ALEPH 87-98
DATACQ 87-9
T. Charity
17.11.1987

A Multi-Port Ethernet Driver for OS-9

Tim Charity
EP Division
CERN, Geneva.

14th October, 1987

This document describes a device driver for the OS-9/68000 operating system
which allows multi-user access to Ethernet/Cheapernet via the LANCE local
area network controller. The installation, operation, and maintenance of the
driver are described, and the supported configurations are listed. Examples
showing how to use the driver from a user process and from within another
device driver are given. The driver has been used to provide facilities such

as remote login, disk emulation, and inter-networking of OS-9 stations.

This paper has: % D PAZES emm——— O S
If you wish to receive it, please send your request to:
A. Mazzari - EP

Name: ~ Div.:

I'would like to receive 1 copy of the paper: with annex without annex

Date: Signature:

ALEPH 87-98
DATACQ 87-9
T. Charity

17.11.1987

A Multi-Port Ethernet Driver for OS-9

Tim Charity
EP Division
CERN, Geneva.

14th October, 1987

This document describes a device driver for the 0S-9/68000 operating system
which allows multi-user access to Ethernet/Cheapernet via the LANCE local
area network controller. The installation, operation, and maintenance of the
driver are described, and the supported configurations are listed. Examples
showing how to use the driver from a user process and from within another
device driver are given. The driver has been used to provide facilities such

as remote login, disk emulation, and inter-networking of OS-9 stations.

Contents

1 Introduction 3
1.1 Ethernet/Cheapernet 3
1.2 The Am7990 Local Area Network Controller for Ethernet 4
1.3 The 0S5-9/68000 I/O subsystem 4

2 Functionality and Usage 8
2.1 Principles of Operation. 8
2.2 Supported Operations 9

2.2.1 Imitialise 10
222 Open 11
223 Receive 12
224 Transmit L 13
225 Restart L 14
2.2.6 Cancel Receive 15
227 WhoamlI?, . 16
2.2.8 Associate Circular Buffer and Protocol 17
2.2.9 Disassociate Circular Buffer and Protocol 18
2.2.10 Test Driver 19
2211 Close 20
2212 Terminate L. 21
2.2.13 Illegal operations 22
2.3 Examplesofusage 22
2.3.1 Inside a virtual disk driver. 22

2.3.2 Task-to-task communication 24

3 Installation and Maintenance 26
3.1 Installing thedriver 26
3.2 Rebuilding the driver 27

References 28

1. Introduction

1.1 Ethernet/Cheapernet

Ethernet is a 10 Mbps local area bus network, based on a coaxial cable and a
CSMA /CD medium access method[1]. Cheapernet has a lighter and cheaper
cable than Ethernet, while providing the same bandwidth and conforming
to the same physical protocol specification. It is possible to send messages
(frames) to one, several, or all nodes on an Ethernet line simultaneously,
depending on the 6-byte Ethernet destination address used. In addition, a
2-byte ‘protocol’ field in each frame can be used to allow multiple users of
Ethernet at a single station. This feature is useful in multi-tasking operating
systems, where several different tasks requiring access to the network can be
executable simultaneously, and frames are multiplexed to the tasks on the
basis of the protocol field. Coordination of access to the hardware responsible
for Ethernet/Cheapernet communication is typically performed either by a
dedicated task, or via a device driver which is under the control of the oper-
ating system. Under VAX/VMS a device driver is supplied with the network
interface (DELUA, DEQNA, etc.), and is used by many network applications
(such as DECNET) as well as being available to user applications [2]. Under
the 0S-9/68K operating system it is necessary to write a device driver to
suit the particular Ethernet interface in use. This document describes one
such driver which has been written for use in the ALEPH data acquisition
system, where a large number of 68000-series microprocessors (~ 100) are

linked to a cluster of VAXes via an Ethernet.

