ALEPH 88-68

DATACQ 88-12

A. Miotto, A. Castro
17.6.1988

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Laboratoire Européen pour la Physique des Particules %
\7

European Laboratory for Particle Physics

Aleph Event Builder
FASTBUS library

A.Castro, A. Miotto.

This paper has: | 2“" pages e L QUL S AR SHOT™
If you wish to receive it, please send your request to:

A.Mazzari - EP
Name: Div.:
I would like to receive 1 copy of the paper: with annex D without annex D
Title (or ALEPH No.):
Author(s):

Date: Signature:

ALEPH 88-68
DATACQ 88-12

A. Miotto, A. Castro
17.6.1988

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE
‘ Laboratoire Européen pour la Physique des Particules \
Ny European Laboratory for Particle Physics

Aleph Event Builder
FASTBUS library

A.Castro, A. Miotto.

A library has been written to allow multi-user utilization

of FASTBUS standard routines on the Aleph Event
Builder under the OS-9/68K operating system.

Authors: A.Castro, A. Miotto.

Network Address: ALOVOL::MIOTTO at CERN
Version of Document: 1.0

Revision date: 16 June 1988
Status: Draft

Changes from last version:

This is a new document.

Contents

INTRODUCTION

FASTBUS ROUTINES

1.

ENVIRONMENT MANAGEMENT

2. OPERATIONAL PARAMETERS
3. SIMPLE TRANSACTION ROUTINES
3.1 Single data word transfer
3.2 Block transfers
3.3 Secondary address routines
4. COMPOUND TRANSACTION ROUTINES
4.1 Access Segment Interconnect Route Table
4.2 Read-Modify-Write FASTBUS locations
5. SYNCHRONIZATION, SYSTEM RESOURCE
AND PORT ROUTINE
6. FASTBUS SR AND INTERRUPT MESSAGE ROUTINES
7. STATUS AND ERROR HANDLING
ERROR CODES
APPENDIX
A. LIST OF RESERVED NAMES (sorted by short name)
TEST PROGRAM

13
13

15

19
21

22
24

Aleph Event Builder FASTBUS library 6/16/88

INTRODUCTION

The main feature of the Aleph Event Builder is a 68020 coprocessor that allows FASTBUS actions to be
executed as single machine instructions. The coprocessor supports up to 16 simultaneous users and most of
the standard FASTBUS routines.

A driver and a library have been written to allow multi-user utilization of the coprocessor under the
0S8-9/68k operating system. The driver provides exception and interrupt handling, and is called by the library
only for those routines that require some protection from user access (environment management and interrupt
connection routines). All FASTBUS actions are performed without driver calls to avoid software overhead: the
library mainly interfaces high level languages to assembler coprocessor instructions.

This means that even if the implementation follows as much as possible, the standard defined by U.S. NIM

Committee (1), some differences are inevitable in order to optimize the use of the coprocessor and to keep

software overhead to a minimum.

DISTRIBUTION The library contains entry points for FORTRAN and C languges. Calling
conventions for C routines are the following: parameters are normally passed by value; the FASTBUS error

code is the function return value, while additional values are returned using parameters passed by reference.

For the use of the library, the following files are distributed:

a) fastbus an OS9 device driver descriptor;

b) £b the FASTBUS exception handling driver;

¢) fbmon FASTBUS exception monitor

d £fb.1 library for FASTBUS hardware interfacing;

e¢) cfbdef.h C include file with FASTBUS definitions;

fy ffbdef.inc FORTRAN include file with FASTBUS definitions;
g) test.c source of an example program in C language;

h) test executable of test.c;

i) makefile to be used for compiling C programs;

INSTALLATION After the OS9 boot, the following commands should be executed (for example from a
startup file):

Aleph Event Builder FASTBUS library 6/16/88

$ load /(path_name) /fb ! load driver in memory
$ load /(path name) /fastbus ! load descriptor in memory
$ iniz fastbus ! initialize it

Coprocessor microcode version 2.23 or greater has to be used in order to run interrupt routines properly.

PROGRAMMING RULES The main program must contain a call to fb_open before any other call
to FASTBUS routines. An environment with identifier FB_ DEFAULT EID is created and initialised.

The routine £cienv can be used to create up to a maximum of 16 FASTBUS environments.

After each FASTBUS action, the return value should always be examined by the user. In case of values
different from FENORM the fsrpt routine will output available information on the standard error output
path. Automatic report is not implemented.

At the end of each session, the routine £b_close should be called before exiting.

Only one Service Request connection is allowed. For this reason FORTRAN entry points for SR
connections are not defined, and privileges are required to make the connection.

Only one FASTBUS Interrupt Message connection per task, and one connection per receiver block number

is allowed (this means that two tasks can not connect to the same block).

NAMING CONVENTIONS Most FASTBUS names considered in this implementation are defined in
both short and long form; error codes and a few other names are defined only in the short form, excepted the
routine names fopen and fclose, for which an incompatibility would have arosen with the standard C
library routines for opening and closing files: the long names fb_open and fb_close are used instead.

Refer to the appendix for the list of reserved names.

