ALEPH 88-147
DATACQ 88-22
A. Miotto

14.11.1988

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Laboratoire Européen pour la Physique des Particules
European Laboratory for Particle Physics

3

Handling OS-9 Signals

Alessandro Miotto

A small library to improve signal handling under the
OS-9/68K operating system.

Author: A. Miotto.

Network Address: ALOVOL::MIOTTO at CERN
Version of Document: 1.0

Revision date: 26 September 1988
Status: Draft

Changes from last version:

This is a new document.

Handling OS-9 signals 9/11/88

1. INTRODUCTION

OS-9 provides a way to execute asynchronous user routines via the signal mechanism. After the user has
installed the intercept routine, any signal sent to the process (other than S$Ki11 and S$WakeUp) causes its
execution. Unfortunately if the installation has not been done, any signal (other than S$WakeUp) will cause
the process to abort. Moreover, because signal are handled directly in the user routine, there is no safe way to
provide asynchronous calls from inside a library.

The routines contained in this library allow standard handling as well as connecting selected signals. At any
time previously declared connections can be cancelled or signals can be masked. Two further routines are
implemented to allow bookkeeping of user signals.

The behaviour of the dispatcher is the following: when a signal is received the table of declared signals (up
to 16) is scanned to see whether a specific routine has to been called. If the signal number is not declared, then
the default intercept routine (if declared) is called. Finally if no default intercept has been declared, all signal
but S$Intrpt and S$Abort (that cause process to abort) are ignored. If the signal is masked it will be
queued, and the corresponding user routine will be executed whenever the signal is unmasked again. Be aware
that if even if the signal is masked, a SSWakeUp will be sent to the process, causing it to resume execution.

The dispatcher is installed after the first call to a declare routine. Before that, the normal OS-9 behaviour
should be expected (i.e. signals are intercepted by the she11).

Selected connections can be used from inside library routines to handle specific system signals and execute
asynchronous user routines in a transparent way, or to use safely signals different from S$Wake (to prevent

deadlocks caused by the fact that this signal is not queued) without aborting the user program.

The library filename is signals. 1.

The include filename (containing error codes) is sigdef . h.

Handling OS-9 signals 9/11/88

2.1 SIGNAL INTERCEPTING

SIG_DECLARE_SIGNAL Declare Selected Signal Intercept Routine.

C Syntax: int sig_declare_signal (signal num, my proc);
int signal num;
void (*my proc) ();

FORTRAN Syntax: INTEGER FUNCTION SIG_DECLARE SIGNAL (SIGNAL NUM, MY PROC)
INTEGER*4 SIGNAL NUM, MY PROC

Description: Declares the connection to the selected intercept routine. Whenever the signal

signal_num is sent to the process, the user routine my proc is called.

Return value: SIG NORMAL
SIG_ERROR (error code in global variable errno)

Possible error codes: SIG_TABLE FULL maximum number of connections (16) reached
SIG_ALREADY CONN signal already connected.

SIG_CANCEL_SIGNAL Cancel Selected Signal Intercept Routine.

C Syntax: int sig_cancel signal (signal num);
int signal num;

FORTRAN Syntax: INTEGER FUNCTION SIG_CANCEL SIGNAL (SIGNAL_ NUM)
INTEGERT*4 SIGNAL_ NUM

Description: Cancels the connection to the selected intercept routine. Whenever the signal
signal num isreceived it will be handled by the default procedure, if connected. If
the default procedure is not connected and the signal is S$Abort or S$Intrpt, the
user process will be aborted, otherwise the signal is ignored. No warning is returned if

the signal is masked and its queue is not empty.

Return value: SIG_NORMAL
SIG_ERROR (error code in global variable errno)
Possible error codes: SIG_NOT_CONN signal not connected.

Handling OS-9 signals 9/11/88

SIG_DECLARE_DEFAULT Declare Default Intercept Routine.

C Syntax:

FORTRAN Syntax:

Description:

Return value:

Possible error codes:

int sig declare_default (my proc);
void (*my_proc) ();

/* or */

int intercept (my proc);

vold (*my_ proc) ();

INTEGER FUNCTION SIG_DECLARE DEFAULT (MY PROC)
INTEGER*4 MY PROC

Declares the connection to the default intercept routine my proc. Whenever a signal is

received for which a selected connection has not been made, the user procedure

my_proc will be called.

SIG_NORMAL

SIG_ERROR (error code in global variable errno)
SIG_ALREADY CONN default already connected

SIG_CANCEL_DEFAULT Cancel Default Intercept Routine.

C Syntax:
FORTRAN Syntax:

Description:

Return value:

Possible error codes:

int sig_cancel_default ();

INTEGER FUNCTION SIG_CANCEL_DEFAULT ()

Cancels the connection to a default intercept routine. Whenever the signal
signal_numis received it will be handled by the selected signal intercept routine, if
connected. If the selected signal is not connected and the signal is S$Abort or
S$Intrpt, the user process will be aborted, otherwise the signal is ignored. All
masked signals that are connected to the default intercept routines are deleted, even if

their queues are not empty.

