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Abstrat

A new salar resonane, alled the radion, with ouplings to fermions and bosons

similar to those of the Higgs boson, is predited in the framework of Randall-Sundrum

models, proposed solutions to the hierarhy problem with one extra dimension. An impor-

tant distintion between the radion and the Higgs boson is that the radion would ouple

diretly to gluon pairs, and in partiular its deay produts would inlude a signi�ant

fration of gluon jets. The radion has the same quantum numbers as the Standard Model

(SM) Higgs boson, and therefore they an mix, with the resulting mass eigenstates having

properties di�erent from those of the SM Higgs boson. Existing searhes for the Higgs

bosons are sensitive to the possible prodution and deay of radions and Higgs bosons in

these models. For the �rst time, searhes for the SM Higgs boson and �avour-independent

and deay-mode independent searhes for a neutral Higgs boson are used in ombination

to explore the parameter spae of the Randall-Sundrum model. In the dataset reorded

by the OPAL experiment at LEP, no evidene for radion or Higgs partile prodution was

observed in any of those searhes. The results are used to set limits on the radion and

Higgs boson masses.
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1 Introdution

In [?℄, a model was proposed to solve the problem of the hierarhy between the eletroweak

mass sale, ΛW = O( TeV), and the Plank mass MPl = O(1015 TeV) at whih gravity

beomes strong. In this model, the hierarhy is generated by extending four-dimensional

spae time with ompat extra dimensions. In the resulting e�etive four-dimensional

theory, MPl appears enlarged with respet to the hypothesised fundamental value M̃Pl,

due to the hidden volume Vn of the n extra dimensions: M2
Pl = M̃2+n

Pl Vn. To generate

the observed value MPl = 1015 TeV from a hypothesised fundamental value lose to the

eletroweak sale, M̃Pl ≃ 1 TeV, many additional dimensions are neessary or eah addi-

tional dimension must be extraordinarily large, whih generally on�its with onstraints

from eletroweak preision measurements. The onstraints do not diretly apply if the

eletroweak and strong fores and the partiles of the Standard Model (SM) are on�ned

to a four-dimensional subspae (brane), and only gravity is allowed to propagate into the

whole spae. Measurements of the gravitational fore limit the size of extra dimensions

to 200µm [?℄. Model dependent onstraints an be obtained from eletroweak preision

observables, whih an be a�eted in a sizable way by gravity [?℄.

In the Randall-Sundrum (RS) model [?℄, one ompat extra dimension is introdued.

As in previous models, the extra dimension is hidden to the fores and partiles of the SM

by on�ning them to one brane, the SM brane. Only gravity is allowed to propagate into

the extra dimension. In this model the hierarhy is not generated by the extra volume,

but by a spei�ally hosen �warped� geometry. As a diret onsequene of the geometry,

gravity is mainly loated lose to a seond brane, the Plank brane, whih is loated at a

distane r0 away from the SM brane, and its propagation in the extra dimension is expo-

nentially damped. Thus, there is only a small overlap between gravity and SM partiles

and fores, explaining the weakness of gravity with respet to the eletroweak interation,

i.e. the observed mass hierarhy. The onstraints on the size of the extra dimensions do

not apply in this ase, beause the gravitational fore is only weakly modi�ed due to the

loalisation of gravity.

The model is onsidered to be a low-energy approximation of a more fundamental

theory and does not explain the mehanism that traps the SM �elds on the brane or the

mehanism whih gives rise to the geometry. It is possible to derive models with suh a

geometry from M-theory [?℄.

The spetrum of the additional partiles in the RS model has been investigated in [?℄

and [?℄. There are massless and massive spin-two exitations. The massless exitations

ouple with gravitational strength and an be identi�ed with gravitons. The masses and

ouplings of the massive spin-two exitations are set by the weak sale. These states have

not been observed, but if they exist, they should be observable at experiments using the

next generation of olliders. In addition, there is a spinless exitation, alled the radion.

The radion orresponds to a loal �utuation of the inter-brane distane: r0 → r0+∆r(x).
To prevent the branes from drifting apart faster than allowed by osmologial models, a

stabilisation mehanism is needed [?℄. As a onsequene, the radion aquires a mass [?℄.

To introdue no further hierarhies, the mass should be well below 1 TeV.

