like TPC,
ECAL, HCAL etc. exists already. It is derived from the official ALEPH-
DATABASE (ADBS.DAT) and is called

- A_GRAPH$DB:GPH_DETECTOR.DAT

The ObjectType names usually define the detector parts down to their
‘subcomponent’ level and the icons down to their ’slot’ level. Sorry for
exceptions, there might be reasons for it.

There is a special routine in GPH to retrieve the primitives describing
the detector elements without knowing their lower level construction on

2-4

USER GUIDE

the DB. The first argument is a character string describing the detector
elements and should follow the ALEPH naming convention (be careful,
this in the process of changing, the GPH package will follow!) :
GPH_INIT()

C....map to the global section describing the ALEPH detector
GPH_MAP_GLOBAL(CA_GRAPH$DB:GPH_DETECTOR.DAT’’MY_COPY)

C....retrieve the primitives of a slot:
GPH_GETPRIM_DETELEMENT(CEC_EA_12’,NPRIM,NPTX,Y,Z)

C....retrieve the primitives of a subcomponent:
GPH_GETPRIM_DETELEMENT(CHC_BL NPRIM,NPT,X,Y,Z)

(P.S. Please see example in app. A.2)

2.2.3 DRAWING ROUTINES

When you want to use the drawing routines within GPH you should
think of the ’second’ transformation of an ObjectType (defining the final
instantation) and declare it as an ’'OBJECT’ to be drawn.

The setup of the screen with its graphics window(s) also comes into place.
GPH makes a graphics window to appear on the screen by the call to
’GPH_OPEN_OUTPUT (for size and location please read the particular
section within ’Implementation Details’ chapter 2.3) and defines the *world
coordinate system’ with the call to ’GPH_OPEN_WINDOW’. (Sorry about
the confusion within the routine names. This problem is graphics world
wide!)

C....initialize the package
GPH_INIT()

C....map to the existing global section
GPH_MAP_GLOBAL(file_name,section_name)

C....create a window with its world coordinates on the screen
GPH_OPEN_OUTPUT(wtype,title’,connID,wkID)
GPH_OPEN_WINDOW(wkID,WX1,WX2 WY1, WY2)

C....define the data by an internal IDentifier
GPH_GET_OBJTYPEID(ObjType_Name’,0BJTYPE_ID)

C....set graphics aspects
GPH_SET_COLOUR(colour_ID)
GPH_UPDATECOLOUR_OBJTYPE(OBJTYPE_ID,EVERY)

USER GUIDE

C....and create the final object (transformation possible!)
C....with an internal IDentifier
GPH_CREATE_OBJECT(OBJTYPE_ID,T(x),’Object_Name’,0BJECT_ID)

C....draw the object to the screen
GPH_DRAW_OBJECT(OBJECT_ID)

GPH_CLOSE()

(PS.

- WX1,WX2,WY1.WY2 = world-coordinate-system

- EVERY = set to -1 means all components of the ObjectType
- T(x) = transformation: shift, rotate, scale)

2.2.4 INTERACTION WITH THE DISPLAY

2-6

As soon as the picture is drawn the interaction with the display can start:
a ’Pick-facility’ is implemented in it’s most simple form which returns
(after you have ’picked’ an item with the mouse) the internal Object-ID
and Component-ID. There are other routines where you can change all
sorts of graphical aspects like linestyle, colour, fillpattern etc. and redraw
an Object or its parts (Components).

b....pick on an object and find it’s internal ID’s
GPH_PICK_OBJECT(Object_ID,Comp_ID)

C...1i.e. change some graphics aspect
GPH_SET_COLOUR(colour_ID)
GPH_UPDATECOLOUR_OBJECT(Object_ID,Comp_ID)

GPG_SET_FILLASP(fillaspect_ID)
GPH_UPDATEFASP_OBJECT(OBJECT_ID,EVERY)

C....redraw in the new style...
GPH_DRAW_COMPONENT(OBJECT_ID,COMP_ID)

(P.S. EVERY = set to -1 means all components of the object)

Please see the Reference Manual for the complete list of routines
available.....

