ALEPH 88-205
DATACQ 88-38 _
12th November 1988

A.Belk, D.R.Botterill, J.Harvey

ALEPH Online Database

Abstract

This report summarises the approach taken to the design and implementation of the Aleph online
database. It offers a prescription for people wishing to add new information to the database in the
same style. It describes what facilities are available for generating and managing the database.
An example illustrating how one component of the database has been devised is given in an
appendix.

Chapter 1

Chapter 2

CONTENTS

INTRODUCTION e

OVERVIEW OF ONLINE DATABASE

2.1 DAQ components described in the database

2.2 Designapproach i e

2.3 Implementation Details i
2.4 Software Tools available it

Chapter 3

IMPLEMENTATION PROCEDURES

3.1 Global Section Filesttt ittt eneroonoensnenennns

3.2 Creating a set of empty Oracle tables startingfrom DDL
3.2.1 Creating and linking a global section
3.2.2 Creatingthe Global section i,
3.2.3 Listingthe Global section............ i,
3.2.4 Preparing programs that access the global section
3.25 TolHnk a Programoviuuuutetrmniueeeeenennnnnnnnnneeesnan

3.3 DDL modification whilst preserving existingdata

3.4 Implementation Conventionst

..

..

[N I -

© 0w 3

10
10
10

10
12

13
14
17

CHAPTER 1
INTRODUCTION

A large number of parameters are used to describe the various elements of the data ac-
quisition system (eg. the readout and control systems) as well as the various software
components used to configure and administer datataking (eg. partitions and runtypes). As
these parameters are needed by many parts of the software it is important that they are
described in a complete and consistent way. Thus a common approach has been followed
for the design and implementation of a database system for containing and accessing these
parameters. This approach is described in this document.

Introduction 1

CHAPTER 2
OVERVIEW OF ONLINE DATABASE

2.1 DAQ components described in the database

The following is a brief summary of the current contents of the online database. Note that
each category is described more completly elsewhere.

* The detector description

This defines the general structure of the detector in terms of subdetectors, their com-
ponents and slots. It contains geometry information and other detector specific param-
eters. It actually consists of a subset of the general Aleph DataBase System (ADBS),
which is considered relevant for the online system.

¢ The partition description

A partition is a subset of the experiment which can be operated as a self contained
datataking system. Partitions are defined in terms of the detector components they
contain.

* The run description

This contains descriptions which can be used to configure the experiment in different
ways according to the wishes of the operator. Quantities described include runtypes,
tasks and output destinations.

* The readout description

This contains descriptions of the main readout components, such as Event Builders,
Trigger Supervisors etc. and their relationships with the detector components.

¢ The Fastbus description

This describes the Fastbus segments and their connectivity as well as all Fastbus de-
vices. The contents of these tables reflect the status of the readout system at any time.

* The slow control description

This describes the G64 crates, gateways and Utinet local area network. Slow Control
devices are also described including their relationships to detector components.

¢ The graphics description

This contains a graphical representation of elements of the system (ie. detector, readout
and control systems) in terms of the primitives used by a graphics package. Attributes
such as default colour, line aspect etc. are also contained in the description.

Overview of Online Database 3

2.2 Design approach

A data model (entity - relationship) has been used to help ensure the consistency of the
database design. This model results in the data being organised in tabular form. Each table
contains the description of a group of identical objects; each member of the group occupies
one row in the table and each attribute used to describe it occupies a column. Each object
can also be further described through its relationship with other types of objects, described
in other tables.

An advantage of using this data model is that the unnecessary repetition of information
can be avoided and thus the integrity of the data is enhanced. Another advantage is that
exactly the same format is used by relational database systems, such as ORACLE.

Diagrams are used to make the design, supplemented by a data dictionary for specifying
table contents more precisely. The format of the data dictionary follows that defined by
the ADAMO system. An ADAMO tool (VLB) is used to automatically generate the code for
making variable declarations from within FORTRAN.

2.3 Implementation Details

As the data structures contained in the database are just tables they can be managed using
the ORACLE database system we have running on our central VAX. However, as we were
concerned about the overhead when accessing the data through ORACLE, the database has
also been implemented using VAX global sections. Each major component of the database
has been implemented on a distinct disk based section file. Various tools have been written
for copying data between the ORACLE database and the global sections.

As the data has a tabular structure and the language most commonly used on the VAXes
is FORTRAN the tables have been declared using the VAX FORTRAN STRUCTURE and
RECORD statements.

Normally data acquisition tasks needing access to the database will just map the disk based
section corresponding to the component of the database they are interested in. The same
copy of the database is available to all machines in the cluster including all VAXstations
using the 8700 as a boot node.