COMPILATION OF C PROGRAMS The include file cfbdef . h should be placed in the DEFS
subdirectory of the default device and the library £b. 1 in the LIB subdirectory. If the make utility is loaded,
a source program requiring only £b . 1 and the standard C libraries can be compiled with the command:

$ make T=(file name) ! without the . c extension

THE TEST PROGRAM This is a very simple program showing the use of several FASTBUS calls
in C. The listing is included at the end of this manual.

ENVIRONMENT RECOVERY An exit handler takes care of releasing environments if the user does
not close the session or if the program is prematurely aborted. With OS-9 V2.1 some situations arose in
which the exit handler was not properly called by the system; this seems to have been fixed with OS-9 V2.2.
Anyway, to recover from these situations be sure that all process using FASTBUS are stopped and then type:

$ deiniz fastbus

$ iniz fastbus

Aleph Event Builder FASTBUS library 6/16/88

DIFFERENCES FROM THE STANDARD Any difference from the Standard FASTBUS software
is marked with one ore more symbols in the following. These conditions can be met:

NOT IMPLEMENTED means a category "A" (mandatory) routine that has not been implemented. The only
routine that could not be implemented without avoiding inacceptable overheads is £sgsum (decode summary
status). Other missing routines will be implemented in following releases.

EXTENSION means a routine or a parameter not defined in the standard and meaningful only in this
implementation.

NON-STANDARD means that the specified routine or parameter has been modified from the standard

definitions to optimize its use.

(1) U.S. NIM Committee - FASTBUS standard routines - March 1987 DOE/ER-0325

Aleph Event Builder FASTBUS library 6/16/88

FASTBUS ROUTINES

1. ENVIRONMENT MANAGEMENT

/* C CALLS */

#include

<cfbdef.h>

FB environment id id;
FB_error_code iret;

FB word

env [FPENVW];

C FORTRAN CALLS
INCLUDE 'FFBDEF.INC'
INTEGER*4 ID, IRET, ENV(FPENVW)

FB_OPEN
Syntax:

Description:

FB_CLOSE

Syntax:

Description:

FCIENV

Syntax:

Description:

FRLENV

Syntax:

Description:

Open a FASTBUS session.

iret = fb open ();

CALL FB_OPEN (IRET) lor CALL FOPEN (IRET)

This routine shall be called by the user prior to any other routine, to perform software and

hardware initialization. A default environment with identifier FBDEID is provided.

Close a FASTBUS session.
iret = fb_close ();
CALL FB_CLOSE (IRET) !or CALL FCLOSE (IRET)

When use of FASTBUS is no longer required, the user shall call this routine.

Create an immediate execution FASTBUS environment.

iret = fcienv (&id);

CALL FCIENV(IRET, ID)

Creates an immediate execution FASTBUS environment and set it to the default value.
Returns the environment identifier id. The maximum number of simultaneously active

environments is 16.

Release a FASTBUS environment.
iret = frlenv (id);
CALL FRLENV(IRET, ID)

Release the environment with identifier id.

Aleph Event Builder FASTBUS library 6/16/88

FRSENV
Syntax:

Description:

FSTENV

Syntax:

Description:

FGTENYV

Syntax:

Description:

Reset a FASTBUS environment.
iret = frsenv (id);
CALL FRSENV(IRET, ID)

Reset the environment with identifier id to the defult values.

Set a FASTBUS environment.
iret = fstenv (id, env, FPENVS);
CALL FSTENV(IRET, ID,ENV,FPENVS)

Set the environment with identifier 1d. env is the pointer to a 15 words array.

Get a FASTBUS environment.
iret = fgtenv (id, env, FPENVS, FPENVS);
CALL FSTENV(IRET, ID,ENV,FPENVS,FPENVS)

Returns in env the environment 1d parameters.

Aleph Event Builder FASTBUS library 6/16/88

2. OPERATIONAL PARAMETERS

/* C CALLS */

#include

<cfbdef.h>

FB_environment id;
FB_error_code iret;

FB parameter id par_id;
FB_parameter_value par_val;

C FORTRAN CALLS
INCLUDE 'FFBDEF.INC'
INTEGER*4 ID, IRET, PAR ID, PAR VAL

FBPINIT

FBPSET
Syntax:

Description:

FBPGET
Syntax:

Description:

Initialize FASTBUS operational parameters.

Set FASTBUS operational parameter.
iret = fbpset (id, par_id, par val);
CALL FBPSET(IRET,ID,PAR_ID,PARNVAL)

Assigns par_val to the operational parameter specified by par_id.

Get FASTBUS operational parameter.
iret = fbpget (id, par_id, &par_val);
CALL FBPGET (IRET, ID,PAR ID,PAR VAL)

Reads into par_val the operational parameter specified by par_id.

The operational parameters implemented are:

- FPARBL

- FPEXTH

- FPENVS
-FPENVWIT

- FPNOWT

-FpPRIVIT

- FPPRTY

Arbitration level - default value is assigned by the driver.

Exit severity threshold - default value is FB_SEV_ERROR. This parameter is checked

inside the f£srpt routine only, so the program will not abort after an error if £srpt is

not called.
Size in bytes of the environment - fixed value is 60.

Size in longwords of the environment - fixed value is 15.

