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We analyze the behavior of standard model matter propagating in a slice of AdS5 in the presence of
infrared-brane kinetic terms. Brane kinetic terms are naturally generated through radiative corrections and
can also be present at tree level. The effect of the brane kinetic terms is to expel the heavy Kaluza-Klein
(KK) modes from the infrared brane, and hence to reduce their coupling to the localized Higgs field. In a
previous work we showed that sizable gauge kinetic terms can allow KK mode masses as low as a few
TeV, compatible with present precision measurements. We study here the effect of fermion brane kinetic
terms and show that they ameliorate the behavior of the theory for third generation fermions localized
away from the infrared brane, reduce the contribution of the third generation quarks to the oblique
correction parameters and maintain a good fit to the precision electroweak data for values of the KK
masses of the order of the weak scale.
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I. INTRODUCTION

The hierarchy between the apparent Planck scale and
electroweak scale is very mysterious, and leads us to
believe that the standard model (SM) is most likely only
an effective theory which breaks down at the electroweak
scale. This belief in fact drives much of the present activity
in particle physics, both to propose alternatives for physics
beyond the SM and to explore their consequences. One of
the more intriguing possibilities is the Randall-Sundrum
(RS) model [1]. This model invokes a warped metric (of
curvature k) to explain how the two scales can coexist quite
naturally: the Planck scale MP is the fundamental scale of
the bulk as a whole, and is the apparent scale for gravity as
a result of the graviton wave function having most of its
support at the point where the warp factor is largest. The
Higgs potential, however, is naturally at the weak scale as a
result of it living on the other side of the extra dimension
where the warp factor renders the natural scale of order
MPe

�kL � 1 TeV. This fixes the size of the extra dimen-
sion such that kL� 30.

The RS hierarchy solution requires only that the Higgs
be confined to the IR boundary at y � L (y is the coor-
dinate in the compact dimension). It does not require that
the rest of the SM fields be with the Higgs on the IR
boundary. A particularly attractive extension has gauge
fields and fermions in the bulk [2–5], allowing one to
address grand unification, absence of TeV-scale FCNC
effects, and perhaps even the observed flavor structure
for the SM fermions itself. The AdS/CFT connection al-
lows such theories an alternate interpretation as a nearly
conformal 4D theory, with conformal breaking at the TeV
scale [6].
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Having promoted the SM gauge fields and fermions to
extra-dimensional fields, the possibility arises that there
will be brane interactions which mimic their 5D kinetic
terms [7–10]. These terms appear as irrelevant operators in
the 5D theory, but as all interactions are already irrelevant,
they should be considered a generic feature of any effective
theory for extra dimensions. A specific UV completion
could in principle predict their size, but in the absence of
one, they are part of the most general extra-dimensional
model which one may consider. Further, as is usually the
case with any term not forbidden by a symmetry, they will
be generated radiatively even if the underlying physics
renders them small at tree-level. These terms are of par-
ticular importance on the IR brane of a warped theory,
where the warping enhances their impact, and it is there-
fore important to study their physical effects.

The theory with gauge fields in the bulk can potentially
feel strong bounds from precision electroweak (EW) data
[11–17]. The issue is that the localized Higgs VEV can
induce substantial mixing between the ordinary W and Z
bosons with their Kaluza-Klein (KK) brethren, distorting
their properties at a level in disagreement with precision
data. In the most simple theories, bounds on the order of
20 TeV can be derived, rendering the theory impossible to
discover at future colliders and reintroducing fine-tuning in
the Higgs potential at a level of 10�3.

Some of these constraints may be ameliorated by in-
cluding brane kinetic terms for the gauge bosons [16] or by
imposing a custodial SU�2� symmetry [18]. Still others
could be improved by moving the fermions away from
the IR brane. However, one quickly runs into a problem
with this second solution: the large top mass indicates that
the top is strongly coupled to the Higgs, and in fact the KK
-1  2005 The American Physical Society



1For definiteness, we use the following representation of the
5D � matrices:

�� �

�
0 ��

��� 0

�
; �5 �

�
1 0
0 �1

�
;

where �� � �1; ~��, ��� � ��1; ~��, and ~� are the Pauli matrices.
We also define the chirality projectors by PL�R� �

1
2 �1 �5�.
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modes are even more strongly coupled than the zero-mode.
If the top lies far from the IR brane, the KK modes become
so strongly coupled that the theory quickly loses a pertur-
bative description. Thus, there is a kind of ‘‘tug of war’’
between the requirements of small EW corrections and a
perturbative top Yukawa interaction.

A separate issue related to the geometrical picture of
fermion flavor arises from nonuniversal couplings which
distinguish the bottom quark. The small masses of the first
and second generation fermions motivate their being lo-
cated close to the Planck brane, whereas the large top mass
requires that the top quark (including left-handed top, and
thus also left-handed bottom) be located close to the TeV
brane. This leads to a nonoblique correction to the Z-bL-bL
vertex which ruins the observed agreement of the predicted
Rb with its measured value and can induce flavor-changing
neutral currents at an unacceptable level.

In this article we explore a new class of brane kinetic
terms, those relevant for the fermion fields. As argued
above, they are present in any self-consistent description
of the extra dimension anyway, and they further have great
potential to relax some of the EW precision bounds. In
particular, since they expel the KK modes of the fermions
from the IR brane, they allow for a wider region of local-
ized top quarks without the strong coupling problems
alluded to above. This in itself allows one to consider
regions of parameters where the couplings of the SM
fermions to the gauge KK modes are strongly suppressed
or may altogether vanish. As a result, contributions to the S
parameter and possible additional four fermion interac-
tions can be made small, which can lead to a much more
comfortable situation from the perspective of the EW fit.
They also suppress some contributions to the T parameter
from KK modes of top, and thus are directly helpful in their
own right. There are still potentially large contributions to
the T parameter coming from the nonuniversal modifica-
tion of theW and Z gauge boson wave functions, that arises
from the mixing with their KK modes through the localized
Higgs. As mentioned above, these effects can be sup-
pressed either by including brane kinetic terms for the
gauge fields, or by imposing a custodial symmetry. The
net result is that in the presence of fermion brane kinetic
terms the EW fit allows lower KK mode masses than in a
theory without the fermion brane kinetic terms, and thus
more opportunity to observe KK modes at future colliders
and less EW fine-tuning in the Higgs potential.