ORACLE will normally be used only for exploiting the facilities it offers for managing the
database eg. backups, rolling back previous versions, checking integrity etc. ORACLE
also provides the possibility of changing the structure (ie. definition) of the tables whilst
maintaing all the existing data intact. ORACLE will thus typically be used by the people
responsible for managing the various parts of the database.

A UPI interface is being provided for interrogating and managing the contents of the
database implemented with global sections. A common style is being followed for the menus.
ORACLE can be interrogated using its SQL interface.

2.4 Software Tools available

In order to access data in a global section various files have to be written for each component
of the database

e A software routine is needed to map the section file to the variables defined in the
program.

4 Overview of Online Database

* An include file is needed to define the STRUCTURE and RECORD declaration state-
ments

* An option file is needed to link the global section

In principle all these files can be specified automatically from the description of the data

given in the data dictionary and therefore several tools have been written to automatically

generate them. Tools are also available for automatically generating the ORACLE tables
and for transfering data between ORACLE and the global section files.

Overview of Online Database 5

CHAPTER 3
IMPLEMENTATION PROCEDURES

This chapter describes the procedures that have been written for creating and managing
the database.

The first stage concerns the creation of the global sections. Before starting, you should have
a description of your tables in DDL and an Oracle id/password (this can be obtained from
David Botterill). This Oracle ID cannot be used for other purposes as it will be erased by
the one of the steps described below. Oracle should be used to keep a backup copy of the
global section. The procedure has three major steps:

¢ Create an empty set of Oracle tables.
* Create routines, .OPT files, and executable programs to create the global section.
e Prepare user programs to access the global section.

As ADAMO, Oracle and Fortran refer to objects by different names it is worthwhile to review
some of the terminology used by these three programming environments.

ADAMO ORACLE FORTRAN

Entity Set Table Array of RECORDs
Attribute,Relationship Column Field in Structure statement
Instance of an Entity Row One record of the array

Note that the DDL must define the maximum size for each table using the SIZE parameter.
This information is used to define the number of RECORDs reserved for the corresponding
Fortran array. Initially it is advisable to add some spare columns to avoid rebuilding the
section too often.

3.1 Global Section Files

The Aleph DAQ global sections are in files in directories below
DISK$COMMON:[ONLINE.ONLDB.component] where component is the name given to
each separate part of the database. The structure of the subdirectories below this level
and the convention for the logical names used to point to them is as follows:

Implementation Procedures 7

Logical Name SubDirectory Contents

A_xxDB$SRC [.source] include file containing declarations .VLB
A_xxDB$DIR [.nodeb] files used in linking to global section
A_xxDB_MAK$SRC [-make.source] working directory SOURCE files
A_xxDB_MAKS$DIR [.make.nodeb] work area and utilities EXE files
A_xxDB$GBL [.dbase] the global section file

Having created the subdirectory [.component] and made it the default directory, executing
the following command file will create the lower sub-directories.

@disk$common:[online.oragen.nodeblcreate_global_dir

The command files described in the following sections require the logical names defined
above, but do not depend on the directory structure.

3.2 Creating a set of empty Oracle tables starting from DDL

Execute the following command file :
Run @DISK$COMMON:[ONLINE.ORAGEN.NODEBICREATEDB

Please note that this command file creates a lot of files in the current directory. Also it
should only be run on ALOVOL as it needs Oracle.

You must answer the following questions:

DDL filename (s) ([RET-CSP done)
Filename of the DDL file. Enter nothing if the ADD file already exists

ADD filename
Filename of the ADD file, excluding the filetype

Subschemata ([RETF ALL)
Default is to process the whole DDL. Separate schemata names by commas,
no surrounding () is needed.
Include (VLB) filename
Filename of the VLB file, excluding the filetype
Database name
The ORACLE user id
Password
Oracle password

Note that there is a known bug in the VLB step which can create a VLB file with lines
exceeding column 72 if table names exceed 9 characters. These lines should be split with
an editor.

3.2.1 Creating and linking a global section

Before attempting this step please note the following:
Firstly you should already have a VLB file and a set of (possibly empty) Oracle tables.
Secondly you must be running on ALOVOL as Oracle is needed. In addition this step must
be run after each change of version of VMS or Oracle.

The following command file can now be executed:

8 Implementation Procedures

$ @DISK$COMMON:[ONLINE.ORAGEN.NODEBJORAGEN Answer the following ques-

tions:

Global section name (fb/sc/re/...)?