USER GUIDE

2.3 IMPLEMENTATION DETAILS

The very important part of GPH - the DATAMANAGEMENT - is handled
by VAX-Structure.

The file containing the GRAPHICAL DATABASE being created or read is
mapped to the program as a GLOBAL SECTION.

The ERROR-messages are produced by calls to VAX-VMS LIB$SIGNAL.
So - at the moment - the package is restricted to VAX-computers!!!!

(But be optimistic. It’s the big project for version 1.2 of the package to be
’transportable’)

The GRAPHICAL PART of GPH at the time has two lower level interfaces:
- to GKS (the Graphics Kernel Standard)

- to UIS (Graphics System used at VAX-Workstations)

but can be changed quite easily to be on top of another system.

SEGMENTATION and PICKING is done on the level of drawn Objects and
their Components.

Warning: within the UIS-Version the ’segmentation’ is not really made
for being ’picked’ with the 'mouse’. Be careful when picking on an area or
overlapping lines.

MULTIPLE WINDOWING on the same workstation is possible but
restricted (by GKS/GTS-Gral-Version for VAX-Workstations) to a maximum
of 6 windows simultaneously.

Therefore a file WINDOW.DAT has to exist within the working directory
when you use the graphics facilities of GPH. It defines (in metres !!!)

the size (length in X, length in Y), the position on the screen (lower left
corner X/Y) plus the title for all required windows openend (read in by
GPH_OPEN_WINDOW). The format is : (4F5.3,A20) and the sequence is
corresponding the workstation-type-numbers (8601 to 8606).

Example:

0.15 0.15 0.02 0.02 Title for WKTYP 8601
0.10 0.10 0.10 0.10 Title for WKTYP 8602
0.05 0.25 0.20 0.00 Title for WKTYP 8603
etc.

Creation of METAFILES is provided. But since metafiles are produced in
very different ways within the various graphics systems more than one
GPH routine is necessary. Please see the related routines descriptions.

USER GUIDE

Using UPI (the Online-MENU-package) as a menu-driven steering-facility
for GPH is highly recommended for all GPH-applications wanting to talk
to other programs running within the ALEPH-world (via the SWITCHER
and SCHEDULER).

There is just one warning: To run UPI on top of the GKS-version of GPH -
you have to use the old version of UPI for the time being! (Please consult
the UPI-specialists for more details....)

2.4 Installation and Use

2-8

To make life easier - logical names are defined (and please get sure they
will be defined at new installation !) :

A_GRAPHS$SRC - for all SOURCE and INCLUDE files
= DISK$COMMON:[ONLINE.ONLDB.GRAPHICS.SOURCE] on ALONL
= DISK$ONLINE:[ONLINE.GPH.SOURCE] on AL1W00

A_GRAPHSDIR - for all OBJECT files and LIBRARIES
= DISK$COMMON:[ONLINE.ONLDB.GRAPHICS.NODEB] on ALONL
= DISK$ONLINE:[ONLINE.GPH.NODEB] on AL1W00

A_GRAPHS$DB - for DataBases
= DISK$COMMON:[ONLINE.ONLDB.GRAPHICS.DBASE] on ALONL
= DISK$ONLINE:[ONLINE.GPH.DBASE] on AL1W00

The GPH source is a CMS-LIBRARY ON:
ALONL::DISK$COMMON:[ONLINE.ONLDB.GRAPHICS.CMS]

The GPH libraries are called:
A_GRAPHS$DIR:GPH_GKS.olb for the GKS-Version
A_GRAPH$DIR:GPH_UIS.olb for the UIS-Version
and the OPT-file:

