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Massive Graviton as a Testable Cold-Dark-Matter Candidate
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We construct a consistent model of gravity where the tensor graviton mode is massive, while linearized
equations for scalar and vector metric perturbations are not modified. The Friedmann equation acquires an
extra dark-energy component leading to accelerated expansion. The mass of the graviton can be as large as
��1015 cm��1, being constrained by the pulsar timing measurements. We argue that nonrelativistic
gravitational waves can comprise the cold dark matter and may be detected by the future gravitational
wave searches.
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Introduction.—The current cosmological model is in
beautiful agreement with the data [1]. However, it requires
the introduction of exotic density components (dark matter,
dark energy) with abundances highly tuned to baryonic
matter. This motivates interest in modified theories of
gravity deviating from the Einstein theory at large distance
scales. Generically, in such theories the graviton has a
nonzero mass. The common lore is that inverse graviton
masses significantly smaller than the current Hubble scale
are not phenomenologically allowed. In this Letter, we
demonstrate that the inverse graviton mass can be not
only significantly smaller than the current size of the
Universe, but also many orders of magnitude smaller
than the galactic scales. We argue that a massive graviton
provides specific signatures for gravitational wave experi-
ments and may even account for the cold dark matter
(CDM) in the universe.

Recent studies of the Fierz–Pauli theory of massive
gravity [2] and brane world scenarios where the four-
dimensional graviton has a nonzero mass [3,4] strongly
suggest [5–11] that Lorentz-invariant models of massive
gravity suffer either from the presence of ghosts (fields
with a wrong sign of the kinetic term) or from the
van Dam–Veltman–Zakharov (vDVZ) discontinuity due
to extra graviton polarizations [12,13] and strong coupling
at the low energy scale. It is possible that the account for
the effects of local curvature may solve these problems in
some models [14–17]. Another possibility that has at-
tracted attention very recently [18–22] is to allow for a
violation of Lorentz invariance. In particular, a class of
models was found [22] where the tensor graviton mode is
massive, and vDVZ discontinuity and strong coupling
problems are absent, while the absence of ghosts and rapid
classical instabilities is ensured by the residual reparamet-
rization symmetry

xi ! xi � �i�t�; (1)

xi being the spatial coordinates. These models are the focus
of the current Letter.
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The model.—In the covariant formalism of Ref. [22] (see
also Refs. [5,19]), the action for the theory of massive
gravity contains the metric g�� and four scalar Goldstone
fields 	0, 	i (i � 1; . . . ; 3). In the presence of the residual
symmetry (1), it reads

S �
Z

d4x
�������
�g

p
	�M2

PlR�
4F�X;Wij; . . .�
; (2)

where X and Wij are the scalar quantities constructed from
the Goldstone fields and the metric tensor,

X� g��@�	0@�	0;

Wij � g��@�	
i@�	

j �
g��@�	

0@�	
ig��@�	

0@�	
j

X
; (3)

and F is a function to be constrained later. We assume that
the Goldstone sector is characterized by a single energy
scale 
. Dots in Eq. (2) stand for higher-derivative terms.
Latin indices i and j are contracted using �ij.

We require the model to admit a background solution
with the metric g�� equal to the Minkowski metric ���

and the scalar fields taking the form

	0 � a
2t; 	i � b
2xi; (4)

for some constants a and b. For a generic function F, such
a solution always exists. In the ‘‘unitary gauge’’ where the
Goldstone fields are fixed to their vacuum values (4), the
second term in the action (2) gives rise to the following
mass term for the metric perturbation h��:

L m �
M2

Pl

2
�m2

0h
2
00 �m2

2h
2
ij �m2

3h
2
ii � 2m2

4h00hii�; (5)

where the values of the mass parameters ma are determined
by the first and the second derivatives of the function
F�X;Wij� at the vacuum values of its arguments as defined
by Eqs. (3) and (4). The overall scale m of the graviton
masses is related to 
 as m�
2=MPl. The analysis of
Ref. [22] implies that 
 plays the role of the cutoff scale of
the theory with the action (2).
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The residual reparametrization symmetry (1) arises in
the unitary gauge as a consequence of the global symmetry
	i ! 	i � �i�	0� of the covariant action (2). This sym-
metry implies, in particular, that there is no graviton mass
term proportional to h2