SIG_NORMAL
SIG_ERROR (error code in global variable errno)
SIG_NOT CONN no default connected.

Handling OS-9 signals 9/11/88

2.2 SIGNAL MASKING

SIG_MASK_SIGNAL Mask Signal.

C Syntax:

FORTRAN Syntax:

Description:

Return value:

Possible error codes:

int sig_mask_signal (signal num);
int signal_num;

INTEGER FUNCTION SIG_MASK SIGNAL (SIGNAL NUM)
INTEGERT*4 SIGNAL_NUM

The signal number signal num does not cause anymore an user procedure to be
executed. The signal is queued instead.

SIG_NORMAL

SIG_ERROR (error code in global variable errno)

SIG_ALREADY MASKED signal has already been masked.

SIG_NOT_CONN signal not connected.

SIG_UNMASK_SIGNAL Unmask Signal.

C Syntax:

FORTRAN Syntax:

Description:

Return value:

Possible error codes:

int sig_unmask signal (signal num);
int signal_num;

INTEGER FUNCTION SIG_UNMASK SIGNAL (SIGNAL NUM)

INTEGERT*4 SIGNAL NUM

The signal number signal num is unmasked. If the queue is not empty, the user
routine connected to the signal is called as many times as the number of signals
received while it was masked.

SIG_NORMAL

SIG_ERROR (error code in global variable errno)

SIG _NOT MASKED signal not masked.

SIG_NOT_CONN signal not connected.

Handling OS-9 signals 9/11/88

SIG_SHOW_PENDING Show Number of Pending Signals.

C Syntax: int sig_show_pending (signal num);
int signal num;

FORTRAN Syntax: INTEGER FUNCTION SIG_SHOW_PENDING (SIGNAL_NUM)
INTEGERT*4 SIGNAL NUM
Description: If the signal number signal num was masked, this function returns the number of

signals queued while it was masked.

Return value: number of pending signals in the queue
SIG_ERROR (error code in global variable errno)
Possible error codes: SIG_OVERFLOW t0o many signals have been queued (maximum is 32767).

SIG_NOT_MASKED signal not masked.

SIG_NOT_CONN signal not connected.

Handling OS-9 signals 9/11/88

2.3 SIGNAL BOOKKEEPING

SIG_BOOK_SIGNAL Book User Defined Signal.
C Syntax: int sig book_signal ();

FORTRAN Syntax: INTEGER FUNCTION SIG_BOOK_SIGNAL ()
Description: Each time the routine is called, a ncw signal number is returned to the user.
Return value: number of the signal that has been booked (256 + 511)

SIG_ERROR (crror code in global variable errno)

Possible error codes: SIG_OVERBOOK too many signals have been booked (maximum is 256).

SIG_UNBOOK_SIGNAL Cancel Booking of User Defined Signal.

C Syntax: int sig unbook_signal (signal_num);
int signal num;

FORTRAN Syntax: INTEGER FUNCTION S IG_UNBOOK_SIGNAL (SIGNAL_NUM)
INTEGERT*4 SIGNAL NUM

Description: Cancels booking of user defined signal signal num. The same signal can be returncd
by a subsequent call to sig book_signal ().

Return value: SIG_NORMAL
SIG_ERROR (error code in global variable exrrno)

Possible error codes: SIG_NOT_ BOOKED signal not connected
SIG_SYSTEM signal number in the system range (0 + 256)

SIG_TOO_BIG signal number greater than 511.

Handling OS-9 signals 9/11/88

EXAMPLES

In the first program a default handler is declared, and later the handling routine is changed. This is not a
typical application but shows what the library can do.
In the second program only keyboard interrupts are intercepted to exit the program in the correct way. Then

a signal is booked and used to execute an user routine whenever an ethernet packet is received.

Example 1.
#include <sigdef.h>

first_intercept ()
{ ...} /* here you are if you get a signal */

second_intercept ()
{ ...}

main ()

{
sig_declare default (first_ intercept); /* standard 0S-9 intercept */

sig_cancel_default (); /* change handling routine */
/* any signal coming now (except keybord interrupts) is lost */
sig_declare default (second intercept):;

}

Example 2.

#include <sigdef.h>

quit ()

{ ... /* flush buffers and cleanup */
exit (1);

}

got_a_packet ()
{ ...} /* this routine is called on receiving ethernet packets */

main ()

{

/* quit on CTRL-C and CTRL-E - ignore all other signals */
sig declare signal (SIGQUIT, quit);
sig_declare_signal (SIGINT, quit);

/* book signal and use it for reading ethernet packets */
eth signal = sig book_signal ();

sig_declare_signal (eth_signal, got_ a packet);

eth_read (protocol number, eth signal, buffer, length);

	
	
	
	
	
	
	
	
	