A_GRAPH$DIR:GPH.OPT

The existing DataBase describing the ALEPH-Detector :
A_GRAPH$DB:GPH_DETECTOR.DAT

The LINK should be:

$ LINK/EXE=myprog myprog, —
a_graph$dir:GPH_MESSAGE,GPI_MESSAGE, -
GBLSECUFO, CREATE_GLOBAL, -
GPH_UIS/LIB,GPH/OPT, -
CERNSLIBS’

USER GUIDE

The mentioned EXAMPLES you will find under:
A_GRAPH$SRC:EX_BUILD.FOR
A_GRAPH$SRC:EX_GET.FOR
A_GRAPH$SRC:EX_DRAW.FOR

The command file to link:
A_GRAPH$DIR:EX.COM

Using GPH with UPI to draw the ALEPH-DETECTOR :

an example to draw all parts of the detector existing on the
GPH_DETECTOR.DAT - database on different windows on the screen and
controlled by UPI-menus - you will find on:
AL1W00::DISK$USER:[WALTERMANN.GPH] or
ALONL::DISK$ONLINE:[WALTERMANN.GPH]

(with link-files and an example for window.dat!)

EXAMPLES

HOW TO BUILD A DATABASE

PROGRAM ECAL BUILD

Declarations.

[eEeNeNe]

IMPLICIT NONE

INCLUDE 'A_GRAPH$SRC:ADBS.VLB'
INCLUDE ‘A _GRAPH$SRC:GPH.VLB'

REAL X (100),Y(100),2(100),R
REAL ROT (2)

REAL NOSCALE(3) /1.,1.,1./

REAL NOSHIFT(3) /0.,0.,0./
INTEGER N,LP1

INTEGER SC_ID,SL_ID

INTEGER BL_ICON, EA_ICON
INTEGER EC_BL_OT, EC_EA_OT
INTEGER ECB_SLOT(12), ECE_SLOT (12)

CHARACTER*16 VOLNAM(3)
INTEGER LEPLAN, LECON, LEFACE
INTEGER PTRFCE (10)

REAL PLANES (4,12)

CHARACTER*2 MOD_NAME(12) /’01’,’02’,703’,'04’,105','06',
& £07’,'08’,709’,710",11","12*/
DATA VOLNAM/'E external’,’B external’,’E external’/

O T T T S 2 S S S S S S S S T N S N S S S S S o
Entry point.

Map the Graphical-Database to be created:

eNeNe NN NS]

CALL GPH_CREATE_GLOBAL
& (* DISKSCOMMON : [WALTERMANN . DBASE]MY_DETECTCR.DAT',
& *ECAL_GBL')

Q

C Initialize GPH and map to Aleph-Database

CALL GPH_INIT ()
CALL ADBS_INIT ()

Create the ECAL-barrel-Icon

[oNeNe]

sc_ID = 2

SL_ID = 1

CALL EVOLPL (VOLNAM(SC_ID),SC_ID,SL_ID,LEPLAN,PLANES)
CALL EVOLCT (VOLNAM(SC_ID),LEPLAN, PLANES,N,X,Y,2)

CALL GPH_SET COLOUR (6)

EXAMPLES

[eNeNe!

[eNoNe]

[eNeNe!

A-2

CALL GPH_OPEN_ICON (‘EC_BL MOD’, BL_ICON)
CALL GPH_INSERT FILLAREA (N,X,Y,2)
CALL GPH_CLOSE_ICON ()

Now the Icon for ECAL-endcap A

SC ID =1
SL ID =1

CALL EVOLPL (VOLNAM(SC_ID),SC_ID,SL_ID,LEPLAN,PLANES)
CALL EVOLCT (VOLNAM(SC_ID),LEPLAN,PLANES,N,X,Y,2)

CALL GPH_SET_COLOUR(6)

CALL GPH_OPEN_ICON ('EC_EA MOD’, EA_ICON)
CALL GPH_INSERT FILLAREA (N,X,Y,Z)