0i.
As is usual in the linearized theory, it is convenient to

consider separately the tensor, vector, and scalar metric
perturbations (cf. Refs. [20,22]). The tensor modes—
transverse traceless gravitational waves hTT

ij —have a non-
zero mass equal to m2 [20]. There are no propagating
degrees of freedom in the vector sector [22]. Moreover,
the contribution of the mass term (5) in the vector sector
has the form of a gauge fixing. Consequently, no modifi-
cation of gravity arises in the vector sector at the order we
are working. Finally, the energy-momentum tensor �T��

induces the following perturbations in the scalar sector:

� � �E; (6)

� � �E �
m2

2	3m
4
4 �m2

0�3m
2
3 �m2

2�


m4
4 �m2

0�m
2
3 �m2

2�

1

@4
i

�T00

M2
Pl

; (7)

where � and � are the gauge-invariant scalar potentials
defined in a standard way [23], and �E and �E are their
values in the Einstein theory. The modification of gravity
manifests itself in the last term in Eq. (7). There is no
vDVZ discontinuity as this term vanishes in the limit when
all graviton masses uniformly go to zero.

The extra term in Eq. (7) grows linearly with the dis-
tance from the source, indicating the breakdown of the
linearized theory. This growth cannot be eliminated by a
proper choice of the gauge, as � is the gauge-invariant
quantity. However, the Riemann curvature associated with
the extra term goes to zero as 1=r at large r, so the space-
time becomes flat far from the source. (This breakdown of
perturbation theory is very different in nature from the
seemingly similar problem in the Fierz–Pauli theory
[14], where it happens in the vicinity of the source. The
close analogue of the phenomenon discussed here is the
breakdown of perturbation theory far from the source in the
three-dimensional classical Yang–Mills theory.) In the
region where the nonstandard term in Eq. (7) is still small,
it produces the r-independent force, imitating the effect of
a halo with the density profile / r�1.

The analysis of Eq. (7) in the region where it enters the
nonlinear regime goes beyond the scope of this Letter.
Instead, we chose the masses ma in such a way that the
second term in Eq. (7) vanishes. It is important that this can
be achieved by imposing, in addition to (1), the following
dilatation symmetry:

t ! �t; xi ! ��!xi; (8)

where ! is a real constant. At the linearized level, this
symmetry implies the following relations among masses:

m2
0 � � 3!m2

4; m2
2 � 3m2

3 � !�1m2
4; (9)

which lead to the cancellation of the second term in Eq. (7)
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for any !. Thus, when the symmetry (8) is imposed, the
only modification of gravity at the linearized level is the
nonzero mass of the graviton.

The inclusion of higher-derivative terms in the action (2)
leads, in general, to the appearance of the dynamical
degree of freedom in the scalar sector [22]. This degree
of freedom is similar to that present in the ghost condensate
model [19]. It has a healthy kinetic term provided the
following inequality holds [22]:

m2
0 �

m4
4

�m2
3 �m2

2�
> 0: (10)

The latter condition is compatible with Eq. (9) and the
requirement that the graviton mass is not tachyonic, m2

2 >
0. The effects related to this degree of freedom are char-
acterized by the huge retardation time �m�1�MPl=
�
[19,24,25]. This time is larger than the current age of the
universe for the values of the graviton mass m specified
below, so we can consistently neglect these effects.

In the covariant formalism the residual symmetry (8)
translates into the following global symmetry of the
Goldstone sector: 	0 ! �	0, 	i ! ��!	i. The action
invariant under the symmetries (1) and (8) has the form
(2) with the function F depending on the single combina-
tion X!Wij. The case of the ghost condensate [19] emerges
in the limit ! ! 1 and requires a fine-tuning of F to obtain
the Minkowski vacuum. The Minkowski vacuum with the
scalar vacuum expectation values of the form (4) exists for
a general function F if ! � 1=d, where d � 3 is a number
of spatial dimensions. For definiteness, in what follows we
consider the case F � F�X1=3Wij�.