1.2 The AmT7990 Local Area Network Controller for Ethernet

The Am7990(LANCE) chip is used in many 68000-based microprocessor sys-
tems to provide an interface to the Ethernet CSMA /CD local area network.
A full description of the chip and the associated Am7991A Serial Interface
Adapter can be found in [3]. It performs DMA operations, buffer manage-
ment, address filtering, error reporting and diagnostics for most aspects of
the Ethernet communication. The LANCE is initialised and controlled via a
combination of registers and data structures resident within the chip and in
memory. A set of four internal registers can be selected and programmed from
the host processor, and once enabled the chip accesses memory to obtain fur-
ther operating parameters from an initialisation data structure. Subsequent
transmit and receive operations are managed via two independent ring struc-
tures in memory, which are used by the processor and LANCE to synchronise
access to data buffers containing the user data. A hardware interrupt can be
generated by the chip when a packet is received or transmitted, and when
an error occurs during LANCE operation. The register layout is illustrated
in Table 1.1, and the data structures which form the memory interface are

shown in Table 1.2.

1.3 The O0S-9/68000 I/O subsystem

0S-9 is a highly modular operating system originally developed for the Mo-
torola M6809 microprocessor, and subsequently upgraded for the 68000-series
microprocessors[4]. All system services (including I/O requests) are pro-
cessed by the kernel, which can either perform the request itself or delegate it
to other system modules, as in the case of [/O. These modules are called File
Managers, and generally one file manager is required for each class of device
known to the system, such as disks, terminals, pipes, and so on. The purpose

of the file manager is to preserve as far as possible the device-independance

of the I/O system calls. Each physical device attached to the system has two
modules associated with it: the device driver and the device descriptor. The
driver contains the executable code necessary for controlling the hardware,
whereas the descriptor is a non-executable table containing configuration pa-
rameters. This scheme allows multiple copies of a driver to be instantiated
for each device of a given type, by modifying addresses and parameters in the
device descriptor. The driver is under the control of one of the file managers,
and is called as necessary to perform the requested I/O activities. The most
common requests are for simple read and write operations, however more
complicated actions, or actions not foreseen by the file manager, may be
performed via the wildcard GetStt and SetStt operations. These allow a
function code and a list of arguments to be passed to the driver for process-
ing. This technique is used in the multi-port ethernet driver to provide the

user with facilities for transmitting and receiving frames as required.

Register | Bit Name | Description

CSRO 15 ERR | BABL|CERR|MISSMERR
14 BABL | Transmit buffer too long (>1519 bytes)
13 CERR | Collision input not present
12 MISS | Receiver missed a packet
11 MERR | Memory error
10 RINT | Receiver interrupt
09 TINT | Transmitter interrupt
08 IDON | Initialisation completed
07 INTR | BABL|MISS|MERR|RINT|TINT|IDON
06 INEA | Interrupt enable
05 RXON | Receiver enabled
04 TXON | Transmitter enabled
03 TDMD | Transmit demand before polling
02 STOP | Stop
01 STRT | Start
00 INIT | Initialise

CSR1 | 15:01 | IBBASE | Address of the Init block (0:15)
00 ZERO | Must be zero

CSR2 | 15:08 RES Reserved

07:00 | IBBASE | Address of the Init block (16:23)

CSR3 | 15:03 RES Reserved and read as zero
02 BSWP | Byte swapping during DMA is performed
01 ACON | ALE assertive state control
00 BCON | Byte control