This article is organized as follows. In Sec. II we in-
troduce brane kinetic terms for the even components of
bulk fermions, and derive the spectrum and wave func-
tions. In Sec. III we examine the role such terms play in
strong coupling limits for fields coupled to the IR brane.
We find that even for moderate values of the infrared-brane
kinetic term coefficient, the constraint from the top-
quark mass on the fifth dimensional Yukawa coupling is
significantly relaxed. In Sec. IV we examine the implica-
tions for the EW fit. Finally, in Sec. V we conclude.
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II. 5D LAGRANGIAN AND KK DECOMPOSITION

We begin by setting up notation, and deriving the KK
decomposition for a bulk fermion, including brane kinetic
terms. The background metric can be written as

ds2 � GMNdxMdxN � e�2����dx�dx� � dy2; (1)

with ��� � diag��1;�1;�1;�1�, ��y� � kjyj, and 0 �
y � L. We use upper case roman letters for the 5D Lorentz
indices, and lower case greek letters for the 4D ones. The
Higgs field is localized on the y � L brane (IR brane)
where the fundamental scale is redshifted to TeV values,
thus solving the hierarchy problem. We assume that both
the standard model gauge bosons and fermions live in the
bulk, together with gravity.

The Lagrangian for a freely gravitating fermion, includ-
ing brane localized kinetic terms, can be written as

S � �
Z
d4x

Z L

0
dy

��������
�G

p
fi ���AeMA DM�� iM�y� ���

� 2�f��y� L�i ��L�
ae�a @��Lg: (2)

We use (�, �) for (5D,4D) � matrices1 and (A, a) for the
(5D,4D) tangent-space Lorentz indices. G represents the
determinant of the (5D) metric, e is the vielbein, DM is the
covariant derivative, including the spin connection, and �f
is the coefficient of the brane localized kinetic term. Note
that �f has dimension of mass�1. The � function is nor-
malized so that

R
L
0 2��y�dy � 1.

The boundary conditions at y � 0; L are chosen so that
the low-energy theory is chiral [3]. For definiteness, in the
above case only the left-handed component �L has a zero-
mode. The mass function is M�y� � cf�0 (i.e., it is an odd
mass term), where the dimensionless bulk mass parameter
cf essentially determines the localization of the massless
(zero) mode.

The above action is not the most general one at the
quadratic level. We are only including brane terms on the
IR brane, and then only so for the even chirality and
involving @� as opposed to @5. The first choice is purely
for phenomenological purposes, since the UV brane kinetic
terms are irrelevant for the KK mode spectrum. One way to
understand this is that the wave function of KK modes
whose masses are �O�TeV� are localized near the IR
brane and are therefore relatively insensitive to the UV
brane terms. We will briefly consider the effect of UV
brane terms on the EW fit in Sec. IV B below.
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The second choice, adding kinetic terms only for the
even field components, can be thought of as a prescription
for some of the UV physics. In the absence of localized
kinetic terms, the even fields (�L) will couple to the brane
whereas the odd fields (�R) will not (the odd wave func-
tions vanish on the brane as a result of the odd boundary
conditions), and therefore operators like i ��R�

ae�a @��R

vanish on the brane. Furthermore, if this term is absent, it
will not be perturbatively generated, and thus this situation
is technically natural.

One may still consider the nonvanishing operator
i� ��L@5�R � @5 ��R�L� localized on the brane, although
its interpretation requires a careful regularization of the
brane thickness. From a practical point of view, the choice
of Eq. (2) is convenient because it insures that the�L wave
functions are continuous on the brane, and thus their
couplings to brane fields are well-defined in the infinitely
narrow brane approximation.

A. KK decomposition

We expand the fermion field in KK modes as

�L;R�x; y� � e3�=2
X
n

 nL;R�x�f
n
L;R�y�; (3)

where the KK mode wave functions, fnL;R, satisfy the set of
coupled equations

�@5 � �cf � 1=2��0�fnL � e�mnfnR; (4)

��@5 � �cf � 1=2��0�fnR � e�m�
nfnL�1� 2�f��y� L��;

(5)

and mn are the KK masses. In order to have canonically
normalized kinetic terms in the 4D KK description, we
choose the wave functions fL;R to satisfy the following
orthonormality relationsZ L

0
dy�1� 2�f��y� L��fnLf

m�
L � �mn;Z L

0
dyfnRf

m�
R � �mn:

(6)

The appropriately normalized zero-mode wave function
is

jf0L�y�j �

��������������������������������������������������������������������
k�1� 2cf�

e�1�2cf�kL�1� �1� 2cf��fk� � 1

vuut e�1=2�cf��;

(7)

and the odd tower, by construction, does not contain a zero-
mode. Note that for � negative and large enough, there is
no solution to Eq. (7), as the right-hand side becomes
imaginary, signaling an inconsistency with Eq. (6), asso-
ciated with the presence of a ghost. From here on, we
assume this does not occur, and that the fn and mn are
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all real (as is the case when � � 0). We will briefly return
to this point in Sec. III.

