ALEPH TPC: Coordinate measurements along the drift direction - changes expected when sense wires are connected in pairs

W. Blum, R. Richter and G. Stimpfl

ALEPH TPC: Coordinate measurements along the drift direction - changes expected when sense wires are connected in pairs

1. Two-track separation

This is given by the width $\pm W_s$ of the signal. W_s is the quadratic sum of the r.m.s. width W_{C} of the electron cloud and the pulse width W_{D} (W_{D} = ± 140 ns or ± 7 mm). The width of the cloud is given by a diffusion term which depends on the drift length L and an angle term which depends on the cell length a (a = 4 mm or 8 mm) and the polar angle Θ :

$$W_{C} = 0.4 \text{ mm} \times \sqrt{(L/1 \text{ cm})} + \frac{a}{\sqrt{(12)} \text{tg}\theta}$$

The longitudinal diffusion of 0.4 mm for 1 cm is based on the TPC90 measurements of A. Peisert [1]. (In comparison to the transverse diffusion measured also in TPC90 [2], there is an electric anisotrophy.)

Examples:

a(mm)	L(m)	θ (deg.)	W _C (mm)	W _S (mm)
-	2	90	5.6	9.0
4	2	45	5.7	9.0 7
8	2	45	6.1	9.3
4	0	20	1.2	7.1 ¬
8	0	20	2.3	7.4

The differences are negligible.

2. Accuracy in z for each point

This is given by the width of the electron cloud $W_{\rm c}$ and the statistics of electrons plus a contribution C from electronics. C contains cable variations, phase of measurement, variation of pulse rise time, $C \approx \pm 10$ ns or 0.5 mm.

$$\sigma_z^2 = \frac{(0.4 \text{ mm})^2 \cdot (L/1 \text{ cm})}{n_{\text{tot}}} + \frac{a^2}{12 \text{ tg}^2 \theta \text{ n}_{\text{eff}}} + C^2$$

 $n = n^{(o)} \cdot (a/l cm) \cdot (1/sin\theta)$

 $n = n^{(o)} \cdot (a/l \text{ cm}) \cdot (1/\sin \theta)$ $n^{(o)} = \text{effective number of electrons/cm created along the track, } n^{(o)}_{tot} = 100,$ $n_{\rm eff}^{\rm (o)}$ = 10; here we take into account the clustering of ionisation along the track.

Examples:

a(mm)	L(m)	θ (deg.)	diffusion term(mm)	angular term(mm)	σ _Z (mm)
4	2	90	0.89	0	1.0 ¬
8	2	90	0.63	0	0.8
4	2	45	0.70	0.48	٦.0 ر
8	2	45	0.53	0.69	1.0 _
4	0	20	0	0.93	1.1 ¬
8	0	20	0	1.30	1.4

The differences are very small. There are half as many points when a goes from 4 to 8 mm.

3. Capability of detecting small kinks in a track

Using the " χ^2 difference test with condensation" [3] for 10 GeV/c $\pi \to \mu + \nu$ and assuming a constant drift length L = 1 m we find about 8% less kinks at the polar angle $\theta = 40^{\circ}$ and almost no difference at $\theta = 90^{\circ}$ (see figure).

References

- 1. Preliminary results of the two-track resolution in TPC90 by A. Peisert, ALEPH-TPC Note 85-16.
- 2. Dependence of the transverse diffusion of drifting electrons on magnetic field by S.R. Amendolia et al., Nucl. Instr. Meth. Phys. Res. <u>A244</u> 516 (1986).
- 3. Kink search for muon candidates in the TPC by G. Stimpfl, ALEPH-TPC Note 86-48.

Figure Caption

Percentage of found decays 10 GeV/c $\pi \rightarrow \mu + \nu$ in the polar angle range 40° $\langle \Theta \rangle \langle \Theta \rangle$ for the wire distance a = 4 mm (1) and a = 8 mm (2) assuming L = 1 m.