Table 1.1: The LANCE Control and Status Registers

Initialisation Block

Address of Transmit Descriptor Ring

Address of Receive Descriptor Ring

Ethernet Physical Node Address

Logical Address Filter

Mode of Operation

Transmit Descriptor Ring

Transmit Descriptor for 1st Data Buffer

Transmit Descriptor for 2nd Data Buffer

Transmit Descriptor for 3rd Data Buffer

Transmit Descriptor for nth Data Buffer

Receive Descriptor Ring

Receive Descriptor for 1st Data Buffer

Receive Descriptor for 2nd Data Buffer

Receive Descriptor for 3rd Data Buffer

Receive Descriptor for nth Data Buffer

Transmit Data Buffers

Transmit Data Buffer 1

Transmit Data Buffer 2

Transmit Data Buffer 3

Transmit Data Buffer n

Receive Data Buffers

Receive Data Buffer 1

Receive Data Buffer 2

Receive Data Buffer 3

Receive Data Buffer n

Table 1.2: The LANCE«—Processor memory interface

2. Functionality and Usage

2.1 Principles of Operation

The purpose of the driver is to allow users to transmit correctly constructed
Ethernet frames to any destination address, and to receive frames from other
nodes of the desired protocol type. To transmit a frame the user builds the
complete structure in the process-local memory area, and instructs the driver
to transmit it. Reception of frames is performed asynchronously; the user
notifies the driver of his wish to receive a frame of a given protocol type,
and declares a memory location where the incoming frame should be placed.
When the driver receives a frame of the correct protocol type, it writes it to
the location specified by the user and (optionally) sends a software interrupt
or ‘signal’ to the relevant OS-9 process. This allows the user to continue with
other processing or to hibernate pending the arrival of the frame. If no user
has requested a frame of the incoming protocol type, the driver will discard
the message; buffering of incoming messages is therefore not performed. An
exception to this is the case of a remote terminal link, where it is desirable
to allow the user on the remote station to ‘type ahead’ instead of waiting
for the echo of the characters typed. For this reason the driver provides a
facility for declaring that a protocol type is to be associated with a remote
terminal connection. Characters present in incoming Ethernet frames are
placed directly into a circular fifo for treatment by a remote terminal driver
(see [6]). Broadcast and multicast frames are not filtered and are treated as

normal ‘point-to-point’ frames. Users should use broadcast frames sparingly,

as they must be handled by all stations connected to the network. Note that
only frames which are explicitly or implicitly addressed to the station will be
received by the driver; the so-called ‘promiscuous’ mode, where the station
can examine all messages on the Ethernet line, is not supported.

The maximum number of simultaneous users is defined by the parameter
MAXUSERS in the driver; this affects very slightly the amount of static
storage required by the driver, and is currently set to the value 100 which is
presumably more than enough for the most demanding requirements.

Note that an imminent release of the driver will provide support for IEEE

802.3 frame format.

2.2 Supported Operations

For each operation in the subsequent list, the relevant OS-9 system service
call is shown, together with the arguments which should be supplied in the
registers. For more information on the format of O5-9 system service requests

consult the technical manual [4].

2.2.1 Initialise

Function Attach Ethernet to the System
System call I$Attach
Input d0.b Access mode (Read_, Write_, Updat_)
(a0) Pointer to device name string ‘/elan’
Output (a2) Address of device table entry
Error cc Carry bit set in status register
dl.w Error code

This causes the Ethernet device driver to be initialised, if this has not already
been done. Static storage for the device driver is allocated from the free
memory pool at this time; in most éonﬁgurations this includes allocation of
the complete data structure shown in Table 1.2, with the exception of the
Transmit data buffers which are not necessary since transmitted frames are
taken directly from the process data area. The device driver static storage is
cleared, and the LANCE chip is initialised. The interrupt service routine is
installed on the 0S-9 polling list and interrupts from the LANCE are enabled
at initialisation. If the interrupt is generated on the wrong level, then OS-9
will be unable to service it and the system will hang. If the driver has already
been attached, the driver initialisation routine is not executed. Typically, the
network device is attached after system bootstrap with the shell command
“iniz /elan’. This avoids the overhead of the kernel attaching and detaching
the device whenever a user performs an open or close request to the network

device.