The radion arries the same quantum numbers as the Higgs boson; thus the radion and
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the Higgs boson an mix. This possibility was investigated �rst in [?℄ and was pursued in

[?℄, where alulations are arried out to higher order. The present study is based on the

Lagrangian of [?℄. The physial salars of the model are derived therein. The ouplings

to matter are investigated in [?℄, where the alulations are based on a Lagrangian of

a lower order approximation. The ideas of [?℄ are transferred to the Lagrangian of [?℄

leading to the results summarised in Setion 2. The derivation of the physial salars and

the ouplings to matter are detailed in the Appendies A.1 and A.2.

Like the SM Higgs boson, both salars are mainly produed in the �Higgsstrahlung�

proess, e+e− → Zr or Zh, at LEP2, where r and h are the two salar mass eigenstates of

the model. The limits on the ross-setion of the Higgsstrahlung proess obtained from

searhes for the SM Higgs boson, �avour independent searhes for hadronially deaying

Higgs bosons and deay-mode independent searhes for Higgs bosons are used to restrit

the parameter spae of the Randall-Sundrum model as explained in Setion 3.

2 The Salars of the Randall-Sundrum Model

In the Randall-Sundrum model there are two salar partiles, the radion and the Higgs

boson. Their masses, mr and mh, are free parameters. Further free parameters are: ΛW,

whih sets the mass sale on the SM brane and is expeted to be O(1 TeV), and ξ whih
ontrols the kinemati mixing between the radion and the Higgs boson.

The radion ouples to the trae of the energy momentum tensor. Thus, to �rst order

the radion ouples to massive partiles with ouplings proportional to the partile mass,

and the Lorentz struture of the ouplings is idential to that of the Higgs boson. However,

the oupling strength of the radion is generally redued by v/
√

6ΛW w.r.t. the ouplings

of the SM Higgs boson, where v denotes the vauum expetation value of the Higgs �eld.

Unlike the Higgs boson, whih only ouples to gluons via a top loop, the radion ouples

diretly to gluon pairs due to the anomaly of the trae of the energy momentum tensor.

As a onsequene, the radion deays mostly into gluon pairs.

Due to the kinemati mixing of the radion and the Higgs boson, both physial salars,

the Higgs-like and the radion-like state h and r, may have properties di�erent from those

of the SM Higgs boson. Here, the radion-like and the Higgs-like states, r(ξ) and h(ξ), are
de�ned suh that the Higgs-like state beomes the SM Higgs boson in the limit ξ → 0,
and the mapping between the fundamental mass parameters (the mass parameter of the

Higgs mehanism, m̃h, and the mass parameter assigned to the radion exitation, m̃r) to

the mass eigenvalues is a ontinuous funtion of ξ (see Figure 1a and Appendix A.1 for

details).

For non-zero mixing (ξ 6= 0) some ombinations of the masses mr and mh of the

radion-like and the Higgs-like state will lead to unphysial partiles (ghosts or tahyons).

The allowed minimum and maximum mixing is limited by requiring the partiles to be

physial. The limits depend on the masses, mr and mh, and the mass sale ΛW. For �xed
masses, the bounds inrease with ΛW. The physial regions are displayed in Figure 1b as

a funtion of the mixing parameter ξ, and mr for one ΛW and mh.
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Both partiles, the radion and the Higgs boson, are predominantly produed in �Hig-

gsstrahlung� in e+e− ollisions for masses in the range aessible by the LEP experiments.

The prodution of the radion-like and the Higgs-like states are omplementary as seen

in Figure 2a and b. The branhing ratio of the Higgs-like state into heavy quarks and

leptons may be redued depending on the mixing parameter ξ while the branhing ratio

into gluon pairs is enhaned, whih an be seen in Figure 2 and d. Therefore, searhes

for the SM Higgs boson (assuming mHSM
≪ 2mW) whih are sensitive only to the deay

mode h → bb, may lose their sensitivity, in ontrast to �avour independent searhes whih

are sensitive to h → gg.

