ALEPH 88-155
DATACQ 88-29
A. Miotto
15.11.1988

The eeprom utility program

Alessandro Miotto.

This is the description of an OS-9 program that allows changes in the system

parameters contained in EEPROM on Aleph Event Buiders and VIP processors.

» The program will abort on attempts to run it under OS-9 versions different

from 2.2. An updated version will be released along with the EPROMS

containing the next system.

* Any attempt to run the program on machines different from AEB's and VIP's

will likely produce, in the best case, a bus error.



EEPROM utility program 14/11/88

THE INTERFACE

The program interface is UPI_menu-like: cursors can be used to displace through menus, while
the -' and '+' key on the auxiliary keypad will change page in the current menu. While editing
parameters, only legal key are accepted (e.g. only numbers in case of decimal values), and the
DELETE key can be used to delete input characters. To clear an alphanumeric entry (i.e. to enter
a null string) CRTL-SPACE has to be pressed.

THE COMMAND MENU

The first menu contains the following commands:

- Read EEPROM The system parameters are dis-
played in the second and third menu. The
“Write EEPROM?” item is enabled. If the EEPROM Yead EEPROM

checksum is wrong the “Fix checksum” item is en- Write EEPROM
abled.

- Write EEPROM The content of the EEPROM are Checksum:
updated. Only parameters that had their value changed Fix checksum
are actually written. After the execution the cursor is

put on the “Exit” item. Exit

- Fix checksum Normally OS-9 cannot be started if
the checksum is not right, but in case something has
been written in the EEPROM by mistake, this can fix it.
- Exit Exit to the OS-9 shell.

THE COMMON PARAMETER MENU

The second menu contains parameters that are com-

Common Parameters
mon to AEs and VIP's (this is not completely true in I
the present version of the system, but the program Module type: AEB
will make it transparent): Serial number: L
- Module type This parameter is not editable. The Ethernet address:
program will recognize automatically the module
type and update this field.
- Serial number For AEBs this parameter must >> Boot flags - enabled <«
be the same as the corresponding one in the AEB Sustem debugger: .
parameter menu. Allowed serial number for VIPs Init LANCE: .
are 0 to 63. Init network disks: -
- Ethernet address The ethernet address cannot Set time: _
be choosen arbitrarily: this parameter is automati- Execute startup: -
cally built form the serial number. Fork shell: -
* Boot flags These flags are checked during the )
system startup. For all the following parameters >> Startup files <<
YES (not case sensitive) has to be entered to enable
the flag and NO to disable it.
- System debugger The system debugger is en-
abled at startup. A terminal must be connected to the
main port to start OS-9 when this flag is enabled. -

- Init LANCE The LANCE chip is initialised.

- Init network disks The network disk driver is initialised.

- Set time The time is read from the host and the clock is started.

- Execute startup The OS-9 commands displayed under “Startup files” are executed.




EEPROM utility program

14/11/88

- Fork shell An OS-9 shell is forked to the main terminal.

* Startup files Up to five commands or command files can be specified. The maximum
length for each command is 23 characters. Any semicolon in the string will be translated to a
carriage return, so even if more than 5 commands can be entered, only the first five can be edit-

ed.

THE AEB PARAMETER MENU

This menu contains parameters that are used by
Buggy. You may wish to update the basic identifiers
when new versions are released, but it is better not
to modify other things unless you are quite sure of
what you are doing.

- Serial number The actual number is printed at
the bottom of the front panel.

- Hardware revision Current revision is 2.
- Buggy revision Current revision is 1.10.

- Microcode version Last pcode version
released is 2.29.

- OS-9 version Current version is 2.

- 0S-9 revision Current revision is 2.

* Buggy boot pointers They are set by the SO
command in Buggy.

- OS-9 address Entry point of the operating
system (currently $E12462).

- Warmstart Entry point of Buggy (currently
$EOOOES).

* 2661 control hytes Refer to the Event Builder
documentation,

- Port 1/Port 2 Default is $6E7E26 for both
ports.

* Interrupt levels Refer to the Event Builder
documentation.

- 68230 timer Default level is 6.

- Console port Default level is 5.

- Host port Default level is 5.

- LANCE Default level is 4.

- FASTBUS coprocessor Default 1vl is 3.

- Memory bus Default level is 2.