10

2.2.2 Open

Function Open a path to the network
System call 1$Open
Input d0.b Access mode

(a0) Pointer to pathname string ‘/elan’
Output d0.w Path number

(a0) Updated past the pathname
Error cc Carry bit set

dl.w Error code

A path to the network device is opened by the Sequential Character File
Manager (SCF). The data structures for the File Manager and the I/O path
will be allocated at this time, provided the system has sufficient free memory.
A path number is returned to the user which should be used in all subsequent
transactions with the network driver. The access mode byte is usually used
to specify read or write access; however for the network driver only GetStt
operations are necessary, and hence the access mode parameter may be set
to zero (no bits set). The only possible pathname string is the name of
the device descriptor itself ‘/elan’, and pathnames such as ‘/elan/input’ will
cause SCF to return an E$BPNam error. The path number will be the lowest

available path number for this process (normally 3 or greater).

11

2.2.3 Receive

Function Receive a frame from the network
System call I$GetStt
Input d0.w Path number
dl.w Receive function code = 1000
d2.w Required protocol type
d3.l Signal code on reception
d4.1 Maximum buffer length
(a0) Address of receive buffer
(al) Address of buffer length word
Output none
Error cc Carry bit set
dl.w Error code

This call notifies the driver that the process is ready to receive a frame
from the network with the declared protocol type. The driver records the
location and size of the buffer, the address of the length word, and the signal
code to deliver when a frame is received. The routine returns to the user
process immediately, and it is up to the user to decide if he wishes to sleep
pending the arrival of the frame, or to continue with other processing. If the
process has no signal handler, then the ‘wakeup’ signal code (=1) should be
specified. A signal code value of zero will cause the process to be aborted
on reception of a frame. When a frame is received from the network, the
driver interrupt service routine is executed. This checks to see if any process
is awaiting frames of the incoming protocol type, and if so it copies the
complete frame into the buffer at (a0), up to the maximum specified size
(d4). The length of the incoming frame is written to location (al), and

finally the signal code specified in d3 is delivered to the process.

12

2.2.4 Transmit

Function Transmit a frame to the network
System call I1$GetStt
Input d0.w Path number
dl.w Transmit function code = 1001
d2.1 Length of transmit buffer
(a0) Address of transmit buffer
Output do.1 Return code from transmission
Error cc Carry bit set
dl.w Error code

The Ethernet frame which begins at (a0) is transmitted by the LANCE
onto the Ethernet cable. ‘Runt’ packets of less than 64 bytes will be extended
by taking the first 64 bytes from (a0) onwards. ‘Babble’ packets of greater
than 1514 bytes will be truncated by the driver. The source address field
in the frame will be overwritten by the driver with the address used for
the initialisation block, usually found from EPROM. The driver modifies
a Transmit Descriptor Ring Entry (DRE) to point to the Ethernet frame
constructed by the calling process and does not copy the frame to a local
buffer. The TDMD bit in CSRO is set, causing the LANCE to transmit the
frame immediately by performing a DMA transfer into the internal silo of the
chip. The LANCE makes several attempts to retransmit frames in the event
of collisions or other errors. The driver waits for the transmitter interrupt to
indicate that transmission is complete before returning to the calling process.

If the frame was not succesfully sent a return value of 1 will be placed in d0.

13

2.2.5 Restart

Function Re-initialise the LANCE chip
System call I$GetStt
Input d0.w Path number
dl.w Restart function code = 1002
Output none
Error cc Carry bit set
dl.w Error code

This causes the LANCE chip to be re-initialised. The data structures
shown in Table 1.2 are reconstructed and the registers are reprogrammed.
In the event of a fatal error the device driver will automatically attempt to
reinitialise the chip, hence this call should not normally be used unless it is
desired to “force’ reinitialisation for test purposes. A better alternative is to
Detach and re-Attach the device using the SHELL commands ‘deiniz elan’
and “niz elan’. This will also cause the device driver static storage to be

cleared, and all pending receive requests will be cancelled.

14

2.2.6 Cancel Receive

System call I$GetStt

Input d0.w
dl.w
d2.w

Output

Error cc
dl.w

Function Cancel a receive frame request

Path number

Cancel Receive function code = 1003
Protocol type

none

Carry bit set

Error code

This causes a previously issued Receive request to be cancelled. The pro-
tocol type is removed from the driver’s list of ‘expected’ incoming protocols,
and any frames received carrying this protocol type will be rejected. A pro-
cess should not exit with a receive request pending if possible; however the
driver does perform checks to ensure that the process has not died, before
attempting to send a signal indicating the arrival of a frame. This avoids
the possibility of sending a signal to a new process which has subsequently

been created with the same process identifier, possibly resulting in untimely

death.

