ALEPH 88-206
DATACQ 88-39 _
14 December 1988

D.R.Botterill, RAL

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

@ ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE
J Laboratoire Européen pour la Physique des Particules \

European Laboratory for Particle Physics

Fastbus Database and
Initialisation

Abstract

The Aleph Fastbus system will consist of over 100 crates containing over
1000 modules. A database has been created to contain the current status of
the system, programs written to update the database and initialise Fastbus,
and a subroutine package provided to allow access to the data.

Contents

CHAPTER 1 INTRODUCTION 1-1

CHAPTER 2 PROGRAM CONTAINING MENU ACCESS TO THE

DATABASE, AND TO INITIALISE FASTBUS 2-1
2.1 THE INFORMATION THAT CAN BE CHANGED BY MENU 2-1
2.2 THE FASTBUS ACTIONS 2-2
CHAPTER 3 PROGRAM ACCESS TO THE DATA IN THE DATABASE 3-1
3.1 INTRODUCTION TO THE MORE IMPORTANT TABLES AND LINKS 3-1
CHAPTER 4 SUBROUTINES 41

FBDB_FIND_DEVICE 4-2

FBDB_FIND_PORT 4-3

FBDB_FIND_SEGMENT 4-4

FBDB_GET_PA_OF_PORT 4-5

FBDB_FIND_PORT_OF_PA 4-6

FBDB_FIND_DEVICETYPE 4-7

FBDB_FIND_PORTTYPE 4-8

FBDB_FIND_SEGTYPE 4-9

FBDB_FIND_VAXINTF 4-10

CHAPTER 5 ERROR CODES 5-1

1

Introduction

The Aleph Fastbus system will consist of over 100 crates containing over
1000 modules. A database has been created to contain the current status
of the system, programs written to update the database and initialise
Fastbus, and a subroutine package provided to allow access to the data.

For the databse to be useful, it should be updated whenever a Fastbus
crate or module is added or removed from the Fastbus system. When an
item is first added to the database, a name or number should be chosen
that is meaningful to the users of that item. This will make subsequent
modifications much easier.

The database is detector-independent, and detector-specific configuration
tables should be derived from the Fastbus database and converted to a
form most useful to the sub-detector.

Fastbus can be dynamically re-configured to allow or dis-allow modules
in one segment to access modules in another segment, separately for
broadcast and for normal Fastbus actions, to control the passing of

the interrupt line (SR) up the tree and to re-assign arbitration levels.
However the configuration must always satisfy certain rules, for example
two modules in the same segment cannot use the same arbitration level.

Although in the simplest forms of partitioning, the fastbus tree can be
split into sub-trees, in the more general forms, partitions will be sharing
segments,SIs, and SRHs. This can be best handled by collecting the
information in one place and having one routine merge the requirements
of all the partitions and re-configure Fastbus appropiately.

Program containing menu access to the database, and
toinitialise Fastbus

The program can be run stand-alone by
$ RUN A_FBI$DIR:FBINIT

if one has SYSGBL privilege; it is also in the scheduler tables on ALOVOL
and ALOVHC as FBINIT.

The top menu allows one to select the set of database tables to be inspected
or modified, or to select the actions to perform on Fastbus.

The database table menus are in a common style with some variants. The
top section allows one to select a subset of items to list, to add a new item
and sometimes other actions. The bottom section is a pseudo parameter
page where the parameters of one item can be changed. Note that changes
are only effective if the "Accept" option is selected.

The one item to be changed is selected either by sufficiently specifiying
the list criteria, or by further selecting one item in another menu which
displays the list of items satisfying the criteria.

2.1 The information that can be changed by menu

The information that can be changed by menus includes:

1) Specifications of types of Fastbus devices, which contains the name of
the type,number of slots it occupies in a crate; and for each port (Fastbus
addressable) the Fastbus ID, whether it connects to a crate or cable, and
for crate ports, the offset of the addressable slot from the right-most slot
occupied.

2) The current layout of the Fastbus system:
¢ segments: whether a crate or cable or crate cluster and its GPs.

® devices: device type, Fastbus addresses (GPs and GAs), absent or
not. Note that the connectivity of crates and cables is implied by the
presence of Sls.

e VAX interface: the relation of EVIs to VAXs

3) The use that needs to be made of the layout. In each case, the end
points of the transaction are specified and not the intervening Sls.
Although menus are provided for these tables, it is expected that the
more normal mode of operation will be that these tables be manipulated
by the partition controllers to add and delete entries for each of their
needs.

¢ broadcasts.
¢ SR source and handlers.

¢ routes for normal Fastbus operations. These can be defined two ways:

2-1

Program containing menu access to the database, and to initialise Fastbus

type=multiple: from start segment to all segments lower down the
tree; a "multiple” route from the top segment in the tree allows every
segment to address everything below it.

type=simple: from start to end segment. only useful for routes up the
tree providing a "multiple” route exists.