- Front panel ECL Default level is 1.

AEB parameters

>> Basic identifiers <<
FASTBUS Module ID: $0
Serial number:
Hardware revision:
BUGGY revision:
Microcode version:
0$-9 version:

08=9 revision:

>> Buggy boot pointers <«
0S-9 address: $0

Harmstart: $0

>> 2661 control bytes <«
Port 1: $0
Port 2: $8

AEB parameters

>> Interrupt levels <«
68230 timer:

Console port:

Host port:

LANCE:

FASTBUS coprocessor:
Memory bus:

Front panel ECL:




EEPROM utility program 14/11/88

THE VIP PARAMETER MENU

* Normal search These parameters specify start [ V1P parameters —
and end addresses of normal OS-9 search areas, i.e.
the unitialised RAM seen by the operating system. >> Normal search <«
The first area is internal memory: it can be 192 or Start o
768kbytes, depending on the RAM chips size. If the End $o
smaller chips are used, the search must end at Start e
$30000 (because the VIP does not produce a bus End o
error in accessing higher addresses) otherwise the Start $o
end address is $C0000. In any case the start address End e
must be $5000. The user can specify up to 3 other Start $8
different VME search areas. End $8
The board is delivered with two default entries: ]
$0-$30000 (internal) and $400000-$800000 >> Special search <«
(VME). :t«d"‘t ::_
n

* Special search These addresses specify areas

in which the operating systems looks for OS-9 :::rt ::
modules, i.e. ROM or initialised RAM. The first Start $0

area is set to internal memory ($800-$2000), and it End $0

is used to load at startup user modules contained in

EEPROM. The second area is the internal ROMs I
space ($C0000-$1000000). A third area can be

specified by the user.

Both special and normal entries are valid until the

first nuIl)l entry ($0-$0). _—UIP parameters —
* “eesave” parameters These parameters are >> "eesave" parm's <<
used to load OS-9 modules in the user part of the Start $0
EEPROM. They are used by other utilities that will Length Y

be delivered and documented separately.




EEPROM utility program

14/11/88

/* module t
#define AEB
#define VIP

typedef
typedef
typedef

struct

{
long

b

struct

{

word

byte

word
byte
long

byte

struct

{
byt

eeprom.h
ype */
1
2

unsigned char byte;

unsigned short word;

unsigned int long;

/* OFFSET */
param vip
mem list [16], /* 0x00 */
usr_prg, /* 0x10 */
usr_plen, /* 0x14 */
spare [14];
param_aeb
fastbus_id, /* 0x00 */
aeb id, /* 0x02 */
hw_rev, /* 0x04 */
buggy_rev, /* 0x06 */
0s9_rev; /* 0x08 */
spare [6],
eth add [6], /* 0x10 */
eth filter [8], /* 0x16 */
null 0 [2],
vax_add [6], /* 020 */
null 1 [10];
ucode_rev; /* 0x30 */
null 2 [2];
os_start, /* 0x34 */
warm reset; /* 0x38 */
null 3 [4],
epci 1 [31, /* 0x40 */
epci 2 [31, /* 0x43 */
null 4 [10];

e timer, /* 0x50
console, /* 0x51
host, /* 0x52
ethernet, /* 0x53
coprocessor, /* 0x54
memory, /* 0x55

front panel; /* 0x56

} intpt_1vl;

byte

terminator [4], /*
null 5 [37];

*/
*/
*/
*/
*/
*/
x/

not aligned on longword boundary! */




EEPROM utility program 14/11/88

/%

** currently EBs are using only string offset and alephgo flags parameters
x/

struct param com

{

byte eeprom_id, /* 0x80 x/
module type, /* 0x81 *x/
module_sn, /* 0x82 */
string offset, /* 0x83 */
eth_add [6]; /* 0x84 */

struct init_flags

{

unsigned

3,
fork_shell : 1,
ex startup : 1,
init_r0 : 1,
init_disks 1,
set_time 1,
init_lance : 1,
start_dbg : 1;

} alephgo flags; /* 0x8A */

byte spare_1 [112];

long checksum; /* 0xFC */

b

typedef struct
{

union
{
struct param aeb paraeb;
struct param vip parvip;
} mod dep;
struct param com parcom;
} sys_par;




	
	
	
	
	
	