15

2.2.7 Who am I?

Function Find out the station physical address
System call I$GetStt
Input d0.w Path number
dl.w Who_am I function code = 1004
(a0) Address of 6-byte buffer
Output Physical address at (a0)
Error cc Carry bit set
dl.w Error code

In certain applications the user may wish to find out the Ethernet physical
address which is being used by this station. The driver will place a copy of the
6-byte address in the buffer specified at (a0). Normally it is not necessary for
the user to know his own Ethernet address since the driver will automatically
place it in all outgoing packets from this station. The station address can

also be found by inspecting the frame buffers after a transmission request.

16

2.2.8 Associate Circular Buffer and Protocol

System call I$GetStt
Input d0.w
dl.w

d2.w

Output
Error cc

dl.w

Function Associate a protocol with a circular buffer

Path number

Associate fifo function code = 1005
Protocol type

Size of circular fifo buffer

Address of fifo head pointer
Address of fifo tail pointer

Address of error word

Address of LPRC word in driver static storage
Address of circular fifo buffer

none

Carry bit set

Error code

A circular buffer is declared to the driver for use by a remote terminal

driver under OS-9. For full details concerning the remote terminal facility

consult the manual [6]. Data contained in any incoming frames of the speci-

fied protocol type will be copied into the buffer, and the header pointer will

be updated to reflect the presence of more data. If an abort (control-C) or

quit (control-E) character is received, the last process to use the terminal

port (specified in LPRC) will be signalled appropriately. If the buffer be-

comes full then incoming data will be discarded. This function is normally

executed by the remote terminal driver initialisation routine.

17

2.2.9 Disassociate Circular Buffer and Protocol

Function Disassociate a protocol from a circular buffer
System call I$GetStt
Input d0.w Path number
dl.w Disassociate buffer function code = 1006
d2.w Protocol type
Output none
Error cc Carry bit set
dl.w Error code

The protocol type specified in d2 is no longer associated with a circular
buffer. This function would typically be executed by the remote terminal
driver termination routine. Incoming frames with this protocol type will be

discarded unless there is a receive request pending.

18

2.2.10 Test Driver

Function Test that the driver is installed

System call I$GetStt

Input d0.w Path number
dl.w Test Driver function code = 999
(a0) Input number

Output d2. Contents of (a0)

Error cc Carry bit set
dl.w Error code

This function copies the contents of (a0) into register d2. It is primarily of
use when setting up the driver for a new hardware configuration, to ensure
that the driver has been installed and is accessing the user register stack
correctly. The ambitious user should inspect the driver source code if he
wishes to add extra functionality to the driver in the form of more function

codes, in order to perform more sophisticated tests.

19

2.2.11 Close

Function Close a path to the network

System call I$Close

Input d0.w Path number

Output none

Error cc Carry bit set
dl.w Error code

This function is processed by the SCF File Manager, and causes the path
specified in d0 to be closed. The user is unable to perform any further trans-
actions with the network driver until a new path is opened with I$Open.
When a process dies or exits, all paths which are still opened are automati-
cally closed by the kernel, hence it is normally not essential to use this call

but represents good programming practice.

20

2.2.12 Terminate

Function Detach the network from the System

System call I$Detach

Input (a2) Address of the device table entry
Output none
Error cc Carry bit set

dl.w Error code

This causes the network device to be detached from the system, provided
it is not still in use by another process (with an open path to the device). The
device driver and descriptor modules may be lost from the system if their
link count has fallen to zero, or if they were not present at system bootstrap.
The device driver stops the LANCE chip and removes the interrupt service
routine from the IRQ polling list maintained by the kernel. Static storage is

returned to the free memory pool.