Data should be entered in the following order:

D O AW =

Any new device types

Segments

Devices - at least SIs, AEBs with EVIs.
VAX interfaces

Useage

The "search" facility described below can be used for other modules.

The program makes some checks on the consistency of the data before
modifying the database, for example GPs and Fastbus addresses must

be unique and crate slots cannot be occupied twice. Devices marked as
"absent" are ignored in these checks. More subtle inconsistencies may only
become apparent when the route tables are computed.

2.2 The Fastbus actions

Menus exist to cause the following actions on Fastbus:

2-2

Initialising Fastbus, either totally or starting at one segment and
going further down the tree

Reading the available Fastbus registers to check if the Sls. etc still
contain the values loaded in them.

Reading all Fastbus addresses to look for modules that are not in the
database. This can be a convenient way to enter most modules in the
system, although it cannot handle correctly modules that have two
Fastbus addresses such as AEBs,TPPs etc.

Before any of these actions, the program checks if the database has been
changed by any menu. In this case the tree structure and routing tables
are recalculated and stored in the global section. Otherwise the existing
data is used.

3 Program access to the data in the database

The data is stored in a disk based global section which should be mapped
in a program’s initialisation phase by:

iret=CREATE_FB_GLOBAL(")

to map to the global section with read access,or
iret=CREATE_FB_GLOBAL(CWRITE’)

to map with write access.

The following must be included in the link commands:
A_GBL$DIR:CREATE_GLOBAL,GBLSEC_OPEN,GBL_ERRORS
A_FBDB$DIR:ALL_FB_CLUS/OPT
A_FBI$DIR:FBDB_ERRORS,FBINIT/LIB

The data exists in Fortran Records defined by Structure statements. The
first column is the Adamo ID, which is zero for rows not is use and equal
to the row number for rows in use.

Some information is available by calling subroutines described below,
otherwise the database can be searched by the routines that return a
row number and then the information can be accessed in the Fortran
structure. Most tables contain columns which are pointers (row numbers)
in other tables, thus it should be very rare that the entire database need
to searched.

Each table is defined by a separate include file in A_FBDB$SRC:table.INC
and every definition can be included by the include file
A_FBDB$SRC:ALL_FB.INC These include files contain a comment for
every table and every column.

3.1 Introduction to the more important tables and links

"Ports" are the parts of a device that are addressable from Fastbus or
which act as a master at a Fastbus address. They are held in table
FBPORT whose columnns include:

¢ PNAME - the name of the port. Usually created from the name of the
device.

¢ PRIMGADD - the Fastbus address

e ALREGVALUE - its arbitration level (if a master)
e ID_PTYPE - pointer to its port type,

e ID_DEVICE - pointer to its device and

3-1

Program access to the data in the database

3-2

e ID_SEGC - pointer to its segcomp (see below).

"Devices" are Fastbus modules and may have more than one port (eg
AEBs, TPPs). They occupy slots in a crate. For the purposes of the
database, the collection of one AEB CPU, several AEB memories and
several EVIs connected by a front panel bus are considered to be one
"device". Devices are held in table FBDEVICE whose columnns include:

¢ DNAME - the name of the device.

¢ DNAME - the name of the device.

e STARTSLOTNO - the slot number in a crate
¢ ID_DTYPE - pointers to the device type,

e TFIRST PORT - a pointer to the first port on the device. The other
ports are chained together through the NEXT_ON_DEVICE column of
the port table.

e IGNOREFLAG - a flag (logical) to indicate that the device is
temporarily absent.

Similarly the Fastbus specifications are split between tables
DEVICETYPE and PORTTYPE. The port type table contains the Fastbus
ID and whether the port is a crate or cable port.

"Segcomps” are crates or cables with a unique GP , and "segments" consist
of one "segcomp” or in the case of a crate cluster, a set of "segcomp”s. This
reflects the hard-wired connection in a cluster.

Segments are held in table FBSEGMENT whose columnns include:
* SNAME - the name of the segment.

¢ ID_PORT _BC - pointer to the SI that leads up the tree; more exactly
to the port of the SI on the next higher segment.

e BASEGP - the GP to be loaded in the Anciliary logic.
* ID_SEGC - a pointer to the first or only segcomp of this segment.

Segcomps are held in table SEGCOMP whose columnns include:

* GP - the GP of the segcomp (=BASEGP of the segment except for
clusters)

e NEXT _ON_SEG - a pointer to the next segcomp of the segment, or
Zero.

e FIRST PORT - a pointer to the first port on the segcomp. The other
ports are chained together through the NEXT_ON_SEGC column of
the port table.

The table GPALLOC is indexed by the GP number and contains ID_SEGC,
a pointer to the "segcomp” of this GP. Using the chain of the "ports” on
the "segcomp”, the device corresponding to a Fastbus address can be found
quickly.

4

Subroutines

This section describes the programming interface to the routines. It uses the same format as the
VMS System Services Reference Manual.

4-1

FBDB
fbdb_find_device

fbdb_find_device

Find device of given name

FORMAT fbdb_find_device dev_name,id_dev
RETURNS VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Longword condition value, Condition values that can be returned by this
routine are listed under "RETURN VALUES".

