ALEPH 88-166
PHYSIC 88-47
A. Blondel
23 November 1988

MINUTES OF THE Z \rightarrow QQ MEETING

CERN, 10 November 1988

1. STATUS OF LINE SHAPE AND CROSS-SECTION FORMULAE

Alain Blondel reported on a systematic comparison of the weak corrections EXPOSTAR, ZAPPQ, and ZBATCH. Differences of more than 1% in the 'BORN' cross-sections are observed between EXPOSTAR and ZAPPQ, even though m_t, m_H, m_Z and C_{QCD} = {(1+ $\alpha_{\rm S}/\pi$) in EXPOSTAR, [1+ $\alpha_{\rm S}/\pi$ + 1.405($\alpha_{\rm S}/\pi$)²] in ZAPPQ} are the same.

ZAPPQ contains approximations that are, in principle, inaccurate, but EXPOSTAR contains plain bugs and inconsistencies. Once these are fixed, consistency at the $\pm 0.3\%$ level is obtained for light m_t. ZAPPQ is not reliable -- by construction -- for m_t > 150 GeV. ZBATCH, from Burgers as ZAPPQ, is slower but complete.

Differences between ZBATCH and EXPOSTAR appear in the total width -- the heavy top vertex included in ZBATCH and not in EXPOSTAR -- and in the ratios Γ_u/Γ_μ and Γ_d/Γ_μ ; this must be investigated, failing which predictions for R' = Γ_h/Γ_u will be erroneous.

2. DETERMINATION OF $\mathbf{m}_{\mathbf{Z}}^{}$ and $\mathbf{\Gamma}_{\mathbf{Z}}^{}$

Lluis Garrido described how to fit physical parameters to the measured cross-sections. The effect of non-QED corrections is to change the expression of the Z propagator in ZAPPQ and ZBATCH:

$$\frac{1}{s - m_Z^2 + im_Z \Gamma_Z} \rightarrow \frac{1}{s - m_Z^2 + \Sigma_Z(s)} ,$$

where $\text{Re}[\Sigma_Z(m_Z^2)] = 0$; thus one can write $\text{Re}[\Sigma_Z(s)] = f(s-m_Z^2)$, $\text{Im}[\Sigma_Z(s)]$ is proportional to s (phase space!), and the above expression can be rewritten as

$$\frac{1}{(1-f) \left[s-m_Z^2 + is\Gamma_Z/m_Z^2\right]} = \chi$$

with

$$\Gamma_{Z} = \frac{m_{Z}}{s} Im[\Sigma_{Z}(m_{Z}^{2})] \frac{1}{1-f} = \frac{\Gamma_{Z}^{0}}{1-f}$$
.

When writing total cross-sections,

$$\sigma_{x}^{\text{peak}} = 12\pi\chi^{2} \Gamma_{e}^{0}\Gamma_{x}^{0} = 12\pi \frac{\Gamma_{e}^{0}}{1-f} \frac{\Gamma_{x}^{0}}{1-f} \frac{1}{m_{Z}^{2}[\Gamma_{Z}^{0}/(1-f)]^{2}} = 12\pi \frac{\Gamma_{e}\Gamma_{x}}{m_{Z}^{2}\Gamma_{Z}^{2}},$$

the factor f causes a common redefinition of the total and partial widths.

In EXPOSTAR, the propagator is written

$$\frac{1}{s - m_Z^* + \sqrt{s \Gamma_Z^*}},$$

where both \textbf{m}_{Z}^{*} and $\boldsymbol{\Gamma}_{Z}^{*}$ are functions of s. One find that very accurately

$$\frac{\partial m_{Z}^{*}}{\partial s} = f$$
 and $\Gamma_{Z}^{*}(s) \approx \frac{\int s}{m_{Z}} \Gamma_{Z}^{0}$,

and the two formalisms are equivalent; f is about 1%, and results in

$$\Gamma_{\rm Z} \sim \Gamma_{\rm Z}^0 + 25~{\rm MeV}$$
 .

Fits were performed on EXPOSTAR and ZBATCH cross-sections with ZAPPQ with results out by at most 5 MeV for \mathbf{m}_Z and $\boldsymbol{\Gamma}_Z$.

To conclude:

- i) we understand the difference between Γ_{Z} and Γ_{Z}^{*} ;
- ii) we now have fitting programs;
- iii) we still need to understand what to fit exactly.

3. FITTING THE Z CROSS-SECTION

John Harton has used EXPOSTAR as a fitting program (rather time-consuming) to imagine an experiment fitting:

a) the first data point -- best results are obtained for

$$2 E_{\text{beam}} \sim m_{Z} - 2 \text{ GeV};$$

b) the first data point and the next two; $\rm\,m_{Z}$ and $\rm\,\Gamma_{Z}$ are fit within 50 MeV for a total of 7500 events.

 N_V would be known to ΔN_V = 0.21 if one had $\Delta L/L$ = 0.02 (from $\sigma_{\rm peak}$) N_V would be known to ΔN_V = 0.43 if one had $\Delta L/L$ = 0.05 (from $\sigma_{\rm peak}$) N_V would be known to ΔN_V = 0.41 from Γ_Z .

John uses a NAG fitting routine, which is much more convenient than MINUIT.

4. TWO-PHOTON BACKGROUND

Glen Cowan described background estimates obtained with his preliminary version of PHOTO1, the two-photon event generator.

PHOT01 contains both QPM and VDM -- of course nobody knows to which extent these are two ways to generate the same events.

The generator allows generation of events above a user-controlled ($\gamma\gamma$) invariant mass W. It is checked that above relevant energies ($E_{\rm tot}$ > 15), using W > 1 or W > 3 leads to the same background.

Since large uncertainties exist in the prediction of two-photon cross-sections, the plan is to use reasonable energy and multiplicity cuts such as

$$E_{tot}$$
 > 25 GeV, $N_{CH} \ge 3$,

and to control the background using the P_{7} distribution.

The question is clearly 'What are $E_{\rm tot}$ and P'_Z experimentally? With the above cuts, the background level is very low (a few 10^{-4} at the peak, a few 10^{-3} 4 GeV away from it) but very uncertain.

5. TAU-PAIR BACKGROUND

Stephen Haywood explained that the τ background is unimportant for m_Z, Γ_Z fitting: the cross-section has the same propagator effect. For the total cross-section, one has to correct for O(2%) τ contamination, which should be known very well. This is no problem.

6. MDST News

Stephen Haywood described the status of the mini-DST. The assembly of vertices and tracks is now quasi-ready. The rationale is to use

- for jets: all charged and neutrals associated with the main vertex,
- for charged tracks: all charged tracks associated with any vertex.

The ECAL-HCAL structure is not really in place yet. It was commented that the clustering is unnecessary for linear observables (thrust, energy, jet angle) and potentially damageable to quadratic observables (sphericity).

A discussion followed on how to make our studies more concrete. The work plan is now to use ALPHA and full GALEPH/JULIA to study background and event selection.

The 'hadron event flag' facility is to be written within ALPHA.

7. NEXT MEETING

Tuesday 13 December

14:00

room 2/1-034

Agenda

Monica Pepe: Energy flow

Haimo Zobernig: Jets

Ed Blucher: ALPHA facilities

Plus any other contributions:

- Bhabha background;
- trigger efficiency;
- more on fits etc.;
- quark charge asymmetry, polarization?