Do not wait for completion of action (only valid for block transfer actions) - default value

re_trUE!TT,

FASTBUS privileges. This parameter can be set only if the process owner is OS-9 Super

User. Valid privileges are:
- BUSRST: may issue a FASTBUS reset signal
- SRVCON: may connect to SR interrupts

Control of parity generation - default value is FB_ PARITY NONE.

Aleph Event Builder FASTBUS library 6/16/88

T NOT IMPLEMENTED
Tt EXTENSION
Tt NON-STANDARD: The standard default value is FB_FALSE.

Aleph Event Builder FASTBUS library 6/16/88

3. SIMPLE TRANSACTION ROUTINES

3.1 Single data word transfer

/* C CALLS */

#include <cfbdef.h>
FB_environment id;

FB error code iret;

int prim add, sec_add, sw_buf;

C FORTRAN CALLS
INCLUDE 'FFBDEF.INC'
INTEGER*4 ID, IRET, PRIM ADD, SEC ADD, SW_BUF

FRC Read single word from Control Space.
Syntax: iret = frc (id, prim add, sec_add, FBVAR, &sw_buf);
CALL FRC(IRET, ID,PRIM ADD, SEC_ADD,FBVAR, SW_BUF)
Description: Moves a 32 bit word from the Primary Address prim add, Secondary Address sec_add to

sw_buf.
FWC Write single word to Control Space.
Syntax: iret = fwc (id, prim add, sec_add, FBVAL, sw_buf);

CALL FWC (IRET, ID,PRIM ADD,SEC_ADD, FBVAR, SW_BUF)

Description: Moves the 32 bit word sw_buf to the Primary Address prim_add and Secondary Address

sec_add.
FRD Read single word from Data Space.
Syntax: iret = frd (id, prim add, sec_add, FBVAR, &sw_buf);

CALL FRD(IRET,ID,PRIM ADD,SEC_ADD,FBVAR, SW_BUF)

Description: Moves a 32 bit word from the Primary Address prim add, Secondary Address sec_add to

sw_buf.
FWD Write single word to Data Space.
Syntax: iret = fwd (id, prim_add, sec_add, FBVAL, sw_buf);

CALL FWD (IRET, ID,PRIM ADD,SEC_ADD,FBVAR, SW_BUF)
Description: Moves the 32 bit word sw_buf to the Primary Address prim_add and Secondary Address

sec_add.

Aleph Event Builder FASTBUS library 6/16/88

FRCM
Syntax:

Description:

FWCM

Syntax:

Description:

FRDM
Syntax:

Description:

FWDM
Syntax:

Description:

Read single word from Control Space Multi-listener.

iret = frcem (id, prim add, sec_add, FBVAR, &sw_buf);

CALL FRCM(IRET,ID,PRIM ADD, SEC_ADD,FBVAR, SW_BUF)

Moves a 32 bit word from the Primary Address prim_add, Secondary Address sec_add to

sw_buf.

Write single word to Control Space Multi-listener.

iret = fwem (id, prim add, sec_add, FBVAL, sw_buf);

CALL FWCM(IRET,ID,PRIM ADD,SEC_ADD,FBVAR, SW_BUF)

Moves the 32 bit word sw_buf to the Primary Address prim add and Secondary Address

sec_add.

Read single word from Data Space Multi-listener.
iret = frdm (id, prim add, sec_add, FBVAR, &sw_buf);
CALL FRDM(IRET,ID,PRIM_ADD,SEC_ADD,FBVAR,SW_BUF)

Moves a 32 bit word from the Primary Address prim add, Secondary Address sec_add to

sw_buf.

Write single word to Data Space Multi-listener.
iret = fwdm (id, prim add, sec_add, FBVAL, sw_buf);
CALL FWDM(IRET, ID,PRIM ADD,SEC_ADD, FBVAR, SW_BUF)

Moves the 32 bit word sw_buf to the Primary Address prim_add and Secondary Address

sec_add.

3.2 Block transfers

/* C CALLS */

#include <cfbdef.h>

FB_environment id;

FB_error_code iret;

int prim_add, sec_add, *buffer, byte count;