To solve for the massive KK mode wave functions we
use Eq. (4) to find fnR,

fnR �
e��

mn
�@5 � �cf � 1=2��0�fnL; (8)

and replacing in Eq. (5) we have a second order differential
equation for fnL:

f�@25 � 2�0@5 � �1� �cf � 1=2�2���0�2

� �cf � 1=2��00gfnL

� e2�m2n�1� 2�f��y� L��fnL: (9)

Using �00 � 2k���y� � ��y� L��, we see that we have the
boundary conditions

@5f
n
L









y�0
�

�
1

2
� cf

�
kfnL









y�0
; (10)

@5fnL









y�L
�

��
1

2
� cf

�
k� �fm2ne2kL

�
fnL









y�L
: (11)

The solution to Eq. (9) in the bulk is

fnL�y� � Ane
�
�
Jjcf�1=2j

�
mn

k
e�

�
� bnJ�jcf�1=2j

�
mn

k
e�

��
;

(12)

where An is fixed by the normalization condition Eq. (6),
while the boundary conditions, Eqs. (10) and (11), deter-
mine bn and the KK spectrum by

bn��
�cf�1=2�Jjcf�1=2j�

mn
k ��

mn
k J

0
jcf�1=2j

�mn
k �

�cf�1=2�J�jcf�1=2j�
mn
k ��

mn
k J

0
�jcf�1=2j

�mn
k �

��
�cf�1=2� ~�f

m2n
~k
�Jjcf�1=2j�

mn
~k
��mn

~k
J0
jcf�1=2j

�mn
~k
�

�cf�1=2� ~�f
m2n
~k
�J�jcf�1=2j�

mn
~k
��mn

~k
J0
�jcf�1=2j

�mn
~k
�
;

(13)

where we defined ~k � ke�kL �O�TeV� and ~�f �
�fe

kL �O�TeV�1�. Note that like any other IR brane
term, the localized fermion kinetic term is warped, and
as a term with inverse mass dimension, the warping in-
creases its importance at low energies. As usual, the con-
sistency of the boundary conditions is what determines the
mass eigenvalues mn.

We can obtain approximate expressions for the wave
functions of the lowest lying KK modes (mn � k). When
cf >

1
2 �1� 1=kL�, the eigenvalue equation reduces to

bn � O�mn=k�
2cf�1 � 1, i.e.,

Jcf�1=2�xn� � �fkxnJcf�1=2�xn�; (14)

where mn � xn~k, and the wave functions become
-3
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fnL�y� � AnekyJcf�1=2�xne
�k�L�y��;

An �
e�kL

Jcf�1=2�xn�

����������������������������������������������������������
2k

1� �1� 2cf��fk� �2fk
2x2n

s
:

(15)

In this case, when the localized kinetic term is large,

�fk� 1, one of the modes becomes light2 with m ’����������������������������������
�2cf � 1�=��fk�

q
~k.

When cf <
1
2 �1� 1=kL�, the eigenvalue equation re-

duces to

J1=2�cf �xn� � ��fkxnJ�cf�1=2�xn�; (16)

and the wave functions are now given by

fnL�y� � AnekyJ�cf�1=2�xne
�k�L�y��;

An �
e�kL

J�cf�1=2�xn�

����������������������������������������������������������
2k

1� �1� 2cf��fk� �2fk
2x2n

s
:

(17)

In this case there is no light mode.
For cf � 1=2, the wave functions read

fnL�y� � Ane�
�
J1

�
mn

k
e�

�
� bnY1

�
mn

k
e�

��
; (18)

and the eigenvalues are now given by

bn � �
J0�

mn
k �

Y0�
mn
k �

� �
J0�

mn
k e

kL� �mn ~�fJ1�
mn
k e

kL�

Y0�
mn
k e

kL� �mn ~�fY1�
mn
k e

kL�
: (19)

The normalization factor, An, is not particularly simple and
should be calculated from Eq. (6).

B. Mixed position/momentum space propagator

When computing loops or performing sums over all KK
modes in the tower, the explicit decomposition is not the
most convenient way to proceed. It is simpler to employ
the propagator in mixed position/momentum space which
implicitly includes the sum over all of the KK modes.
Thus, in this section we compute the fermion propagator
which shall be of use in Sec. III in estimating how strong a
brane coupling involving the fermion can be made before
the theory loses predictivity.

To be definite, we calculate the propagator by assuming
that the boundary conditions are such that the zero-mode is
left-handed. The defining equation for the fermion propa-
gator in the presence of a brane localized kinetic term for
the left-handed components, as in Eq. (2), is then
2However, in the large �f limit and making no approxima-
tions, the mass never goes to zero, but asymptotes to the value�����������������
4c2f � 1

q
e��cf�1=2�kL~k.
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i��AeMA DM �M�G�X;X0� � 2��L� y��fi�
ae�a PL

� @�G�X;X0�

�
i��������
�G

p ��5��X� X0�; (20)

where M � cf�0 is the Z2-odd bulk mass that determines
the localization of the zero-mode, and X � �x�; y�. We
Fourier transform Eq. (20) along the four noncompact
coordinates3 and define the propagators for the various
chiralities by GLL � PLGPR � h�L�Li, GRL �

PRGPR � h�R�Li, etc., where� is a generic 5D fermion
and PL;R are the left- and right-handed chirality projectors.

Since only the KK tower that contains a zero-mode
couples to the brane, we concentrate on the propagator
for the left-handed components, GLL. We may isolate it by
first projecting onto Eq. (20) by PL from the left and by PR
from the right to obtain

GRL � �i
e��

6p
�@y � �2� cf��0�GLL: (21)

Repeating the same projection after applying the operator
i��AeMA DM �M� to Eq. (20) gives a second equation that
relates GLL and GRL, and using Eq. (21) to eliminate GRL
we obtain a second order differential equation for GLL:

f@2y � �0@y � cf�cf � 1��02 � cf�00

� e2�p2�1� 2��L� y��f�gG
p
��y; y

0�

� �e3���y� y0�; (22)

where we defined G� by GLL � iPL 6pe2�G�, and the
subscript ‘‘�’’ refers to our choice of Z2-even boundary
conditions for the left-handed spinor components. Note
that due to the metric signature in Eq. (1), p2 < 0 in the
on-shell region and the solution to Eq. (20) can be directly
interpreted as the Euclidean space propagator. The bound-
ary conditions to be applied on G� are

@5G�









y�0
� �cfkG�









y�0
;

@5G�









y�L
� �cfkG�









y�L
��fp

2e2kLG�









y�L
;

(23)

and the explicit solution is
3Explicitly, we define Gp�y; y0� �
R
d4xei���p

�x�G�x; y; y0�, so
that p is the momentum measured by UV observers. The
y-dependent cutoff of the theory is then e�ky�, where ��
MP, the Planck scale.
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FIG. 1. Tree-level and one-loop contributions to the 5-
dimensional top Yukawa coupling, 35. At strong coupling the
two contributions are comparable.