CALL GPH_CLOSE_ICON ()

Define the Barrel-ObjectType

CALL GPH OPEN_OBJTYPE (’'EC_BL’,EC_BL OT)

ROT (1) = O.
DO LP1 = 1,12
ROT(2) = -(LP1 -1)*30.
CALL GPH_CREATE_COMPONENT (BL_ICON,
& NOSHIFT, ROT, NOSCALE,
& MOD_ NAME (LP1),
& ECB_SLOT (LP1))
END DO

CALL GPH_CLOSE_OBJTYPE ()

Define the Endcap A-ObjectType

CALL GPH_OPEN OBJTYPE ('EC_EA’,EC_EA_OT)

ROT (1) = 0.
DO LP1 = 1,12
ROT(2) = -(LP1 -1)*30.
CALL GPH_CREATE_COMPONENT (EC_ICON,
& NOSHIFT,ROT, NOSCALE,
& MOD_NAME (LP1),
& ECE_SLOT (LP1))
END DO

CALL GPH_CLOSE_OBJTYPE ()
CALL GPH_CLOSE ()

END

A.2

EXAMPLES

HOW TO RETRIEVE GRAPHICAL INFORMATION

C
C
PROGRAM GPH_GET
C
C __
c Example to retrieve Primitives for TPC-sector E08 Endplate B
e
C Declarations.
C...
IMPLICIT NONE
INCLUDE 'a_graph$src:GPH.VLB'
INCLUDE 'a_graph$src:GPH_UIS.INC'
INTEGER STATUS
INTEGER NPRIM,NPT(10)
REAL X(100),Y(100),2(100)
C
CHARACTER*80 FILE_NAME
CHARACTER*16 SECTION_NAME
Cc
INTEGER I,NXYZ
INTEGER WKID,CONID
INTEGER TP_ID, TP E08 ID
C

C++++++++++++++++++++++++++++++++++
C Entry point.

C __________________________________
C
C--Map to Graphical-Database (Global Section)
C
FILE_NAME = ’A_GRAPH$DB:GPH_DETECTOR.DAT’
SECTION NAME = ‘MY GBL’
CALL GPH MAP_GLOBAL (FILE_NAME,SECTION_NAME)
C
C--Initialize GPH and Open Window on Screen
o)
CALL GPH_INIT ()
Cc
WKID=1
CONID=1
CALL GPH_OPEN_OUTPUT(8601,’TEST_GPH_GET’,CONID,WKID)
CALL GPH_OPEN_WINDOW(1,-500.,500.,-500.,500.)
C
C--Get Primitives
Cc
CALL GPH_GETPRIM_DETELEMENT(’TP_B_EOS',NPRIM,NPT,X,Y,Z)
C
C--which is equivalent to:
c CALL GPH_GET OBJTYPEID (/TP_B’, TP_ID)
c CALL GPH_GET_COMPONENTID (TP_ID, "E08’, TP_EO08_ID)
C CALL GPH_GETPRIM OTCOMP (TP_ID, TP_E08_ID, NPRIM, NPT,X,Y,2)
C
C--use the ’'polylines’ i.e. to draw in your own way....
Cc
NXYz=1
DO I=1,NPRIM
CALL UIS$PLOT_ARRAY(ID_DISP,O,NPT(I),X(NXYZ),Y(NXYZ))
NXYZ=NXYZ+NPT (I)
ENDDO
o)
CALL GPH_CLOSE()
STOP
END

EXAMPLES

HOW TO DRAW and PICK

C
c

PROGRAM ECAL_DRAW

C Declarations.
C_
IMPLICIT NONE

INCLUDE ‘A_GRAPH$SRC:GPH.VLB'

