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With an eye toward LHC processes in which theoretical precisions of 1% are desired,
we introduce the theory of the simultaneous YFS resummation of QED and QCD to
compute the size of the expected resummed soft radiative threshold effects in precision
studies of heavy particle production at the LHC. Our results show that both QED and
QCD soft threshold effects must be controlled to be on the conservative side to achieve
such precision goals.
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1. Introduction

At the LHC/ILC, the precision requirements for soft multiple gluon (n(g)) effects

will be even more demanding than at FNAL, where the uncertainty on mt [1],

δmt = 4.3 GeV, receives a soft n(g) uncertainty ∼ 2-3 GeV, and soft n(g) MC

exponentiation results will be an important part of the necessary theory – YFS

exponentiated O(α2
s)L calculations, in the presence of parton showers, on an event-

by-event basis.

As many authors [2] prepare the necessary results that would lead to such a

precision on QCD for LHC processes, the QED corrections need to be addressed as

well. Estimates by Refs. [3–7] show that one gets few per mille effects from QED
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corrections to structure function evolution. In this paper, estimate the size of QED

corrections at threshold at the LHC.

Treating simultaneously QED and QCD in the respective YFS [8, 9] exponenti-

ation we discuss threshold effects at the LHC in the candidate luminometry [10,11]

processes pp → V +n(γ)+m(g)+X → ℓ̄ℓ′+n′(γ)+m(g)+X , where V = W±, Z,and

ℓ = e, µ, ℓ′ = νe, νµ(e, µ) respectively for V = W+(Z), and ℓ = νe, νµ, ℓ′ = e, µ

respectively for V = W−.

2. YFS Theory and its Extension to QCD

In Refs. [9] the renormalization group improved YFS theory [12] for e+(p1)e
−(q1) →

f̄(p2)f(q2)+n(γ)(k1, ·, kn) is realized by Monte Carlo methods, where the respective

cross section dσexp and all of the attendant IR functions, {B, B̃, D, S̃}, and hard

photon residuals ,{β̄n(k1, . . . , kn)}, are specified in Refs. [9]. In Refs. [13, 14] we

have extended the YFS theory to QCD: the net result is that in the analogous YFS

theory we have the replacements 2αRe B + 2α B̃ → SUMIR(QCD), D → DQCD,

and β̄n(k1, . . . , kn) → ˜̄βn(k1, . . . , kn), where the QCD YFS functions are defined in

Ref. [13] and the gluon residuals [13] ˜̄βn(k1, . . . , kn) are free of all infrared diver-

gences to all orders in αs(Q). The genuine non-Abelian IR physics is encoded [13]

here in the ˜̄βj . The YFS resummation which we discuss here is fully consistent with

that of Refs. [15, 16]. See Ref. [17] for more discussion of this point.

3. Extension to QED⊗QCD and QCED

Simultaneous exponentiation of QED and QCD higher order effects gives [17]

dσ̂exp = e
SUMIR(QCED)

∞
∑

m,n=0

∫ m
∏

j1=1

d3kj1

kj1

n
∏

j2=1

d3k′j2
k′j2

∫

d4y

(2π)4

e
iy·(p1+q1−p2−q2−

∑

kj1
−

∑

k′

j2
)+DQCED ˜̄βm,n(k1, . . . , km; k′1, . . . , k

′
n)

d3p2

p 0
2

d3q2

q 0
2

,

(1)

where the new YFS functions,

SUMIR(QCED), DQCED and ˜̄βm,n(k1, . . . , km; k′
1, . . . , k

′
n), where the latter has

m hard gluons and n hard photons, are defined in Ref. [17]. The infrared algebra

QCED [17] obtains: the average Bjorken x values for the QED and QCD emissions

imply [17] that QCD dominant corrections happen an order of magnitude earlier

than those for QED so that the leading ˜̄β
(0,0)
0,0 -level gives a good estimate of the size

of the effects we study.

4. QED⊗QCD Threshold Corrections at the LHC

For the basic formula (we use the standard notation here [17])

dσexp(pp → V + X → ℓ̄ℓ
′ + X

′) =
∑

i,j

∫

dxidxjFi(xi)Fj(xj)dσ̂exp(xixjs), (2)
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we use the result in (1) for V = Z here with semi-analytical methods and structure

functions from Ref. [24]. See also the work of Refs. [18–23]. A Monte Carlo real-

ization will appear elsewhere [25], wherein we will ultimately use HERWIG [26],

PYTHIA [27] and /or the new shower algorithm in Ref. [29] in lieu of the {Fi}

and thereby, in principle, improve on the shower/exact result combination in

Ref. [28]. Due to its lack of the appropriate color coherence [30], we do not consider

ISAJET [31] here.
We compute , with and without QED, the ratio rexp = σexp/σBorn to get the

results (We stress that we do not use the narrow resonance approximation here.)

rexp =



















1.1901 , QCED ≡ QCD+QED, LHC

1.1872 , QCD, LHC

1.1911 , QCED ≡ QCD+QED, Tevatron

1.1879 , QCD, Tevatron.

(3)

QED is at the level of .3% at both LHC and FNAL a. We agree with the results

in Refs. [18–22]. The QED effect is similar in size to structure function results in

Refs. [3–7].
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