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We present several coupled-cluster calculations of ground and excited states of 4He
and 16O employing methods from quantum chemistry. A comparison of coupled cluster
results with the results of exact diagonalization of the hamiltonian in the same model
space and other truncated shell-model calculations shows that the quantum chemistry
inspired coupled cluster approximations provide an excellent description of ground and
excited states of nuclei, with much less computational effort than traditional large-scale
shell-model approaches. Unless truncations are made, for nuclei like 16O, full-fledged
shell-model calculations with four or more major shells are not possible. However, these
and even larger systems can be studied with the coupled cluster methods due to the
polynomial rather than factorial scaling inherent in standard shell-model studies. This
makes the coupled cluster approaches, developed in quantum chemistry, viable methods
for describing weakly bound systems of interest for future nuclear facilities.

1. INTRODUCTION

Physical properties, such as masses and life-times, of very short-lived, and hence very
rare, nuclei are important ingredients that determine element production mechanisms
in the universe. Given that present and future nuclear structure research facilities will
open significant territory into regions of medium-mass and heavier nuclei, it becomes
important to investigate theoretical methods that will allow for a description of medium-
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mass systems that are involved in such element production. Such systems pose significant
challenges to existing nuclear structure models, especially since many of these nuclei will
be unstable and short-lived. How to deal with weakly bound systems and coupling to
resonant states is an unsettled problem in nuclear spectroscopy. Furthermore, existing
shell-model methods are limited to very few major shells and/or number of active particles.
Similar constraints apply to ab initio Monte Carlo approaches. It is thus critical to develop
new computational techniques which not only can handle several major shells but also
perform ab initio calculations starting with the free nucleon-nucleon interaction in many-
body systems larger than for example 40Ca.

In this work we focus on coupled cluster methods in our discussion of systems involv-
ing many single-particle degrees of freedom. The ab initio coupled-cluster theory is a
particularly promising candidate for such endeavors due to its enormous success in quan-
tum chemistry. Based on the experience from quantum chemistry, where coupled cluster
methods can be applied to large molecular systems with more than hundred correlated
electrons, we anticipate that quantum chemistry inspired coupled cluster approaches will
enable accurate studies of ground and excited states of nuclei with dimensionalities be-
yond the capability of present shell-model approaches, with a much smaller numerical
effort. Even though the shell-model combined with appropriate effective interactions of-
fers in general a very good description of several stable and even weakly bound nuclei,
the increasing single-particle level density of weakly bound systems makes it imperative
to identify and investigate methods that will extend to unstable systems, systems whose
dimensionality is beyond reach for present shell-model studies, typically limited today to
systems with at most ∼ 109 basis states.

In this contribution we present results of coupled cluster calculations for ground and
excited states of 4He and 16O. Where possible, we compare these calculations with exact
diagonalization from shell-model studies within the same model spaces and with the same
interaction. This serves to underline the reliability of the coupled cluster method in
the nuclear many-body problem. The coupled cluster calculations are rather inexpensive
compared with the shell-model approach, a feature which is very useful if one wants to
include additional degrees of freedom such as more single particle levels. We end this
contribution with a discussion of future projects.

2. COUPLED CLUSTER APPROACH TO NUCLEI

Coupled cluster theory originated in nuclear physics [ 1] around 1960. Early studies
in the seventies [ 2] probed ground-state properties in limited spaces with free nucleon-
nucleon interactions available at the time. The subject was revisited only recently by
Bishop et al. [ 3], for further theoretical development, and by Mihaila and Heisenberg [ 4],
for coupled cluster calculations using realistic two- and three-nucleon bare interactions and
expansions in the inverse particle-hole energy spacings. However, much of the impressive
development in coupled cluster theory made in quantum chemistry in the last 20-25 years
[ 5, 6, 7, 8, 9, 10], after the introduction of coupled-cluster theory and diagrammatic
methods to chemistry, by Čıžek and Paldus [ 7, 8], still awaits applications to the nuclear
many-body problem.