C FORTRAN CALLS
INCLUDE 'FFBDEF.INC'
INTEGER*4 ID, IRET, PRIM ADD, SEC_ADD, @BUFFER, BYTE_COUNT

Aleph Event Builder FASTBUS library 6/16/88
FRCB Block transfer read from Control Space.
Syntax: iret = frcb (id, prim add, sec_add, FBVAR, buffer, byte count);
CALL FRCB(IRET,ID,PRIM ADD,SEC ADD,FBVAR,BUFFER, BYTE COUNT)
Description: ~ Transfers byte_count bytes from the Primary Address prim_add, Secondary Address
sec_add, to the module location buffer.
FWCB Block transfer write to Control Space.
Syntax: iret = fwcb (id, prim_add, sec_add, FBVAR, buffer, byte count);
CALL FWCB(IRET, ID, PRIM ADD, SEC_ADD, FBVAR, BUFFER, BYTE COUNT)
Description: ~ Transfers byte count bytes from the location buffer to Primary Address prim_add,
Secondary Address sec_add.
FRDB Block transfer read from Data Space.
Syntax: iret = frdb (id, prim add, sec_add, FBVAR, buffer, byte count);
CALL FRDB(IRET, ID,PRIM ADD, SEC_ADD, FBVAR, BUFFER, BYTE COUNT)
Description: ~ Transfers byte_count bytes from the Primary Address prim_add, Secondary Address
sec_add, to the module location buffer.
FWDB Block transfer write to Data Space.
Syntax: iret = fwdb (id, prim add, sec_add, FBVAR, buffer, byte count);
CALL FWDB(IRET, ID, PRIM ADD,SEC_ADD,FBVAR,BUFFER,BYTE COUNT)
Description: Transfers byte_count bytes from the location buf fer to Primary Address prim_add,
Secondary Address sec_add.
FRCBM Block transfer read from Control Space, Multi-listener.
Syntax: iret = frcbm (id, prim add, sec_add, FBVAR, buffer,
byte_count);
CALL FRCBM(IRET, ID,PRIM ADD, SEC_ADD, FBVAR, BUFFER, BYTE_COUNT)
Description: ~ Transfers byte_count bytes from the Primary Address prim_add, Secondary Address
sec_add, to the module location buffer.
FWCBM Block transfer write to Control Space, Multi-listener.
Syntax: iret = fwcbm (id, prim add, sec_add, FBVAR, buffer,
byte count);
CALL FWCBM(IRET, ID,PRIM ADD, SEC_ADD, FBVAR, BUFFER, BYTE_COUNT)
Description: ~ Transfers byte_count bytes from the location buf fer to Primary Address prim_add,

Secondary Address sec_add.

10

10

Aleph Event Builder FASTBUS library 6/16/88
FRDBM Block transfer read from Data Space, Multi-listener.
Syntax: iret = frdbm (id, prim add, sec_add, FBVAR, buffer,
byte count) ;
CALL FRDBM(IRET, ID,PRIM ADD,SEC_ADD, FBVAR, BUFFER, BYTE COUNT)
Description: ~ Transfers byte count bytes from the Primary Address prim_add, Secondary Address
sec_add, to the module location buffer.
FWDBM Block transfer write to Data Space, Multi-listener.
Syntax: iret = fwdbm (id, prim add, sec_add, FBVAR, buffer,
byte count);
CALL FWDBM(IRET, ID,PRIM ADD,SEC_ADD, FBVAR, BUFFER, BYTE COUNT)
Description: ~ Transfers byte count bytes from the location buf fer to Primary Address prim add,
Secondary Address sec_add.
FIRDB Indirect block transfer read from Data Space.
Syntax: iret = firdb (id, prim add, sec_add, FBVAR, buffer, max count);
CALL FIRDB(IRET,ID,PRIM ADD,SEC_ADD, FBVAR, BUFFER,MAX_ COUNT)
Description: A single word read from Primary Address prim_ add, Secondary Address sec_add is

perfomed: the least value between this word and max_count (if greater than 0) will be used
as byte counter for the block transfer. Then a single word read from Secondary Address
sec_add+1 is perfomed: this value will be used as Secondary Address for the block transfer.
A single word write to Secondary Address sec_add+2 and data -1 is then performed
signaling the slave that the transfer is about to start. Finally a block transfer read from Data

Space is performed. The word at Secondary Address sec_add+3 is reserved and should not be
used.

i EXTENSION

3.3 Secondary address routines

/* C CALLS */

#include <cfbdef.h>

FB environment id;
FB_error code iret;
int prim add, sw_buf;

C FORTRAN CALLS
INCLUDE 'FFBDEF.INC'
INTEGER*4 ID, IRET, PRIM ADD, SW_BUF

11

11

Aleph Event Builder FASTBUS library 6/16/88
FRCSA Read NTA register in Control Space.
Syntax: iret = frcsa (id, prim add, FBVAR, &sw_buf);
CALL FRCSA(IRET,ID,PRIM ADD,FBVAR,SW_BUF)
Description: Reads in sw_buf the NTA register at Primary Address prim add.
FWCSA Write NTA register in Control Space.
Syntax: iret = fwcsa (id, prim_add, FBVAL, sw_buf);
CALL FWCSA(IRET, ID,PRIM ADD,FBVAR,SW_BUF)
Description: Writes the NTA register with the 32 bit word sw_buf at Primary Address prim add.
FRDSA Read NTA register in Data Space.
Syntax: iret = frdsa (id, prim add, FBVAR, &sw_buf);
CALL FRDSA(IRET, ID,PRIM ADD,FBVAR,SW BUF)
Description: Readsin sw_buf the NTA register at Primary Address prim_add.
FWDSA Write NTA register in Data Space.
Syntax: iret = fwdsa (id, prim add, FBVAL, sw_buf);
CALL FWDSA(IRET,ID,PRIM ADD,FBVAR, SW_BUF)
Description: ~ Writes the NTA register with the 32 bit word sw_buf at Primary Address prim_ add.

12

12

Aleph Event Builder FASTBUS library 6/16/88

4. COMPOUND TRANSACTION ROUTINES

4.1 Access Segment Interconnect Route Table

/* C CALLS */

#include <cfbdef.h>

FB environment id;
FB_error_code iret;

int prim add, rt_add, sw_buf;

C FORTRAN CALLS
INCLUDE 'FFBDEF.INC'
INTEGER*4 ID, IRET, PRIM ADD, RT ADD, SW_BUF

FWRT Write SI Route Table.
Syntax: iret = fwrt (id, prim add, rt_add, FBVAL, sw_buf);
CALL FWRT (IRET, ID,PRIM ADD,RT_ADD, FBVAR, SW_BUF)
Description: ~ Writes the sw_buf entry in the SI Route Table. prim add is the Primary Address of the

SI, rt_add is the index in the route table.