3 Experimental Constraints on the Randall-Sundrum

Model

Sine the signatures of the radion-like and the Higgs-like states are similar to the signatures

of the SM Higgs boson or neutral Higgs bosons of more general models, searhes for a

neutral Higgs boson also onstrain the parameter spae of the Randall-Sundrum (RS)

model. The following searhes for the Higgsstrahlung proess, e+e− → Zϕ, are exploited,
where ϕ is a salar:

1. The searh for the SM Higgs boson [?℄, ϕ = HSM, whih exploits the properties of

the dominant deay mode of the SM Higgs boson, HSM → bb (assuming mHSM
≪

2×mW). The deay HSM → τ+τ− is not onsidered here. The searh uses 593 pb−1

and 170 pb−1
of data olleted with the OPAL detetor at

√
s = 189− 209 GeV and√

s = 91 GeV, respetively. All possible deay modes of the Z boson are onsidered:

Z → qq, e+e−, µ+µ−, τ+τ− and νν̄.

2. A �avour independent searh for hadronially deaying Higgs bosons, ϕ = h, sensi-
tive to the h → qq and h → gg modes, using the same dataset as above [?℄.

3. A searh [?℄, independent of the deay mode of the salar partile, using events in

whih the Z boson deays into muon or eletron pairs. There are no assumptions

on the salar partile deay. Although this searh gives weaker limits than the two

above, it is the only searh to over the mass region from 1 MeV to 12 GeV.

These searhes have not revealed any signi�ant exess of data over the bakground from

Standard Model proesses, and limits on the ross-setion of the Higgsstrahlung proess

times the branhing ratio of the salar partile deay have been derived at the 95%
on�dene level. The limits are expressed in terms of a saling fator k95

ϕx, whih relates

the maximally allowed ross-setion times branhing ratio, σ95
ϕZ(mϕ) × Br(ϕ → xx̄), of a

salar partile ϕ to the expetation for Higgs boson produtionσSM
HZ (mϕ) from the SM:

k95
ϕx(mϕ) =

σ95
ϕZ(mϕ)

σSM
HZ (mϕ)

× Br(ϕ→ xx̄) (1)

A value k95
ϕx(mϕx) = 1 means that at the 95% on�dene level, a ross-setion ould be

exluded whih is equal to the ross-setion of the Higgsstrahlung proess, e+e− → HSMZ,
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for a SM Higgs boson HSM having the mass mϕ. The observed and expeted limits are

depited in Figure 3. The �rst searh is sensitive only to ϕ→ bb, the seond to ϕ→ qq,
ϕ→ gg, and the third analysis overs all possible deays.

In the RS model, the radion-like and the Higgs-like states have the same oupling

struture as a SM Higgs boson. The ouplings to fermions f or vetor bosons V only di�er

by fators

√
kf or

√
kV whih depend on the masses of the radion-like and the Higgs-like

states, mr and mh, the mixing parameter ξ, and the mass sale ΛW (see Appendix A.2).

Thus, the limits k95
ϕx apply to the proesses predited in the RS model, e+e− → Zϕ, where

ϕ is the radion-like state r or the Higgs-like state h.

Points in the parameter spae of the RS model are onsidered exluded if the predited

ross-setion times branhing ratio for either the radion-like or the Higgs-like state exeeds

the limit obtained from one of the Higgs boson searhes. At eah san point, the searh

is hosen whih yields the most restritive expeted limit. For example in Figures 4a-d,

the ross-setions times branhing ratio of the radion-like and Higgs-like state are shown

together with the limit obtained from the �avour independent and the SM Higgs boson

searh. For the model points of Figures 4a and b, a small region in the parameter spae just

before the inaessible region remains allowed. Neither the SM nor the �avour independent

Higgs boson searh is able to exlude this region. For the parameters shown in Figure 4,

the SM searh is not apable of exluding the model points for the parameters ξ = 0.25,
ΛW = 300 GeV, mh = 120 GeV, and for masses of the radion-like state mr . 67 GeV. The
�avour independent Higgs boson searh exludes all model points up to the inaessible

region (Figure 4d).

To �nd the lowest masses ompatible with the observations, sans over the parameter

spae of the RS model are performed. Figures 5a and b show the lowest mass of the

Higgs-like state allowed at the 95% on�dene level in the plane spanned by the mixing

parameter ξ and the sale parameter ΛW. In the ξ-diretion an equidistant grid is hosen

using 200 points between the minimum and maximum value of the allowed region. In

the ΛW-diretion, 160 san points are hosen equally spaed on a logarithmi sale from

246 GeV to 10 TeV. At eah san point, mr is sanned initially in oarse steps in the

range from 1 MeV to 1 TeV, where the step sizes are 1 − 3 GeV and 30 GeV below and

above 400 GeV, respetively. For eah mr value, mh is sanned in the range from 1 MeV to

120 GeV in steps of 1 GeV. The san stops if the predited ross-setion times branhing

ratio of both the radion-like and the Higgs-like states drops below the limit of the most

sensitive Higgs boson searh. Finally, the mass mh at whih the ross-setion drops below

the limit is found to within 250 MeV by an iterative proedure.