INTEGER STATUS
INTEGER CONID,WKID

REAL NOROT (2) /0.,0./
REAL NOSCALE(3) /1.,1.,1./
REAL NOSHIFT(3) /0.,0.,0./

INTEGER ECBL_OT, ECEA OT

INTEGER OB _EA_ID,OB_BL_ID

INTEGER OBJECT PICK,COMP_PICK
INTEGER LINE_ID_ SOLID,LINE_ID_DASHED
LOGICAL COLOURS

CHARACTER*80 FILE_ NAME

CHARACTER*16 SECTION_NAME
C
C++++++++++++++++++++++++++++++++++
C Entry point.

c __________________________________
C
C--Map to existing Graphical Database
C
FILE_NAME = ‘A _GRAPHS$DB:GPH DETECTOR.DAT’
SECTION_NAME = ‘MY GBL'
CALL GPH_MAP_ GLOBAL (FILE_NAME, SECTION_NAME)
C
C--Initialize
C
CALL GPH_INIT ()
CALL GPH_INQUIRE_COLOUR_SETUP(8601,COLOURS)
C
IF (COLOURS) CALL GPH_SET_BORDER(.TRUE.,5)
C
CALL GPH PUT LINEASP(1,1.,LINE_ID_SOLID)
CALL GPH_PUT LINEASP (2,1.,LINE_ID_DASHED)
CALL GPH_SET_LINEASP(LINE_ID_SOLID)
C
C--Define Objects
C
CALL GPH_GET_OBJTYPEID ('EC_BL', ECBL_OT)
CALL GPH_GET OBJTYPEID ('EC_EA', ECEA_OT)
C
CALL GPH_CREATE_OBJECT (ECBL_OT, NOSHIFT, NOROT, NOSCALE,
& 'EC_BL’, OB BL_ID)
CALL GPH_CREATE_OBJECT (ECEA_OT, NOSHIFT, NOROT, NOSCALE,
& 'EC_EA’, OB_EA_ID)
Cc
C--Open Windows and Draw Objects
Cc
WKID=1
CONID=1
CALL GPH_OPEN_OUTPUT(8601,’ECAL—BARREL’,CONID,WKID)
CALL GPH_OPEN_WINDOW(I,-300.,300.,—300.,300.)
C

CALL GPH_DRAW OBJECT (OB_BL_ID)

A4

EXAMPLES

c
WKID=2
CONID=2
CALL GPH_OPEN_OUTPUT (8602, ' ECAL-ENDCAP’ , CONID, WKID)
CALL GPH_OPEN_WINDOW(2,-300.,300.,-300.,300.)
c
CALL GPH_DRAW_OBJECT (OB_EA_ID)
c

C--PICK on Component and redraw
C (at pick outside the object - change window or go on)

o}
WKID=1 .
1 CALL GPH_PICK_OBJECT (WKID, STATUS, OBJECT_PICK,COMP_PICK)
IF (STATUS.EQ.0 .OR. OBJECT_PICK.EQ.0) THEN
IF (WKID.EQ.2) GO TO 9
WKID=2
GO TO 1
ENDIF
C
IF (COLOURS) THEN
CALL GPH_SET_COLOUR (4)
CALL GPH_UPDATECOLOUR_OBJECT (OBJECT_PICK,COMP_PICK)
ELSE
CALL GPH_SET_LINEASP (LINE_ID_ DASHED)
CALL GPH_UPDATELASP_OBJECT (OBJECT_PICK,COMP_PICK)
ENDIF
C
CALL GPH_DRAW_COMPONENT (OBJECT PICK,COMP_PICK)
GO TO 1
C
C--Create METAFILE (UIS version)...
C
9 CONTINUE
CALL GPH_WRITE METAFILE (‘META1l.DAT’,6 WKID)
C
C--End
C
CALL GPH_CLOSE()
STOP
END

A-5

EXAMPLES

A-6

That'’s it!

When you like it and want to use it get the
-’GPH REFERENCE MANUAL’

- ALEPH 89-11

- DATACQ 89-3

YOU SHOULD NEED IT!

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