4Note that for negative �, the Euclidean propagator becomes
negative at large momenta, showing the presence of a ghost. In
addition, for negative �, but j�j< 1=k, Eq. (28) shows a tachyon
pole. For the region �� <�<�1=k, where �� is the value for
which the zero-mode Eq. (7) becomes a ghost, there is also a
tachyon solution, as can be inferred from the eigenvalue
Eq. (13). If ��<�1 the tachyon solution occurs for momenta
smaller than ~�, and signals an instability in the effective theory.
Small negative �, such that the instability would be above ~�,
have a negligible impact on the low-energy physics, and there-
fore we shall concentrate on positive values of �.
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e2��y�Gp
��y; y

0� � �
e�5=2�k�y�y

0�

k�AD� BC�

�
AKcf�1=2

�
p
k
eky<

�

� BIcf�1=2

�
p
k
eky<

��

�

�
CKcf�1=2

�
p
k
eky>

�

�DIcf�1=2

�
p
k
eky>

��
; (24)

where K2, I2 are modified Bessel functions of order 2,
y<�>� are the smallest (largest) of y, y0, and

A � Icf�1=2

�
p
k

�
;

C � Icf�1=2

�
p
k
ekL

�
� pekL�fIcf�1=2

�
p
k
ekL

�
;

B � Kcf�1=2

�
p
k

�
;

D � Kcf�1=2

�
p
k
ekL

�
� pekL�fKcf�1=2

�
p
k
ekL

�
:

(25)

We note that if the boundary conditions are such that the
zero-mode is right-handed, the propagator for the even
components is given by GRR � iPR 6pe2�G�, with G�

given by Eqs. (24) and (25).

III. STRONG COUPLING ESTIMATES

It is interesting to consider the effect of the IR localized
kinetic term on higher order corrections to various observ-
ables. In particular, since the heavy KK modes are local-
ized close to the IR brane, corrections that involve brane
localized couplings can be quite important. In fact, in the
absence of localized kinetic terms one generally encoun-
ters enhancement factors

���������
2kL

p
associated with every lo-

calized coupling that involves heavy KK modes. This,
combined with sums over the modes inside loops which
often diverge, may cast doubt on the applicability of a
perturbative analysis. The main effect of the localized
kinetic term is to repel the heavy mode wave functions
from the brane and therefore one might expect that the
strong coupling effects associated with the KK modes will
be alleviated.

An associated point which is relevant for the phenome-
nology of the scenario we are considering has to do with
the localization of the standard model fermion zero-modes
in the extra dimension, i.e., the choice of the c-parameters.
In particular, without the brane localized kinetic terms the
top wave functions need to be localized close to the IR
brane (cf � 1=2) to reproduce the large top mass without
having to introduce too large a 5D Yukawa coupling. The
presence of a top brane localized kinetic term and the
associated softening of its KK tower couplings can relax
such a constraint, and have an impact on the bounds
derived from electroweak precision measurements.
015010
With this motivation in mind, we turn to estimate the
strong coupling bounds coming from the higher dimen-
sional theory on Yukawa couplings, e.g.,Z

d4x
Z L

0
dy

��������
�G

p
2��L� y�35H �Qt: (26)

To define the strong coupling value of 35 we require that all
loops involving this coupling contribute equally to observ-
ables. The presence of both the nontrivial warping and
brane kinetic terms change the naive dimensional analysis
estimate of [19]. We may estimate this value by calculating
the one-loop contribution to 35 itself and requiring that it
be as large as the tree-level value (see Fig. 1). The one-loop
vertex correction to 35 involves a summation over the KK
modes defined in the previous section. An efficient way to
sum the KK contributions, which also renders the physics
more transparent, is to calculate the loop directly in the
five-dimensional theory using the mixed position/momen-
tum space propagator presented in Sec. II B.

Omitting the external propagators and working at zero
external momentum, the loop diagram of Fig. 1 is

�35e
�4kL�3

Z d4p

�27�4
e2kL

p2
Gp
tRtR�L; L�G

p
QLQL

�L; L�; (27)

where the Higgs propagator contains a factor of e2kL due to
not being canonically normalized. We note that for p�
ke�kL the propagator becomes4,

e2kLGp
��L; L� �

e4kL

p� ekL�fp2
; (28)

and as a result the p integration in Eq. (27) is logarithmi-
cally sensitive to the cutoff scale, just as it would have been
in a four-dimensional theory. We can easily estimate the
-5
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contribution by cutting the integration off at ~� � e�kL�,
where ��O�MP� (and assuming �Q � �t � �),

e�10kLPR
335
872

Z ~�

~k
p3dp

�
e4kL

p� ekL�p2

��
e4kL

p� ekL�p2

�

� e�4kLPR
335
872

1

�2

�
log

�
1� ekL�~�
1� �k

�

�
ekL��~�� ~k�

�1� ekL�~���1� �k�

�
: (29)

For our estimates we assume for simplicity that the QL and
tR brane kinetic terms are of the same order. We obtain that
the above one-loop contribution is smaller than the tree-
level piece, e�4kL35, when

35 &

���
8

p
7��������������������

log��=k�
p ; (30)

which is a good approximation for k� * a few.
This result has interesting implications for the localiza-

tion of the top wave functions in the extra dimension. The
effective four-dimensional top Yukawa coupling is