This should be a short name for the global section, xx in this

document

Prefix logical name of output directories

This asks for the string which is represented as A xxDB and in fact
A xxDB is the default, where xx is the short name above

File spec of include (VLB) files

This is the full file specification of the VLB file and should have a

"standard" form eg A xx$SRC:xx.VLB
Database name?
The ORACLE user id
Password?
Oracle password
Run compilations in batch (Y/N)?

Answer Y if you have a lot of tables (>10 depending how

patient you are)
Delete temporary files (Y/N)?
Answer Y normally

This step should create the followirg files:

Directory File Use

A_xxDB$SRC CREATE_xx_GLOBAL.FOR used to map section

A_xxDB$DIR ALL_xx_CLUS.OPT the linker .OPT file

A_xxDB$DIR CREATE_xx_GLOBAL.OBJ OBJ file for mapping section

A_xxDB_MAK$DIR xx_GBLSEC_LIST.EXE program to list the global section

A_xxDB_MAK$DIR xx_GBLSEC_ORA.EXE program to transfer data between OR-
ACLE and the global section

same as VLB VLBname.LEN include file with parameters defining

the size of each table

3.2.2 Creating the Global section

To create the global section in A_xxDB$gbl
$ Run xx_GLBSEC_ORA

This program asks for the Oracle id and password, and then one of the following keywords:

e "toglobal" - to copy data from Oracle to the global section

* "tooracle" - to copy data from the global section to Oracle

* "compare" - to compare the global section with Oracle

These commands can be abbreviated to unique strings ie. tog,too,and c

Implementation Procedures 9

3.2.3 Listing the Global section

The contents of the tables in your global section can be listed as follows:
$ RUN xx_GLBSEC_LIST

It asks for a table name. "ALL" can be specified to list the contents of all tables. If table
names are abbreviated, the first matching name is used.

3.2.4 Preparing programs that access the global section

The main program should call for each global section
iret=CREATE_xx_GLOBAL(CWRITE’)

to map with read/write access, or alternatively
iret=CREATE_xx_GLOBAL(’’)

to map with read access only. The return value is a VMS condition code and should be
checked for success.

If the global section is changed the following routine can be called to to force the changes to
be written to disk:

iret=UPDATE_xx_GLOBAL()

Note that the contents are automatically written when your program terminates, ie. when
the global section is no longer in use, so that it is not normally necesary to call this routine
unless the information is needed by a program running in another machine

The global section is created by the first program that is run containing the call to CREATE_
xx_GLOBAL. This program should have write access of course. There is no provision for
interlocking updates of the section by different programs nor for maintaining the same
section in different VAXes of the cluster. NB. Software has been written to perform the
required synchronisation across the cluster but has not been released yet.

3.2.5 To link a program

The following must be included in the link commands: once per program:
A_gbl$DIR:create_global,gblsec_open,gbl_errors

and for each global section
A_xxDB$DIR:ALL_xx_CLUS/opt
These programs need SYSGBL privilege.

This completes the steps when first creating a global section.

3.3 DDL modification whilst preserving existing data

If you need to modify your DDL and you have no data in the global section or in Oracle to
preserve, you may repeat all of the above steps.
If you wish to preserve your data, you should do the following

1) copy the data into Oracle using the old "xx_GLBSEC_ORA" program
2) modify your DDL and run VLB to produce a new VLB file, but do not run @ REATEDB

10 Implementation Procedures

3) use SQLP to add any new columns or tables to Oracle.
4) rerun @ORAGEN
5) delete the old gblsec file A_xxDB$GBL:xx_GBLSEC.GBL

6) run the new xx_ GLBSEC_ORA to create a new global section file and copy data from
Oracle into it.

The ORACLE commands for performing step 3) are as follows:
Firstly define the Oracle symbols by

$ @disk$oracle:[oraclelorauser

and then login to ORACLE :

$ sqlp oracleid/oracle_password

The SQL prompt (SQL>) will appear.

To add columns type

SQL> ALTER TABLE table ADD(column spec);

where "table"” is the table name

"column" is the column name

"gpec" is related to the ADAMO type

ADAMO SQLP spec
INTE NUMBER
REAL NUMBER
CHAN/CHnn CHAR(nn)
LOGI CHAR(1)

Note that new ADAMO relationships imply new columns. If in doubt, you can acquire a
second Oracle ID, fill it with the new tables and compare with the old tables.

The SQLP command "DESC table" can be used to print a description of a "table"
To add a table:

SQL> CREATE TABLE table(

column spec,

column spec, etc

column spec) SPACE ALEPH;

You must include a column "ID" spec "NUMBER?". (This could all be automated if there was
sufficient demand...)