21

2.2.13 Illegal operations

The principal illegal operations associated with the network device driver
are I$Read and I$Write. They do not cause any output or input to or from
the network but they will not return an error. All operations other than
initialisation and termination are handled using the I$GetStt (or I$SetStt)
system calls with the appropriate function codes. Function codes unknown
to the driver will cause an error of E$UnkSvc to be returned to the user. Also
note that although the driver resides under the SCF file manager, it is not
a standard SCF device. Consequently output may not simply be redirected
to the network with the SHELL redirection operator. The driver is intended
as a low-level interface to the network for use directly by user tasks, or by

other device drivers providing more facilities.

2.3 Examples of usage

2.3.1 Inside a virtual disk driver

One of the facilities which has made use of the multi-port Ethernet driver
is a network disk system, whereby OS-9 files may be stored on virtual disks
physically resident on a VAX connected to Ethernet [7]. Inside the driver’s

initialisation routine a path to the Ethernet driver is opened:

/* Open the network path */

epath = open("/elan",1);

if(epath==-1)return 246;

Whenever a disk sector is read or written, the disk driver calls the Ether-

net drivers to transfer sectors of data and acknowledgements of the transfers:

22

{
int len=0,signal=1,protocol=0x8008;
/* First send the request */
if(eth_write(epath,&request,RQ_SIZE)!'=0 {
/* Now issue the receive request */
eth_read(epath,&reply,protocol,signal,&len,RP_SIZE);
/* Wait for the reply signal */
{
#asm movem.l d0/d1,-(a7)
move.l #1000,d0
os9 F$§Sleep
movem.l (a7)+,d0/d1
#endasm
}
if(len!=0){ /* Reply received */

.etc

The structures request and reply have already been constructed with
the correct Ethernet header information, and the data has been placed in

the data area. The structure definition is:

typedef struct net_request {

/* Ethernet information */

uchar dest[6],source[6],protocol[2];
/* Application data */

uchar request_data[1500];

} request_t;

The functions eth write and eth_read provide a convenient interface to

the I$GetStt functions from ‘C’. If you have received your copy of the network

23

driver via a standard route you should also have these routines, which are

also present in the library file ‘elib.l’:

eth_write: movem.l di-d2/a0,-(a7)
move.l 16(a7),d2
movea.l di1,a0
move.i #1001,d1
0s9 I$GetStt
movem.l (a7)+,d1-d2/a0
rts
eth_read: movem.l di-d4/a0-al,-(a7)
move.l 28(a7),d2
move.l 32(a7),d3
movea.l 36(a7),al
move.l 40(a7),d4
movea.l d1,a0
move.l #1000,d1
0s9 I$GetStt
movem.l (a7)+,d1-d4/a0-ail

rts

2.3.2 Task-to-task communication

It is possible for processes to communicate with each other by using raw
Ethernet frames, sent and received by a multiplexing driver. This can be
used for communication between a VAX process and an OS-9 process, as in

the following example ‘bouncer’ program:

sigh(val)
int val;

{ if(val==2)exit();

24

}
main() /* Idiotic bouncer program */
{ int left,path,ret,len;
short protocol=0x600d;
unsigned char buf[1600];
/* Install the signal handler */
intercept(sigh);
path = open("/elan", 1);
if(path==-1)exit(errno);
for(;;){ /* Bounce packets until killed */
ret = eth_read(path,buf,protocol,999,&len);
left = sleep(3); /* Hibernate until a packet comes */
if(left){
printf("Bouncing %d bytes\n'",len);
ret = eth_write(path_,buf,len);
printf("Return from write: %d\n",ret);
} else {
printf("Nothing received\n");
}
}
}

This program also makes use of the functions eth_read and eth write.
Note that it is the responsibility of the calling process to sleep pending re-

ception of a frame.