Many solid theoretical reasons exist that motivate a pursuit of coupled-cluster methods.
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First of all, the method is fully microscopic and is capable of systematic and hierarchical
improvements. Indeed, when one expands the cluster operator in coupled-cluster theory
to all A particles in the system, one exactly produces the fully-correlated many-body
wave function of the system. The only input that the method requires is the nucleon-
nucleon interaction. The method may also be extended to higher-order interactions such
as the three-nucleon interaction. Second, in its standard formulation, the method is size
extensive meaning that only linked diagrams appear in the computation of the energy
(the expectation value of the Hamiltonian) and amplitude equations. It is well-known in
for example quantum chemistry that all shell model calculations that use particle-hole
truncation schemes actually suffer from the inclusion of disconnected diagrams in compu-
tations of the energy. Third, coupled-cluster theory is also size consistent which means
that the energy of two non-interacting fragments computed separately is the same as that
computed for both fragments simultaneously. In chemistry, where the study of reactive
and non-reactive collisions of molecules are very important, this is a crucial property not
available in the truncated shell model (named limited configuration interaction in chem-
istry). Fourth, while the theory is not variational, it does not have a bound, the energy
behaves as a variational quantity in most instances. Finally, from a computational point
of view, the practical implementation of coupled cluster theory is amenable to parallel
computing.

The basic idea of coupled-cluster theory is that the correlated many-body wave function
| Ψ〉 may be obtained by application of a cluster operator, T , such that |Ψ〉 = exp (T ) |Φ〉
where Φ is a reference Slater determinant chosen as a convenient starting point. For
example, we use the filled 0s state as the reference determinant for 4He.

The cluster operator T is given by T = T1 + T2 + · · ·TA and represents various n-
particle-n-hole (np-nh) excitation amplitudes such as

T1 =
∑

a>εf ,i≤εf

tiaa
†
aai T2 =

1

4

∑

i,j≤εf ;ab>εf

t
ij
aba

†
aa

†
bajai, (1)

and higher-order terms for T3 to TA. The basic approximation is obtained by truncating
the many-body expansion of T at the 2p − 2h cluster component T2. This is commonly
referred to in the literature as coupled-cluster singles and doubles (CCSD). We compute
the ground-state energy from

E0 = 〈Φ|H̄(CCSD)|Φ〉, (2)

where H̄(CCSD) = exp (−T ) H exp (T ) is the coupled cluster similarity transformed hamil-
tonian. In CCSD we set T = T1 + T2. To derive the CCSD or other coupled cluster
approaches, we use the diagrammatic approach. In order to obtain the computationally
efficient algorithms, which lead to the lowest operation count and memory requirements,
it is better to use the idea of recursively generated intermediates and diagram factor-
ization [ 6]. The resulting equations can be cast into a computationally efficient form,
where diagrams representing intermediates multiply diagrams representing cluster oper-
ators. The resulting equations can be solved using efficient iterative algorithms, see for
example Refs. [ 6, 11].
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2.1. Effective Two-body Hamiltonian

In shell-model studies of various nuclear mass regions, the common approach in deriving
an effective interaction for the shell-model has been to start with various perturbative
many-body approaches, for recent reviews see Refs. [ 12, 13].

The starting point for the derivation of such an effective interaction is normally a bare
nucleon-nucleon interaction fitted to reproduce low-energy scattering data. However,
since this interaction has a strongly repulsive core at short internucleon distances, one
needs to renormalize the short-range part in order to render it suitable for an eventual
perturbative treatment. To do that, one sums normally the class of two-body particle-
particle ladder diagrams to infinite order. This yields a new and renormalized interaction,
the so-called reaction matrix G or just the G-matrix. It is however energy dependent, as
is the scattering matrix T . It differs from the free scattering matrix T by the introduction
of a Pauli operator accounting for a specific nuclear medium. The G-matrix is in turn
used in a perturbative many-body scheme including higher-order corrections, such as
core-polarization terms. Such an effective interaction has been a very succesful starting
point for shell-model studies. To derive effective interactions within the framework of
many-body perturbation theory is however hard to expand upon in a systematic manner
by including for example three-body diagrams. In addition, there are no clear signs of
convergence, even in terms of a weak interaction such as the G-matrix. Even in atomic and
molecular physics, many-body perturbative methods are not much favoured any longer,
see for example Ref. [ 14] for a critical discussion. The lessons from atomic and molecular
many-body systems clearly point to the need of non-perturbative resummation techniques
of large classes of diagrams.

This is one of the main reasons for why we have chosen to focus on the coupled cluster
method. However, coupled cluster calculations of nuclei, see Refs. [ 2, 3, 4] have typically
started with the bare nucleon-nucleon interaction. As mentioned above, to renormalize
this interaction one needs a very large set of single-particle states. The latter makes our
use of quantum chemistry algorithms of little practical use if we were to start with the
bare interaction.

