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INTRODUCTION

The aim of this note is to show how the detection of the decays of fast (p >
2 GeV/c) m's and K's into B + v can be improved by refining the normal x? test

and what one can gain by using the z measurements of the wires and not of the
pads.

Chapter 1 shows how the x? value of a track fit can be split into a system-
atic (non fluctuating) term coming from the kink itself, a statistically fluctu-
ating term due to the measurement errors, and a cross term. The kink contribu-

‘tion can be very well understood by a formula derived for the case of no
magnetic field.

Based on the considerations presented in chapter 1, which are also valid in
good approximation for slightly curved tracks with a kink (u candidates), two
new methods for kink searches were developped. These new methods are called
"condensation" of measurements and the "x? difference test" and are discussed

together with the well known X? test and the Run test in chapter 2.

In order to evaluate the power of these methods a track simulation and kink
search program was written. It is described in chapter 3.

Finally the results using pad and wire data or pad data only are presented
in chapter 4. The efficiencies of the above mentioned tests are compared for
m's with momentum p = 10 GeV/c (m;,) and K's with p = 5 GeV/c (Ks). The x2 dif-
ference test in space with condensation of the wire measurements is found to be

most efficient. It is shown how the power of this method varies with momentum
and polar angle.



1. Contributions to X2 for kinked tracks

A fit to n pairs of measurements (xi,yi) with infinite precision in x and
resolution ¢ in y giving n pairs of fitted points (xi,yfi) has a x? value given
by

n

2 - 2 2
X° = I (Yl Yfi) / g . (11)
i=1

In order to understand how the statistically fluctuating measurement errors
and the systematic deviation of a kinked track from a straight fit contribute to
x?, it is useful to study the case of straight lines with one kink. For fast
tracks the r-z (wire) plane of the TPC can be considered as such a case to a
first approximation.

We can split the measurements v; into

Vi = Ysi t Vi t Vey o (1.2)

where Yei is the result of a straight line fit and Yii the difference between a
kinked straight line fit and Vei assuming no measurement errors (o = 0). Yei
takes the finite resolution into account (see fig. 1). Fitting a straight line

(non-kink fit) to these measurements means Vei %y and from (1.1) and (1.2) we

si
get

n
2 = 2 2
X nf - > (Ykl + Yei) / g > (1-3)

i=1

which we can write as

2 —_ 2 2 2
with x* = (0% o? (1.5)
x’e = zi(yei)2 / o2 (1.6)

2 —_ 2
X2 =2 (v e) / O - (1.7)



1.1 Error term

The error term Xze has, for gaussian errors, a x2 distribution with Nge =
n-2 degrees of freedom and depends therefore on n only. The expectation value
and variance

E[Xze] = nge (1.8)
Var[xze] = 2ng4¢ (1.9)

lead to the normal standard deviation
2 — 2 _
SD[x e] = (X o ndf) /v 2n4¢ - (1.10)

P 2
Normalizing X e by l/ndf

2 —_ 2
X o = l/ndf R (1.11)
gives
E[Xze] =1
2 _
Var([X e] = 2/ndf (1.12)

SD[X* ] = (X*-1) / ¥ (2/n4)
For n = 300 we get

o[xze] =V Var[Xze] =V (2/n4g) = 0.08 . (1.13)

1.2 Kink term

For linear least squares fits, assuming small decay angles and many equidis-
tant measurements with constant resolution, the following formula for the kink

contribution was derived
x’k = 4/3 x n/o? x L2tan?($/2)/sin?3¥ x v3(1-v)® . (1.14)
n is the number of measurements, ¢ the resolution, L the track length between

the first and the last measurement, ¥ the decay angle, ¥ the polar angle, and v
the distance between the first measurement and the decay point divided by L (0 <



v £ 1). Since we measure the pairs (ri,zi) in the TPC we have L = Ar/sind and
therefore xzk « 1/sin"¥ .

The function
f(v) = vi(1-v)? (1.15)

is shown in fig. 2. It has a maximum of 2°° = 0.016 for v = 1/2 and a mean val-
ue E[f(v)] = 0.007.

Assuming o = 0.11 cm, Ar = R(pad,;) - R(pad;) = 130.8 cm, and tan(y/2) =
¥/2 we obtain

x2k = 1/n x sz = 0.47 f(v) % mrad? / sin®9 . (1.16)
For f(v) = E[£f(v)] = 0.007 and ¥ = m/2 we get
x2k = 3.3 10°?% 2 mrad-2. (1.17)

This means that for ¥ = 1 mrad the kink contribution sz is about 24 times
smaller than the R.M.S. of the error term o[Xze] (1.13). In the following we
shall indicate the momentum of the tracks by an index (m;, means a m with momen-
tum p = 10 GeV/c). For the maximum decay angle of m,o * U + v, which is 4 mrad,
and n = 300 we get

2 —_ —_ 2
X2, = 0.053 = 0.7 o[X2_] . (1.18)

1.3 Cross term

The cross term has the expectation value 0. Its fluctuations are less than
those of Xze. With n = 300 and 0 = 0.11 cm we find o[sze] = 0.032 and 0.043
for m,, and s, respectively.