For zero mixing (ξ = 0), the mass limit of the SM Higgs boson searh is obtained. For

non-zero mixing, the mass limit of the Higgs-like state is generally lower and dereasing

with dereasing sale parameter ΛW. The lowest mass limits are generally obtained for

maximum or minimum values of ξ and values of the radion mass muh larger than the

limit on mh. In Figure 6 the lowest mass limits of the Higgs-like states are shown for all

ξ allowed by the theory. At large ΛW, the maximally allowed |ξ| is beyond O(1). For all
ξ, mr and ΛW, the Higgs mass has to be larger than 58 GeV at the 95% on�dene level,

where a limit of 54 GeV is expeted. In ases in whih either the observed limit or the

expeted limit is obtained just before the inaessible region, the di�erene between the

observed and expeted limit may beome large, if one of them is beyond and the other

7



just before the inaessible region. If for example in Figure 4b, the ross-setion was

slightly higher suh that it was just above the observed ross-setion limit and it rossed

the expeted limit at 90 GeV, the expeted limit on mh would have been at 90 GeV and

the observed limit would have been beyond the inaessible region whih would yield a

limit larger than 100 GeV. This leads to the large steps in Figure 6.

The same proedure was performed to �nd the lowest allowed mass of the radion-like

state, mr. The result of the san in the ξ − ΛW plane is shown in Figures 5 and d.

The ross-setion of the radion-like state vanishes for large negative mixing and dereases

rapidly with inreasing ΛW, sine the ouplings of the radion to SM partiles is propor-

tional to the inverse of ΛW. The analyses lose their sensitivity for ΛW & 0.8 TeV and for

maximal negative mixing; therefore, a mass limit independent of the mixing parameter ξ
annot be extrated.

4 Summary

Limits on the Higgsstrahlung ross-setion obtained from data reorded with the OPAL

detetor have been used to restrit the parameter spae of the Randall-Sundrum model.

The data exlude masses for the Higgs-like state below 58 GeV for all sales ΛW ≥ 246 GeV,
independent of the mixing between the radion and the Higgs boson, and of the radion

mass. The analyses are sensitive to the radion for sales ΛW . 0.8 TeV. No universal

limit, independent of ΛW, ξ and mh, on the mass of the radion-like state an be extrated.
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A Appendix

A.1 Physial Salars in the RS-Model

In [?℄, the e�etive 4D Lagrangian is derived, whih desribes the kineti terms of the

radion and the Higgs boson and their ouplings to SM partiles. Starting from the e�etive

Lagrangian, the physial states and their masses are omputed as shown in [?℄, and the

radion-like and Higgs-like states are de�ned.

The following kineti terms for the radion r̃ and the Higgs boson h̃ have been found:

Lscalar ≃
(
h̃

r̃

)T(
−1

2
� − 1

2
m̃2

h 3ξγ�

3ξγ� −1
2
(1 + 6ξγ2)� − 1

2
m̃2

r

)(
h̃

r̃

)
, (2)

where ξ is a free parameter of O(1), leading to the kineti mixing between the radion and

the Higgs boson. The normalisation of the radion �eld depends on γ = v/
√

6ΛW, where

v is the vauum expetation value of the Higgs �eld and ΛW the mass sale on the SM

brane. The values m̃r and m̃h are fundamental mass parameters of the radion and the

Higgs �elds.

The physial states are obtained by diagonalisation of the matrix in Equation (2) [?℄.