FRRT Read SI Route Table.
Syntax: iret = frrt (id, prim add, rt_add, FBVAR, &sw_buf);
CALL FRRT (IRET, ID,PRIM ADD,RT_ ADD,FBVAR, SW_BUF)
Description: Reads into sw_buf the entry indexed by rt _add in the SIat Primary Address prim_add.

4.2 Read-Modify-Write FASTBUS locations

/* C CALLS */

#include <cfbdef.h>

FB_environment id;

FB_error_code iret;

int prim add, sec_add, sec_add 0, sec_add 1, data compare,
data_compare 0, data compare_1, data update, data update 0,
data_update_1;

C FORTRAN CALLS
INCLUDE 'FFBDEF.INC'
INTEGER*4 ID, IRET, PRIM ADD, SEC ADD, SEC_ADD 0, SEC_ADD 1,
1 DATA COMPARE, DATA COMPARE 0, DATA COMPARE 1, DATA UPDATE,
1 DATA UPDATE 0, DATA UPDATE 1;

13

13

Aleph Event Builder FASTBUS library

6/16/38

FcAScT

Syntax:

Description:

FCASDT

Syntax:

Description:

FCASC2t

Syntax:

Description:

FCASD2T

Syntax:

Description:

Compare and swap single word from Control Space.

iret = fcasc (id, prim add, sec_add, FBVAL, data compare,

data_ update) ;

CALL FCASC(IRET, ID,PRIM ADD,SEC_ADD,FBVAR,DATA COMPARE,
1 DATA UPDATE)

Compares the 32 bit word at Primary Address prim_add, Secondary Address sec_add with
the word data_compare. If they are equal, substitutes the word with data_update. If

they are not equal, stores the word in data compare.

Compare and swap single word from Data Space.

iret = fcasd (id, prim add,
data_update) ;

sec_add, FBVAL, data_compare,

CALL FCASD (IRET, ID,PRIM ADD,SEC_ADD, FBVAR,DATA COMPARE,
1 DATA UPDATE)

Compares the 32 bit word at Primary Address prim_add, Secondary Address sec_add with
the word data_compare. If they are equal, substitutes the word with data_ update. If

they are not equal, stores the word in data_ compare.

Compare and swap two words from Control Space.

iret = fcasc2 (id, prim add, sec_add 0, sec_add 1, FBVAL,
data_compare_ 0, data_update_ 0, data_ compare_1, data update_1);

CALL FCASC2(IRET,ID,PRIM ADD,SEC ADD 0,SEC_ADD 1,FBVAR,
1 DATA COMPARE 0, DATA UPDATE 0, DATA COMPARE 1, DATA UPDATE)
Compares the 32 bit words at Primary Address prim add, Secondary Address sec_add_0
and sec_add_1 with the words data_compare 0 and data_compare 1 respectively.
If both words are equal, substitutes them with data_update_ 0 and data_update 1.If

a word is not equal, stores the words in data_compare_0 and data_compare_1.

Compare and swap two words from Data Space.

iret = fcasd2 (id, prim add, sec_add 0, sec_add 1, FBVAL,
data_compare 0, data_update 0, data compare_ 1, data update_ 1);

CALL FCASD2 (IRET, ID,PRIM ADD,SEC_ADD 0,SEC_ADD_1,FBVAR,
1 DATA COMPARE 0, DATA UPDATE 0, DATA COMPARE 1, DATA UPDATE)

Compares the 32 bit words at Primary Address prim add, Secondary Address sec_add 0
and sec_add_ 1 with the words data_compare 0 and data_compare 1 respectively.
If both words are equal, substitutes them with data_update 0 and data_update_1.1If

a word is not equal, stores the words in data compare 0 and data_compare_1.

i EXTENSION

14

14

15

Aleph Event Builder FASTBUS library 6/16/88

5. SYNCHRONIZATION, SYSTEM RESOURCE AND PORT ROUTINE

/* C CALLS */
#include <cfbdef.h>
FB environment id;
FB_error code iret;
int slot;

C FORTRAN CALLS
INCLUDE 'FFBDEF.INC'
INTEGER*4 ID, IRET, SLOT

FCOMWT
Syntax :

Description:

FWAIT

Syntax:

Description:

FBPRSTTT
Syntax:

Description:

Notes:

FBVERSTTT

Wait for completion of operation.

iret = fcomwt (id);

CALL FCOMWT (IRET, ID)

This routine waits for completion of the last operation associated with the environment id. If
the FPNOWT parameter is set to FB_TRUE the returned error code is associated to the results

of the previous operation.

Read FASTBUS slot number.
iret = fwai (FB_AEB_PORT, &slot);
CALL FWAI(IRET,FB_AEB_PORT,SLOT)

Reads into s1ot the geographical location of the station, where the module is located.