Fig. 3 shows the relative densities of the normalized X? contributions X?
for ms without magnetic field. Since Xze and sze are symmetric around their
mean value of 1 and 0, respectively, Xze is shifted by 1 to the left. The den-
sity of sz is scaled by 1/2.



2. Kink tests
2.1 Normal x2? test

This method consists in fitting a non-kinked track to the data and cutting
on the obtained X2 value. As we can see from (1.4) and (1.18), the efficiency
of this test for decaying T's is rather poor because the fluctuations of the er-
rors are bigger than the contribution of the kink.

2.2 Run test

The X2 test deals only with the absolute value of the fit residuals. For
kinked tracks we expect that the signs are not randomly distributed. A method
which takes only the signs of the residuals into account is the Run test [1],

where a run denotes a sequence of residuals of the same sign.

In the Run test we count the number of runs r, the number of positive signs
n,, and and the number of negative signs np,. We consider the number r of runs
as a test variable with the following mean value E, variance Var, and normal
standard deviation SD [1]

E[r] = 2n;n,/n + 1
Var[r] = 2n,n, x (2n;n,-n) / n*(n-1) (2.1)
SD[r] = (x-E[r]) / V Var[r]

with n =n; + n,

From the SD value we can deduce the probability that the signs are randomly dis-
tributed.

Since the information used in the run test and in the x? test are the signs
and the absolute values of the fit residuals, respectively, the two methods are
complementary and can therefore be used together. The combined probability is

given by [1]
P = szPr (1 - log szPr) s (2.2)
where sz and Pr are the probabilities of the fit for the X2 and Run tests, re-

spectively. Although this equation is only valid for continuous distributioms,

it can also be used as an approximation for the discrete run test.



For the studied tracks the power of the run test is limited by two facts

e if the systematic deviations due to the kink are smaller than the resolution,
the distribution of the signs of the residuals will remain almost random.

® If these deviations are big compared to the resolution almost all kinks can be
found by the x? test alone. The decays which escape detection have a topology
(very small decay angle or near to the edges) for which the absolute value and
the signs of the residuals are not significantly different from those of a
straight track.

2.3 x? test with condensation

By going from many (n,) measurements to fewer (n,) measurements with higher

resolution, a process we call "condensation", the error is reduced by
02/0y =V (nz/m;) . (2.3)

It follows from (1.9) and (1.14) that o[xze] =y Var[xze] is decreased by the
factor v (ndfl/ndfz) whereas sz remains unchanged. Therefore sz is enhanced
on average with respect to xze.

As we shall see in chapter 4 this method is quite efficient if we use the =z
measurements of the wires instead of the pads.

2.4 x? difference test

For those decays, where the deviations of the kinked track from a straight
track are not bigger than the measurement errors, the methods described so far
are not powerful enough. From (1.4) and fig. 3 we see that the weakness of the
x2 test comes from the large fluctuations of the error term Xze. We therefore
should try to eliminate xze'

If we make a kink fit we have Ve ® Ygi + ¥ and from (1.2), (1.1), and
(1.6) we get

2 — 2 2 2
X = By )7 /0" = %7, . (2.4)



This is analogous to the case of a non-kink fit to a track which does not decay,

since in both instances only the errors contribute to x2.

We can therefore eliminate the error term by fitting the data twice, once
with a non-kinked track (xznf) and once with a kinked track (xzkf)’ and sub-
tracting the resulting X? values. From (1.4) and (2.4) we get

2 — 42 D y2 = 42 2
Ax? = x* o o= X = Xt XA (2.5)

Since we don't know the position of the kink we have in fact to fit the data
several times with different kink radii in order to get xzkf‘ The minimum x?2
: 2
value gives us X kE*

Instead of cutting on X2 like in the normal X2 test we can now cut on Ax?.
The sensitivity of this method, which I propose to call the "x* difference
test", is limited only by the fluctuations of sze and the quality of the fit,
i.e., the difference between the real and the fitted track.

Ax? does not vanish for non-decaying tracks since the kink fit and the non-
kink fit will give slightly different results due to the measurement errors.
Fig. 4 shows the probability (in percent) that a track fit gives a AX?
(= l/ndf Ax?) value less than that indicated in the abscissa. If we cut for ex-
ample at AX2 = 0.04 we miss about 5% of the Ks decays and about 50% of the i,
decays whereas the contamination from non-decaying tracks is less than 0.5%.