ARGUMENTS dev_name
VMS Usage: character string
type: string
access: read only
mechanism: by desctriptor
Name of device required

id_dev
VMS Usage: longword_signed
type: integer

access: write only

mechanism: by reference
Row number of device in table FBDEVICE; 0 if not found

FBDB
fbdb_find_port

fbdb_find_port

Find port of given name

FORMAT fbdb_find _port port_name,id_port
RETURNS VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Longword condition value. Condition values that can be returned by this
routine are listed under "RETURN VALUES".

ARGUMENTS port_name
VMS Usage: character string
type: string
access: read only
mechanism: by descriptor
Name of port required

id_port

VMS Usage: longword_signed
type: integer

access: write only

mechanism: by reference
Row number of port in table FBPORT; 0 if not found

4-3

FBDB
fbdb_find_segment

fodb find segment

Find segment of given name

FORMAT fbdb_find_segment seg name,id_seg
RETURNS VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Longword condition value. Condition values that can be returned by this
routine are listed under "RETURN VALUES".

ARGUMENTS seg name
VMS Usage: character string
type: string
access: read only
mechanism: by descriptor
Name of segment required

id _seg

VMS Usage: longword_signed
type: integer

access: write only

mechanism: by reference
Row number of segment in table FBSEGMENT; 0 if not found

F =Y

-4

FBDB
fbdb_get_pa_of_port

fbdb _get pa of port

Get primary fastbus address of port of given name

FORMAT fbdb_get pa_of port pname,primad
RETURNS VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Longword condition value. Condition values that can be returned by this
routine are listed under "RETURN VALUES".

ARGUMENTS pname

VMS Usage: character string
type: string

access: read only
mechanism: by descriptor
Name of port required

primad

VMS Usage: longword_unsigned
type: integer

access: write only

mechanism: by reference
Fastbus primary address; 0 if not found

4-5

FBDB
fbdb_find_port_of_pa

fodb find port _of pa

Find port of given Fastbus primary address

FORMAT fbdb_find_port_of pa primad,id_port
RETURNS VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Longword condition value. Condition values that can be returned by this
routine are listed under "RETURN VALUES".

ARGUMENTS primad
VMS Usage: longword_unsighed
type: integer
access: read only
mechanism: by reference
Fastbus primary address

id_port

VMS Usage: longword_signed
type: integer

access: write only

mechanism: by reference
Row number of port in table FBPORT; 0 if not found

H

-6

FBDB
fbdb_find_devicetype

fbdb find devicetype

Find device type of given name

FORMAT fbdb_find_devicetype dev_type name,id_avt
]
RETURNS VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Longword condition value. Condition values that can be returned by this
routine are listed under "RETURN VALUES".

ARGUMENTS dev_type name
VMS Usage: character string
type: string
access: read only
mechanism: by descriptor
Name of device type required

id _dvt

VMS Usage: longword_sighed
type: integer

access: write only

mechanism: by reference
Row number of device type in table DEVICETYPE; 0 if not found

4-7

FBDB
fbdb_find_porttype

fodb_find porttype

Find port type of given name

FORMAT fodb_find_porttype ptname,id_ptype
RETURNS VMS Usage: cond_value

type: longword (unsighed)

access: write only

mechanism: by value

Longword condition value. Condition values that can be returned by this
routine are listed under "RETURN VALUES".

ARGUMENTS ptname
VMS Usage: character string
type: string
access: read only
mechanism: by descriptor
Name of port type required

id_ptype

VMS Usage: longword_sighed

type: integer

access: write only

mechanism: by reference

Row number of port type in table PORTTYPE; 0 if not found

FBDB
fbdb_find_segtype

fodb find_segtype

Find segment type of given name

FORMAT fbdb_find_segtype stname,id_stype
RETURNS VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Longword condition value. Condition values that can be returned by this
routine are listed under "RETURN VALUES".

ARGUMENTS stname
VMS Usage: character string
type: string
access: read only
mechanism: by descriptor
Name of segment type required

id_stype

VMS Usage: longword_sighed

type: integer

access: write only

mechanism: by reference

Row number of segment type in table SEGTYPE; 0 if not found

4-

©

FBDB

fbdb_find_vaxintf

fbdb_find_vaxintf

Find host interface of given name

FORMAT fbdb_find_vaxintf host_name,id_proc
RETURNS VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Longword condition value. Condition values that can be returned by this

routine are listed under "RETURN VALUES".
ARGUMENTS host_name

VMS Usage: character string

type: string

access: read only

4-10

mechanism: by descriptor
VAX DECNET name; blank for any interface

id_proc

VMS Usage: longword_signhed
type: integer

access: write only

mechanism: by reference
Row number of VAX in table PROCINTF; 0 if not found

Error codes

RETURN
VALUES

FBDB_OK
FBDB_NOTFOUND

Indicates successful completion
Indicates item was not found

5-1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