25

3. Installation and Maintenance

3.1 Installing the driver

To install the driver it is necessary to load the modules elan and g¢Odriv
from the distribution disk, if they are not already in EPROM. The driver
is initialised by the SHELL command ‘iniz elan’. If applications using the
driver intend to sleep when awaiting packets, the clock should be running.
To deinitialise the driver and stop the LANCE when no processes have paths
open to the device, issue the SHELL command ‘deiniz elan’. Under normal
conditions this will never be necessary, and the driver can be left perma-
nently installed. The exception is when a new version of the driver is being
developed, in which case it is necessary to deinitialise the driver before the
new version is installed. Frequent initialisation and deinitialisation will lead
to memory fragmentation due to the driver static storage being repeatedly
allocated and deallocated from the free memory pool. The installation steps

are summarised below.

e Reboot the system

Start the system clock with ‘setime’

Load ‘elan’ (if not in EPROM)

Load ‘q0driv’ (if not in EPROM)

Iniz elan

26

3.2 Rebuilding the driver

The files necessary to reassemble, recompile, and link the driver are listed in

Table 3.1.

elanc.c ‘C’-source code of the driver
elanc.h ‘C’-header file used in elanc.c
elana.a Assembler interface to elanc.c
elan.a Source file for the descriptor
elanlin SHELL procedure file
oskdefs 0OS-9 constant definitions
sys.l 0S-9 symbol definitions
math.l OS-9 symbol definitions

Table 3.1: Component files for the multi-port Ethernet driver

Examine these files carefully before contemplating any modifications. The
bulk of the driver is written in ‘C’, and the file ‘elana.a’ provides a small as-
sembler interface to the system by pushing registers onto the stack consistent
with the OS-9 ‘C’ calling convention. For more information on how to write

08S-9 device drivers in ‘C’

, consult [8]. The only areas where the driver
code may need to be changed prior to installation are indicated by #ifdef
...#endif clauses in ‘elanc.c’. It may also be necessary to change the in-
stallation of the interrupt service routine if the LANCE is not on the level
4 autovector. This is performed in ‘elana.a’. This will be necessary if your
system does not correspond to one of the supported configurations listed in
Table 3.2.

To rebuild the driver and descriptor, copy all the files to the ramdisk
or execution directory. Execute the SHELL procedure file ‘elanlin’ which

will perform the assembly, compilation, and linking. This will need to be

modified if the assembler/compiler/linker are not in the module directory

27

Option Description

EB Aleph Event Builder
TPP Aleph TPC Processor

LRT LRT Filtabye 25.0 VME board
VIP Bonn VIP 68010 VME board
E3 Eltec EUROCOM-3 system

Table 3.2: Supported configurations for the LANCE Ethernet driver

or execution directory. If the system in use is 68020-based, it is preferable
to use the c¢68020 compiler and r68020 assembler by modifying the relevant
lines in ‘elanlin’. It is necessary to modify the compiler command line to
select the driver configuration desired. The ‘-dXXX’ option specifies which
of the ifdef clauses should be selected, where XXX is one of the options
listed in Table 3.2. With a slight modification the driver has also been used

in a multi-processor environment, with several processors sharing one LRT

board in a VME crate.

28

References

[1]

2]

(7]

8]

Ethernet, A Local Area Network: Data Link Layer and Physical Layer

Specifications, DEC, Intel, and Xerox corporations.

System Programming, VAX/VMS Volume 10a, Digital Equipment Cor-
poration, USA (1986).

The Am7990 Local Area Network Controller for Ethernet, Advanced
Micro Devices (1983).

05-9/68000 Operating System Technical Manual, Microware Systems
Corporation, Des Moines, USA (1987).

Filtabyte 25.0 Programming Manual, L.R.T. Limited, Reading, England
(1985).

An 0S-9 Remote Login Facility over Ethernet, T.Charity, Aleph Online
Note (1987) (in preparation).

An 0S-9 Network Disk Facility over Ethernet, T.Charity, Aleph Online
Note (1987) (in preparation).

Writing 0S-9 Device Drivers in ‘C’, T.Charity, Aleph Online Note
(1987).

29

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