To circumvent this problem, we define an effective two-body hamiltonian taylored to a
specific model space. The single-particle states defining the model space, are in turn used
as the basis for our coupled cluster calculations. Here we employ a G-matrix defined with
a so-called no-core Pauli operator, with the harmonic oscillator defining our single-particle
basis. Our model space is then a function of various harmonic oscillator shells. The two-
body states defining the G-matrix model space are shown in Fig. 1, with n3 representing
a large number, at least eight to ten major oscillator shells. The single-particle states
labeled by n3 represent then the last orbit of the model space P , This so-called no-core
model space is used in our definitions of model spaces for the resummations of many-
body terms in coupled cluster theory. In Fig. 1 the two-body state |(pq)JTZ〉 does not
belong to the model space and is included in the computation of the G-matrix. Similarly,
|(pγ)JTZ〉 and |(δq)JTZ〉 also enter the definition of Q whereas |(δγ)JTZ〉 is not included
in the computation of G. This means that correlations not defined in the G-matrix need
to be computed by other non-perturbative resummations or many-body schemes. This is
where the coupled-cluster scheme enters.

With the G-matrix model space P of Fig. 1 we can now define an appropriate space
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for coupled-cluster calculations where correlations not included in the G-matrix are to be
generated. This model space is defined in Fig. 2, where the label np represents the same
single-particle orbit as n3 in Fig. 1.

The G-matrix computed according to Fig. 1 does not reflect a specific nucleus and
thereby single-particle orbits which define the uncorrelated Slater determinant. For a
nucleus like 4He the 0s1/2 orbit is fully occupied and defines thereby single-hole states.
These are labeled by nα in Fig. 2. For 16O the corresponding hole states are represented
by the orbits 0s1/2, 0p3/2 and 0p1/2. With this caveat we can then generate correlations
not included in the G-matrix and perform resummations of larger classes of diagrams.

-

6

qγ

n3

n3

Q = 0

Q = 1

p

δ

Figure 1. Definition of the exclusion operator
Q used to compute the G-matrix for large
spaces.

-
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b

np

np

nα

nα

a

Figure 2. Definition of particle and hole
states for coupled-cluster calculations in
large spaces. The orbit represented by nα

stands for the last hole state whereas np

represents the last particle orbit included
in the G-matrix model space. The hole
states define the Fermi energy.

The effective two-body hamiltonian defined by this G-matrix depends then on the size
of the model space, viz. the number of harmonic oscillator shells, the oscillator parameter
and the starting energy of the G-matrix. Folded-diagrams are also included in order to
reduce the starting energy dependence, see Refs. [ 11, 12] for more details. However, since
we are using a two-body interaction in a many-body environment, the starting energy
dependence may vary from one many-body system to another. A critical discussion of
this dependence is given in the next subsection.

One possible way to avoid such an energy dependence is to use a similarity transformed
hamiltonian, where one diagonalizes the two-body problem in a large harmonic oscillator
basis, big enough to reproduce the binding energy of the deuteron. Through a similarity
transformation one can project this problem onto a smaller space, consisting of some few
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oscillator shells and obtain an effective two-body interaction pertaining to this space. This
follows the philosophy adopted in the so-called ’no-core’ shell-model calculations of Ref. [
15]. This interaction is energy independent and depends only on the choice of the model
space. The effect of the this approach will be studied in future works.

Finally, we approximately removed the center-of-mass motion by subtracting the kinetic
energy of the system from the Hamiltonian, see Ref. [ 11] for further details.

2.2. Ground State Features

In our coupled-cluster study of Ref. [ 11], we performed calculations of the 4He and the
16O ground state for up to seven major oscillator shells as a function of h̄ω. We applied the
center-of-mass correction described above. We demonstrate how this procedure behaves
when one solves the CCSD equations in Fig. 3 for 4He as a function of increasing model
space for different values of the starting energy. While starting energies larger than
−10 MeV are affected by the growing model space (due to the proximity of the deuteron
pole), for starting energies below about −20 MeV results change by less than 1% as we
increase the model space from N = 6 to N = 7. The ground-state energy using the
interaction model Idaho-A was quoted as -27.40 MeV by Navratil and Ormand in Ref. [
16]. At the level of CCSD, a result of around −26.5 MeV would be desired, thus leaving
room for additional binding coming from triples correlations. We obtain this result for
a starting energy of approximately −30.0 MeV. Such a value for the starting energy
would also be in good agreement with the fact that it is meant, within the context of
perturbative many-body methods, to represent the unperturbed energy of two nucleons.
A better approach is most likely the use of a similarity transformed effective interaction,
as done by the no-core collaboration, see for example Ref. [ 15].