3t � aQat
35
L
; (31)

where the parameters

af �

��������������������������������������������������������������������
�1� 2cf�kLe�1�2cf�kL

e�1�2cf�kL�1� �1� 2cf��fk� � 1

vuut

�

8>>>>>><>>>>>>:

��������������������������
�2cf � 1�kL

q
e��cf�1=2�kL; cf � 1=2 * 1=2kL;����������

L
L��f

q
; cf � 1=2;�����������������������

�1�2cf�kL
1��1�2cf��fk

r
; 1=2� cf * 1=2kL

(32)

are determined by the localization of the zero-mode. For
later application we note that one may take cQ � 1=2, ct �
0, without reaching the strong coupling regime, provided
�k satisfies

3t <

���
8

p
7k��������������������

log��=k�
p ��������������������������������������

k�L� ���1� k��
p : (33)

For 3t � 1, this is indeed satisfied for �k * a few.
5In this case, the presence of fermion brane kinetic terms plays
an important role in suppressing the contribution to T from KK
top loops, so that it can be safely neglected, as was argued in
[20].
IV. LOW-ENERGY IMPLICATIONS

We now consider the effect of fermion brane localized
kinetic terms on the EW fit in the Randall-Sundrum sce-
nario with gauge and fermion fields in the bulk. We also
include moderate IR localized gauge kinetic terms since
they can have an important impact on the bounds on the
KK spectrum of this class of theories, as was shown in [20].

Another important source of model dependence is re-
lated to the localization in the extra dimension of the
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fermion zero-modes, to be identified with the SM fields,
which is controlled by cf. Since the KK modes of the
gauge fields tend to be localized towards the IR brane,
the couplings of the SM fermions to the gauge field KK
modes depend strongly on the corresponding values of cf.
This implies that, for KK masses of order a few TeV, we
should either have cf * 1=2 (where such couplings be-
come largely insensitive to the precise value of cf), or
choose similar values of cf & 1=2, in order to avoid dan-
gerous flavor-changing neutral current effects.

An attractive idea is that the actual quark and lepton
mass hierarchies, as well as the observed mixing angles,
are a consequence of the fermion localization in the extra
dimension. In such a scenario, the first two generations are
localized closer to the UV brane (cf * 1=2) to account for
the smallness of their masses compared to the electroweak
scale. The third generation, however, requires cf & 1=2 to
account for the large top mass. An important result from
the previous section is that in the presence of moderate
localized kinetic terms for the top system, it is possible to
have ctL � 1=2, while the right-handed top is localized
closer to the IR brane (with ctR � 0), without encountering
strong coupling effects due to their KK towers. Thus, an
attractive scenario emerges where all the fermion fields
have cf � 1=2 (except for tR) and the quark and lepton
mass hierarchies are understood geometrically. Here we
concentrate on the EW constraints on such a scenario,
since the constraints on models with fermions localized
close to the IR brane (that do not explain the fermion mass
hierarchies) have been explored elsewere5 [16,20]. As a
first approximation, we consider the EW fit when all
fermions have cf � 1=2 (except for tR) and similar brane
localized kinetic terms so that the main effect of the new
physics is well approximated by the oblique parameters
[21] S, T, and U. In the more realistic scenario discussed
above, one should consider the additional bounds coming
from the flavor nonuniversality, but such effects should be
small for cf * 1=2, and the complete analysis is beyond
the scope of this work.

A. KK fermion contributions

We start by considering the low-energy consequences
from integrating out the fermion KK modes. These are
loop-level effects, that can nevertheless be important
when the KK fermions couple significantly to the Higgs.
The most important effect is a contribution to the 9 pa-
rameter from KK top loops. Treating the Higgs VEV
perturbatively, the lowest order contributions arise from
diagrams such as the one shown in Fig. 2. In the absence of
-6
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FIG. 2. Representative lowest order contributions to the T
parameter from fermionic KK loop diagrams. The crosses rep-
resent insertions of the Higgs VEV. The corresponding W�-W�

graphs are neglected in the limit mt � mb.
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FIG. 3. Tree-level contributions to the weak gauge boson
masses, the gauge-fermion couplings, and four fermion opera-
tors, arising from the KK gauge bosons. ~G0 stands for the KK
propagator at zero momentum, and the crosses represent inser-
tions of the Higgs VEV squared (at y � L) whereas the small
filled circles are insertions of the bulk W-f-f vertex, integrated
over y.

6The graph with one t�1�L nominally contains an IR divergence
in the mass insertion approximation. We have dealt with this
subtlety by resumming all insertions of the zero-mode mass.

WARPED FERMIONS AND PRECISION TESTS PHYSICAL REVIEW D 71, 015010 (2005)
fermion brane kinetic terms, the localized Higgs couplings,
which induce mixing among the KK modes, are indepen-
dent of the KK level. As a result the sum over the KK
towers lead to logarithmic and quadratic divergences.

In the presence of brane kinetic terms, the contributions
become finite due to the decoupling of the heavier KK
modes. From Eqs. (15) and (17) we see that, for cf � 1=2,
for example, the couplings are given by

3t�n�L ;t
�0�
R
� 3n0 �

���������������������������������������������������������������
2kL

1� �1� 2cQ��Qk� �2Qk
2x2Qn

s
at
35
L
;

(34)

when a single KK mode and a zero-mode are involved [at
is defined in Eq. (32)], and

3t�n�L ;t
�m�
R

� 3nm

�

���������������������������������������������������������������
2kL

1� �1� 2cQ��Qk� �2Qk
2x2Qn

s

�

����������������������������������������������������������
2kL

1� �1� 2ct��tk� �2t k2x2tm

s
35
L
; (35)

for the couplings among KK modes. Imposing that the top
mass be reproduced determines 35=L from Eq. (31). We
see that indeed the heavier KK modes couple more weakly
to the brane. When cf � 1=2 one should use the general
expressions for the KK mode wave functions, Eq. (18),
although the approximate expressions, Eqs. (34) and (35),
in the limit cf ! 1=2 give a very good approximation to
the cf � 1=2 case (within a few percent).