Cosmological solutions.—The spatially flat homogene-
ous cosmological ansatz is

ds2 � a2����d�2 � dx2i �; (11)

	0 � 	���; 	i � 
2xi: (12)

In what follows, we assume that the rate of the expansion is
much smaller than the energy scale 
, so one can neglect
higher-derivative terms in the action (2). For simplicity, let
us also assume that the function F depends only on the
combination Z 
 X1=3Wij�ij. The Einstein equations are
reduced to the Friedmann equation:�

_a

a2

�
2
�

1

3M2
Pl

�
�m �

2

3

4F0�Z�Z�
4F�Z�

�
; (13)

where �m is the energy density of matter, and the field
equation for 	0 is

@��a
3F0�Z�WX�1=6� � 0: (14)

Equation (14) implies Z � const or, equivalently, 	0 /R
d�a4���. Then Eq. (13) takes the form of the standard

Friedmann equation with the value of the cosmological
constant determined by the value of Z, i.e., by the initial
conditions in the Goldstone sector. Note that these initial
2-2
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conditions may be different in different regions of space.
Therefore, this model is an example of the setup where
de Sitter solutions with different expansion rates exist for
any value of the vacuum energy. This property is a wel-
come feature for the application of the weak anthropic
principle [26] to the cosmological constant problem.

To summarize, we have constructed a consistent model
where gravitational waves are massive, while linearized
equations for the metric perturbations in the scalar and
vector sectors, as well as spatially flat cosmological solu-
tions, are the same as in the Einstein theory. In this model,
the tests of (linear) gravity based on the solar system and
Cavendish-type experiments [27] are automatically satis-
fied, while the main constraints are coming from the emis-
sion and/or propagation of gravitational waves.

Relic gravitational waves.—Observations of the slow
down of the orbital motion in binary pulsar systems [28]
imply that the mass of the gravitational waves cannot be
larger than the frequency of the waves emitted by these
systems. The latter is determined by the period of the
orbital motion which is of order 10 h, implying the follow-
ing limit on the graviton mass:

m2

2&

 �2 & 3� 10�5 Hz � �1015 cm��1: (15)

Let us estimate the cosmological abundance of relic
gravitons. For this purpose, we consider the transverse
traceless perturbation of the metric hij. The quadratic
action for hij in the expanding universe takes the following
form:

M2
Pl

Z
d3kd�a2���� _h2

ij � �@khij�
2 �m2

2a
2���h2

ij�: (16)

This has a form of the action for a minimally coupled
massive scalar field. Therefore, gravitons in our model
are produced efficiently during inflation (cf. Ref. [29]).

To be concrete, consider a scenario where the Hubble
parameter Hi is constant during inflation. This scenario
may be realized, for instance, in hybrid models of inflation
[30]. First, we need to check that the phenomenologically
relevant values of parameters correspond to the regime
below the cutoff scale of the effective theory, i.e., Hi &


. For the energy scale of inflation Ei �
��������������
HiMPl

p
, this

implies

Ei < m1=4
2 M3=4

Pl � 107 GeV�m2 � 1015 cm�1=4: (17)

This value is high enough to allow for a successful baryo-
genesis even for graviton masses of the order of the current
Hubble scale.

Consider now the production of massive gravitons.
Assuming the above scenario of inflation, the perturbation
spectrum for the massive gravitons is that for the minimally
coupled massive scalar field in the de Sitter space [31],

hh2
iji ’

1

4&2

�
Hi

MPl

�
2 Z dk

k

�
k
Hi

�
2m2

2=3H
2

: (18)
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Superhorizon metric fluctuations remain frozen until the
Hubble factor becomes smaller than the graviton mass,
when they start to oscillate with the amplitude decreasing
as a�3=2. The energy density in massive gravitons at the
beginning of oscillations is of order

�o �M2
Plm

2
2hh

2
iji ’

3H4
i

8&2 ; (19)

where we integrated in Eq. (18) over the modes longer than
the horizon. Today, the fraction of the energy density in the
massive gravitational waves is