Issue Reset FASTBUS.

iret = fbprst (FB_AEB PORT);

CALL FBPRST (IRET,FB AEB PORT)

Issue FASTBUS Reset Bus signal on the master port.
BUSRST privilege is required.

Get version numbers.

T EXTENSION

Tt WARNING: In a host implementation this routine should resets the device on which the FASTBUS

port is attached. Here a FASTBUS Reset Bus signal is issued.

T NOT IMPLEMENTED

15

Aleph Event Builder FASTBUS library 6/16/88

6. FASTBUS SR AND INTERRUPT MESSAGE ROUTINES

/* C CALLS */

#include <cfbdef.h>

FB_error code iret;

FB integer rec_blk, flt word;
FB_word flt_mask, flt val;
int (*procSR) (), (*procFIR) ();
/* CONNECTED ROUTINES:

** procSR (SR _source)

** int SR_source;
* %

** procFIR (&rec_blk, mess buffer, &mess lenght, &port)1
** int rec_blk, *mess_buffer, mess lenght, port;

*/

C FORTRAN CALLS
INCLUDE 'FFBDEF.INC'
INTEGER*4 IRET, REC_BLK, FLT_WORD, FLT MASK, FLT VAL
EXTERNAL PROCFIR
C CONNECTED ROUTINE
C SUBROUTINE PROCFIR(REC_BLK,MESS_ BUFFER,MESS LENGHT,PORT)
C INTEGER*4 REC_BLK, @MESS_BUFFER, MESS LENGHT, PORT

FBSRC Connect routine to SR.

Syntax: iret = fbsrc (FB_SR DEFAULT, FB_AEB PORT, procSR);
FORTRAN CALL NOT AVAILABLE

Description: 'When an SR occurs the routine procSR is called if the port is enabled, and
FB_SR_DEFAULT is passed as parameter. It is the user responsability to find and reset the
SR sorurce(s). Only one user can connect to the SR interrupt.

Notes: SRVCON privilege is required.

FBSRD Disconnect routine from SR.

Syntax: iret = fbsrd (FB_SR DEFAULT, FB_AEB PORT) ;
FORTRAN CALL NOT AVAILABLE

Description: The connection established by £bsrc is broken.

Notes: SRVCON privilege is required.

1 The operator ADDRESS OF can not be used inside a function call, and the syntax should be
procFIR (rb ptr,

int *rb _ptr,

In a next release procF IR parameters will be passed by value, and so the '&'s and this note will disappear.

16

Aleph Event Builder FASTBUS library 6/16/88
FBSREN Enable SR connections.
Syntax: iret = fbsren (FB_AEB PORT);
FORTRAN CALL NOT AVAILABLE
Description: ~ The port is enabled to respond to the SR signal. SR is enabled by default when the connection
is made.
Notes: SRVCON privilege is required.
FBSRDS Disable SR connections.
Syntax: iret = fbsrds (FB_AEB PORT) ;
FORTRAN CALL NOT AVAILABLE
Description: The connected routine is not called in response to the SR signal after this routine has been
called.
Notes: SRVCON privilege is required.
FBFIRC Connect routine to FIR.
Syntax: iret = fbfirc (FB_ENV PORT, rec_blk, flt mask, flt val,
flt word, procFIR);
CALL FBFIRC (IRET,FB ENV_PORT,REC_BLK,FLT MASK,FLT VAL,PROCFIR)
Description: ~ When a FASTBUS Interrupt Message is detected by the receiver block number rec_blk the
contents of the £1t _word word of the interrupt message is ANDed with £1t mask and the
result compared with £1t val. If the two are equal the routine procF IR is called,
otherwise no further action is taken. Only one connection per user is allowed, and different
users can connect only to different receiver block numbers.
FBFIRD Disconnect routine from FIR.
Syntax: iret = fbfird (FB_ENV_PORT, rec_blk, flt mask, flt_val,
flt _word, procFIR);
CALL FBFIRD (IRET,FB ENV_PORT,REC BLK,FLT MASK,FLT VAL,PROCFIR)
Description: The connection established by fbfirc is broken. As only one connection per user is
allowed, only the receiver block number parameter rec_blk is used by this routine.
FBFIRE Enable FIR connections.
Syntax: iret = fbfire (FB_ENV_PORT);
CALL FBFIRE(IRET,FB ENV_PORT)
Description: ~ The receiver block specified in the connection routine is enabled to receive FASTBUS

Interrupt Messages. FIR is enabled by default when the connection is made.

17

17

Aleph Event Builder FASTBUS library 6/16/88

FBFIRS Disable FIR connections.
Syntax: iret = fbfirs (FB_ENV_PORT) ;
CALL FBFIRS(IRET, FB__ENV_PORT)

Description: The connected routine is not called in response to FASTBUS Interrupt Messages after this

routine has been called.

18

18

Aleph Event Builder FASTBUS library 6/16/88

7. STATUS AND ERROR HANDLING

/* C CALLS */

#include <cfbdef.h>
FB_environment id;

FB error_code iret0, iret;
FB_associated parameter *ass_par;
FB where occurred *wh_occ;

C FORTRAN CALLS
INCLUDE ‘'FFBDEF.INC'
INTEGER*4 ID, IRETO, IRET, QASS_PAR, QWH_OCC

FSGSUM

FSFSUPTT
Syntax:

Description:

FSRPTTT
Syntax:

Description:

Decode summary status.