For �Qk� �tk of order a few, the decoupling of the
higher KK modes is very efficient and the contribution
from the first KK level is an excellent approximation to the
full tower. In addition, for cQ � 1=2, ct � 0, and �Q;tk� a
few, the diagram with tR zero-modes dominates over that
with tR KK modes. Thus, we may approximate the com-
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plete fermionic contribution to �T as,

�Tt �
�
310
3t

�
2
�
mt

m�1�
tL

�
2
�

Nc
167s2c2

�
mt

mZ

�
2
��
4

3

�
310
3t

�
2

� 4
�
2 log

�m�1�
tL

mt
�
�
�
3

2

��
; (36)

where the term in square brackets is the SM top contribu-
tion, which is of order 1. The terms in the curly brackets are
the expressions for graphs containing two t�1�L and one t�1�L
lines, respectively6. This expression is a good approxima-
tion to the entire KK fermionic contribution for �k * 3.
For smaller �, there are relevant contributions from the tR
KK modes. For the choice �Qk � �tk � 5, kL � 30, we

find 3t�1�L ;t
�0�
R
� 2:373t and m�1�

tL � 0:67~k. Taking, for ex-

ample, ~k � 5TeV, results in �T � 0:25. We note that the
relevant coupling at the second KK level is 3t�2�L ;t

�0�
R
�

0:423t, while m�2�
tL � 3:94~k, from which it is easy to check

that its effect is completely negligible. We conclude that
the fermion localized kinetic terms are very efficient in
suppressing these loop contributions to T, even for cQ �

1=2.

B. KK gauge boson contributions

Integrating out the KK gauge bosons leads to important
tree-level corrections to the weak gauge boson masses as
well as to the couplings among the gauge fields and the
quarks and leptons. These corrections arise from the fer-
mion couplings to the KK gauge bosons and as a result of
the mixing of the zero-mode weak gauge bosons with their
KK modes, induced by the presence of the localized Higgs
fields, as indicated in Fig. 3.

Such effects can be efficiently handled with the aid of
the propagator for the massive KK gauge fields, as ex-
-7
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plained in Ref. [20]. The KK summation can be done
automatically by working in mixed position and 4D mo-
mentum space. Denoting this propagator by ~Gp�y; y0�,
where p is the 4D momentum, the dominant low-energy
corrections are all determined by the KK gauge propagator
evaluated at zero momentum and the fermion zero-mode
wave functions. In detail, the leading corrections may be
computed in terms of ~G30�L;L�, ~G

B
0 �L; L�, and the quanti-

ties

Gi
f �

Z L

0
dy ~Gi

0�L; y�jf
�0��y�j2�1� 2�f��y� L��;

Gi
ff �

Z L

0
dydy0jf�0��y�j2 ~Gi

0�y; y
0�jf�0��y0�j2

� �1� 2�f��y� L���1� 2�f��y0 � L��;

(37)

where the superscript i � 3; B in the above quantities refer
to the W3 and B gauge bosons of SU�2� � U�1�, respec-
tively, and f�0��y� is the appropriate fermion zero-mode
wave function, given in Eq. (7). The terms proportional to
��y� L� represent the effects induced by the presence of
the gauge-covariant brane kinetic terms of the fermions.

Observe that while the quantities Gf and Gff serve to
determine the corrections to the effective couplings of the
zero-mode fermions to the weak gauge bosons and the
induced four fermion operators, respectively, the correc-
tions to the gauge boson masses are just a function of
~G0�L; L�. For instance, the Z and W masses are given by

m2Z �
e2 ~v2

2s2c2

�
1�

~v2

2
� ~G30�L; L� � ~GB

0 �L; L�� �O

�
v4

k4

��
;

(38)

m2W �
e2 ~v2

2s2

�
1�

~v2

2
~G30�L; L� �O

�
v4

k4

��
: (39)

In the above ~v � ve�kL ’ 174 GeV is the Higgs field
vacuum expectation value, and s and c represent the sine

and the cosine of the tree-level weak mixing angle, c �

g=
������������������
g2 � g02

p
and s � g0=

������������������
g2 � g02

p
.

Finally, the Fermi constant is given by

2
���
2

p
GF �

1

~v2

�
1�

~v2

2
�2G3f � ~G30�L; L� �G3ff�

�O

�
v4

k4

��
; (40)

where the Gff term represents nonoblique corrections.
In the cases we are going to analyze, with universal cf

and �f parameters, the only relevant nonoblique correc-
tions to mW and the Z-pole observables come indirectly
through the Fermi constant GF. In this case, one can define
effective precision electroweak parameters which deter-
mine mW , as well as all Z-pole observables. Following
Refs. [16,20], and considering the expression of GF,
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Eq. (40), it is possible to define these effective parameters
Seff , Teff and Ueff , which are given by,

�emSeff � 2~v2�s2G3f � c2GB
f � �O

�
v4

k4

�
;

�emTeff �
~v2

2
�2GB

f �
~GB
0 �L; L� �G3ff� �O

�
v4

k4

�
;

�emUeff � �2s2 ~v2G3ff �O

�
v4

k4

�
;

(41)

It is straightforward to find the explicit expression for
Gf, Gff, and ~G0�L; L� in terms of the fundamental pa-
rameters of the theory. In the following, for simplicity, we
ignore the UV brane kinetic terms. We comment on their
effects below. In this case, one finds

~G 0�L; L� � �
e2kLg2

k2
2k2L2 � 2kL� 1

4k�L� rIR�
: (42)

For further details of the calculation of the KK gauge
propagator, ~Gp�y; y0�, and its use to obtain the low-energy
effective theory, refer to [16,20].