3. Kink search on simulated tracks

3.1 TPC simulation

Since our aim is the comparison of different kink search methods we are al-
lowed to make a number of simplifying assumptions which characterize the bulk of
the expected data. Difficulties arising with real data (small 9, missing
points, confused tracks, etc.) are excluded here.

The following assumptions were made:

* decays occur only between pad row 1 (R; = 39.8 cm) and pad row 21 (Rz; = 170.6
cm) ;

* 300 wire measurements (ri,zi) for each track which are equally spaced between
the first and the last pad row (r; = Ri, r3pe = R21);

* homogeneity in ¢;

* no multiple scattering;

® gaussian errors;

* constant pad ry resolution of orw = 0.02 cm;

¢ constant wire z resolution of o, 0.11 cm;

W
* pad z resolution of 6__ =V [o_2 + (0.12 cm cotd)?]
Zp zZw

3.2 Track simulation

The decays mt * ut + v and Kt » ut + v were studied in detail for w/K mo-
menta of p; = 5 and 10 GeV/c and polar angles ¢ between 40° and 90°. In this ¥
range measurements are obtained from all pad rows and wires. A momentum cut was

applied at pu = 2 GeV/c because u's with smaller momentum are stopped in the
iron between the TPC and the muon detector.

In order to show the momentum dependence also tracks with 3 GeV/c £ p; £ 50

GeV/c were generated and analyzed.

3.3 Track fits

In the TPC the tracks follow a helical path. The x-y (r-ry) projections (=

pad plane) of the helices are circles. The motion in the r-z projection (= wire
plane) can be described by



z(r) = 2p arcsin(r/2p) ctgd + z, , (3.1)

p being the radius of curvature in x-y and z, a constant displacement.

3.3.1 Non-kink fit

Since z(r) depends on p we first have to fit a circle to the x-y measure-

ments giving us Pe- We can rewrite (3.1) as
z(r) =ax f(r) + b
with a = ctg J (3.2)
b = 2z

f(r) = 2pf arcsin(r/pr)

and apply a linear least squares fit with the two parameters a and b to the r-z
measurements.

Denoting the X2 values of the two fits by xznf(xy) and inf(rz) we have

inf = inf(xy) + inf(rz). (3.3)

for the combined fit.

3.3.2 Kink fit

In the x-y plane we fit two circles with one measurement in common, i.e.,
circle 1 from pad row 1 to pad row i and circle 2 from pad row i to pad row 21.
Requiring at least 4 points for each circular fit we go from i = 4 to i = 18 and

look for the minimum of xzi = Xzi1 + xziZ' The minimum gives us the x? value of

the kink fit, and the radius of the corresponding pad row (Ri min) gives us the
r coordinate of the kink
2 = 42
X re®Y) = X% i (3.4)

r, =R, . .
k i,min

If we use the 300 wire measurements in r-z, we apply the same procedure go-
ing from wire i = 20 to wire i = 280 in steps of 10.
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If we have 21 threedimensional points, from either
pads or by "condensing" the wire measurements around
precise z measurement for each pad row, we proceed in
above for the x-y plane. Now Xzil and Xzi2 (for the
of the track) are the sums of the X2 values obtained

respectively,

2 2
X ij (xy) + X i3 (rz)

.x2

il

2
+)(i

2

(G =1,2)

the z measurements of the
each pad row to one more
the same way as described
first and the second part

in the x-y and r-z plane,
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4. Results

Although the study was carried out for 7's and K's with momenta p, = 5 and
10 GeV/c and several polar angles ¥ we shall concentrate on the results obtained
for the two extreme cases, namely m's with p; = 10 GeV/c (m1,) and K's with p; =
5 GeV/c (Ks). Ti1o have a maximum decay angle of wmax = 4 mrad and Ks of ¢max =
114 mrad (222 mrad without Py cut). All results except fig. 6 are averages over
3 between 40° and 90° where tracks are measured in the full TPC.

The following tests were applied to the simulated data:

e normal non-kink fit with x? test [N]

e condensation of the wire measurements and non-kink fit with x? test [C]

e condensation of the wire measurements and non-kink fit with x? and Run test
[C+R]

e condensation, non-kink fit, and kink fit with Ax® test [C+A].

Table 1 shows a comparison of the efficiencies of these methods in the pad
plane (x-y), in the wire plane (r-z), and in space (x-y-z). The percentage of
detected kinks is called "kink search efficiency" (KSE). A cut at x % means
that x % of the tracks without decay are incorrectly found to have a kink.