Find supplementary status information.

iret0 = fsfsup (id, iret, &ass_par, &wh_occ):

CALL FSFSUP (IRETO, ID, IRET, @ASS_PAR, @WH_OCC)

To be called if iret !=FENORM. Finds further status information about the last error
produced by a FASTBUS action, and returns in ass_par and wh_occ the pointers to the

supplementary status structures:

Report a FASTBUS error

iret0 = fsrpt (id, iret, ass_par, wh_occ);

CALL FSRPT(IRETO,ID,IRET,ASS PAR,WH OCC)

To be called if iret ! =FENORM. Displays the information contained in the ass_par and

wh_occ stuctures. This routine returns always FENORM.

The associated_parameter and where_occurred structures are defined as follows

struct associated parameter ({
int type;
int id;
int error_code;
int severity_ level;

char *error name;

int cp_status; /*MEANINGFUL ONLY IF type>0 */
char *instr name; /*MEANINGFUL ONLY IF type>0 */
int primary address; /*MEANINGFUL ONLY IF type>1 */

int secondary address; /*MEANINGFUL ONLY IF type>l */
int address_register; /*MEANINGFUL ONLY IF type=3 x/
int Dbyte counter; } /*MEANINGFUL ONLY IF type=3 */

19

19

Aleph Event Builder FASTBUS library 6/16/88

struct where_ occurred ({
char *routine name; . S .
int pc_at_exception; } /*MEANINGFUL ONLY IF type>0 */

T NOT IMPLEMENTED

Tt NON-STANDARD: The standard types for the associated parameter and where occurred parameters
are 32 bit integer values.

20

20

Aleph Event Builder FASTBUS library 6/16/88

ERROR CODES

- The following standard error codes are defined:

FEACON FEAKTO FEASS1 FEASS2 FEASS3 FEASS4 FEASSS

FEASS6 FEASS7 FEBUF FEBSS2 FECLSD FECON FEDCON
FEDKTO FEDPE FEDSS1 FEDSS2 FEDSS3 FEDSS4 FEDSSS5

FEDSS6 FEDSS7 FEEIOV FEEREL FEINEI FEIPRYV FENCON
FENORM FENPRV FEOPEN FESATO FESSS1 FESSS2 FESSS3

FESSS4 FESSSS FESSS6 FESSS7 FEUPAR FEWTTO

- The following standard errors codes have a special meaning:
FEFTL: FASTBUS driver not installed or incompatible with the library software version.

FEOOPS: unknown (or simply unimplemented) error code. On occurrence, please return us the log file

with the informations displayed by fsrpt.

- In addition these new codes have been introduced;

FB_ERR_ENV_NOT_INITIALIZED
Short name: FEENIN, Severity: FSERR
This error can be returned by the hardware if library calls are bypassed with direct assembler

instructions. It should never occur with a proper use of the library.

FB_ERR_PRIMARY_ADDRESS_PARITY_ERROR
Short name: FEAPE, Severity: FSERR
On a FASTBUS primary address cycle a parity error was encountered.

FB_ERR_SECONDARY_ADDRESS_PARITY_ERROR
Short name: FESAPE, Severity: FSERR

On a FASTBUS secondary address cycle a parity error was encountered.

FB_ERR_ARBITRATION_TIMEOUT
Short name: FEGKTO, Severity: FSERR
GK(u) did not occurred after AG(d) within the timeout period.

21

21

Aleph Event Builder FASTBUS library

6/16/88

APPENDIX

LIST OF RESERVED NAMES (sorted by short name)

short name long name

fb_closel
fb_open
FBAEBP FB_AEB_PORT
FBDEID FB_DEFAULT EID
FBENVP FB_ENV_PORT
FBFIRC FB_FIR CONNECT
fbfirc fb_fir connect
FBFIRD FB_FIR DISCONNECT
fbfird fb_fir disconnect
FBFIRE FB_FIR ENABLE
fbfire fb_fir enable
FBFIRS FB_FIR DISABLE
fbfirs fb fir disable
FBINID FB_INVALID EID
FBPGET FB_PAR GET
fbpget fb _par get
FBPRST FB_PORT_RESET
fbprst fb port_ reset
FBPSET FB_PAR_ SET
fbpset fb_par_set
fbsrc fb_sr_connect
fbsrd fb_sr_disconnect
FBSRDF FB_SR DEFAULT
fbsrds fb_sr disable
fbsren fb_sr enable
FBVAL FB_BUFFER VAL
FBVAR FB_BUFFER VAR
FCASC
fcasc
FCASC2
fcascz
FCASD
fcasd
FCASD2
fcasd2
FCIENV