The expressions for Gf and Gff depend on the parame-
ters cf and �f through the fermion zero-mode wave func-
tions, Eq. (7). The exact analytic expressions can be
obtained in a straightforward manner, although the general
results have a somewhat complicated dependence on cf.
However, in the case of interest here, where cf * 1=2, the
expressions simplify considerably, up to exponentially
small terms. We find
(i) F
-8
or cf �
1
2> 1=2kL:

Gf �
e2kLg2

k2
kL� 1� krIR � 2k2rIRL

4k�L� rIR�
; (43)

Gff � �
e2kLg2

k2
2k2r2IR � 2krIR � 1

4k�L� rIR�
; (44)

where g is the (zeroth order) zero-mode gauge
coupling. Note that the results in Eqs. (43) and
(44) are independent of cf and �f.
(ii) F
or cf �
1
2 :

Gf �
e2kLg2

k

�2k2L2 � 2kL� 1��rIR � �f�

4k2�L� rIR��L� �f�
; (45)

Gff � �e2kLg2
�2k2L2 � 2kL� 1��rIR � �f�

2

4k3�L� rIR��L� �f�2
:

(46)
Note that, in this case, Gf may have either sign depend-
ing on the relative size of the gauge and fermion kinetic
terms, rIR and �f. Also note that Eqs. (45) and (46) vanish
when rIR � �f. This is a consequence of the fact that, in
this case, the fermion [see Eq. (6) for fnL] and gauge
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orthogonality conditions are identical, and the fact that for
cf � 1=2 the fermion zero-mode wave function is flat and
therefore proportional to the gauge zero-mode wave func-
tion. Thus, the coupling of the zero-mode fermions to the
higher KK gauge modes vanishes identically in this limit.
This same fact was recently observed in warped extra-
dimensional Higgsless models [22].

The precision electroweak observables depend on the
relative size of the parameters Gf,Gff and ~G0�L; L�. In the
limit of large values of �f � L, and for cf � 1=2, the
values of Gf, Gff tend to ~G0�L; L�. This result coincides
with the one associated with fermions localized in the
infrared brane. What happens in this case is that the physics
is governed by the effects induced by the four-dimensional
brane kinetic terms, and propagation in the bulk becomes
unimportant. The case of fermions localized in the infrared
brane was already analyzed in [11,15,16].

Assuming that all quark and lepton bulk mass parame-
ters, other than the right-handed top-quark one, take values
cf ’ 1=2 and that there is a common brane kinetic term
coefficient �f � �, simple analytical expressions for Teff ,
Seff and Ueff may be obtained:

Teff ’
7

c2

�
~v
~k

�
2
�

k�L� 2rIR � ��
�1� rIR=L��1� �=L�

�
�
Ueff
4s2

; (47)

Seff ’ 87
�
~v
~k

�
2
�

k�rIR � ��
�1� rIR=L��1� �=L�

�
; (48)

Ueff ’
Seff
2

�
rIR=L� �=L
1� �=L

�
; (49)

where, taking into account that kL ’ 30, we have ignored
terms of order 1=�kL�. For moderate values of k�; krIR �
kL, the nonoblique corrections to the precision electro-
weak observables become small and, in particular, Ueff ,
Eq. (49), become much smaller than Seff and can be safely
neglected in the description of the new physics corrections
to the precision electroweak observables.

It is also useful to have an analytical approximation for
the top-quark KK mode contribution to the parameter Teff ,
valid in the limits in which mKK=~k & 1 and �k * 1. In
order to do this we computed the mass of the first KK mode
of the left-handed top-quark, for cf � 1=2, as a function of
the brane kinetic term coefficient � (the same expression is
valid for the mass of the first gauge field KK mass as a
function of rIR).

m�1�
tL ’ ke�kL

�������������������������
8
�1� �=L�
�1� 4k��

s
; (50)

while

3t�1�L ;t
�0�
R

3t
’ 2

������������������
kL

1� 4k�

s
: (51)
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Therefore, Eq. (36) reduces to

�Tt �
�

kL
1� �=L

�
m2t
~k2

�
Nc

167s2c2

�
mt

mZ

�
2
�

�

�
8kL

3�1� 4k��
� 2 log

�
8~k2�1� �=L�

m2t �1� 4k��

�
� 3

�
; (52)

where, as before, the term in the square brackets is the SM
contribution to �T from top, and is approximately equal to
1.2.

Up to now, we have neglected the effect of UV brane
localized kinetic terms. We now briefly comment on their
effects. Gauge and fermion localized UV kinetic terms
have a mild impact on the spectrum. The effect of the
UV terms in the KK masses amounts to replace L by L�
�UV in Eq. (50) (or equivalently by L� rUV for the gauge
boson KK masses). The main effect of UV kinetic terms is
to shift the contribution of gauge and fermion KK modes to
precision electroweak observables by quantities of order
rUV=L ( or �UV=L). Hence, provided they are smaller than
L, the inclusion of rUV and�UV do not change the values of
~k and the KK gauge boson and fermion masses consistent
with experimental data in a significant way.

For completeness, we present the expressions of
~G0�L; L� and Gf for nonvanishing values of the UV kinetic
terms. Keeping only dominant terms, for krIR of order a
few, ~G0�L; L� reads [20],

~G 0�L; L� ’ �
g2

2~k2
k2�L� rUV�

2

k�L� rIR � rUV�
: (53)

As anticipated, the comparison of this expression with the
one presented in Eq. (42) shows corrections of order
rUV=L. Note that ~G0�LL� is independent of the details
associated with the fermion sector, and that it only affects
the effective T parameter. On the other hand, the size ofGf

and Gff are controlled by the IR parameters, rIR and �f,
and receive corrections from rUV (gauge) and �UV (fer-
mion) kinetic terms of order rUV=L and �UV=L, respec-
tively, but with a less straightforward dependence than the
~G0�L; L� one. For instance, in the case cf � 1=2 and for
krIR; k�f of order a few, the dominant contribution to Gf

reads

Gf ’
g2

~k2
k�L� rUV��rIR�L� �UV� � �f�L� rUV��

2�L� rIR � rUV��L� �f � �UV�
:

(54)

Notice that the orthogonality condition, that ensures the
cancellation of Gf, is fulfilled for rIR � �f and rUV �

�UV.
Finally, let us mention that for k�f of order a few the

expression of 3t�1�L ;t
�0�
R
=3t for nonvanishing values of �UV

may be obtained by changing L by L� �UV in Eq. (51).
Moreover, the contributions ofGff to T and U remain very
-9
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small provided krIR and k�IR are less than order a few,
even if rUV, �UV are as large as order L.