We see that the biggest improvement in the r-z plane is achieved by "conden-
sation" of the wire measurements [C]. If we apply in addition the Run test
[C+R], the efficiency is increased by about 2.5% for m,, and remains almost the
same for Ks. The use of the x? difference method [C+A] instead of the combina-
tion of the X2 test and the Run test gives a much better result for m,,. For Ks
this test is slightly less efficient since its sensitivity near to the edges is
smaller. This is because the difference between the kinked track and the kink
fit is bigger near the edges since we need at least 4 measurements for each of
the two circle fits.

Table 2 contains the results using only pad information and no wire data for
the track fits.

A comparison between the KSE of the x2 difference test in space given in Ta-
ble 1 and 2 shows that the KSE for m;, and Ks is increased by about 15% and 5%,

respectively, if one uses the wire measurements in the r-z plane.
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Table 1: Kink search efficiencies [%] using pad and wire data
cut 0.5% 5%
method N C C+R C+A C+R C+A
Tio
X~y 25.0 25.0 27.5 34.0 36. 36.0 39. 45.5
r-z 4.5 21.0 23.5 35.0 14.0 34.0 37.0 47.0
X-y-2z 14.0 35.0 36.5 50.0 26.5 47.0 49. 60.5
Ks
X~y 87.0 87.0 87.5 89.5 90.0 90.0 90.5 92.0
r-z 78.5 88.5 88.5 90.5 82.5 91.0 91. 92.5
X-y-2 91.0 95.5 95.5 94.0 93. 96.5 96. 95.0
Table 2: Kink search efficiencies [%] using pad data only
cut 0.5% 5%
method C C+A C+A
Tio
X~y 25.0 34.0 36.0 45.5
r-z 1.0 1.5 6.5 9.5
X-y-2 21.5 34.5 33.0 46.0
Ks
X~y 87.0 89.5 90.0 92.0
r-z 65.5 72.5 72.5 78.0
X-y-2 91.0 88.5 93.0 90.5
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Some features of the best method, the Xx? difference test in space with con-
densed wire measurements, are presented in fig. 5 - 8. The momentum dependence
of the KSE for m's and K's in the range p; = 3 - 50 GeV/c is shown in fig. 5.
The dependency of the KSE on ¥ for m;, and Ks can be seen in fig. 6. A plot of
the decay angle § versus the kink radius Ty for (a) detected and (b) missed
kinks is presented in fig. 7 for T, and in fig. 8 for Ks. For m,, the full ¢
range is shown, whereas for Ks a cut at 20 mrad is applied in order to see the
behaviour for small decay angles in more detail. The shape of the plots for the
detected kinks (a) can be very well understood by the function f(v) = vi(1l-v)?,
which describes the dependence of the kink contribution on the decay radius (see
fig. 2).
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5. Conclusion

Several kink-detection methods for mt and K+ decaying into p* + v inside the
TPC were studied on simulated data. The '"x? difference test" in space combined
with the "condensation" of the wire data was found most powerful and is there-
fore proposed as kink search algorithm in the TPC. This method will be evaluat-

ed further, adding ITC and vertex information.

The results also show that the use of wire data instead of the 2z measure-

ments from the pads increases the kink search efficiency substantially.

Reference

[1] W.T. Eadie et al., Statistical Methods in Experimental Physics,
Amsterdam : North-Holland, 1971.
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FIGURE CAPTIONS

Schematic of a kinked track. Yei is the result of a straight 1line fit,
Vi the difference between a kinked straight line fit and Yei assuming in-

finite resolution, and Yei the measurement error.

Function f(v) = v¥(1-v)? for 0 £ v £ 1.

Relative densities of Xze, sz, and sze for ms and no magnetic field.
Since Xze and sze are symmetric around their mean value of 1 and 0, re-
spectively, Xze is shifted by 1 to the left. The density of sz is scaled

by 1/2.

Integrated AX? distribution for decaying m;, and Ks and for tracks without
kink.

Kink search efficiency of the X? difference test with condensation versus

momentum for m and K averaged over .
Kink search efficiency versus polar angle ¥ for m;, and Ks.

Decay angle versus kink radius of m,, for the cases where the decay was
found (a) or escaped detection (b).

Decay angle versus kink radius of Kg for the cases where the decay was
found (a) or escaped detection (b).
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Fig. 1: Schematic of a kinked track.
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Fig. 2: Function f(v) = v3¥(1-v)3.
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Fig. 3:

and no magnetic field.
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n (36)

Fig. &4:

Integrated AX? distribution for decaying T, and Ks
and for tracks which do not decay (nd).
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Fig. 5: Kink search efficiency versus momentum for m and K.
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Fig. 6: Kink search efficiency versus polar angle ¥ for m,, and Ks.
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Fig.

7: Decay angle versus kink radius for miq:
a) kink detected, b) kink not detected.
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Fig. 8:

a) kink detected, b) kink not detected.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