FB_CREATE IMMEDIATE ENVIRONMENT
fcienv
fb_create_immediate environment

FCLOSE FB_CLOSE

FCOMWT FB_COMPLETION WAIT
fcomwt fb_completion wait
FEACON

1 Lowercase names indicate C entry points,
while the same name in uppercase are used for
FORTRAN entry points.

FEAKTO
FEAPE

FEASS1
FEASS2
FEASS3
FEASS4
FEASSS5
FEASS6
FEASS7
FEBSS2
FEBUF

FECLSD
FECON

FEDCON
FEDKTO
FEDPE

FEDSS1
FEDSS2
FEDSS3
FEDSS4
FEDSS5
FEDSS6
FEDSS7
FEEIOV
FEENIN
FEEREL
FEFTL

FEGKTO
FEINEI
FEIPRV
FENCON
FENORM
FENPRV
FEOOPS
FEOPEN
FESAPE
FESATO
FESSS1
FESSS2
FESSS3
FESSS4
FESSS5
FESSS6
FESSS7
FEUPAR
FEWTTO
FFALSE
FGTENV

FB_FALSE
FB_GET ENVIRONMENT

22

Aleph Event Builder FASTBUS library

6/16/88

fgtenv
FIRDB
firdb
FOPEN
FPARBL
FPENVS
FPENVW
FPEXTH
FPNOWT
FPPEVN
FPPNON
FPPODD
FPPRIV
FPPRTY
FRC
frc
FRCB
frcb
FRCBM
frcbm
FRCM
frcm
FRCSA
frcsa
FRD
frd
FRDB
frdb
FRDBM
frdbm
FRDM
frdm
FRDSA
frdsa
FRLENV
frlenv
FRRT
frrt
FRSENV
frsenv
FSERR
FSFSUP
fsfsup
FSFTL
FSINFO
FSRPT
fsrpt
FSSUCC
FSTENV
fstenv
FSWARN
FTRUE
FWAT
fwai
FWC
fwc
FWCB
fwcbh
FWCBM
fwcbm
FWCM
fwem

fb_get environment

FB_OPEN

FB_PARITY EVEN
FB_PARITY NONE
FB_PARITY ODD

FB_READ_ CSR

fb read csSr

FB_READ CSR_BLOCK
fb_read csr_block
FB_READ CSR_BLOCK MULT
fb read csr block mult
FB_READ CSR MULT

fb read_csr mult

FB READ CSR SA

fb read csSr_sa

FB _READ DAT

fb read dat

FB_READ DAT _BLOCK

fb read dat block

FB _READ DAT ' BLOCK_MULT
fb read dat block _mult
FB __READ DAT _MULT

fb read dat_mult
FB_READ DAT SA
fb_read dat_sa
FB_RELEASE_ENVIRONMENT
fb_release environment
FB _READ_ROUTE_TABLE
fb read route table
FB*RESET_ENVIRONMENT
fb_reset_environment
FB~SEV_ERROR

FB_FIND SUPPLEMENTARY
fb_find supplementary
FB SEV FATAL

FB SEV INFO
FB_STATUS_REPORT
fb_status_report
FB_SEV_SUCCESS

FB_SET ENVIRONMENT
fb_set_environment
FB_SEV_WARNING
FB_TRUE

FB_WRITE CSR

fb_write_ csr

FB_WRITE CSR_BLOCK
fb_write csr block
FB_WRITE_CSR_BLOCK MULT
fb_write csr block mult
FB | WRITE _CSR_MULT

fb write csr i “mult

FWCSA
fwcsa
FWD
fwd
FWDB
fwdb
FWDBM
fwdbm
FWDM
fwdm
FWDSA
fwdsa
FWRT
fwrt

FB_WRITE_CSR_SA

fb write csr_ sa
FB_WRITE DAT

fb_write_ dat
FB_WRITE DAT BLOCK
fb_write dat block
FB_WRITE DAT BLOCK MULT
fb_write_dat_block_mult
FB WRITE DAT MULT

fb _write_dat_mult
FB_WRITE DAT SA

fb _write datr_sa
FB_WRITE ROUTE TABLE
fb_write_ route table

23

test.c

#include <stdio.h>
#include <cfbdef.h>

FB_environment id id;
FB_error_code iret;

FB word env [FPENVW];
FB_associated parameter *a p;
FB_where_ occurred *w_o;

/* SIMPLE ROUTINE TO CHECK FASTBUS RETURN CODE */
fb_check (code)
int code;
{
if (code != FENORM)
{
fsfsup (FBDEID, code, &a p, &w _0); /* GET INFQO */

fsrpt (FBDEID, code, a_p, w_o); /* REPORT ERROR */
return (0);

}

else
return (1);

}

main ()
{
int prim, sec;
int c¢sr0, slot, i;

iret = fb_open (); /* OPEN SESSION /*
fb _check (iret);

iret = fbpset (FBDEID, FPARBL, 6); /* SET ARBITRATION LEVEL */
fb_check (iret):;

iret = fgtenv (FBDEID, env, FPENVS, FPENVS) ;
if (fb_check (iret))

printf (" environmetn status word = $%x \n", *env);
iret = fwai (FB_AEB PORT, &slot); /* FIND SLOT */
if (fb_check (iret))

printf ("™ EB is on slot #3%d \n", slot);

printf (" Read Control Space operation:\n");
printf (" primary address ?");

scanf ("%d", &prim) ;

printf (" secondary address ?");

scanf ("%d", &sec);

iret = frc (FBDEID, prim, sec, FBVAR, &csr0); /* READ CSR */
if (fb_check (iret))
printf ("CSRO = %x\n",csr0);

iret = fb_close (); /* CLOSE SESSION */

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