First the kineti mixing is resolved by the hoie h̃ = h′ + 6ξγr′/Z and r̃ = r′/Z, with:

Z =
√

1 + 6ξγ2(1 − 6ξ). (3)

The �elds, h′ and r′, are real i.e. physial salars only if:

1

12

(
1 −

√
1 +

4

γ2

)
< ξ <

1

12

(
1 +

√
1 +

4

γ2

)
. (4)

The hoie of h′ and r′ removes the kineti mixing, but introdues a mixing of the mass

terms for non zero m̃r and m̃h. The matrix of the mass terms is diagonalised by rotating

by the angle θ:

tan 2θ = 12ξγZ
m̃2

h

m̃2
r − m̃2

h(Z
2 − 36ξ2γ2)

. (5)

The anonially normalised kineti terms of the �elds h′ and r′ are invariant under ro-

tations. The full transformation yields the following relations between the fundamental

states, h̃ and r̃, and the mass eigenstates, ĥ and r̂:

h̃ = (cos θ − 6ξγ

Z
sin θ)ĥ + (sin θ +

6ξγ

Z
cos θ)r̂ (6)

r̃ = − sin θ
ĥ

Z
+ cos θ

r̂

Z
.
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The orresponding masses are given by m±, where m− ≤ m+ (m− = m+ for ξ = 0 and

m̃r = m̃h):

m2
± =

1

2Z2

(
m̃2

r + (1 + 6ξγ2)m̃2
h ±

√
(m̃2

r − m̃2
h(1 + 6ξγ2))

2
+ 144γ2ξ2m̃2

rm̃
2
h

)
. (7)

For ξ = 0, m+ is the mass of the mass eigenstate ĥ if m̃h > m̃r (otherwise this is the

mass of the eigenstate r̂). The assignment of m± to the eigenstates r̂ and ĥ hanges at

the poles, ξ0, of (5): m̃r = m̃h(Z
2 − 36ξ2

0γ
2). Here, the rotation angle θ �ips by π/2. For

|ξ| > |ξ0|, ĥ beomes eigenstates with mass m− if m̃h > m̃r (otherwise of the eigenstate

r̂).

In the following, the radion-like and Higgs-like state, r and h, are de�ned suh that for

ξ = 0 the fundamental radion r̃ and the mass eigenstate r oinide, and furthermore, the

mass mr and the ouplings (see Setion A.2) are ontinuous funtions of ξ. The de�nition
of r is:

r =





r̂
if ( m̃r > m̃h and ξ2 < m̃hZ2−m̃r

36γ2m̃h

)

or ( m̃r ≤ m̃h and ξ2 ≥ m̃hZ2−m̃r

36γ2m̃h

)

ĥ otherwise

.
(8)

The orresponding mass is mr = m− if m̃r ≤ m̃h and mr = m+ if m̃r > m̃h. The Higgs-

like state and its mass are de�ned aordingly. The masses are shown in Figure 1a as

a funtion of ξ for fundamental radion and Higgs boson mass parameters m̃r and m̃h of

90 GeV and 120 GeV.

Equations (7) an be solved for m̃r and m̃h:

m̃2
r =

Z2

2

(
(m2

+ +m2
−) ±

√
(m2

+ −m2
−)

2 − 144ξ2γ2

Z2
m2

+m
2
−

)

m̃2
h =

Z2

2 (1 + 6ξγ2)

(
(m2

+ +m2
−) ∓

√
(m2

+ −m2
−)

2 − 144ξ2γ2

Z2
m2

+m
2
−

)
. (9)

The signs have to be hosen suh that mr(ξ = 0) = m̃r and mh(ξ = 0) = m̃h. The

omputed masses m̃r and m̃h are real only if:

m2
+

m2
−
≥ 1

Z2

(
1 + 6ξγ2(1 + 6ξ) + 12γ

√
ξ2(6ξγ2 + 1)

)
. (10)

This ondition, together with (4), limits the possible physial parameters as illustrated in

Figure 1b.

A.2 Couplings of the Higgs Boson and Radion to SM Partiles

The ouplings of the radion-like and the Higgs-like states, whih are de�ned in the Ap-

pendix A.1, are extrated applying the methods of [?℄. In ontrast to [?℄, the physial

states are derived from the e�etive Lagrangian of [?℄ , whih is a higher order approxi-

mation.
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The radion ouples to the trae of the energy-momentum tensor T µ
µ [?℄; therefore, the

ouplings to matter are similar to those of the SM Higgs boson at lowest order sine:

T µ
µ = −(mijψ̄iψj −mVVµV

µ) + . . . , (11)

where ψi and Vµ denote fermions and bosons, mij and mV their masses. The ontribution

of terms with derivatives of �elds or more than two �elds is negligible here. The ombined

interation term of the radion and the Higgs boson is:

Lradion/Higgs inter. ≃ −1

v
(mijψ̄iψj −mVVµVµ)

[
h̃− γr̃

]
, (12)

where v denotes the vauum expetation value of the Higgs �eld. The ouplings of the

radion to the fermions and bosons are generally redued by the fator γ = v/
√

6ΛW

ompared to the orresponding ouplings of the Higgs boson.