�g �
�o

z3o�c
�

�o

z3e�c

�
He

Ho

�
3=2

; (20)

where zo is the redshift at the start of oscillations, Ho �m2

is the Hubble parameter at that time, He � 0:4�
10�12 s�1 is the Hubble parameter at the matter/radiation
equality, and ze � 3200 is the corresponding redshift.
Combining all the factors together, one gets

�g � 3� 103�m2 � 1015 cm�1=2
�
Hi




�
4
: (21)

This estimate assumes that the number of e foldings during
inflation is large, lnNe > H2=m2, which is quite natural in
the model of inflation considered here.

According to Eq. (21), the massive gravitons are pro-
duced efficiently enough to comprise all of the cold dark
matter, provided the value of the Hubble parameter during
inflation is about 1 order of magnitude below the scale 
.
We find it encouraging that one obtains �g � 1 when the
initial energy density in the metric perturbations is close to
the cutoff scale, �1=4

o �
. This suggests that other mecha-
nisms of production unrelated to inflation (e.g., similar to
those invoked for the axion or Polony fields) may naturally
lead to the same result, �g � 1.

The produced gravitons may cluster in galaxies. To
account for the dark matter in galactic halos, the graviton
mass should satisfy �mv��1 & 1 kpc� 3� 1021 cm,
where v� 10�3 is a typical velocity in the halo.

Detection.—Let us now briefly describe potential obser-
vational signatures of the above scenario. Note first that, at
distances shorter than the wavelength, the effect of a
transverse traceless gravitational wave on test massive
particles in Newtonian approximation is described by the
acceleration �hijx

j=2 (see, e.g., Ref. [32] for a review). The
same is true for massive gravitational waves, the only
difference being that the wavelengths are longer in the
nonrelativistic case, so the Newtonian description works
for the larger range of distances. Thus, the nonrelativistic
waves act on the detector in the same way as massless
waves of the same frequency.

Let us estimate the amplitude of the gravitational waves,
assuming that they comprise all of the dark matter in the
halo of our galaxy. The energy density in nonrelativistic
gravitational waves is of order M2

Plm
2
2h

2
ij. Equating this to
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the local halo density, one gets

hhiji � 10�10

�
3� 10�5 Hz

�2

�
: (22)

At the frequencies 10�6–10�5 Hz, this value is well above
the expected sensitivity of the LISA detector [33]. Note
that in the close frequency range 10�9–10�7 Hz there is a
restrictive bound [34] at the level �g < 10�9 on the sto-
chastic background of the gravitational waves coming from
the timing of the millisecond pulsars [35]. So, it is possible
that our scenario can be tested by the reanalysis of existing
data on the pulsar timing.

The relic abundance of gravitons may depend on both
the specific inflationary model and the details of the (un-
known) UV completion of massive gravity. In general,
massive gravitons may not comprise the whole of the
CDM in the galaxy halos. It is important that the expected
LISA sensitivity allows us to detect the presence of mas-
sive gravitons at the significantly lower level than in
Eq. (22).

Concluding remarks.—In this Letter, we limited our-
selves to a specific choice of the parameters [graviton
masses and the constant ! entering Eq. (8)] such that there
is no modification of the Newton potential at the linear
level, and the cosmological evolution remains standard.
We also did not consider possible nonlinear effects, which
may become a necessity with different choices of the
parameters. A number of interesting questions is related
to these effects, including the limits on graviton masses,
clustering of massive gravitons in haloes, and the proper
modifications of Eqs. (13) and (14) to account for the direct
coupling between Goldstone fields and gravitons. We ex-
pect, however, that our main conclusions—that gravitons
may have large masses and may be produced with cosmo-
logically significant abundance—are generic in this class
of models. In the relevant range of parameters, a specific
signature of the gravitons with nonzero mass is a strong
monochromatic signal in the detectors of gravitational
waves. An independent measurement of the graviton
mass may be performed at future gravitational wave de-
tectors (for a review, see, e.g., [36]) operating at higher
frequencies by testing the delay between the electromag-
netic and gravitational signals from a distant supernova
explosion.
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