Note that old columns or tables that are not in the new DDL will be ignored by the new
xx_GBLSEC_ORA program.

Implementation Procedures 11

3.4

12

Implementation Conventions

The first column of every table is the ADAMO ID. The convention for DAQ global sections
is that:

table(i).ID <= 0 means the row is not in use
table(i).ID = i means the row is in use

Other values must be avoided. This convention is compatible with, but more restrictive
than ADAMO.

Relationships create a column in one table which should contain the ID of the row in
the other table. The column name is the other table unless the DDL specified a BY
construct. If the relation is to one of a set of tables, there is another row with the other
table name.

The COMMON block contains two words, COL and ROW, to be compatible with the
representation of tables in BOS banks. COL is the size of a row in 32 bit words, and ROW
is the number of rows. Both words are initialised by xx_glbsec_ora when transfering
from Oracle to the global section.

Implementation Procedures

APPENDIX A
EXAMPLE : RUN DESCRIPTION

Example : Run Description 13

A.1 DDL

SUBSCHEMA Runs
: 'A system for storing run control information’

AUTHOR 'J.Harvey’
REVIEWER ' /
VERSION '1.4'

DATE r07/03/88"'

DEFINE ATTRIBUTE

Date = INTE [0,99999999] ;
Time = INTE [0,99999999] ;
Status = CHl6 ;
Name = CHAS8 ;

END ATTRIBUTE
DEFINE ESET

RunType
: 'Identifies the type of run’

SIZE 100,100

= (Name : 'Name of runtype’,
FirstsSD = INTE : 'Pointer to first subdetector’,
FirstTask = INTE : 'Pointer to first task’)

~

SubDet
: 'Contains list of subdetectors which can be associated with other
parts of the database by name’

SIZE 15,15

= (Name : 'Name of subdetector’,
Spy = LOGI : ’'Spy channel flag’,
FirstRT = INTE : 'Pointer to first runtype’,
FirstTask = INTE : 'Pointer to first task’,
FirstTT = INTE : 'Pointer to first trigtype’)

~e

SDRT
¢ 'Links subdetectors with runtypes’
SIZE 250,250
= (NextRT = INTE : 'Down link to next runtype’,
PrevRT = INTE : 'Up link to previous runtype’,
NextSD = INTE : 'Down link to next subdetector’,
PrevsSD = INTE : 'Up link to prev subdetector’)
;
Task

: 'All DAQ tasks to be synchronised by Run controller’
SIZE 100,100

(Name : 'Name of task’,
FirstSD = INTE : 'Pointer to first subdetector’,
FirstRT INTE : ’'Pointer to first runtype’)

~

14 Example : Run Description

SDTask
: 'Links subdetectors with tasks’

SIZE 250,250

= (NextTask = INTE : 'Down link to next task’,
PrevTask = INTE ¢ 'Up link to previous task’,
NextSD = INTE : 'Down link to next subdetector’,
PrevsD = INTE : 'Up link to prev subdetector’)

e

RTTask
: ’'Links runtypes with tasks’

SIZE 250,250

= (NextTask = INTE : 'Down link to next task’,
PrevTask = INTE : 'Up link to previous task’,
NextRT = INTE : 'Down link to next runtype’,
PrevRT = INTE : 'Up link to prev runtype’,
SpyEnab = LOGI : ’'Spy datastream’,
DefStream = CHAS8 : 'Default datastream main/spy’)

.
’

TrigType
: 'Identifies the type of trigger’
SIZE 50,50
= (Name : 'Name of runtype’,
FirstSD = INTE : 'Pointer to first subdetector’)

~e

SDTT
¢ 'Links subdetectors with trigger types’
SIZE 100,100
= (NextTT = INTE : 'Down link to next trigtype’,
PrevTT = INTE t 'Up link to previous trigtype’,
NextSD = INTE : 'Down link to next subdetector’,
PrevSD = INTE : 'Up link to prev subdetector’)
;
END ESET

Example : Run Description 15

DEFINE RSET

(SDRT [1,1] -> [O,*] SubDet)

: ! Used to establish many

’

SDRT [1,1] -> [0,*] RunType)
: ! Used to establish many

.
’

RTTask [1,1] -> [0, *] RunType)
: / Used to establish many

.
’

RTTask [1,1] -> [O,*] Task)
: ! Used to establish many

.
’

RTTask [0,1] -> [0,1] SubDet
BY SpyChan)
: / Used to identify which

.
’

SDTask [1,1] -> [0, *] SubDet)
: / Used to establish many

.
’