In our calculations we have not included the contribution from the Coulomb interaction.
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ent values of the starting energy.
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We performed also calculations of the 16O ground state for up to seven major oscillator
shells as a function of h̄ω. Fig. 4 indicates the level of convergence of the energy per
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particle for N = 4, 5, 6, 7 shells. The experimental value resides at 7.98 MeV per particle.
This calculation is practically converged. By seven oscillator shells, the h̄ω dependence
becomes rather minimal and we find a ground-state binding energy of 7.52 MeV per
particle in oxygen using the Idaho-A potential. Since the Coulomb interaction should
give approximately 0.7 MeV/A of repulsion, and is not included in this calculation, we
actually obtain approximately 6.80 MeV of nuclear binding in the 7 major shell calculation
which is somewhat above the experimental value. We note that the entire procedure (G-
matrix plus CCSD) tends to approach from below converged solutions. We have recently
performed calculations with eight major shells, and the results are practically converged.

In Ref. [ 17] we considered chemistry inspired noniterative corrections due to T3 clusters
(triples in quantum chemistry) to the ground state energy. The presented results are
obtained for a model space consisting of four major oscillator shells. Such a space allows
us to make comparisons with truncated shell-model (SM) calculations. Table 1 shows the
total ground-state energy values obtained with the CCSD and one of the triples-correction
approaches (labeled CR-CCSD(T) [ 9, 10, 18, 19] in the table). Slightly differing triples-
corrections yield similar corrections to the CCSD energy. The coupled cluster methods
recover the bulk of the correlation effects, producing the results of the SM-SDTQ, or
better, quality. SM-SDTQ stands for the expensive shell-model (SM) diagonalization in
a huge space spanned by the reference and all singly (S), doubly (D), triply (T), and
quadruply (Q) excited determinants. To understand this result, we note that the CCSD
T1 and T2 amplitudes are similar in order of magnitude, indeed for an oscillator basis, both
T1 and T2 contribute to the first-order MBPT wave function. Thus, the T1T2 disconnected

triples are large, much larger than the T3 connected triples, and the difference between the
SM-SDT (SM singles, doubles, and triples) and SM-SD energies is mostly due to T1T2.The
small T3 effects, as estimated by CR-CCSD(T), are consistent with the SM diagonalization
calculations. If the T3 corrections were large, we would observe a significant lowering of the
CCSD energy, far below the SM-SDTQ result. Moreover, the CCSD and CR-CCSD(T)
methods bring the nonnegligible higher-than-quadruple excitations, such as T 3

1 T2, T1T
2
2 ,

and T 3
2 , which are not present in SM-SDTQ. It is, therefore, quite likely that the CR-

CCSD(T) results are very close to the results of the exact diagonalization, which cannot
be performed. These results indicate that the bulk of the correlation energy within a

Table 1
The ground-state energy of 16O calculated using various coupled cluster methods and
oscillator basis states. The model space consists of four oscillator shells

Method Energy
CCSD -139.310

CR-CCSD(T) -139.467
SM-SD -131.887

SM-SDT -135.489
SM-SDTQ -138.387

nucleus can be obtained by solving the CCSD equations. This gives us confidence that
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we should pursue this method in open shell systems and in calculations for excited states.

2.3. Excited States

We have recently [ 17] performed excited state calculations on 4He using the EOM-
CCSD (equation of motion CCSD) method. For the excited states |ΨK〉 and energies

E
(CCSD)
K (K > 0), we apply the EOMCCSD (“equation of motion CCSD”) approxi-

mation [ 20, 21] (equivalent to the response CCSD method [ 22]), in which |ΨK〉 =

R
(CCSD)
K exp(T (CCSD))|Φ〉. Here R

(CCSD)
K = R0 + R1 + R2 is a sum of the reference (R0),

1p-1h (R1), and 2p-2h (R2) components obtained by diagonalizing H̄(CCSD) in the same
space of singly and doubly excited determinants |Φa

i 〉 and |Φab
ij 〉 as used in the ground-state

CCSD calculations. As for the ground state, these calculations may also be corrected in
a non-iterative fashion using the excited state extension of the completely renormalized
(CR-CCSD(T)) approach, see Refs. [ 9, 19, 23]. The low-lying J = 1 state most likely re-
sults from the center-of-mass contamination which we have removed only from the ground
state. The J = 0 and J = 2 states calculated using EOMCCSD and CR-CCSD(T) are
in excellent agreement with the results from the shell-model diagonalizations in the same
model space. We have recently also computed excited states in 16O, with a particular em-
phasis on the first 3−