The ouplings of the radion-like and the Higgs-like state r and h are obtained by

inserting (6) aording to (8) into (12) and omparing the resulting terms with the Higgs

interation terms of the SM Lagrangian. This yields for the radion-like state, expressed

in terms of the partial deay width relative to the one of the SM Higgs boson

1

:

kf = kV =
Γ(r → f̄f)

Γ(HSM → f̄ f)
=

Γ(r → VV)

Γ(HSM → VV)
= (a1,r + a2,r)

2, (13)

where

ai,r =





ai,̂r

if (m̃r > m̃h and ξ2 < m̃hZ2−m̃r

36γ2m̃h

)

or ( m̃r ≤ m̃h and ξ2 ≥ m̃hZ2−m̃r

36γ2m̃h

)

ai,ĥ otherwise

.
(14)

The relative deay width of the Higgs-like state is given by (13) replaing ai,r by ai,h,

where ai,h is de�ned aordingly. The following relations for ai,̂r and ai,ĥ are obtained:

a1,̂r = sin θ + 6ξγ
Z

cos θ a2,̂r = γ cos θ
Z

a1,ĥ = cos θ − 6ξγ
Z

sin θ a2,ĥ = γ sin θ
Z
.

(15)

Expression (13) is valid for all fermions f and massive vetor bosons V at lowest order.

In ase the Higgs boson or radion is lighter than two times the top mass, mt, diret

deays into top quarks are kinematially forbidden, but due to the large mass of the top

quark, deays into gluons via top loops are generally not negligible. The matrix element

of a SM Higgs boson deay into gluons is:

ME(HSM → gg) =
1

2
· αs

8π
· 1

v
HSM(x)F 1

2

(4m2
t/m

2
HSM

) Gαµν(x) Gµν
α (x). (16)

The strong oupling onstant is denoted by αs, the Higgs boson mass by mHSM
and the

gluon �elds by Gαµν . The funtion F 1

2

is the form fator of the top loop, whih is de�ned

by [?℄:

F 1

2

(τ) = −2τ [1 + (1 − τ)f(τ)] , (17)

1

For a given mass mr (mh) the expression has to be evaluated using a mass mHSM
= mr (mHSM

= mh).

11



where

f(τ) =





arcsin2 1√
τ
, if τ ≥ 0

−1
4

[
ln 1+

√
1−τ

1−
√

1−τ
− iπ

]2
, if τ < 0.

(18)

A similar matrix element is obtained for the radion, however it has the opposite sign

and the oupling is redued by γ. Sine the radion ouples to the trae of the energy

momentum tensor, the anomaly of the trae ontributes to the deay width into gluons

and photons in addition to the loop ontribution. The anomalous terms appear in the

trae of the renormalised energy momentum tensor in addition to the unrenormalised

trae T̃ µ
µ. This has been shown for example in [?℄. The omplete trae T µ

µ reads:

T µ
µ = T̃ µ

µ +
β

2gR

N [FαλρF
λρ

α ], (19)

where gR denotes the renormalised oupling onstant, β the renormalisation group o-

e�ient, F µν
α the �eld strength tensor of strong, eletromagneti and weak interation

and N [. . .] normal ordering. Thus, the radion ouples diretly to gluon and photon pairs

due to the trae anomaly. The additional oupling to the massive vetor bosons is neg-

ligible. To fully desribe the oupling of the radion to gluon pairs, the matrix element

ME(r → gg) equivalent of (16) has to be extended with the term:

MEanomaly(r → gg) = β · (αs/8π)γr(x)Gαµν(x)G
µν
α (x). (20)

For the SU(3) group of QCD, the renormalisation group oe�ient β=7. In total, the

partial deay width of the radion-like state beomes [?℄:

kg =
Γ(r → gg)

Γ(HSM → gg)
=

∣∣∣2 · β · a2,r − (a1,r + a2,r)F 1

2

(4m2
t/m

2
r)
∣∣∣
2

∣∣∣F 1

2

(4m2
t/m

2
r)
∣∣∣
2

. (21)

The fators ai,r are those of (14). The partial deay width of the Higgs-like state, Γ(h →
gg) is given by (21) replaing ai,r by ai,h, and mr by mh.