SDTask [1,1] -> [0,*] Task)
: /! Used to establish many

.
r

SubDet [0,1] -> [1,1] Task
BY ControlTask)
: / Used to identify which

’

SDTT [1,1] -> [0,*] SubDet)
: ! Used to establish many

.
’

SDTT [1,1] -> [0, *] TrigType)
: !/ Used to establish many

.
’

TrigType [0,1] -> [0,*] Task)
: ! Used to establish many

.
’

END RSET
END SUBSCHEMA

16 Example : Run Description

to many

to many

to many

to many

rel between

rel

rel

rel

between

between

between

SD spy channel task

to many

to many

task is

to many

to many

to many

rel

rel

the

rel

rel

rel

between

between

control

between

between

between

SDs and RTs’

SDs and RTs’

RTs and tasks’

RTs and tasks’

is associated with’

SDs and tasks’

SDs and tasks’

task for each SD’

SDs and TTs’

SDs and TTs’

trigtypes and tasks’

A2 VLB

The declaration code generated from the DDL by the VLB tool for this Subschema is as
follows

STRUCTURE / Runs_RTTask /

INTEGER ID
INTEGER NextTask
INTEGER PrevTask
INTEGER NextRT
INTEGER PrevRT
LOGICAL SpyEnab
CHARACTER*8 DefStream
INTEGER RunType
INTEGER SpyChan
INTEGER Task

END STRUCTURE
RECORD / Runs_RTTask / RTTask (250)

INTEGER RTTask COL, RTTask_ROW
COMMON / COM RTTask / RTTask_COL, RTTask_ROW, RTTask

C
(o o it o e e e e R B e o S S o i o o o o e e o o e o
C
STRUCTURE / Runs_RunType /

INTEGER ID

CHARACTER*8 Name

INTEGER FirstSD

INTEGER FirstTask

END STRUCTURE

RECORD / Runs RunType / RunType (100)

INTEGER RunType COL, RunType ROW
COMMON / COM RunType / RunType COL, RunType_ ROW, RunType

STRUCTURE / Runs_SDRT /

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

END STRUCTURE
RECORD / Runs_SDRT /

ID
NextRT
PrevRT
NextSD
PrevSD
RunType
SubDet

SDRT (250)

INTEGER SDRT_COL, SDRT_ROW

COMMON / COM_SDRT / SDRT_COL, SDRT ROW, SDRT

Example : Run Description 17

c ———
(o]
STRUCTURE / Runs_SDTT /
INTEGER ID
INTEGER NextTT
INTEGER PrevTT
INTEGER NextsSD
INTEGER PrevSD
INTEGER SubDet
INTEGER TrigType
END STRUCTURE
RECORD / Runs_SDTT / SDTT (100)
INTEGER SDTT COL, SDTT ROW
COMMON / COM_SDTT / SDTT_COL, SDTT_ROW, SDTT
C
C ———
c
STRUCTURE / Runs_SDTask /
INTEGER ID
INTEGER NextTask
INTEGER PrevTask
INTEGER NextSD
INTEGER PrevSD
INTEGER SubDet
INTEGER Task
END STRUCTURE
RECORD / Runs_SDTask / SDTask (250)
INTEGER SDTask_ COL, SDTask ROW
COMMON / COM_SDTask / SDTask_pOL, SDTask_ROW, SDTask
C
c ___
C
STRUCTURE / Runs_SubDet /
INTEGER ID
CHARACTER*8 Name
LOGICAL Spy
INTEGER FirstRT
INTEGER FirstTask
INTEGER FirstTT
INTEGER ControlTask
END STRUCTURE
RECORD / Runs_SubDet / SubDet (15)
INTEGER SubDet_COL, SubDet_ROW
COMMON / COM_SubDet / SubDet_pOL, SubDet_ROW, SubDet
C
C ———
C
STRUCTURE / Runs_Task /
INTEGER ID
CHARACTER*8 Name
INTEGER FirstSD
INTEGER FirstRT

END STRUCTURE
RECORD / Runs_Task / Task (100)

INTEGER Task_ COL, Task ROW
COMMON / COM_Task / Task COL, Task ROW, Task

18 Example : Run Description

STRUCTURE / Runs_TrigType /

INTEGER ID
CHARACTER*8 Name
INTEGER FirstsD
INTEGER Task

END STRUCTURE
RECORD / Runs_TrigType / TrigType (50)

INTEGER TrigType COL, TrigType ROW
COMMON / COM TrigType / TrigType_COL, TrigType_ ROW, TrigType

Example : Run Description 19

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