1 state, which is known to be of a 1p-1h nature. Our results based on
the EOMCCSD method yields 13.57 MeV for five shells and 12.98 MeV for six shells, to be
compared with the experimental value of 6.13 MeV. We expect that with seven shells and
the inclusion of triples to get closer to the experimental value. For states like this and for
two-body interactions it is well known in quantum chemistry that EOMCCSD is a very
accurate approach, producing excitation energies within few per cent of the exact values.
Thus, we will be able to predict the result corresponding to an Idaho-A potential that
we used in these calculations once we complete our work for the 7 shells and extrapolate
the energies to the complete basis set limit. These results will be presented elsewhere, see
Ref. [ 24]. There results for rms radii (rrms) and form factors are also discussed. Here we
limit ourselves to note that for 16O, the rrms stabilizes at seven major shells. The values
are rrms = 2.389 fm, rrms = 2.437 fm and rrms = 2.445 fm for five, six and seven major
oscillator shells, respectively. The experimental value is rrms = 2.73 ± 0.025 fm.

Although we miss the experimental binding energy by 1 MeV per particle and the rrms

with some few per cent, our results show a saturation at around seven major oscillator
shells. Furthermore, for nuclei like 16O, corrections from T3 cluster to the ground state are
small compared with the contributions at the CCSD level. This is an important message
since it tells us that with the coupled-cluster methodology we can exhaust with good
confidence various many-body contributions arising from a two-body interaction. The

Table 2
The excitation energies of 4He calculated using the oscillator basis states (in MeV).

State EOMCCSD CR-CCSD(T) CISD Exact
J=1 11.791 12.044 17.515 11.465
J=0 21.203 21.489 24.969 21.569
J=2 22.435 22.650 24.966 22.697
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remaining disagreement with experiment can then be retraced to missing contributions
at the level of the initial hamiltonian (the two-body G-matrix), such as real three-body
terms.

3. CONCLUSIONS AND FUTURE PLANS

Our experience thus far with the quantum chemistry inspired coupled cluster approxi-
mations to calculate the ground and excited states of the 4He and 16O nuclei indicates that
this will be a promising method for nuclear physics. By comparing coupled cluster results
with the exact results obtained by diagonalizing the Hamiltonian in the same model space,
we demonstrated that relatively inexpensive coupled cluster approximations recover the
bulk of the nucleon correlation effects in ground- and excited-state nuclei. These results
are a strong motivation to further develop coupled cluster methods for the nuclear many-
body problem, so that accurate ab initio calculations for small- and medium-size nuclei
become as routine as in molecular electronic structure calculations.

Many-body methods like the coupled cluster approach offer possibilities for extending
microscopic ab-initio calculations beyond nuclei like 40Ca. Furthermore, for weakly bound
nuclei to be produced by future low-energy nuclear structure facilities it is almost impera-
tive to increase the degrees of freedom under study in order to reproduce basic properties
of these systems. Moving towards the driplines however the nuclei cease to be well bound,
and coupling to continuum structures plays an important role, see for example the recent
works on the Gamow shell model of Refs. [ 25, 26]. We are presently working on deriving
complex two-body effective interactions, see for example Ref. [ 27], for weakly bound sys-
tems, reflecting bound states, resonances and the non-resonant continuum. The coupled
cluster methods can then be extended to studies of such systems through the inclusion
of a complex hamiltonian. With the capability of the coupled cluster methods to handle
increasing single-particle densities, demonstrated here for 4He and 16O, we believe that
our methodology may offer a viable approach in studies of these nuclear systems.

We have based most of our analysis using two-body nucleon-nucleon interactions only.
We feel this is important since techniques like the coupled cluster methods allow one to
include a much larger class of many-body terms than done earlier. Eventual discrepancies
with experiment such as the missing reproduction of e.g., the first excited 2+ state in
a 1p0f calculation of 48Ca, can then be ascribed to eventual missing three-body forces,
as indicated by the studies in Refs. [ 16, 28, 29] for light nuclei. The inclusion of real
three-body interactions belongs to our future plans.
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9. P. Piecuch, K. Kowalski, I.S.O. Pimienta, and M.J. McGuire, Int. Rev. Phys. Chem.

21 (2002) 527.
10. P. Piecuch, K. Kowalski, P.-D. Fan, and I.S.O. Pimienta, eds. J. Maruani, R. Lefebvre
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