Exept for the additional oupling to gluon pairs and saled oupling strength, the

ouplings of the radion-like and the Higgs-like states are the same as those of the SM

Higgs boson. Thus in e+e− ollisions at entre-of-mass energies ahieved at LEP, the

mass eigenstates, ϕ = r or h, are dominantly produed in the Higgsstrahlung proess,

e+e− → Z∗ → Zϕ. The total deay width of the mass eigenstates is smaller than 100 MeV
for masses of interest (mϕ . 115 GeV). Thus only deays, Z∗ → Zϕ, into on-shell Higgs

bosons or radions have to be onsidered. The ross-setion relative to Higgsstrahlung in

the SM is derived from (13) and given by:

σ(e+e− → Zϕ)

σ(e+e− → ZHSM; mHSM
= mϕ)

=
Γ(ϕ→ VV)

Γ(HSM → VV)
. (22)

In Figure 2, the ross-setion and branhing ratios of the two mass eigenstates are dis-

played as a funtion of the mixing parameter ξ. Due to the ontribution from the trae

anomaly, the radion deays predominantly into a pair of gluons.
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Figure 1: a) Masses mr/h of the heavy and light mass eigenstates for fundamental Higgs

boson and radion mass parameters, m̃h and m̃r, of 90 GeV and 120 GeV. The fundamental

radion is hosen to be heavier (lighter) than the Higgs boson, indiated by the solid

(dashed) lines. The x-axis extends over the allowed ξ-range. b) Allowed parameter spae

in the mr and ξ plane for a Higgs boson mass mh = 120 GeV. Outside the permitted

region the Higgs and radion-like states are unphysial (ghost-like). In both �gures the

weak sale was hosen to be ΛW = 300 GeV.
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Figure 2: a) and b) the ross-setions for the proesses e+e− → Zr or Zh of the radion-

like and the Higgs-like state, r and h, relative to the orresponding ross-setion for a

SM Higgs boson for two di�erent values of mr and mh. ) and d) the branhing ratios

of r and h into gluon pairs and bb̄. The parameter ΛW was hosen to be 300 GeV. The

ross-setions and branhing ratios of the Higgs-like state h are idential to those of a SM

Higgs boson for ξ = 0.
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Figure 3: The observed and expeted limits on the sale fator k as a funtion of the Higgs

boson mass obtained by the SM Higgs boson searh, the �avour independent and the

deay-mode independent Higgs boson searh. The sale fator k relates the ross-setion

times branhing ratio to the ross-setion of SM Higgsstrahlung. The limits equally apply

to the radion-like and the Higgs-like state of the Randall-Sundrum model eah with the

mass mh.
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Figure 4: The ross-setion times branhing ratio of the Higgs-like (Figure a and b)

and radion-like state (Figure  and d) relative to the ross-setion of SM Higgsstrahlung

together with the observed and expeted limits (solid and dashed lines) obtained from the

SM (Figure a and ) and the �avour independent (Figure b and d) Higgs boson searhes

at one point in the Randall-Sundrum parameter spae as a funtion of the mass of the

Higgs-like state mh and the mass of the radion-like state mr. The dotted lines in Figures a

and  indiate the ross-setion times Br(r or h → bb) and in Figures b and d the ross-

setion times Br(r or h → hadrons). The shaded region is inaessible by the theory.

Model points are exluded if the predited ross-setion times branhing ratio exeeds the

limit.
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Figure 5: Expeted and observed lower limits on the mass of the Higgs-like and the radion-

like state, mh (a and b) and mr ( and d), as a funtion of the mixing parameter ξ and

the sale parameter ΛW. The Figures a) and ) show the expeted limit, and Figures b)

and d) the observed limit. Inside eah shaded region, the obtained lower mass limit is

equal or larger than the value indiated by the ode on the right. The regions in the

upper and lower left orner are inaessible by the theory.
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Figure 6: The lowest expeted and observed limit on the Higgs boson mass as a funtion

of the sale parameter ΛW for all allowed ξ and for masses of the radion-like state mr

in the range from 1 MeV to 1 TeV. The analyses often lose their sensitivity lose to the

inaessible region. If the region up to the inaessible region is overed, the next allowed

mass will be several GeV further away. This auses the step like struture.
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