Sizable UV localized gauge kinetic terms appear, for
instance, in the unification scenario analyzed in Ref. [20],
where rBIR � rBUV ’ ��r3IR � r3UV� ’ L=3. In this particular
case, for moderate values of the IR kinetic terms, krIR & 2
(taking rBIR � r3IR � rIR), and �UV � 0, one obtains cor-
rections of about 30% to the gauge boson contributions to
the T parameter, while the correction to the S parameter are
smaller than 10%. One would then find corrections of
about (10–15)% for the values of ~k consistent with the
electroweak observables. Since the relation between the
KK masses and ~k is quite insensitive to the UV localized
terms, this translates directly into a (10–15)% correction to
the KK masses. This should be compared with the effects
induced by IR kinetic terms, that modify the relation
between the lightest KK masses and ~k in a much more
crucial way, and control the value of the effective S pa-
rameter, as well as the top-quark KK mode contributions to
the T parameter. Therefore, for simplicity, in the following
section we shall restrict ourselves to the case of vanishing
values of the UV kinetic terms.

C. Electroweak fit

In this section, we will consider the case in which the
values of �k and rIRk are of order of a few, and hence for
vanishing values of the UV kinetic terms Eqs. (36) and
(47)–(49) provide a good description to the dominant
fermion and gauge boson contributions to the precision
electroweak data. In this case, the model under considera-
tion falls under the general class of theories in which there
are only small corrections to the parameter U, while the
corrections to S and T are sizable and of the order of the
corrections associated with a heavy Higgs boson. One can
therefore extract the allowed values of S and T, by making
a fit to the electroweak precision data under the assumption
that all new physics contributions can be parametrized by
these two parameters.

While making a fit to the electroweak data, one must
choose a reference value for the Higgs boson mass, mHref ,
for which the SM gives S � T � 0. One then obtains a
contour in the S, T plane indicating the allowed new
physics contributions to the S and T parameters for that
particular value of that Higgs mass. Had one chosen a
different reference value for the Higgs mass, mH, the
allowed new physics contribution to S and T would be
shifted by an amount equal (but of opposite sign) to the
contribution to S and T obtained by the change of the Higgs
mass from mHref to mH. This Higgs boson contribution to S
and T is given by

SH �
1

127
ln
�
m2H
m2Href

�
; TH � �

3

167c2
ln
�
m2H
m2Href

�
:

(55)
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We are interested in setting constraints on the masses of
the fermion and gauge boson KK excitations, for arbitrary
values of the Higgs boson mass. The LEP electroweak
working group has recently extracted the allowed values
of the S and T parameters coming from a fit to the elec-
troweak precision data [23]. For a reference value of the
Higgs boson mass mHref � 150 GeV, they obtained

S ’ 0:04 0:10; T ’ 0:12 0:10; (56)

with 85% correlation between the two parameters. Based
on this information, in Fig. 4 we obtain the 95% confidence
level allowed region for the S and T parameters for three
different values of the Higgs bosons mass mH � 115 300
and 800 GeV, respectively. Also shown in the figure are the
KK mode contributions to the S and T parameters for
different values of � and ~k, for a value of the gauge field
brane kinetic term krIR ’ 5. We see that generically, a
heavier Higgs boson mass allows for lower values of ~k,
due to compensation between contributions to T from the
Higgs and the extra-dimensional contributions. Values of ~k
as low as 4.5 TeV are consistent with experimental data.
Note that for �k� rIRk� 5, the mass of the first KK
modes are about 2=3� ~k, whereas for �k� 10 the fer-
mion first KK mode mass is approximately 1=2� ~k. Hence
for these particular values of the IR kinetic terms, the
-10
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lightest KK gauge boson and fermions masses may be as
low as about three and 2.3 TeV, respectively.

V. CONCLUSIONS

Extra-dimensional models provide an alternative solu-
tion to the gauge hierarchy problem. Among the different
realizations of this idea, the Randall-Sundrum model is
perhaps the most attractive one. In particular the Randall-
Sundrum model with fermions and gauge bosons propagat-
ing in the bulk allows to address the question of unification
of couplings and sets the framework for a possible under-
standing of flavor coming from the localization of the
fermions in the bulk of the extra-dimensional space.

In this article we have studied the impact of localized
brane kinetic terms for the fermions in this scenario. The
infrared-brane kinetic terms repel the wave function of the
heavy KK modes from the infrared brane where the Higgs
field is localized and allows to solve the strong coupling
problem of the top Yukawa sector and to minimize poten-
tially dangerous flavor-violating effects. It is interesting to
see that despite its underlying nonrenormalizability, the
extra-dimensional theory already contains in itself a
mechanism to suppress power-law corrections to brane
couplings.
015010
In the same spirit, a fermion brane kinetic term further
renders the potential quadratically divergent contributions
to the T parameter finite and reduces the impact of the
extra-dimensional effects on the precision electroweak
parameters. This allows all of the left-handed fermions to
have bulk masses with c * 1=2, and allows one to realize
the attractive scenario in which the SM flavor hierarchies
are (at least in part) generated by extra-dimensional ge-
ometry. Previous attempts have had larger corrections to
the Z coupling to bottom quarks, in contradiction with high
precision measurements. In the end, KK masses as low as a
few TeV are permitted, which could be discovered at the
LHC.
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